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We study the gravitational radiation emitted by a massive point particle plunging from slightly below the
innermost stable circular orbit into a Schwarzschild black hole. We consider both even- and odd-parity
perturbations and describe them using the two gauge-invariant master functions of Cunningham, Price, and
Moncrief. We obtain, for arbitrary directions of observation and, in particular, outside the orbital plane of
the plunging particle, the regularized multipolar waveforms, i.e., the waveforms constructed by summing
over of a large number of modes, and their unregularized counterparts constructed from the quasinormal-
mode spectrum. They are in excellent agreement and our results permit us to especially emphasize the
impact on the distortion of the waveforms of (i) the harmonics beyond the dominant (l ¼ 2, m ¼ �2)
modes and (ii) the direction of observation, and therefore the necessity to take them into account in the
analysis of the last phase of binary black hole coalescence.
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I. INTRODUCTION

In this article, we shall obtain and analyze in terms of
quasinormal modes (QNMs) the multipolar gravitational
waveforms generated by a massive “point particle” plung-
ing from slightly below the innermost stable circular orbit
(ISCO) into a Schwarzschild black hole (BH). Here, it is
important to note that, by multipolar waveforms, we intend
waveforms constructed by superposition of a large number
of modes. We shall assume an extreme mass ratio for the
physical system considered, i.e., that the BH is much
heavier than the particle, such a hypothesis permitting us to
describe the emitted radiation in the framework of BH
perturbations [1–7]. In the context of gravitational wave
physics and with the first direct gravitational-detection of a
binary black hole coalescence by LIGO [8], the problem we
study is of fundamental importance and there exists a large
literature concerning it more or less directly (see, e.g.,
Refs. [9–27]). Indeed, the “plunge regime” from the ISCO
is the last phase of the evolution of a stellar mass object
orbiting near a supermassive BH or it can be also used to
describe the late-time evolution of a binary BH. Here, it is
important to recall that, as a result of the radiation of
gravitational waves, the eccentricity and the semimajor axis
of a two-point mass system decay [28] and, as a conse-
quence, for a wide class of initial conditions at large
distances, the orbits are “circularized” and the system

reaches an ISCO or an effective ISCO. Moreover, the
waveform generated during the plunge regime encodes
the final BH fingerprint. It should be recalled that, in this
context, a multipolar description of the gravitational signal
will be of fundamental interest with the enhancement
of the sensitivity of laser-interferometric gravitational wave
detectors (see, e.g., Refs. [29–31] and references therein).
In this article, which generalize our recent work concerning
the electromagnetic radiation emitted by a charged particle
plunging from the ISCO into a Schwarzschild black hole
[32], we shall show, by taking into account a large number
of higher harmonics, that the waveform is strongly distorted
and that the distortion highly depends on the direction of
observation.
It should be pointed out that our work extends the study

of Hadar and Kol [19] as well as the analysis of Hadar, Kol,
Berti, and Cardoso in Ref. [20]. In these two articles, the
multipolar and quasinormal BH responses have been
theoretically constructed for any angular position of the
observer but the corresponding numerical aspects are rather
limited. For instance, in Ref. [19], the authors have only
plotted the quasinormal response observed in the orbital
plane of the plunging particle. We go out the orbital plane in
our numerical results and plots. We also go further by
plotting and comparing, in the same figures and for many
angular positions of the observer, the multipolar gravita-
tional waveforms and the quasinormal ringdowns. In
Refs. [19,20], the multipolar waveforms are never plotted
and the comparison of the partial waveforms obtained in
Ref. [20] with the quasinormal ringdowns constructed in
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Ref. [19] is achieved in an alternative way based on a
numerical fitting method. Moreover, it is important to note
that, due to a sign difference, our results concerning the
multipolar quasinormal waveforms observed in the orbital
plane of the plunging particle do not agree with the
numerical results plotted in Ref. [19].
Our paper is organized as follows. In Sec. II, after a brief

overview of gravitational perturbation theory in the
Schwarzschild spacetime, we establish theoretically the
expression of the waveforms emitted by a massive point
particle plunging from the ISCO into the BH. More
precisely, we consider both the even- and odd-parity
gravitational perturbations for arbitrary (l, m) modes
and describe them using the two gauge-invariant master
functions of Cunningham, Price, and Moncrief [3–7]. We
then solve, in the frequency domain and by using standard
Green’s function techniques, the Regge-Wheeler equation
[1] governing the odd-perturbations as well as the Zerilli-
Moncrief equation [2,3] governing the even-perturbations.
This is achieved after having constructed the sources for
these two equations from the closed-form expression of the
plunge trajectory. In Sec. III, we extract from the results of
Sec. II the QNM counterpart of the waveforms correspond-
ing to the gravitational ringing (or ringdown) of the BH. We
gather all our numerical results and their analysis in Sec. IV
where we display the regularized multipolar waveforms
emitted [i.e., the waveforms constructed by summing over
of a large number of (l, m) modes] and compare them with
their unregularized counterparts constructed solely from the
QNM spectrum. Both are obtained for arbitrary directions
of observation and, in particular, outside the orbital plane of
the plunging particle. It should be noted that, in the late
phase of the signals, they are in excellent agreement.
Moreover, our results especially emphasize the impact
on the distortion of the waveforms of the harmonics beyond
the dominant (l ¼ 2, m ¼ �2) modes and of the direction
of observation. At the end of this section, we also compare
our results with those displayed in Ref. [19] and propose an
explanation for the disagreement found. In the Conclusion,
we briefly summarize the main results obtained in this
article and, in an Appendix, we carefully examine the
regularization of the partial amplitudes from both the
theoretical and numerical point of view. Indeed, the exact
waveforms theoretically obtained in Sec. II are integrals
over the radial Schwarzschild coordinate which are
strongly divergent near the ISCO. For even as well as
for odd perturbations, they can be numerically regularized
by using the Levin’s algorithm [33] but only after having
reduced the degree of divergence of these integrals by a
succession of integrations by parts, i.e., by extending the
method we developed in our work concerning the charged
particle plunging from the ISCO into a Schwarzschild black
hole where we encountered a similar problem [32].
Throughout this article, we adopt units such that G ¼

c ¼ 1 and we use the geometrical conventions of Ref. [34].

II. GRAVITATIONAL WAVES GENERATED BY
THE PLUNGING MASSIVE PARTICLE

In this section, we shall obtain theoretically the expres-
sion of the even- and odd-parity waveforms emitted by a
massive point particle plunging from slightly below the
ISCO into the BH. This will be achieved by working in the
frequency domain and using the standard Green’s function
techniques. Moreover, we shall fix the notations and
conventions used throughout the whole article.

A. The Schwarzschild BH and the
plunging massive particle

We recall that the exterior of the Schwarzschild BH of
mass M is defined by the metric

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dσ22 ð1Þ

where fðrÞ ¼ ð1 − 2M=rÞ and dσ22 ¼ dθ2 þ sin2θdφ2

denotes the metric on the unit 2-sphere S2 and with the
Schwarzschild coordinates (t, r, θ, φ) which satisfy
t ∈� −∞;þ∞½, r ∈�2M;þ∞½, θ ∈ ½0; π� and φ ∈ ½0; 2π�.
In the following, we shall also use the so-called tortoise
coordinate r� ∈� −∞;þ∞½ defined in terms of the radial
Schwarzschild coordinate r by dr=dr� ¼ fðrÞ and given by
r�ðrÞ ¼ rþ 2M ln½r=ð2MÞ − 1�. We recall that the function
r� ¼ r�ðrÞ provides a bijection from �2M;þ∞½ to
� −∞;þ∞½.
We denote by tpðτÞ, rpðτÞ, θpðτÞ and φpðτÞ the coor-

dinates of the timelike geodesic γ followed by the plunging
particle (here τ is the proper time of the particle) and by m0

its mass. Without loss of generality, we can consider that its
trajectory lies in the BH equatorial plane, i.e., we assume
that θpðτÞ ¼ π=2. The geodesic equations defining γ are
given by [35]

fðrpÞ
dtp
dτ

¼ Ẽ; ð2aÞ

r2p
dφp

dτ
¼ L̃ ð2bÞ

and

�
drp
dτ

�
2

þ L̃2

r2p
fðrpÞ −

2M
rp

¼ Ẽ2 − 1: ð2cÞ

Here Ẽ and L̃ are, respectively, the energy and angular
momentum per unit mass of the particle which are two
conserved quantities given on the ISCO, i.e., at r ¼ rISCO
with

rISCO ¼ 6M; ð3Þ

by
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Ẽ ¼ 2
ffiffiffi
2

p

3
and L̃ ¼ 2

ffiffiffi
3

p
M: ð4Þ

By substituting (4) into the geodesic equations (2a)–(2c),
we obtain after integration

tpðrÞ
2M

¼ 2
ffiffiffi
2

p ðr − 24MÞ
2Mð6M=r − 1Þ1=2 − 22

ffiffiffi
2

p
tan−1½ð6M=r − 1Þ1=2�

þ 2tanh−1
�
1ffiffiffi
2

p ð6M=r − 1Þ1=2
�
þ t0
2M

ð5Þ

and

φpðrÞ ¼ −
2

ffiffiffi
3

p

ð6M=r − 1Þ1=2 þ φ0 ð6Þ

where t0 and φ0 are two arbitrary integration constants.
From (6), we can write the spatial trajectory of the plunging
particle in the form

rpðφÞ ¼
6M

½1þ 12=ðφ − φ0Þ2�
: ð7Þ

We have displayed this trajectory in Fig. 1.

B. Gravitational perturbations induced
by the plunging particle

Gravitational waves emitted from the Schwarzschild BH
excited by the plunging particle can be characterized by the
field hμν which satisfies the wave equation

□hμν−hρμ;νρ−hρν;μρþh;μνþgμνðhρσ ;ρσ −□hÞ¼−16πTμν

ð8Þ

where Tμν, which is the stress-energy tensor associated with
the massive particle, is given by

TμνðxÞ ¼ m0

Z
γ
dτ

dxμpðτÞ
dτ

dxνpðτÞ
dτ

δ4ðx − xpðτÞÞffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp ð9aÞ

¼ m0

dxμp
dτ

ðrÞ dx
ν
p

dτ
ðrÞ

�
drp
dτ

ðrÞ
�
−1

×
δ½t − tpðrÞ�δ½θ − π=2�δ½φ − φpðrÞ�

r2 sin θ
: ð9bÞ

In this last equation, tpðrÞ and φpðrÞ are respectively
given by (5) and (6).
The resolution of the problem defined by (8) and (9b)

and, more generally, the topic of gravitational perturbations
of BHs, have been the subject of lots of works since
the pioneering articles by Regge and Wheeler [1] and
Zerilli [2]. So, because gravitational perturbations of the
Schwarzschild BH are very well described in the article by
Martel and Poisson [6] as well as in the review by Nagar
and Rezzolla [7], we just briefly recall some of the results
we need for our particular work. The gravitational signal
emitted can be described in terms of the two gauge-
invariant master functions of Cunningham, Price, and
Moncrief [3–5] denoted by ψ ðeÞ

lmðt; rÞ and ψ ðoÞ
lmðt; rÞ [here,

and in the following, the symbols (e) and (o) are respectively
associated with even (polar) and odd (axial) objects accord-
ing they are of even or odd parity in the antipodal trans-
formation on the unit 2-sphereS2] which satisfy respectively
the Zerilli-Moncrief and Regge-Wheeler equations

�
−

∂2

∂t2 þ
∂2

∂r2� − Vðe=oÞ
l ðrÞ

�
ψ ðe=oÞ
lm ðt; rÞ ¼ Sðe=oÞlm ðt; rÞ: ð10Þ

Here the Zerilli-Moncrief potential is given by

VðeÞ
l ðrÞ¼ fðrÞ

×

�
Λ2ðΛþ2Þr3þ6Λ2Mr2þ36ΛM2rþ72M3

ðΛrþ6MÞ2r3
�
ð11Þ

and we have for the Regge-Wheeler potential

VðoÞ
l ðrÞ ¼ fðrÞ

�
Λþ 2

r2
−
6M
r3

�
: ð12Þ

In Eqs. (11) and (12), we have introduced

Λ ¼ ðl − 1Þðlþ 2Þ ¼ lðlþ 1Þ − 2: ð13Þ
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FIG. 1. The plunge trajectory obtained from Eq. (7). Here, we
assume that the particle starts at r ¼ rISCOð1 − ϵÞ with ϵ ¼ 10−3

and we take φ0 ¼ 0. The red dashed line at r ¼ 6M and the red
dot-dashed line at r ¼ 2M represent the ISCO and the horizon,
respectively, while the black dashed line corresponds to the
photon sphere at r ¼ 3M.
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We note that only the functions ψ ðe=oÞ
lm ðt; rÞ with l ¼

2; 3; 4;… and m ¼ −l;−lþ 1;…;þl are physically rel-
evant for our study.
We recall that the functions SðeÞlmðt; rÞ and SðoÞlmðt; rÞ

are source terms which depend on the components, in
the basis of tensor spherical harmonics, of the stress-
tensor inducing the perturbations of the Schwarzschild
spacetime. Their expressions can be found in the

review by Nagar and Rezzolla: SðeÞlmðt; rÞ is given by

Eq. (4) of the Erratum of Ref. [7] while SðoÞlmðt; rÞ is
given by Eq. (24) of Ref. [7]). After having checked
these two results, we have used them to construct the
sources corresponding to the stress-energy tensor (9b).
By using the orthonormalization properties of the
(scalar, vector and tensor) spherical harmonics [6,7],
we have obtained

SðeÞlmðt; rÞ ¼
8πm0½Ylmðπ=2; 0Þ��ffiffiffiffiffiffi
2π

p ðΛþ 2ÞðΛrþ 6MÞ fðrÞ
��

3Λ − 2 − 64M
Λrþ6M þ 72M2ðΛþ2−m2Þ

r2 þ 216M3ðΛþ2−2m2Þ
Λr3

ð6M=r − 1Þ3=2

−
8

ð6M=r − 1Þ5=2 − im
4

ffiffiffi
3

p
M

r

�
1þ 8

ð6M=r − 1Þ3
��

δ½t − tpðrÞ�

−
12

ffiffiffi
2

p ðr2 þ 12M2Þ
rð6M=r − 1Þ3 δ0½t − tpðrÞ�

�
exp½−imφpðrÞ� ð14Þ

and

SðoÞlmðt; rÞ ¼
16πm0½Xlm

φ ðπ=2; 0Þ��ffiffiffiffiffiffi
2π

p
ΛðΛþ 2Þ fðrÞ

��
−

8
ffiffiffi
6

p
M

r2ð6M=r − 1Þ3=2 þ
36

ffiffiffi
6

p
M2

r3ð6M=r − 1Þ5=2 þ im
72

ffiffiffi
2

p
M2

r3ð6M=r − 1Þ3
�
δ½t − tpðrÞ�

þ 18
ffiffiffi
3

p
Mðr2 þ 12M2Þ

r3ð6M=r − 1Þ3 δ0½t − tpðrÞ�
�
exp½−imφpðrÞ�: ð15Þ

In the last equation, we have introduced the vector
spherical harmonic

Xlm
φ ¼ − sin θ

∂
∂θ Y

lm: ð16Þ

Furthermore, we note that the coefficients Ylmðπ=2; 0Þ and
Xlm
φ ðπ=2; 0Þ appearing respectively in Eqs. (14) and (15)

are given by

Ylmðπ=2;0Þ¼ 2mffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4π

ðl−mÞ!
ðlþmÞ!

s

×
Γ½l=2þm=2þ1=2�
Γ½l=2−m=2þ1� cos ½ðlþmÞπ=2�;

ð17Þ
and

Xlm
φ ðπ=2;0Þ¼2mþ1ffiffiffi

π
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4π

ðl−mÞ!
ðlþmÞ!

s

×
Γ½l=2þm=2þ1�
Γ½l=2−m=2þ1=2�sin ½ðlþmÞπ=2�: ð18Þ

Here, it is important to remark that Ylmðπ=2; 0Þ and hence
the source (14) vanish for lþm odd while Xlm

φ ðπ=2; 0Þ
and hence the source (15) vanish for lþm even.

It is also important to recall that the partial amplitudes

ψ ðe=oÞ
lm ðt; rÞ of Cunningham, Price and Moncrief permit us

to obtain the gravitational wave amplitude observed at
spatial infinity (i.e., for r → þ∞). In the transverse trace-
less gauge [34], the two circularly polarized components
(hþ, h×) of the emitted gravitational wave are given by [7]

hþ ¼ hðeÞþ þ hðoÞþ and h× ¼ hðoÞ× þ hðoÞ× ð19Þ

with

hðeÞþ ¼ 1

r

Xþ∞

l¼2

Xþl

m¼−l
ψ ðeÞ
lm

�
2
∂2

∂θ2 þ lðlþ 1Þ
�
Ylm; ð20aÞ

hðeÞ× ¼ 1

r

Xþ∞

l¼2

Xþl

m¼−l
ψ ðeÞ
lm

�
2

sin θ

� ∂2

∂θ∂φ −
cos θ
sin θ

∂
∂φ

��
Ylm;

ð20bÞ

hðoÞþ ¼ 1

r

Xþ∞

l¼2

Xþl

m¼−l
ψ ðoÞ
lm

�
2

sin θ

� ∂2

∂θ∂φ −
cos θ
sin θ

∂
∂φ

��
Ylm;

ð20cÞ
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hðoÞ× ¼ 1

r

Xþ∞

l¼2

Xþl

m¼−l
ψ ðoÞ
lm

�
−
�
2
∂2

∂θ2 þ lðlþ 1Þ
��

Ylm:

ð20dÞ

It should be noted that, due to Eqs. (17) and (18) [see
also the remark following these equations], we have to only
consider the couples (l, m) with lþm even in the
superpositions (20a) and (20b) and the couples (l, m)
with lþm odd in the superpositions (20c) and (20d).

C. Construction of the partial amplitudes ψðe=oÞ
lm ðt;rÞ

In order to solve the Zerilli-Moncrief and Regge-
Wheeler equations (10), we shall work in the frequency
domain by writing

ψ ðe=oÞ
lm ðt; rÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωψ ðe=oÞ

ωlm ðrÞe−iωt ð21Þ

and

Sðe=oÞlm ðt; rÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωSðe=oÞωlm ðrÞe−iωt: ð22Þ

Then, these two wave equations reduce to

�
d2

dr2�
þ ω2 − VlðrÞ

�
ψ ðe=oÞ
ωlm ðrÞ ¼ Sðe=oÞωlm ðrÞ ð23Þ

where the new source terms, which are obtained from (14)
and (15), are given by

SðeÞωlmðrÞ ¼
8πm0½Ylmðπ=2; 0Þ��ffiffiffiffiffiffi
2π

p ðΛþ 2ÞðΛrþ 6MÞ fðrÞ
�
iω

12
ffiffiffi
2

p ðr2 þ 12M2Þ
rð6M=r − 1Þ3 − im

4
ffiffiffi
3

p
M

r

�
1þ 8

ð6M=r − 1Þ3
�

−
8

ð6M=r − 1Þ5=2 þ
3Λ − 2 − 64M

Λrþ6M þ 72M2ðΛþ2−m2Þ
r2 þ 216M3ðΛþ2−2m2Þ

Λr3

ð6M=r − 1Þ3=2
�
exp½iðωtpðrÞ −mφpðrÞÞ� ð24Þ

and

SðoÞωlmðrÞ ¼
16πm0½Xlm

φ ðπ=2; 0Þ��ffiffiffiffiffiffi
2π

p
ΛðΛþ 2Þ fðrÞ

�
−iω

18
ffiffiffi
3

p
Mðr2 þ 12M2Þ

r3ð6M=r − 1Þ3 þ im
72

ffiffiffi
2

p
M2

r3ð6M=r − 1Þ3

þ 36
ffiffiffi
6

p
M2

r3ð6M=r − 1Þ5=2 −
8

ffiffiffi
6

p
M

r2ð6M=r − 1Þ3=2
�
exp½iðωtpðrÞ −mφpðrÞÞ�: ð25Þ

We have checked that our results (24) and (25) are in
agreement with the corresponding results obtained by
Hadar and Kol in Ref. [19]. It should be however noted
that we do not use the same conventions for the definition
of the sources, for the Fourier transform as well as the same
normalization for the partial amplitudes ψ ðe=oÞ

lm ðt; rÞ.
Furthermore, it seems to us that our expression for the
even-parity source is much simpler than theirs. It is also
important to note that, due to the relation

Yl−m ¼ ð−1Þm½Ylm��; ð26aÞ

we have

Xl−m
φ ¼ ð−1Þm½Xlm

φ ��; ð26bÞ

and therefore, as a direct consequence of (26a) and (26b),
we can easily observe that

Sðe=oÞωl−m ¼ ð−1Þm½Sðe=oÞ−ωlm��: ð27Þ

The Zerilli-Moncrief and Regge-Wheeler equations (23)
can be solved by using the machinery of Green’s functions

(see Ref. [36] for generalities on this topic and, e.g.,
Ref. [37] for its use in the context of BH physics). We
consider the Green’s functions Gðe=oÞ

ωl ðr�; r0�Þ defined by

�
d2

dr2�
þ ω2 − VlðrÞ

�
Gðe=oÞ

ωl ðr�; r0�Þ ¼ −δðr� − r0�Þ ð28Þ

which can be written as

Gðe=oÞ
ωl ðr�;r0�Þ¼−

1

Wðe=oÞ
l ðωÞ

×

8<
:ϕinðe=oÞ

ωl ðr�Þϕupðe=oÞ
ωl ðr0�Þ; r�<r0�;

ϕupðe=oÞ
ωl ðr�Þϕinðe=oÞ

ωl ðr0�Þ; r�>r0�:
ð29Þ

Here Wðe=oÞ
l ðωÞ denote the Wronskians of the functions

ϕinðe=oÞ
ωl and ϕupðe=oÞ

ωl . These functions are linearly indepen-
dent solutions of the homogeneous Zerilli-Moncrief and
Regge-Wheeler equations
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�
d2

dr2�
þ ω2 − Vðe=oÞ

l ðrÞ
�
ϕðe=oÞ
ωl ¼ 0: ð30Þ

The functions ϕinðe=oÞ
ωl are defined by their purely ingoing

behavior at the event horizon r ¼ 2M (i.e., for r� → −∞)

ϕinðe=oÞ
ωl ðrÞ ∼

r�→−∞
e−iωr� ð31aÞ

while, at spatial infinity r → þ∞ (i.e., for r� → þ∞), they
have an asymptotic behavior of the form

ϕinðe=oÞ
ωl ðrÞ ∼

r�→þ∞
Að−;e=oÞ
l ðωÞe−iωr� þ Aðþ;e=oÞ

l ðωÞeþiωr� :

ð31bÞ

Similarly, the functions ϕupðe=oÞ
ωl are defined by their purely

outgoing behavior at spatial infinity

ϕupðe=oÞðrÞ ∼
r�→þ∞

eþiωr� ð32aÞ

and, at the horizon, they have an asymptotic behavior of the
form

ϕupðe=oÞ
ωl ðrÞ ∼

r�→−∞
Bð−;e=oÞ
l ðωÞe−iωr� þ Bðþ;e=oÞ

l ðωÞeþiωr� :

ð32bÞ

In the previous expressions, the coefficients Að−;e=oÞ
l ðωÞ,

Aðþ;e=oÞ
l ðωÞ, Bð−;e=oÞ

l ðωÞ and Bðþ;e=oÞ
l ðωÞ are complex

amplitudes. By evaluating the Wronskians Wðe=oÞ
l ðωÞ at

r� → −∞ and r� → þ∞, we obtain

Wðe=oÞ
l ðωÞ ¼ 2iωAð−;e=oÞ

l ðωÞ ¼ 2iωBðþ;e=oÞ
l ðωÞ: ð33Þ

Here, it is worth noting some important properties of the

coefficients Að�;e=oÞ
l ðωÞ and of the functions ϕinðe=oÞ

ωl ðrÞ that
we will use extensively later. They are a direct consequence
of Eqs. (30) and (31) and they are valid whether ω is real or
complex. We have

ϕinðe=oÞ
−ωl ðrÞ ¼ ½ϕinðe=oÞ

ωl ðrÞ�� ð34aÞ

and

Að�;e=oÞ
l ð−ωÞ ¼ ½Að�;e=oÞ

l ðωÞ��: ð34bÞ

It is important to also recall that the solutions of the
homogeneous Zerilli-Moncrief and Regge-Wheeler equa-
tions (30) are related by the Chandrasekhar-Detweiler
transformation [35,38]

½ΛðΛþ 2Þ − ið12MωÞ�ϕðeÞ
ωl

¼
�
ΛðΛþ 2Þ þ 72M2

rðΛrþ 6MÞ fðrÞ þ 12MfðrÞ d
dr

�
ϕðoÞ
ωl

ð35Þ

and, as a consequence, the coefficients Að�;e=oÞ
l ðωÞ satisfy

the relations

Að−;eÞ
l ðωÞ ¼ Að−;oÞ

l ðωÞ ð36aÞ

and

Aðþ;eÞ
l ðωÞ ¼ ΛðΛþ 2Þ þ ið12MωÞ

ΛðΛþ 2Þ − ið12MωÞ A
ðþ;oÞ
l ðωÞ: ð36bÞ

Using the Green’s functions (29), we can show that the
solutions of the Moncrief-Zerilli and Regge-Wheeler equa-
tions with source (23) are given by

ψ ðe=oÞ
ωlm ðrÞ ¼ −

Z þ∞

−∞
dr0�G

ðe=oÞ
ωl ðr�; r0�ÞSðe=oÞωlm ðr0�Þ ð37aÞ

¼ −
Z

6M

2M

dr0

fðr0ÞG
ðe=oÞ
ωl ðr; r0ÞSðe=oÞωlm ðr0Þ: ð37bÞ

For r → þ∞, the solutions (37b) reduce to the asymp-
totic expressions

ψ ðe=oÞ
ωlm ðrÞ ¼ eþiωr�

2iωAð−;e=oÞ
l ðωÞ

Z
6M

2M

dr0

fðr0Þϕ
inðe=oÞ
ωl ðr0ÞSðe=oÞωlm ðr0Þ:

ð38Þ

This result is a consequence of Eqs. (29), (32a) and (33).
We can now obtain the solutions of the Zerilli-Moncrief

and Regge-Wheeler equations (10) by inserting (38) into
(21) and we have, in the time domain, for the (l, m)
waveforms

ψ ðe=oÞ
lm ðt; rÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dω

�
e−iω½t−r�ðrÞ�

2iωAð−;e=oÞ
l ðωÞ

�

×
Z

6M

2M

dr0

fðr0Þϕ
inðe=oÞ
ωl ðr0ÞSðe=oÞωlm ðr0Þ: ð39Þ

Here it is important to note that these partial waveforms
satisfy

ψ ðe=oÞ
l−m ¼ ð−1Þm½ψ ðe=oÞ

lm ��: ð40Þ

This is a direct consequence of the definition (21) and of the
relation
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ψ ðe=oÞ
ωl−m ¼ ð−1Þm½ψ ðe=oÞ

−ωlm�� ð41Þ

which is easily obtained from (38) and (27) by noting that

the solutions ϕinðe=oÞ
ωl of the problem (30)–(31) and the

associated coefficients Að−;e=oÞ
l ðωÞ satisfy the relations (34).

The relations (40) and (26a) permit us to check that the
gravitational wave amplitudes (20) are purely real.

III. QUASINORMAL RINGINGS DUE TO THE
PLUNGING MASSIVE PARTICLE

In this section, we shall construct the quasinormal
ringings associated with the gravitational wave amplitudes
(20). Of course, they can be obtained by summing over
the ringings associated with all the partial amplitudes

ψ ðe=oÞ
lm ðt; rÞ. In order to extract from these partial amplitudes

the corresponding quasinormal ringings ψQNMðe=oÞ
lmn ðt; rÞ, the

contour of integration over ω in Eq. (39) may be deformed
(see, e.g., Ref. [39]). This deformation permits us to capture
the zeros of theWronskians (33) lying in the lower part of the
complexω plane andwhich are the complex frequenciesωln
of the (l, n) QNMs. We note that, for a given l, n ¼ 1
corresponds to the fundamental QNM (i.e., the least damped
one) while n ¼ 2; 3;… to the overtones. We also recall that
the spectrum of the quasinormal frequencies is symmetric
with respect to the imaginary axis, i.e., that if ωln is a
quasinormal frequency lying in the fourth quadrant,−ω�

ln is
the symmetric quasinormal frequency lying in the third one.
We then easily obtain

ψQNMðe=oÞ
lm ðt; rÞ ¼

Xþ∞

n¼1

ψQNMðe=oÞ
lmn ðt; rÞ ð42Þ

with

ψQNMðe=oÞ
lmn ðt;rÞ
¼−

ffiffiffiffiffiffi
2π

p
ðCðe=oÞlmn e−iωln½t−r�ðrÞ�þDðe=oÞ

lmn eþiω�
ln½t−r�ðrÞ�Þ: ð43Þ

In the previous expression, Cðe=oÞlmn and Dðe=oÞ
lmn denote the

extrinsic excitation coefficients (see, e.g., Refs. [39–41])
which are here defined by

Cðe=oÞlmn ¼Bðe=oÞ
ln

�Z
6M

2M

dr0

fðr0Þ
ϕinðe=oÞ
ωl ðr0Þ

Aðþ;e=oÞ
l ðωÞ

Sðe=oÞωlm ðr0Þ
�
ω¼ωln

ð44aÞ

and

Dðe=oÞ
lmn ¼ ½Bðe=oÞ

ln ��
�Z

6M

2M

dr0

fðr0Þ
ϕinðe=oÞ
ωl ðr0Þ

Aðþ;e=oÞ
l ðωÞ

Sðe=oÞωlm ðr0Þ
�
ω¼−ω�

ln

ð44bÞ

while

Bðe=oÞ
ln ¼

�
1

2ω

Aðþ;e=oÞ
l ðωÞ

d
dωA

ð−;e=oÞ
l ðωÞ

�
ω¼ωln

ð45Þ

are the even and odd excitation factors associated with the
(l, n) QNM of complex frequency ωln. The first term in the
right-hand side (r.h.s.) of Eq. (43) is the contribution of
the quasinormal frequency ωln lying in the fourth quadrant
of the ω plane while the second one is the contribution
of −ω�

ln, i.e., its symmetric with respect to the imaginary
axis. In front of the bracket in the r.h.s. of Eq. (44b), the

coefficients ½Bðe=oÞ
ln �� are nothing else than the even and odd

excitation factors associated with the (l, n) QNM of
complex frequency −ω�

ln. They are obtained from (45) by
using the properties (34b). A few remarks are in order:
(1) Thanks to Chandrasekhar and Detweiler, we know

that the zeros of the Wronskians (33), i.e., the
quasinormal frequencies ωln (and −ω�

ln), do not
depend on the parity sector. This is a consequence of
the relation (36a).

(2) The excitation factors (45) depend on the parity
sector because their expressions involve the coef-
ficients Aðþ;e=oÞ

l ðωÞ which are parity dependent [see
Eq. (36b)]. It is interesting to recall that this was not
the case for the problem of the electromagnetic field
generated by charged particle plunging into the
Schwarzschild BH [32]. By combining (36) with
the definition (45), we obtain

BðeÞ
ln ¼ ΛðΛþ 2Þ þ ið12MωlnÞ

ΛðΛþ 2Þ − ið12MωlnÞ
BðoÞ
ln : ð46Þ

(3) The excitation coefficients (44a) and (44b) depend
on the parity sector because they are constructed
from the excitation factors as well as from wave
equations with sources which are parity dependent
[see Eq. (23)].

(4) In our problem, the spherical symmetry of the
Schwarzschild BH is broken due to the asymmetric
plunging trajectory. It is this dissymmetry which, in
connection with the presence of the azimuthal num-
ber m, forbids us to gather the two terms in Eq. (43).

(5) It is however important to note that the excitation
coefficients (44) are related by

Cðe=oÞl−mn ¼ ð−1Þm½Dðe=oÞ
lmn �� ð47Þ

[this is due to the properties (34)] and hence that the
quasinormal waveforms (42) satisfy

ψQNMðe=oÞ
l−m ¼ ð−1Þm½ψQNMðe=oÞ

lm ��: ð48Þ

The quasinormal gravitational amplitudes
obtained from (20) by replacing ψ ðe=oÞ

lm ðt; rÞ with
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ψQNMðe=oÞ
lm ðt; rÞ are then purely real as a consequence

of the relations (48) and (26a).
(6) The ringing amplitudes ψQNMðe=oÞ

lmn ðt; rÞ and

ψQNMðe=oÞ
lm ðt; rÞ do not provide physically relevant

results at “early times” due to their exponentially
divergent behavior as t decreases. It is necessary to
determine, from physical considerations (see below),
the time beyond which these quasinormal wave-
forms can be used, i.e., the starting time tstart of the
BH ringing.

IV. MULTIPOLAR WAVEFORMS AND
QUASINORMAL RINGDOWNS

A. Numerical methods

In order to construct the gravitational wave amplitudes
(20), it is first necessary to obtain numerically the partial
amplitudes ψ ðe=oÞ

lm ðt; rÞ given by (39). For that purpose,
using Mathematica [42]:
(1) We have determined the functions ϕinðe=oÞ

ωl as well as

the coefficients Að−;e=oÞ
l ðωÞ. This has been achieved

by integrating numerically the homogeneous Zerilli-
Moncrief and Regge-Wheeler equations (30) with
the Runge-Kutta method. We have initialized the
process with Taylor series expansions converging
near the horizon and we have compared the solutions
to asymptotic expansions with ingoing and outgoing
behavior at spatial infinity that we have decoded by
Padé summation. Our numerical calculations have
been performed independently for the two parities
and we have checked their robustness and internal
consistency by using the relations (35) and (36).

(2) We have regularized the partial amplitudes ψ ðe=oÞ
ωlm ðrÞ

given by (38), i.e., the Fourier transform of the

partial amplitudes ψ ðe=oÞ
lm ðt; rÞ. Indeed, these ampli-

tudes as integrals over the radial Schwarzschild
coordinate are strongly divergent near the ISCO.
This is due to the behavior of the sources (24) and
(25) in the limit r → 6M. The regularization process
is described in the Appendix. It consists in replacing
the partial amplitudes (38) by their counterparts

(A11) and to evaluate the result by using Levin’s
algorithm [33].

(3) We have Fourier transformed ψ ðe=oÞ
ωlm ðrÞ to get the

final result.

Then, from the partial amplitudes ψ ðe=oÞ
lm ðt; rÞ, it is possible

to obtain the components hðe=oÞþ and hðe=oÞ× of the gravita-
tional signal by using the sums (20).Wehave constructed the
even components from the (l,m) modes with l ¼ 2;…; 10
and m ¼ �l which constitute the main contributions.
Similarly, we have constructed the odd components from
the (l, m) modes with l ¼ 2;…; 10 and m ¼ �ðl − 1Þ. In
fact, it is not necessary to take higher values forl because, in
general, they do not really modify the numerical sums (20)
(see also the discussion in Sec. IV B).
In order to construct the quasinormal ringings

associated with the gravitational wave amplitudes (20), it
is necessary to obtain numerically the partial amplitudes

ψQNMðe=oÞ
lm ðt; rÞ given by (42) and, as a consequence, we

need the quasinormal frequencies ωln, the excitation

factors Bðe=oÞ
ln as well as the excitation coefficients Cðe=oÞlmn

and Dðe=oÞ
lmn . For that purpose:

(1) We have first determined the quasinormal frequen-
cies ωln by using the method developed by Leaver
[43]. We have implemented numerically this method
by using the Hill determinant approach of Majumdar
and Panchapakesan [44].

(2) We have then obtained the excitation factors Bðe=oÞ
ln ,

as well as the functions ϕinðe=oÞ
ωlnl

ðrÞ and the coeffi-

cients Aðþ;e=oÞ
l ðωlnÞ by integrating numerically the

homogeneous Zerilli-Moncrief and Regge-Wheeler
equations (30) (for ω ¼ ωln) with the Runge-Kutta
method and then by comparing the solutions to
asymptotic expansions with ingoing and outgoing
behavior at spatial infinity. Our numerical results are
in agreement with the theoretical relations (36)
and (46).

(3) We have finally determined the excitation coeffi-
cients Cðe=oÞlmn and Dðe=oÞ

lmn by evaluating the integrals in
Eqs. (44a) and (44b). It should be noted that we do
not have to regularize these integrals if we work with

TABLE I. The first quasinormal frequencies ωln and the associated excitation factors Bðe=oÞ
ln .

(l, n) 2Mωln BðeÞ
ln BðoÞ

ln

(2,1) 0.747343 − 0.177925i 0.120928þ 0.070666i 0.126902þ 0.0203151i
(3,1) 1.198890 − 0.185406i −0.088969 − 0.061177i −0.093890 − 0.049193i
(4,1) 1.618360 − 0.188328i 0.062125þ 0.069099i 0.065348þ 0.065239i
(5,1) 2.024590 − 0.189741i −0.036403 − 0.074807i −0.038446 − 0.073524i
(6,1) 2.424020 − 0.190532i 0.011847þ 0.075196i 0.013129þ 0.074877i
(7,1) 2.819470 − 0.191019i 0.010478 − 0.069864i 0.009689 − 0.069924i
(8,1) 3.212390 − 0.191341i −0.029331þ 0.059378i −0.028863þ 0.059573i
(9,1) 3.603590 − 0.191565i 0.043628 − 0.044836i 0.043370 − 0.045060i
(10,1) 3.993576 − 0.191728i −0.052616þ 0.027669i −0.052494þ 0.027875i
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weakly damped QNMs. Indeed, let us consider, for
example, the integrals in Eq. (44a) which defines the

excitation coefficients Cðe=oÞlmn . For ω ¼ ωln, due to

the term exp½iωtpðr0Þ�, the sources Sðe=oÞωlm ðr0Þ given
by (24) and (25) vanish exponentially in the limit
r0 → 6M and the integrals are convergent at the
upper limit. In the limit r0 → 2M, as a consequence of

(31a), we have ϕinðe=oÞ
ωl ðr0Þ ∝ ðr0 − 2MÞ−ið2MωÞ and,

as a consequence of (5), we have tpðr0Þ≃
−2M ln½r0 − 2M� þ Cte. Thus, the integrands are
proportional to ðr0 − 2MÞ−ið4MωÞ (see also Sec. IV
B of Ref. [19]). By noting thatZ

2Mþϵ
dr0ðr0 − 2MÞ−ið4MωlnÞ

¼ ϵ−ið4MRe½ωln�Þ

1 − ið4MωlnÞ
ϵ1þð4MIm½ωln�Þ ð49Þ

we can see that the integrals in Eq. (44a) are
convergent at the lower limit 2M if

2MIm½ωln� > −1: ð50Þ

Such a condition is satisfied by the QNMs we shall
consider below.

In fact, for a given l, it is possible to consider only the
fundamental QNM (n ¼ 1) which is the least damped one.

Moreover, we need only the excitation coefficients CðeÞlmn

and DðeÞ
lmn with l ¼ 2;…; 10 and m ¼ �l and the excita-

tion coefficients CðoÞlmn and DðoÞ
lmn with l ¼ 2;…; 10 and

m ¼ �ðl − 1Þ. In Tables I and II, we provide the various
ingredients permitting us to construct the quasinormal
ringings associated with the gravitational wave amplitudes
(20). It should be finally recalled that it is necessary to
select a starting time tstart for the ringings. By taking
tstart ¼ tpð3MÞ, i.e., the moment the particle crosses the
photon sphere, we have obtained physically relevant
results.

B. Results and comments

In Figs. 2–8, we have considered the components hðe=oÞþ=×

of the gravitational waves observed at infinity. The multi-
polar waveforms have been obtained by assuming that the
particle starts at r ¼ rISCOð1 − ϵÞ with ϵ ¼ 10−4 and,
furthermore, in Eqs. (5) and (6), we have taken φ0 ¼ 0
and chosen t0=ð2MÞ in order to shift the interesting part of
the signal in the window t=ð2MÞ ∈ ½0; 245�. Without loss of
generality, we have constructed only the signals for
directions above the orbital plane of the plunging particle.
Indeed, we could obtain those observed below that plane by
using the symmetry properties of the vector spherical
harmonics in the antipodal transformation on the unitTA
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FIG. 2. Components hðe=oÞþ=× of the gravitational wave observed at infinity in the direction (θ ¼ π=3, φ ¼ 0) (for even components) and
(θ ¼ π=6, φ ¼ 0) (for odd components). We emphasize the impact of the harmonics beyond the dominant (l ¼ 2, m ¼ �2) modes on
the multipolar waveforms and their ringdowns (zoom in on the waveforms).
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2-sphere S2. Moreover, we have assumed that the observer
lies in the plane φ ¼ 0. In fact, for any other value of φ, the
behavior of the signals is very similar. The results corre-
sponding to arbitrary values of θ and φ are available to the
interested reader upon request.
In Figs. 2 and 3, we have focused our attention on the

construction of the multipolar waveforms by summing the
expressions (20) over the harmonics beyond the dominant
(l ¼ 2, m ¼ �2) modes. Of course, the necessity to take
higher harmonics into account clearly appears but we can
also note that the sums truncated at l ¼ 5 already provide
strong results.
The distortion of the multipolar waveforms and of the

associated quasinormal ringdowns clearly appears in
Figs. 4–7. It can be observed in the adiabatic phase
corresponding to the quasicircular motion of the particle
near the ISCO (see Fig. 1) as well as in the ringdown phase.
It is due to the “large” number of (l, m) modes taken into
account in the sums (20) and is strongly dependent on the
direction of the observer.
The multipolar waveforms and the associated quasinor-

mal ringdowns are in excellent agreement as can be seen
in Figs. 4–7 or, more clearly, in Fig. 8 where we work
with semi-log graphs. Here, it is important to recall (see
Sec. IVA) that it has been necessary to regularize the
former while the latter are unregularized.

Finally, in Fig. 9, in order to compare our results with
those obtained in Refs. [19,20], we have displayed the
multipolar waveforms and the associated quasinormal
ringdowns observed at infinity in the orbital plane of the
plunging particle, i.e., for θ ¼ π=2. Here, we have only

considered the component hþ ¼ hðeÞþ þ hðoÞþ of the emitted

gravitational wave (note that hðeÞ× ¼ hðoÞ× ¼ 0) and we have
taken for the observation directions in the orbital plane
φ ¼ 0, φ ¼ π=2, φ ¼ π and φ ¼ 3π=2, i.e., the angles
considered by Hadar and Kol in Fig. 4 of Ref. [19]. We can
then realize that the quasinormal ringdowns displayed here
do not agree with those of Hadar and Kol. In fact, we can

recover their results by plotting the sum hðeÞþ − hðoÞþ instead

of hðeÞþ þ hðoÞþ (see Fig. 10 and note that the plots in the right
panel are in agreement with Fig. 4 of Ref. [19]). Despite a
careful study of Ref. [19] and a complete check of our own
calculations, we have not been able to identify the cause of
this sign difference. Here, it is important to recall that
Hadar, Kol, Berti, and Cardoso in Ref. [20] claimed they
have confirmed the results of Ref. [19] by comparing them
with the Sasaki-Nakamura partial waveforms Xlm. In fact,
they have not plotted on a same figure the Sasaki-
Nakamura multipolar waveforms and the multipolar qua-
sinormal ringdowns. Their comparison is based on a
numerical fitting method which is equivalent to compare

FIG. 3. Complement to Fig. 2. Semi-log graphs highlighting the impact on the ringdowns of the harmonics beyond the dominant
(l ¼ 2, m ¼ �2) modes.
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FIG. 4. Multipolar gravitational waveforms hðeÞþ observed at infinity for various directions above the orbital plane of the plunging
particle. We consider φ ¼ 0 and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ
varies between −π=2 and þπ=2. We note that, for θ ¼ 0, only the (l ¼ 2, m ¼ �2) modes contribute to the signal.
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FIG. 5. Multipolar gravitational waveforms hðeÞ× observed at infinity for various directions above the orbital plane of the plunging
particle. We consider φ ¼ 0 and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ

varies between −π=2 and þπ=2. We note that hðeÞ× vanishes for θ ¼ �π=2 and that, for θ ¼ 0, only the (l ¼ 2, m ¼ �2) modes
contribute to the signal.
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FIG. 6. Multipolar gravitational waveforms hðoÞþ observed at infinity for various directions above the orbital plane of the plunging
particle. We consider φ ¼ 0 and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ
varies between −π=2 and þπ=2. We note that, for θ ¼ 0, only the (l ¼ 3, m ¼ �2) modes contribute to the signal.
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FIG. 7. Multipolar gravitational waveforms hðoÞ× observed at infinity for various directions above the orbital plane of the plunging
particle. We consider φ ¼ 0 and we study the distortion of the multipolar waveform and of the associated quasinormal ringdown when θ

varies between −π=2 and þπ=2. We note that hðoÞ× vanishes for θ ¼ �π=2 and that, for θ ¼ 0, only the (l ¼ 3, m ¼ �2) modes
contribute to the signal.
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FIG. 8. Semi-log graphs of some multipolar waveforms showing the dominance of the quasinormal ringing at intermediate times and
the agreement of the regularized waveforms with the unregularized quasinormal responses.
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FIG. 9. Multipolar gravitational waveforms hþ ¼ hðeÞþ þ hðoÞþ and associated quasinormal ringdowns observed at infinity for various
directions in the orbital plane of the plunging particle. The observation directions are φ ¼ 0, φ ¼ π=2, φ ¼ π and φ ¼ 3π=2. The results
displayed in the right panel do not agree with those presented in Fig. 4 of Ref. [19].
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FIG. 10. Multipolar gravitational waveforms hþ ¼ hðeÞþ − hðoÞþ and associated quasinormal ringdowns observed at infinity for various
directions in the orbital plane of the plunging particle. The observation directions are φ ¼ 0, φ ¼ π=2, φ ¼ π and φ ¼ 3π=2. The results
displayed in the right panel agree with those presented in Fig. 4 of Ref. [19].
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the partial modes jXlmj with the quasinormal amplitudes

jψQNMðeÞ
lmn j for lþm even and jψQNMðoÞ

lmn j for lþm odd. As
a consequence, with this method, a wrong sign in the

combination of hðeÞþ and hðoÞþ cannot be detected.

V. CONCLUSION

In this article,wehave described thegravitational radiation
emitted by a massive “point particle” plunging from slightly
below the ISCO into a Schwarzschild BH. In order to do this,
we have constructed the associated multipolar waveforms
and analyzed their late-stage ringdown phase in terms of
QNMs. We have noted the excellent agreement between the
“exact” waveforms we had to carefully regularize and the
corresponding quasinormal waveforms which have not
required a similar treatment. Our results have been obtained
for arbitrary directions of observation and, in particular,
outside the orbital plane of the plunging particle. They have
permitted us to emphasize more particularly the impact on
the distortion of the waveforms of (i) the higher harmonics
beyond the dominant (l ¼ 2, m ¼ �2) modes and (ii) the
direction of observation and, as a consequence, the necessity
to take them into account in the analysis of the last phase of
binary black hole coalescence.
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APPENDIX: REGULARIZATION OF THE
PARTIAL WAVEFORM AMPLITUDES

(EVEN AND ODD PARITY)

In this Appendix, we shall explain how to regularize the
partial amplitudes ψ ðe=oÞ

ωlm . Indeed, the exact waveforms (38)
as integrals over the radial Schwarzschild coordinate are
strongly divergent near the ISCO. This is due to the behavior
of the sources (24) and (25) in the limit r → 6M. It should be
noted that we have encountered a similar problem in our
study of the electromagnetic radiation generated by a charged

particle plunging into the Schwarzschild BH [32]. We recall
that we have addressed this problem by combining a
theoretical and a numerical approach: for even electromag-
netic perturbations, we have reduced the degree of diver-
gence of the integrals involved by successive integrations by
parts and then we have “numerically regularized” them by
using Levin’s algorithm. Here, we can proceed identically
and the reader will be assumed to have “in hand” a copy of
Ref. [32] where the electromagnetic case is treated in great
details in the Appendix. Moreover, we shall use a trick that
will allow us to quickly provide the expected results from
those obtained in Ref. [32].
The trick we use is based on the fact, that the expressions

(38), which are constructed from the source terms (24) and
(25), can be written in the form

ψ ðe=oÞ
ωlm ðrÞ ¼ eiωr�ψ ðe=oÞ

lm ðωÞ ðA1Þ
with

ψ ðe=oÞ
lm ðωÞ ¼ γðe=oÞ

Z
6M

2M
drϕ̃inðe=oÞ

ωl ðrÞÃðe=oÞðrÞeiΦðrÞ ðA2Þ

where we have

ΦðrÞ ¼ ωtpðrÞ −mφpðrÞ ðA3Þ
and

γðeÞ ¼ 1

2iωAð−;eÞ
l ðωÞ

8πm0ffiffiffiffiffiffi
2π

p ½Ylmðπ=2; 0Þ��
Λþ 2

; ðA4aÞ

γðoÞ ¼ 1

2iωAð−;oÞ
l ðωÞ

16πm0ffiffiffiffiffiffi
2π

p ½Xlm
φ ðπ=2; 0Þ��
ΛðΛþ 2Þ ; ðA4bÞ

and

ϕ̃inðe=oÞ
ωl ¼ κðe=oÞðrÞϕinðe=oÞ

ωl ðrÞ ðA5Þ
with

κðeÞðrÞ ¼ −
8

3
ffiffiffi
2

p r
Λrþ 6M

; ðA6aÞ

κðoÞðrÞ ¼
ffiffiffi
3

p �
2M
r

�
; ðA6bÞ

as well as

ÃðeÞðrÞ ¼ −iω
9rðr2 þ 12M2Þ
ð6M − rÞ3 þ im

12
ffiffiffi
6

p
Mr

ð6M − rÞ3 þ
18

ffiffiffi
2

p
M

ffiffiffi
r

p
ð6M − rÞ5=2 þ im

�
3

ffiffiffi
3

p

2
ffiffiffi
2

p
�
2M
r2

−
ð3 ffiffiffi

2
p

=8Þ ffiffiffi
r

p
ð6M − rÞ3=2

�
3ðΛþ 2Þ − 64M

Λrþ 6M
þ 72M2ðΛþ 2 −m2Þ

r2
þ 216M3ðΛþ 2 − 2m2Þ

Λr3

�
; ðA7aÞ

ÃðoÞðrÞ ¼ −iω
9rðr2 þ 12M2Þ
ð6M − rÞ3 þ im

12
ffiffiffi
6

p
Mr

ð6M − rÞ3 þ
18

ffiffiffi
2

p
M

ffiffiffi
r

p
ð6M − rÞ5=2 −

4
ffiffiffi
2

p ffiffiffi
r

p
ð6M − rÞ3=2 : ðA7bÞ
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We now remark that the amplitudes ÃðeÞðrÞ and ÃðoÞðrÞ
can be split into a divergent and a regular part in the form

Ãðe=oÞðrÞ ¼ ÃdivðrÞ þ Ãðe=oÞ
reg ðrÞ ðA8Þ

and that the divergent part, which is obtained by the Taylor
expansion of Aðe=oÞðrÞ at r ¼ 6M, is independent of the
parity and given by

ÃdivðrÞ ¼
c1

ð6M − rÞ3 þ
c2

ð6M − rÞ5=2 þ
c3

ð6M − rÞ2 ðA9Þ

with

c1 ¼ 18ið2MÞ2½
ffiffiffi
6

p
m − 36Mω�; ðA10aÞ

c2 ¼ 9
ffiffiffi
6

p
ð2MÞ3=2; ðA10bÞ

c3 ¼ 6ið2MÞ½−
ffiffiffi
6

p
mþ 90Mω�: ðA10cÞ

Here, we fall on the result previously obtained in the

context of the regularization of the partial amplitude ψ ðeÞ
ωlm

describing the electromagnetic radiation generated by a
charged particle plunging into the Schwarzschild BH (see
Eqs. (A.6)–(A.8) in Ref. [32]). That is a direct consequence
of the redefinition (A5)–(A6) of the functions ϕinðe=oÞ

ωl .

Hence, by noting that the functions ϕ̃inðe=oÞ
ωl appearing in

(A2) are regular for r → 6M, we can now complete
the regularization process by using, mutatis mutandis,
the results obtained in Ref. [32] and, in particular,
Eq. (A. 21) of this article: In order to regularize the partial

amplitudes ψ ðe=oÞ
ωlm ðrÞ which are given by (38), we therefore

replace in Eq. (A1) the functions ψ ðe=oÞ
lm ðωÞ by the functions

ψ ðe=oÞreg
lm ðωÞ¼γðe=oÞ

Z
6M

2M
drϕ̃inðe=oÞ

ωl ðrÞÃðe=oÞ
reg ðrÞeiΦðrÞ

þ3
ffiffiffi
6

p

2

ffiffiffiffiffiffiffi
2M

p
γðe=oÞ

�Z
6M

2M
drϕ̃inðe=oÞ

ωl ðrÞ
�

1

ð6M−rÞ3=2þ
2id

ð6M−rÞ
�
eiΦðrÞ−2i

Z
6M

2M
drrfðrÞϕ̃

inðe=oÞ
ωl ðrÞΘregðrÞ
ð6M−rÞ3=2 eiΦðrÞ

−2

Z
6M

2M
drrfðrÞð

d
drϕ̃

inðe=oÞ
ωl ðrÞÞ

ð6M−rÞ3=2 eiΦðrÞ
�
: ðA11Þ

We note that the terms Ãðe=oÞ
reg in the r.h.s. of (A11) are

obtained from (A7)–(A10). Moreover, the function ΘregðrÞ
is constructed from the phase (A3). This is explained in
Appendix of Ref. [32]. We just recall that

ΘregðrÞ ¼
d
dr

�
ΦðrÞ − cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6M − r
p

�
−

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6M − r

p ðA12Þ

where

c ¼ 6
ffiffiffiffiffiffiffi
2M

p
ðm − 6

ffiffiffi
6

p
MωÞ ðA13aÞ

and

d ¼ mþ 12
ffiffiffi
6

p
Mω

2
ffiffiffiffiffiffiffi
2M

p : ðA13bÞ

It is finally important to point out that the result (A11)
has to be “numerically regularized.” Indeed (see also the
discussion in Sec. (A.2) of Ref. [32]), the integrands in
the r.h.s. of (A11) belong to a particular family of
rapidly oscillatory functions whose amplitudes diverge as
1=ð6M − rÞ3=2 in the limit r → 6M and whose the phase
ΦðrÞ behaves as 1=ð6M − rÞ1=2 in the same limit. As a
consequence, it is possible to neutralize the divergences
remaining in the amplitudes from the oscillations induced
by the phase term. This has been achieved by using Levin’s
algorithm [33] which is implemented inMathematica [42].
It is this last step which permits us to obtain, in Sec. IV,

stable numerical results for the partial amplitudes ψ ðe=oÞ
ωlm ðrÞ

and ψ ðe=oÞ
lm ðt; rÞ.
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