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Introduction

Speech technology often relies on minimal linguistic expertise and textual information to build acoustic and language models. However, for many languages of the world, text transcripts are limited or nonexistent; therefore, recent efforts have been devoted to Zero Resource Settings [START_REF] Glass | Towards unsupervised speech processing[END_REF][START_REF] Jansen | A summary of the 2012 JH CLSP Workshop on zero resource speech technologies and models of early language acquisition[END_REF][START_REF] Dunbar | The zero resource speech challenge 2017[END_REF] where the aim is to build speech systems without textual or linguistic resources for e.g.: [START_REF] Glass | Towards unsupervised speech processing[END_REF] unwritten languages [START_REF] Besacier | Towards speech translation of non-written languages[END_REF][START_REF] Duong | An attentional model for speech translation without transcription[END_REF]; (2) models that mimic child language development [START_REF] Dupoux | Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering the infant language-learner[END_REF]; (3) documentation of endangered languages by analyzing speech recordings using automatically discovered linguistic units (phones, morphs, words, etc) [START_REF] Adda | Breaking the unwritten language barrier: The BULB project[END_REF].

This paper focuses on unsupervised word segmentation from speech: the system must output time-stamps delimiting stretches of speech, associated with class labels, corresponding to real words in the language. This task is already considered in the Zero Resource Speech Challenge 1 in a fully unsupervised setting: systems must learn to segment from a collection of raw speech signals only. We investigate here a slightly more favorable case where speech utterances are multilingually grounded: they are aligned, at the sentence level, to a written translation in another language. Such a condition is realistic in language documentation, where it is common to collect speech in the language of interest and have it translated or glossed in another language [START_REF] Blachon | Parallel speech collection for underresourced language studies using the LIG-Aikuma mobile device app[END_REF]. In this context, we want to examine whether we can take advantage of the weak form of supervision available 1 http://zerospeech.com/2017 in these translations to help word segmentation from speech. Our hypothesis is that textual translations should help in segmenting speech into words in the unwritten language, even in the absence of (manually obtained) phonetic labels. As a first contribution in this direction, we recently proposed to leverage attentional encoder-decoder approaches for unsupervised word segmentation [START_REF] Boito | Unwritten languages demand attention too! Word discovery with encoder-decoder models[END_REF]. However, this was done from an unsegmented sequence of (manually obtained) true phone symbols, not from speech. It was shown that the approach proposed can compete with a Bayesian Non Parametric (BNP) baseline [START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF] on a small corpus in Mboshi language (5k sentences only).

In this paper, our contribution is to develop an attentional encoder-decoder word segmentation from speech ( §2) that operates in two steps: (a) automatic Acoustic Unit Discovery (AUD), based on Bayesian models, to generate time-marked pseudo-phone symbols from the speech; (b) encoder-decoder word segmentation using these pseudo-phones. 2 Experiments with AUD outputs of increasing complexity (see §3) are presented for word boundary detection using the Mboshi corpus recently made available [START_REF] Godard | A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments[END_REF] ( §4). Our best pipeline from speech has a word boundary F-measure of 50.0% while segmenting from true phone symbols leads to 61.0%.

Attentional Encoder-Decoder Approach for Word Discovery

For word segmentation, given a parallel corpus pairing sequences of pseudo-phone units in the unwritten language (UL) with sequences of words in the well-resourced language (WRL), we compute attention matrices as the result of training a standard Neural Machine Translation (NMT) system translating from the WRL into the UL. Then, these soft-alignment matrices are post-processed to derive word boundaries.

Neural Architecture

The NMT architecture, equations ( 1)-( 4), are inspired by [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF].

A bidirectional encoder reads the input sequence x1, ..., xA and produces a sequence of encoder states h = h1, ..., hA ∈ R 2×n , where n is the chosen encoder cell size. At each time step t, the decoder uses its current state st-1 and an attention mechanism to compute a probability distribution yt over a target vocabulary of size |V |. It then generates the symbol zt having the highest probability, stopping upon generating a special end-of-sentence token. The decoder updates its internal representation st, using the ground-truth symbol wt, instead of the generated symbol zt, since in our alignment setting the reference translations are always available, even at test time. Our system is described by the following equations:

ct = attn(h, st-1) (1) yt = output(st-1 ⊕ E(wt-1) ⊕ ct) (2) zt = arg max yt (3) st = LSTM(st-1, E(wt) ⊕ ct), (4) 
where ⊕ is the concatenation operator. s0 is initialized with the last state of the encoder (after a non-linear transformation), z0 = <BOS> (special token), and E ∈ R |V |×n is the target embedding matrix. The output function uses a maxout layer, followed by a linear projection to R |V | , as in [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF].

The attention mechanism is defined as:

et,i = v T tanh (W1hi + W2st-1 + b2) (5) αt,i = softmax(et,i) (6) ct = attn(h, st-1) = A i=1 αt,ihi (7) 
where v, W1, W2, and b2 are learned jointly with the other model parameters. At each time step (t) a score et,i is computed for each encoder state hi, using the current decoder state st-1. These scores are then normalized using a softmax function, thus giving a probability distribution over the input sequence A i=1 αt,i = 1 and ∀t, i, 0 ≤ αt,i ≤ 1. The context vector ct used by the decoder is a weighted sum of the encoder states. This can be understood as a summary of the useful information in the input sequence for the generation of the next output symbol zt. Likewise, the weights αt,i can be viewed as defining a soft-alignment between the input xi and output zt.

Word Segmentations from Attention

The main aspects of our approach are detailed below.

Reverse Architecture: in NMT, the soft alignments probabilities are normalized for each target symbol t (i.e. ∀t, i αi,t = 1, with i indexing the source symbols). However, there is no similar constraint for the source symbols, as discussed by [START_REF] Duong | An attentional model for speech translation without transcription[END_REF]. Rather than enforcing additional constraints on the alignments, as in the latter reference, we propose to reverse the architecture and to translate from WRL words into UL symbols, following [START_REF] Boito | Unwritten languages demand attention too! Word discovery with encoder-decoder models[END_REF]. This "reverse" architecture notably prevents the attention model from ignoring some UL symbols. As experiments with actual phone sequences have shown that the best results were obtained with this WRL-to-UL translation [START_REF] Boito | Unwritten languages demand attention too! Word discovery with encoder-decoder models[END_REF], we will use this reverse architecture throughout.

Alignment Smoothing: to deal with the length discrepancy between UL (pseudo-phones) and WRL (words), we implemented the alignment smoothing procedure proposed by [START_REF] Duong | An attentional model for speech translation without transcription[END_REF]. It consists of first adding temperature to the softmax function (we use T=10 for all experiments) used by the attention mechanism; and then post-processing the resulting soft-alignment probability matrices, averaging each score with the scores of the two neighboring words. Even if boosting many-to-one alignments should not hold in the case of the reverse architecture, we keep it for our experiments given the gains reported by [START_REF] Boito | Unwritten languages demand attention too! Word discovery with encoder-decoder models[END_REF], even in the reverse case.

Hard Segmentation Generation: once the soft-alignment matrices α are obtained for all utterances in the corpus, a word segmentation is inferred as follows. We first transform softalignments into hard-alignments by aligning each UL symbol wt with the word xi such that: i = arg max i α t,i . The source sequence is then segmented according to these hard-alignments: if two consecutive symbols are aligned with the same WRL word, they are considered to belong to the same UL word.

Acoustic Unit Discovery (AUD)

Our AUD systems are based on the Bayesian non-parametric Hidden Markov Model (HMM) of [START_REF] Ondel | Variational inference for acoustic unit discovery[END_REF]. This model is topologically equivalent to a phone-loop where each acoustic unit is represented by a left-to-right HMM. To cope with the unknown number of units needed to properly describe the speech, the model assumes a potentially infinite number of symbols. However, the prior over the weight of the acoustic units (a Dirichlet Process [START_REF] Teh | Hierarchical Bayesian nonparametric models with applications[END_REF]) will act as a sparsity regularizer, leading to a model which explains the data with a relatively small unit set.

We implemented two variants of this original model. The first one, referred to as HMM, approximates the Dirichlet Process prior by a simpler symmetric Dirichlet prior, as proposed by [START_REF] Kurihara | Collapsed variational Dirichlet process mixture models[END_REF]. This approximation, while retaining the sparsity constraint, avoids the complication of dealing with the variational treatment of the stick breaking process in Bayesian non-parametric models. The second variant, denoted Structured Variational AutoEncoder (SVAE) AUD, is based on the work of [START_REF] Johnson | Composing graphical models with neural networks for structured representations and fast inference[END_REF] and embeds the HMM model into a Variational Auto-Encoder (VAE) [START_REF] Kingma | Auto-encoding variational Bayes[END_REF] where the posterior distribution of the HMM and the VAE parameters are trained jointly using Stochastic Variational Bayes [START_REF] Hoffman | Stochastic variational inference[END_REF][START_REF] Johnson | Composing graphical models with neural networks for structured representations and fast inference[END_REF]. To initialize the model, the prior distribution over the HMM parameters (mixture weights, means and covariance matrices) was set to the posterior distribution of the phone-loop trained in a supervised fashion (Baum-Welch training) on the TIMIT data set. This procedure can be seen as a cross-lingual knowledge transfer as the AUD training on the UL language is essentially adapting the English phone set distribution to the Mboshi corpus. Finally, both models were trained using two features sets: the well-known MFCC + ∆ + ∆∆ features and the Multilingual BottleNeck (MBN) features [START_REF] Grézl | Adapting multilingual neural network hierarchy to a new language[END_REF]. Note that the MBN features were not trained on any Mboshi data, and only use languages as listed in [START_REF] Grézl | Adapting multilingual neural network hierarchy to a new language[END_REF]).

Word Segmentation Experiments

Corpus, Baselines and Metric

We used the Mboshi5k corpus [START_REF] Godard | A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments[END_REF] in all our experiments. 3 Mboshi (Bantu C25) is a typical Bantu language spoken in Congo-Brazzaville. It is one of the languages documented by the BULB (Breaking the Unwritten Language Barrier) project [START_REF] Adda | Breaking the unwritten language barrier: The BULB project[END_REF]. This speech dataset was collected following a real language documentation scenario, using Lig Aikuma, 4 a mobile app specifically dedicated to fieldwork language documentation, which works both on Android powered smartphones and tablets [START_REF] Blachon | Parallel speech collection for underresourced language studies using the LIG-Aikuma mobile device app[END_REF]. The corpus is multilingual [START_REF] Duong | An attentional model for speech translation without transcription[END_REF]130 Mboshi speech utterances aligned to French text) and contains linguists' transcriptions in Mboshi in the form of a non-standard graphemic 3 The dataset is documented in [ form close to the language phonology. Correct word segmentation of the Mboshi transcripts was also provided by the linguists and a forced-alignment between speech and transcripts was computed to obtain time-stamps-delimited word tokens for evaluation. The corpus is split in two parts (train and dev) for which we give basic statistics in Table 1. We also include an example of a sentence pair from our corpus in Figure 1.

Our neural (attentional) word segmentation is compared with two baselines: a naive bilingual baseline (proportional) that segments the source according to the target as if the alignment matrix between symbols (AUD symbols in Mboshi and graphemes in French) was diagonal; 5 a monolingual baseline [START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF] which implements a Bayesian non-parametric approach, where (pseudo)-words are generated by a bigram model over a non-finite inventory, through the use of a Dirichlet process (refered to as dpseg). We evaluate with the Boundary metric from the Zero Resource Challenge 2017 [START_REF] Ludusan | Bridging the gap between speech technology and natural language processing: an evaluation toolbox for term discovery systems[END_REF][START_REF] Dunbar | The zero resource speech challenge 2017[END_REF]. It measures the quality of a word segmentation and the discovered boundaries with respect to a gold segmentation (P, R and F-score are computed).

Details of the NMT system

We use the LIG-CRIStAL NMT system. 6 Our models are trained using the Adam algorithm, with a learning rate of 0.001 and a batch size (N ) of 32. We minimize the cross-entropy loss between the output probability distribution pt = sof tmax(yt) and a reference translation wt. Our models use global attention and bidirectional layer in the encoder; encoder and decoder have 1 layer each, with a cell size of 64. Dropout is applied with a rate equal to 0.5. For NMT training, we split the 5,130 sentences into training and development, with about 10% of the corpus for the latter. However, the soft-alignment matrices are obtained from both train and dev sets after forced-decoding and segmentation is evaluated on all 5,130 utterances.

Results

Unsupervised word segmentation results obtained from speech with different AUD configurations as well as from true phones (upper-bound performance corresponding to a topline) are reported in Table 2, using the Boundary metric. We trained 5 different NMT models changing the train/dev split 7 and either (i) 5 Blank spaces on the French side are then used to segment the Mboshi input. 6 See https://github.com/eske/seq2seq. 7 The difference between best and worst configurations varied from 0.5% to 1.3% for AUD, and 1.6% for true phones.

averaging the scores over the 5 runs (columns att. (biling.) in Table 2) or (ii) averaging the obtained soft-alignment matrices (columns att. average in Table 2). The latter slightly boosts boundary detection performance. For all AUD configurations, our method outperforms two baselines (dpseg and proportional), as well as a pure speech-based baseline using segmental DTW [START_REF] Jansen | Efficient spoken term discovery using randomized algorithms[END_REF], which only achieves a F-score of 19.3 on our data. While competitive with true phones, the results of the monolingual method (dpseg) are heavily degraded on discovered (noisier) units, as also reported by [START_REF] Jansen | A summary of the 2012 JH CLSP Workshop on zero resource speech technologies and models of early language acquisition[END_REF]. Conversely, our method is much more robust to noise and seems better suited for real-world scenarios. While straightforward, the bilingual baseline (proportional) is rather strong compared to its monolingual counterpart (dpseg). This suggests that multilingual grounding provides a useful signal for word segmentation from speech.

Regarding AUD specifically, we observe that the best Fscore for word boundary detection was obtained with MBN features and the SVAE model. The results of our attentional segmentation are the best results reported so far on this corpus. This confirms that we can effectively take advantage of the weak supervision available in the translations in order to help word segmentation from speech.

Discussion

The NMT system requires a sequence of unsegmented symbols (the phones) and their aligned sentence translations in order to provide segmentation. Therefore, the AUD method chosen to encode the speech input has an impact on the quality of the final segmentation. Our best word segmentation results (see Table 2) are obtained using the SVAE model (this holds for both Bayesian and neural segmentation approaches). One natural explanation would be to posit that phone boundaries (and consequently word boundaries) are more accurately detected by the SVAE model than the HMM model. [START_REF] Ondel | Bayesian Models for Unit Discovery on a Very Low Resource Language[END_REF] show that this is true in terms of precision for phone boundaries, and in term of normalized mutual information, but that the recall on these boundaries is lower than its HMM counterpart. This indicates that the SVAE model extract more consistent pseudo-phone units, although it misses some boundaries, than the HMM model, and we confirm here the result of [START_REF] Ondel | Bayesian Models for Unit Discovery on a Very Low Resource Language[END_REF] showing that this is beneficial for the word segmentation task.

Another additional explanation might be that shorter sequences of symbols are easier to segment. For instance, even if the attention helps the system to better deal with long sentences, it is still prone to performance degradation when faced with very long sequences of symbols [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF]. Table 3 (left side) shows how the different AUD approaches are encoding the UL sentences. We observe that the HMM model uses more symbols to represent an utterance, while the SVAE model offers a more concise representation. is another clue as to why the MBN SVAE is performing best on our task.

Analyzing the averaged attention model's results in Table 2, we can see an increase in performance of about 0.8% in all cases. This improvement also holds for tokens and types scores (not reported here). However, while the topline achieves 34.3% of vocabulary (types) retrieval, our best AUD setup achieves 13.5% only. This illustrates the difficulty of the word discovery task -a task already challenging with true phones -in noisy setups. The large difference between true phones and pseudophones for type's retrieval could be explained by the fact that a single change in the pseudo-phone sequence representing two speech segments of a same word will have the consequence to split the word cluster in two parts (in two types). A deeper analysis of the word clusters obtained is probably necessary to better understand how AUD from speech affects the word discovery task, and to come up with ways to better cluster speech segments in relevant types.

The attention-based segmentation technique remains much more robust for word boundary detection than our monolingual (Bayesian) approach. Figure 2 shows an example of a (good quality) soft alignment (attention) matrix produced in our best setup (MBN SVAE).

Related Work

Word segmentation in a monolingual setup was previously investigated from text input [START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF] and from speech [START_REF] Jansen | Efficient spoken term discovery using randomized algorithms[END_REF][START_REF] Lee | Unsupervised lexicon discovery from acoustic input[END_REF][START_REF] Bartels | Toward human-assisted lexical unit discovery without text resources[END_REF][START_REF] Elsner | A joint learning model of word segmentation, lexical acquisition, and phonetic variability[END_REF]. Word discovery experiments from text input on Mboshi were reported in [START_REF] Godard | Preliminary experiments on unsupervised word discovery in mboshi[END_REF]. Bilingual setups (cross-lingual supervision) for word segmentation were discussed by [START_REF] Stüker | Towards human translations guided language discovery for ASR systems[END_REF][START_REF] Stüker | Human Translations Guided Language Discovery for ASR Systems[END_REF][START_REF] Stahlberg | Word segmentation through cross-lingual word-to-phoneme alignment[END_REF][START_REF] Boito | Unwritten languages demand attention too! Word discovery with encoder-decoder models[END_REF], but applied to speech transcripts (true phones). Looking at NMT from speech, the research by [START_REF] Bérard | Listen and translate: A proof of concept for end-to-end speech-to-text translation[END_REF][START_REF] Weiss | Sequence-to-sequence models can directly transcribe foreign speech[END_REF] are recent examples of approaches to end-to-end spoken language translation, but us- ing much larger data conditions than ours.

Among the most relevant to our approach are the works of [START_REF] Duong | An attentional model for speech translation without transcription[END_REF] on speech-to-translation alignment using attentional NMT and of [START_REF] Anastasopoulos | Spoken term discovery for language documentation using translations[END_REF] for language documentation. However, the former does not address word segmentation and is not applied to a language documentation scenario, while the latter does not provide a full coverage of the speech corpus analyzed.

Conclusions

Different from these related works and inspired by [START_REF] Boito | Unwritten languages demand attention too! Word discovery with encoder-decoder models[END_REF], this paper presented word segmentation from speech, in a bilingual setup and for a real language documentation scenario (Mboshi). The proposed approach first performs AUD to generate pseudophones from speech, and then uses these units in an encoderdecoder NMT for word segmentation. Our method leads to promising results for word segmentation from speech, outperforming three baselines in noisy (pseudo-phones) setups and finally delivering the best results reported so far for the Mboshi5k corpus. Future work includes investigating sources of weak supervision and minimal viable corpus sizes.
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 2 Figure 2: NMT output alignment for true phones (top) and AUD using MBN SVAE (bottom). For illustration purposes, we give the transcription of the audio in Mboshi.
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 1 Mboshiwáá ngá iwé léekundá ngá sá oyoá lendúma saa m ótéma French si je meurs enterrez-moi dans la forêt oyoa avec une guitare sur la poitrine Figure 1: A tokenized and lowercased sentence pair example in our Mboshi-French corpus. Corpus statistics for the Mboshi corpus
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 3 also reports information regarding the generated segmentation using a single attention model (right side), showing that our best model (MBN SVAE) results in segmentations that relate closely to the topline in terms of number of tokens per sentence. This best model also achieved a vocabulary size close to the topline, of 14,837 types compared to 13,878. This MFCC HMM 27.9 80.2 41.3 42.6 49.9 46.0 51.6 44.9 48.0 55.[START_REF] Duong | An attentional model for speech translation without transcription[END_REF] 43.7 48.9 MFCC SVAE 29.8 69.1 41.7 42.2 51.9 46.6 52.7 45.0 48.5 55.7 44.1 49.2 MBN HMM 27.8 72.6 40.2 42.5 48.1 45.2 50.8 44.5 47.4 54.1 42.9 47.8 MBN SVAE 30.0 72.9 42.5 42.5 51.6 46.6 57.2 43.0 49.1 60.6 42.5 50.0 true phones 53.8 83.5 65.4 44.5 62.6 52.0 60.5 59.9 60.3 62.8 59.3 61.0

	AUD	AUD	dpseg			proportional			attentional			att. average
	feat.	model	(monoling.)		baseline (biling.)		(biling.)*			(biling.)+
		P	R	F	P	R	F	P	R	F	P	R	F

Table 2 :

 2 Precision, Recall and F-measure on word boundaries over the Mboshi5k corpus, using different AUD to extract pseudo-phones from speech. True phones toplines are also provided. *averaged scores over 5 different runs; +averaged 5 attention matrices

		Phones per		Tokens per	
			Sentence			Sentence	
		avg max min avg max min
	true phones	21.8	60	4	6.0	21	1
	MFCC HMM 37.0	95	11	3.6	22	1
	MFCC SVAE 26.3	73	7	7.6	26	1
	MBN HMM	32.1	93	12	5.0	14	1
	MBN SVAE	23.4	71	7	5.4	21	1

Table 3 :

 3 AUD

methods differ in their ability to encode speech utterances (left side); which impacts the final segmentation of the attentional model (right side).

End-to-end speech processing can be performed with an encoderdecoder architecture for speech translation (e.g.[START_REF] Bérard | Listen and translate: A proof of concept for end-to-end speech-to-text translation[END_REF][START_REF] Weiss | Sequence-to-sequence models can directly transcribe foreign speech[END_REF]); early attempts to train end-to-end from speech to translated text, in our language documentation scenario, were not viable due to limited data.
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