
HAL Id: hal-01817887
https://hal.science/hal-01817887

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In Quest of Information in Algorithmic Processes *
Anatol Slissenko

To cite this version:
Anatol Slissenko. In Quest of Information in Algorithmic Processes *. International Conf. Philosophy,
Mathematics, Linguistics: Aspects of Interaction (PhML’2014), Apr 2014, Saint Peterburg, Russia.
�hal-01817887�

https://hal.science/hal-01817887
https://hal.archives-ouvertes.fr

In Quest of Information in Algorithmic Processes∗

Anatol Slissenko
Laboratory for Algorithmics, Complexity and Logic (LACL),
University Paris East Créteil (UPEC), 61 av. du Gnl de Gaulle

94010 Créteil France
slissenko@u-pec.fr

Abstract: Intuitively, an algorithm that is computing the value of a function for a given input, is extracting an information from
the input and is processing this information. During this work the information being processed ‘converges to the result’. We
show by examples that one can measure this information convergence. No general theory is presented, though some questions
that arise on the way towards such a theory are discussed. We start with an approach based on approximations of the graph of
the computed function; we call this approach semantical. It works only for algorithms that mainly calculate but do not analyze
the information being processed. We extend this approach by using syntactical considerations. The principle underlying the
estimations of information convergence, is that of ‘maximal uncertainty’ that we impose on the algorithm under analysis.

The problem of information convergence brings up conceptual questions “What is information?”, “What is uncertainty?”
related to similar questions more and more intensively studied in philosophy.

Keywords: algorithm, information, entropy, information convergence

Introduction
The motivation to study algorithmic processes from informational viewpoint comes from the-
oretical curiosity aimed at a better understanding of the work of algorithms. This may give a
better insight into how to design algorithms, how evaluate their complexity, what is practical
algorithm and what is practical problem.

Intuitively, an algorithm, when processing its input, is extracting and transforming infor-
mation. What is this information and how to measure its evolution? The paradoxicality of
mathematics is that mathematics does not consider information in our intuitive sense. What is
called information in mathematics (we speak about the traditional viewpoint) is entropy, i.e.,
the average value of the information function in probabilistic models where all we know about
a piece of information is its probability. In philosophy literature, e.g., (Adriaans, 2013; Floridi,
2013) (I do not pretend to be knowledgeable about philosophy papers on the subject, so the
cited references are to be taken accordingly), one can find arguments that for the analysis of
various aspects of information a more detailed view on the subject is necessary.

In our context it is useful to distinguish (in the flavor of distinguishing “data”, “semantics of
information” and “quantity of information” in philosophy literature):
• information,
• knowledge contained in an information,
• quantity of information.
An information (a datum) is usually received as a signal, and most signals can be coded

by mathematical structures. For our limited context we consider as a piece of information, an
admissible interpretation of a vocabulary in logical sense (this is illustrated by examples below).

The knowledge contained in an information has no absolute meaning. It depends on the
inference system that is used to extract the knowledge and on the queries to the knowledge,
i.e., on what one wishes to know. In our context the knowledge is represented by simple, easily
formalizable properties of the function that is being computed. In philosophy one can find larger

∗Partially supported by French “Agence Nationale de la Recherche” under the project EQINOCS (ANR-11-BS02-004).

and more diverse visions of semantics of information; we mention some of them, that may be
related to the problem of information convergence, in Conclusion.

The quantity of information is the main subject under consideration in this paper. The tradi-
tional notion of entropy is used to measure the information convergence though it gives values
that are not always sufficiently intuitive; but at present I do not know a better way to do it. The
entropy is defined due to a probabilistic space. In our case there is no randomness (note that
the classical probability theory is a special part of the measure theory, and neither needs any in-
trinsic notion of randomness). We choose probabilistic measures just to model the information
convergence. This choice is governed by a principle of maximal uncertainty, that says that the
algorithm under study has the minimal certainty (the minimal knowledge) about the next local
value to compute (as well as about the final result).

1. Information and Entropies in Mathematics: a Very Brief Reference
As it was mentioned in Introduction, in mathematics information is traditionally defined in
terms of entropy. We recall here the standard notion of entropy (some other are listed at the
end of this section) in terms of the ‘partition’ approach, e.g., (Martin & England, 1981), that is
more general than the classical approach based only on probabilistic distributions. The partition
approach is more relevant to our context.

Let (Ω ,Z,P) be a probabilistic space, where Ω is a set, Z is a sigma-algebra over this set
(in our context we may consider Z to be the set of all subsets of a countable set Ω), and P is a
probabilistic measure, that is P (Ω) = 1 and P (∪iZi) =

∑
iP (Zi) for any countable set {Zi}i

of disjoint elements Zi of Z . The elements of Ω are often called outcomes and that of Z are
called events. In examples we deal only with finite spaces related to the inputs of a fixed size.

Let ζ be a partition of Ω (i.e., a set of disjoint subsets of Ω whose union is Ω). Due to our
remark concerning Z , any partition consists of measurable sets, moreover we limit ourselves to
finite partitions. One may look at such a partition as at a probabilistic classification of elements
of Ω . Here ‘probabilistic’ can be seen as a way to describe ‘partial knowledge’.

Information function I(ζ) of a partition ζ is a function over Ω that is equal to − logP (z) on
any element z ∈ ζ . So this function is constant for all ω ∈ Ω that are in z ∈ ζ .

For a partition into m subsets of equal probability 1
m

, the value of the information function
is logm everywhere. This value logm can be interpreted as the number of bits sufficient to
determine a particular ‘class’ of the classification represented by the partition. If an element of
partition has measure 1

m2 then the information function on this ‘class’ is 2 logm, and within the
previous interpretation one needs more bits to represent this less probable ‘class’, however on
the average this is ‘compensated’ by the low probability of this class.

In mathematics this information function plays a secondary role, and the main ‘informational’
characteristic of a partition is the average of the information function, i.e., entropy:

H(ζ) = −
∑
z∈ζ

P (z) logP (z). (1)

The entropy is also viewed as a measure of uncertainty (or, in some way, of knowledge).
For the case of the uniform distribution mentioned just above, the entropy is logm that gives

the maximal uncertainty in the description of events (elements of partition). On the other hand,
if we know that one event has probability (1 − ε), and hence the other ones are little probable
(here ε is assumed to be ‘very small’) then the uncertainty of the outcome of this particular
event is −((1− ε) log(1− ε) + ε log ε) that is close to 0.

In applications, conditional entropy of a partition ζ with respect to a partition η is indispens-
able:

H(ζ/η) = −
∑

A∈η,B∈ζ

P (B ∩ A) log P (B ∩ A)
P (A)

(2)

Mutual information of two partitions ζ and η is defined in terms of entropy:

I(ζ; η) = H(ζ)−H(ζ/η) = H(ζ) +H(η)−H(ζ ∨ η), (3)

where ζ ∨ η is refinement of ζ and η, i.e., a partition constituted by all pairwise intersections
of elements of ζ and η.

In particular, I(ζ; ζ) = H(ζ), so the information of ζ is identified with its entropy.
Another entropy (closely related to the previous one) is epsilon-entropy of bounded metric

spaces (Kolmogorov & Tikhomirov, 1959). It depends on a parameter ε > 0, and is the min-
imal number of balls of radius ε that cover the space. The value logN(ε), where N(ε) is this
number, is ε-entropy of the space. It can be interpreted as the minimal number of bits sufficient
to ε-approximately represent any point of the space. This entropy is exploited to describe infor-
mation complexity of algorithms in (Slissenko, 2011, 2012), though the obtained description is
not convincing.

There are many other entropies in mathematics, e.g., Rényi entropy, graph entropy, volume
entropy of a compact Riemannian manifold, von Neumann quantum entropy. We need none of
them here.

Philosophy gives a wide variety of ideas how to treat the contents or semantics of information
data or what is the knowledge brought by the information data (e.g., see (Barwise & Seligman,
1997; Floridi, 2013)), but these ideas are not enough quantitative to be applied directly to the
analysis of information convergence of algorithms.

2. Algorithm. Trace. Examples.
An algorithm is viewed here as a set of its traces sliced by inputs of a given size. As we deal
with the analysis of concrete algorithms, we do not need any general definition of algorithm
in terms of sets of traces. To diminish the number of occurrences of terms “algorithm” and
“function computed by the algorithm”, we denote by A an arbitrary algorithm of our general
definitions, and by F the function it computes. The domain and range of any function f is
denoted respectively dm(f) and rn(f). By default, these notations concern the inputs of some
fixed size n.

2.1. Vocabulary of Algorithm. Traces.
Traces of A are defined over its vocabulary. Sometimes we speak about a specification of F ;
this is a logical formula, also over a vocabulary, and the two vocabularies have the same input
and output functions (we make precise this classification of functions just below).

A vocabulary V is a pair (U ,F), where U is a list of symbols for sets and F is a list of
symbols for functions (and predicates). A symbol either has a fixed interpretation (then it is pre-
interpreted) or not (then it is abstract). In the latter case its interpretation can be any, according
to its type. We assume that all sets are pre-interpreted, and they are N (natural numbers), Z
(integers), B=df {0, 1}, the set B∗ of strings over B, an alphabet A with at least two letters:
α=df |A| ≥ 2, Boolean values Bool = {true, false} and simple finite subsets of these sets that
will be clear from the context.

Among the pre-interpreted functions there are constants of the just mentioned pre-interpreted
types (e.g., concrete integers), addition and subtraction of integers, order relations over num-

bers, Boolean operations and some other simple basic operations that will be clear from the
context.

All the pre-interpreted functions are static, i.e., they have fixed interpretations. The abstract
functions are usually dynamic, i.e., they can be changed by A. In our case the arguments of
abstract functions are natural numbers that play the role of indexes of variables in programming
(e.g., as in the representation of arrays).

The dynamic functions are partitioned in input ones that cannot be updated by A and internal
ones that may be updated by A. Internal functions are in their turn partitioned into output
functions (that contain the result) and into proper internal functions.

Initially all internal functions have some value, the same for all inputs, e.g., ‘undefined’.
Any input, that represents an argument of F , is a substructure of V (formally, an input is an
interpretation of a fixed subset of V). We assume that the size of inputs is defined so that it is
polynomially related to its bit length under more or less straightforward coding. For example,
the size of a word w over A is by default its length |w|.

A trace of A is a sequence of operations executed by A starting from the first step. This
sequence, that is denoted trA(X) or tr(X) for input X , consists of updates f(η) := θ, where
f is an internal function, and of guards Φ(η1, . . . , ηm), where Φ is a formula over V , and
η, θ, η1, . . . , ηm are terms. In our examples, Φ is equality, inequality or order relation.

We give to updates and guards the following (philosophical) interpretation: an update is a
transformation of data without analysis of its meaning, but a guard is a way how A extracts
knowledge from the small pieces of obtained data, available only locally.

A computed function can have many components that should be output individually (this
is the case of the convolution considered below). In other words, not only an input but also
an output may happen to be a list of functions, an array or a more complicated structure. By
default, we consider traces for inputs of size exactly n.

All the traces are assumed to be finite, its length, i.e., the computational complexity, for an
input X is denoted |tr(X)|.

2.2. Examples
Binary convolution.

This function is the most essential part of binary multiplication.

Input: A pair of strings of the same length x, y ∈ Bn, n ≥ 1; n is the size of the input.
Their bits are denoted respectively x(0), x(1), . . . , x(n− 1) and y(0), y(1), . . . , y(n− 1).

Output: (we assume for simplicity that x(i) = y(i) = 0 for n− 1 < i ≤ 2n− 2):

z(x, y, k) = z(k) =
i=k∑
i=0

x(i)y(k − i), 0 ≤ k ≤ (2n− 2). (4)

These values (they are components of the output) are computed by the following algorithm,
that we denote C. It uses one nullary proper function u and for each k, algorithm C computes

u := x(0)y(k); u := u+ x(1)y(k − 1); . . . ;u := u+ x(k)y(0),

in a loop, and assigns the last value as the output value of the kth component of the result, i.e.,
the value of z(k) of (4). So two loop counters are used, one over k (an external loop), and
another one to calculate z(k) for a given k (an internal loop).

For further references we need partial results :

zj(x, y, k) =
∑i=j

i=0 x(i)y(k − i), 0 ≤ k ≤ (2n− 2), 0 ≤ j ≤ k.

The only input datum that is analyzed from the point of view of knowledge extraction is
the size of the input. No other knowledge about inputs is involved, the values of input words
are processed ‘blindly’. According to our philosophical interpretation the bits of the inputs are
used as information but without knowledge extraction. So the main activity of C is a calculation
without any analysis of what is calculated.

Palindromes.

This is a trivial algorithm of recognizing the symmetry of words.

Input: A string w over alphabetA. The size n of the input is the length of w. We assume that
n is even (just for technical simplicity).

For the palindrome problem we use the following notations (for i ≤ j):

w=(i..j)=df

(
w(i) = w(n− i+ 1) ∧ w(i+ 1) = w(n− i) ∧ . . . ∧ w(j) = w(n− j + 1)

)
,

i.e., the segment of w in positions [i..j] is symmetric to the corresponding segment in positions
[n− j + 1, n− i+ 1], i.e., equal to the inverse of the word in the latter positions;

w 6=(i..j)=df ¬w=(i..j), i.e., w 6=(i..j) says that

w(i) 6= w(n− i+ 1) ∨ w(i+ 1) 6= w(n− i) ∨ . . . ∨ w(j) 6= w(n− j + 1).

Output: r = 1 if w is a palindrome, i.e., w=(1..n
2
), and r = 0 otherwise.

Below in the context of the palindrome problem we use the following notations:

ν=df
n
2
, w=(i)=df w

=(i..i), w 6=(i)=df w
6=(i..i).

We consider a simple algorithm P that uses only one proper internal function l as a loop
counter. Starting from l = 1, algorithm P checks w(l) = w(n− l+1), and if this guard is false
then it outputs r := 0, otherwise if l = ν it outputs r := 1, and if l < ν then it augments the
loop counter l := l + 1 and repeats the checking of the equality of characters.

Contrary to the previous case of C, algorithm P does not transform anything related to the
contents of the input data, but mainly computes guards that in our philosophical interpretation
is a knowledge extraction.

maxPS (maximal prefix-suffix).

This example is, in some way, the most instructive in our discussion of difficulties of describing
the information convergence. Here again there are few calculations with the contents of the
inputs but many guard computations, and for the second algorithm, that is denoted F1, there are
calculations related to a proper internal function ϕ. These calculations are based on an intensive
use of guards unlike to the calculations of C.

The maxPS problem is simple: given a word, find the maximal (longest) prefix, different
from the entire word, that is also a suffix of the word.

Input: A string w over an alphabet A. The size n of the input is its length that we consider to
be even for technical simplicity.

As above ν=df
n
2
.

Output: r = max{k : 0 ≤ k ≤ (n− 1) ∧w(1..k) = w(n− k + 1..n)}, i.e., r is the length of
the longest prefix of w, different from w itself, that is also a suffix of w.

We consider two algorithms for maxPS: a straightforward one F0 with complexity O(n2),
and another one F1 with complexity O(n).

Notation: ϕ(w,m)=df max{k : 0 ≤ k ≤ (m − 1) ∧ w(1..k) = w(m − k + 1..m)}, here
0 ≤ m ≤ n and ϕ(w, 0) = 0.

Algorithm F0 acts straightforwardly. Starting from h = n − 1 it checks whether w(1) =
w(n − h + 1), w(2) = w(n − h + 2), . . . in this order. If it reaches w(h) = w(n) then r := h
otherwise if h > 1 algorithm goes to h := h − 1, if not, i.e., if h = 1 and w(1) 6= w(n) then
r := 0.

For an input word w1 = aa . . . ab = an−1b algorithm F0 makes ≥ c · n2 steps for some
natural constant c > 1 that depends of the details of description of the algorithm and that is
not important. Indeed, in order to find that r 6= (n − 1) algorithm makes (n − 1) comparisons
w(i) = w(i+1) for all 1 ≤ i ≤ (n−1). After that it makes (n−2) comparisonsw(i) = w(i+2)
and finds that r 6= n− 2, and so on, up to the last comparison w(1) = w(n) that is not true, and
hence it sets r = 0.

One can notice that after the first (n−1) comparisons there is enough knowledge to conclude
that r = 0 but no appropriate knowledge extraction is applied by F0. However, the algorithm
continues to work and finally converges to the result. Due to what information is it converging?
(This question is clarified in section 3).

Algorithm F1 (that can be found in standard textbooks of algorithmics) recursively calculates
ϕ(w,m) for all m starting from m = 1; initially ϕ(w, 0) = 0.

Denote by the same letter ϕ an internal function of F1 of type [0..n] → [0..n − 1] that
represents ϕ(w,m) as ϕ(m). Its initial value is ϕ(0) = 0.

Denote by ϕk(m) the kth iteration of ϕ(m), k ≥ 1: ϕ1(m) = ϕ(m) and ϕk+1(m) =
ϕ(ϕk(m)). For technical simplicity set ϕ0(m) = −1 for all m, and min ∅ = 0.

Suppose that ϕ(m) is defined, and m < n. Algorithm F1 computes
ϕ(m+ 1) as ϕs(m) + 1, where s = min{k : w(ϕk(m) + 1) = w(m+ 1)}.

Clearly, this computing of ϕs(m) takes O(s) steps. The whole complexity of F1 is linear.

We illustrate the work of F1 for the following 4 inputs of length n, where a, b ∈ A, and a 6= b.
Set w0 = an, w1 = an−1b, w2 = ai−1ban−i . . . b, where i ≤ ν, and w3 = ai−1ban−i . . . b,

where i > ν.
One can see that ϕ(w0, n) = n−1, ϕ(w1, n) = 0, ϕ(w2, n) = i, ϕ(w3, n) = 0. The evolution

of ϕ for w1 explains also the evolution of ϕ for the other just mentioned inputs. The evolution
of ϕ(w1,m) is presented in the table below. This table consists of two unrelated subtables: the
one over the first 3 lines, the other one over the remaining two lines.

position 1 2 . . . n− 2 n− 1 n
character a a . . . a a b

ϕ 0 1 . . . n− 3 n− 2 0

index k of iteration ϕk(n− 1) n− 1 n− 2 . . . 2 1
ϕk(n− 1) 0 1 . . . n− 3 n− 2

Here we see again that there is enough information to define the result without calculating the
iterations ϕk(n−1) because the computed properties ϕ(n−1) = n−2 andw(n−1) 6= w(n−2)
uniquely define the word w1.

3. Information Convergence
Although the idea to use metrics to describe the information complexity of an algorithm looks
attractive, it stumbles over serious difficulties. Some attempts to do it are described in my papers

(Slissenko, 2011, 2012). In these papers the metrics are defined over the set of traces of an
algorithm A generated by the inputs of a size n. However, this approach has grave shortcomings.
The obtained evaluations of epsilon-entropy are hard to interpret. Moreover, in the spaces of
traces the epsilon-entropy is always bounded by the cardinality of the domain of A, and the
complexity of algorithm is not much related to this cardinality. In particular, an algorithm can
have a high complexity over a very meager domain, and inversely, an algorithm over a big, ‘fat’
domain can be very simple.

These shortcomings of this particular approach do not mean that epsilon-entropy of the set of
traces cannot give more productive approaches.

A more attractive idea mentioned in (Slissenko, 2011), is to find a measure of similarity in
terms of some kind of basis of all traces of A. This idea has not been yet developed.

In the same papers there was described an approach how to measure the convergence of an
algorithm towards its result in entropy terms. This approach may be seen as a semantical one as
it is based on the analysis of the graph of F . It works for algorithms that are calculating without
analyzing what is being done. Below we illustrate this approach by the example of convolution.

The semantical approach, as it is based on estimations of entropy, needs a probabilistic mea-
sure on the set of inputs. The measure is introduced following the principle of maximal uncer-
tainty mentioned at the end of Introduction.

We assume that A plays against an adversary that tries to minimize the capacity of A to find
the result. Thus, all outputs are equiprobable. So for a given component f of F the measure of
all f−1(v) should be the same for all v ∈ rn(f).

We denote by g[X, t] the latest value of internal function g in trace tr(X) not later than at
instant t; notation g[t] = u is explained inside the formula (5).

Suppose that A has calculated g[t] = u for an internal function g. What does this information
give, if A wishes to decide whether f(X) = v or not (for some v ∈ rn(f))? In terms of the just
introduced measure the information concerning f(X) = v is given by − log of the following
probability:

P (f = v g[t] = u) = P ({X : f(X) = v} {X : g[X, t] = u}) =
P (f = v ∧ g[t] = u)

P (g[t] = u)
. (5)

One can see that this probability is expressed in terms of the graphs of the involved functions,
no syntax is really used (only the names of functions appear in the expression).

Convolution (Semantical information convergence).

As it was mentioned above, for this example P (z(k) = v) = 1
k+1

for each 0 ≤ v ≤ (k + 1).
We evaluate what formula (5) gives for z(x, y, k) = v if C has found zi(x, y, k) = u ≤ v:

P (z(k) = v | zj(k) = u) =

(
j+1
u

)(
k−j
v−u

)
(k + 2)

(
k+1
v

)(j+1
u)

(k+2)

∑
u≤α≤(k+1)

(k−jα−u)
(k+1
α)

=

(
k−j
v−u

)
(
k+1
v

)∑
u≤α≤(k+1)

(k−jα−u)
(k+1
α)

=

(
k−j
v−u

)
(
k+1
v

)∑
u≤α≤(k−j+u)

(k−jα−u)
(k+1
α)

−→
j→k 1

here we consider the evolution of u in any trace computing z(k), in this case u = u(j)−→
j→k v.

This formula is correct for correct values of u, v, k, i, i.e., for such values that 0 ≤ u ≤ v,
0 ≤ i ≤ k. Otherwise, the value of probability is 0. Clearly, u goes to v when i goes to k.

However, this semantical approach may not work for algorithms whose computation essen-
tially exploits guards, that is, knowledge extraction.

Palindromes (Information convergence.)

Here the probabilistic measure attributes 1
2

to the set of palindromes as well as to the set of non-
palindromes. Inside these sets the measure is uniform (though this may be not the best choice
for the set of non-palindromes).

If P has calculated w=(1..i), 1 ≤ i ≤ ν, then taking into account that the palindromes
constitute a subset of {w : w=(1..i)}, we have (here and below we omit technical details of
calculations and leave only those final results that are relevant to the context):

P (r = 1 w=(1..i)) =
P (w=(1..ν))

P (w=(1..i))
=

1

2 ·
(
P (w=(1..ν)) + P (w=(1..i) ∧ w 6=(i+ 1..ν))

) =

1

2 ·
(

1
2
+ αi(αn−2i−α

n−2i
2)

2(αn−αν)

) =
1

1 + αn−i−αν
αn−αν

= (6)

1

1 + 1
αi(1−α−ν)

− 1
αν−1

≈ 1

1 + α−i − α−ν
(7)

We see from the exact formula (6) or from the approximate formula (7) that the probability that
the input is a palindrome goes to 1; we can even evaluate the speed of information convergence
to 0 when i goes to its limit value ν if we take− log of the last expression: c · (α−i−α−ν), here
c = 1

ln 2
≈ 1.44 (this value is not important). However, this estimation is not compatible with

the viewpoint that the algorithm plays against an adversary who prevents it to predict the result
until the last instant.

Look at the probability to have non-palindrome (that is 1 minus the previous one):

P (r = 0 w=(1..i)) =
P (w=(1..i) ∧ w 6=(i+ 1..ν))

P (w=(1..i))
=

αn−i−αν
αn−αν

1 + αn−i−αν
αn−αν

≈ α−i − α−ν

1 + α−i − α−ν
(8)

Here the probability that the input is a non-palindrome goes to 0 whatever expression in line (8)
we use. Again it is counter-intuitive as the output can be any up to the last instant.

On the other hand, the entropy of the partition into the involved sets of inputs

1

1 + A(i)
log

1

1 + A(i)
+

A(i)

1 + A(i)
log

A(i)

1 + A(i)
, (9)

where A(i) = α−i−α−ν −→
i→ν 0, says that the uncertainty diminishes (goes to 0) as a result of the

work of the algorithm. This is closer to our intuition. However, this formula (9) does not give a
clear vision of the speed of convergence to the result.

We can look at the question of convergence differently, involving some syntax in the anal-
ysis. We follow the principle of maximal uncertainty that was mentioned above: we choose
probabilities to maximize the uncertainty that the algorithm should resolve. This time we apply
this principle not only to the graph of F but also to the logical formula that governs the choice
of guards of A when it is processing a particular input. This formula consists of an ordered set
of literals, and the order is used by the algorithm we consider.

We illustrate the principle of maximal uncertainty for P just below and for Fk (algorithms
for maxPS, k = 0, 1) after that.

At the beginning the adversary (who foresees the work of the algorithm) chooses with equal
probability one of the following ‘defining formulas’ (one can see that they are conjunctions of
the guards verified by P for appropriate inputs):

σ1 : w(1) 6= w(n)
σ2 : w

=(1..1), w(2) 6= w(n− 1)
. .
σν : w

=(1..ν − 1), w(ν) 6= w(ν + 1)
σν+1 : w

=(1..ν) (w is palindrome)

 (10)

We consider each passage from σi to σi+1 as one step; technically, P carries out other manipu-
lations when moving from σi to σi+1, so the real number of steps of P for this passage is O(1),
but, clearly, we can ignore it.

In order to arrive at r = 0 the algorithm should have ¬σ1 ∧ . . .∧¬σs−1 ∧ σs for some s ≤ ν.
At each step the uncertainty should remain maximal, hence, the whole probability to arrive at
r = 0 is 1

2
, and the choices of σs, s ≤ ν, among the remaining (ν−s+1) ones are equiprobable

with probability 1
2(ν−s+1)

(here 1
2

comes from the just mentioned probability of r = 0). The
probability to get r = 1 is also 1

2
. Thus, the entropy after s steps is

−
(ν − s+ 1

2(ν − s+ 1)
log

1

2(ν − s+ 1)
+

1

2
log

1

2

)
=

1

2
(1 + log(ν − s+ 1)) +

1

2
= 1 +

1

2
log(ν − s+ 1), s ≤ ν (11)

We see that the entropy goes down to 1 as the logarithm of the number of steps s when s
approaches ν, and formula (11) gives a clearer vision of the convergence than formula (9).
Formula (11) is not applicable to step (ν+1), but it is not necessary – the entropy after this step
is 0. What may look intuitively unsatisfactory, is that the speed of convergence is described in
terms of a logarithm of some function of s but not in terms of a linear function of s.

The latter observation suggests that the classical entropy may not be the best way to measure
uncertainty in our context.

maxPS (Information convergence.)

First, we look at semantical convergence that, taken straightforwardly as above, does not work
well for Fk, k = 0, 1. It may be useful to have an idea of the measure defined along the lines
of the beginning of this section as P (ϕ−1(v)) = 1

n
, 0 ≤ v ≤ (n − 1) (though this is not used

below). The cardinality of ϕ−1(v) can be evaluated recursively starting with |ϕ−1(n− 1)| = α.
We look at the semantical convergence taking w = an−1b as input. Any of F0 and F1, quickly

converges to the result during the first (n − 1) comparisons (we need no details, just note that
after each comparison w(i− 1) = w(i) one value of ϕ is excluded). Indeed, when an algorithm
Fk, arrives atw(n−2) = w(n−1) andw(n−1) 6= w(n), this information contains a knowledge
that suffices to determine that the input is of the form an−1b with a 6= b. Thus, according to
this knowledge, the output is 0. But the algorithm, though it implicitly has this information in
two local values, does not extract this knowledge about the output as it was just explained. The
algorithm is proceeding differently. So though semantically the result is known, the algorithm
continues to work, and during this further work there is no semantical convergence. However,
Fk converges to the result. Then what other convergence does take place?

Any Fk constructs its own defining formula for the result. So we can estimate its convergence
‘towards this defining formula’. For words in z ∈ ϕ−1(0) the formula used by F0 is

ξn−1 : z(1) 6= z(2) ∨ z(2) 6= z(3) ∨ . . . ∨ z(n− 1) 6= z(n)
ξn−2 : z(1) 6= z(3) ∨ z(2) 6= z(4) ∨ . . . ∨ z(n− 2) 6= z(n)
. .
ξ2 : z(1) 6= z(n− 1) ∨ z(2) 6= z(n)
ξ1 : z(1) 6= z(n)

 (12)

For the general case z ∈ ϕ−1(v) we have

ξn−1 : z(1) 6= z(2) ∨ z(2) 6= z(3) ∨ . . . ∨ z(n− 1) 6= z(n)
. .
ξv+1 : z(1) 6= z(v + 1) ∨ z(2) 6= z(v + 2) ∨ . . . ∨ z(n− v) 6= z(n)

ξv(⇔ ¬ξv) : z(1..v) = z(n− v + 1..n)

 (13)

In order to find the value of ϕ(z) for an input z (suppose ϕ(z) = v) algorithm F0 constructs
a sequence of inequalities, at least one from each ξi, (v + 1) ≤ i ≤ (n − 1), and the equalities
ξv.

Look at the convergence of Fk towards the defining formula for input w = an−1b from the
viewpoint of the principle of maximal uncertainty. We try to choose a model that gives an
intuitively acceptable explanation of the convergence (other models are also imaginable).

Any Fk, k = 0, 1, starts its work with the verification of ξn−1 from left to right. As all the
values of ϕ are equiprobable (then the uncertainty of final result is maximal), the probability
of ¬ξn−1 is 1

n
, and that of ξn−1 is (1 − 1

n
) = n−1

n
. For the same reason of maximizing the

uncertainty, the probability to have z(1) 6= z(2) is n−1
n(n−1) =

1
n

. If z(1) = z(2) then probability
to have z(2) 6= z(3) becomes slightly bigger: n−1

n(n−2) =
1
n
+ 1
n(n−2) . And so on: if

∧
i≤p z(i−1) =

z(i) then the probability to have z(j) 6= z(j + 1) for j ≥ p is n−1
n(n−p) =

1
n
+ p−1

n(n−p) .

After ξn−1 has been established, the value ϕ(z) = n−1 is excluded, the number of remaining
values ϕ(z) becomes (n− 1), and the probability of each becomes 1

n−1 .

After that F0 and F1 work differently.
Algorithm F0 consecutively checks all ξv, starting with ξn−1 . During this processing, after∧
i≤p z(i− 1) = z(i+ n− s) has been established, the probability to have z(j) 6= z(j + n− s)

for j ≥ p is
s− 1

s(s− p)
, and there are (s− p) such possibilities.

Thus the entropy of this distribution is

−
(
(s− p) · s− 1

s(s− p)
log

s− 1

s(s− p)
+

1

s
log

1

s

)
=

−
((

1− 1

s

)
log

1

s− p
+

(
1− 1

s

)
log

(
1− 1

s

)
+

1

s
log

1

s

)
=

log s− log s

s
+

(
1− 1

s

)
log
(
1− p

s

)
−
(
1− 1

s

)
log

(
1− 1

s

)
+

log s

s
=

log s+

(
1− 1

s

)
log
(
1− p

s

)
−
(
1− 1

s

)
log

(
1− 1

s

)
=

log s−
(
1− 1

s

)
log

s− 1

s− p
(14)

Here p → (s − 1) and s → 1 give the speed of diminishing of the uncertainty in terms of this
evolution of s and p. The convergence by p is very slow and ‘explains’ the complexity O(n2)
of F0.

The convergence of F1 is the same as that of F0 only when F1 processes ξn−1. After that there
is no p, algorithm F1 excludes one value of ϕ at each step (that consists of the calculation of
ϕ(n−s+1)(n − 1) from ϕ(n−s)(n − 1) and of the comparison of the appropriate characters), and
the uncertainty goes down only due to s, thus much faster. We omit technical details.

Conclusion
The examples above illustrate some ideas that may contribute to the development of a general
theory of information convergence of algorithms. The same examples reveal some, but not all,
difficulties on this way. Algorithms working with more complicated data structures, e.g., wave
algorithms for shortest paths in weighted graphs, show that the situation may be more intricate
than in the examples above (for definiteness we take Dijkstra algorithm when speaking about
the shortest path problem). In those examples the probabilistic measure used in the evaluation
of the appropriate entropy is based, first, on the partition of the domain of the computed function
F (defined at the beginning of section 3), that does not depend on the algorithm A under study,
and, second, on the guards checked by A. The partition of the domain of F is much more
complicated for the shortest path problem than for any of the examples considered in the paper.
The analysis of the guards of A is, as well, more difficult.

Our analysis of guards deals with ordered conjunctions of the guards that are evaluated by A
one by one in the respective order. These guards are specific for each input. In our examples
this dependence is simple, and not too diverse. The conjunctions of guards are conjunctions
of equalities and inequalities of characters of inputs in easily describable positions. For con-
volution and palindromes these are respectively formulas (4) for z(x, y, k) and (10). The both
are easily related to the specification of the problem in logical terms, and thus, to the graph
of the computed function. All this facilitates the assignment of probabilities to the events of a
trace, and thus, facilitates the evaluation of the entropy. Formula (13) of maxPS is slightly less
clearly related to the problem specification, and thus to the graph of F but however, is not too
complicated to be analyzed.

If we look at the algorithm for the shortest paths problem we see that the syntax to be analyzed
is not directly related to the graph of the function (nor to the specification), and what is worse,
is rather sensitive to particular inputs, and involves internal functions of the algorithm (namely,
the length of the current partial paths). The guards calculated by the algorithm, guide a non-
trivial choice of edges and vertices that can be very dependent on the input being processed. The
uncertainty to maximize is in the choice of the next edge to proceed, and this is very specific
to the algorithm and to its particular input. This shows that the general case needs more subtle
analysis than the case of our examples.

There may be other approaches to the information convergence. Concepts developed in philo-
sophical literature may prove to be useful guides for this. We mention, following (section 1.5,
Barwise & Seligman, 1997), some definitions of what is “F (r) carries information that G(s) to
a person with a prior knowledgeK”. In these definitions F and G are properties, andK remains
an abstract parameter. The formulations below may need explanation (see (section 1.5, Bar-
wise & Seligman, 1997)), but however, they give a good amount of intuition without additional
comments.

– Dretske’s Information Content: the conditional probability of G(s) given F (r) (and K)
is 1 (and less than 1 given K alone).

– Possible Worlds Information Content: in all possible worlds compatible with K and in
which F (r), there takes place G(s) (and there is at least one possible world compatible with K
in which ¬G(s)).

– State-space Information Content: in every state compatible with K in which F (r), there
takes place G(s) (and there is at least one state compatible with K in which ¬G(s)).

– Inferential Information Content: the person could legitimately infer that G(s) from F (r)
together with K (but could not from K alone).

In some way, Dretske’s Information Content has a flavor of our semantical approach, and
Possible Worlds Information Content has a flavor of the mixed semantical/syntactical approach.
As for Inferential Information Content, it may be interesting to note that inference system can
be used to introduce a metric and thus, epsilon-entropy in the set of formulas that represent the
knowledge and its evolution, see (Slissenko, 1991).

The quantitative notion of uncertainty as entropy remains too narrow (as well as the quantita-
tive notion of information). More adequate concepts may be necessary in order to advance the
analysis of information convergence of algorithms.

Much more difficult and much more interesting problem is to understand what is algorithmic
information content of an algorithmic (i.e., solvable by an algorithm) problem. An abstract de-
scription of algorithm as a set of traces is indispensable to embark on the study of this question.
This can be done, but this is only a minor first step necessary to launch an attack on the problem.

References
Adriaans, P. (2013). Information. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy

(Fall 2013 ed.).
Barwise, J., & Seligman, J. (1997). Information flow: The logic of distributed systems. Cam-

bridge University Press, New York.
Floridi, L. (2013). Semantic conceptions of information. In E. N. Zalta (Ed.), The stanford

encyclopedia of philosophy (Spring 2013 ed.).
Kolmogorov, A. N., & Tikhomirov, V. M. (1959). ε-entropy and ε-capacity of sets in func-

tion spaces. Uspekhi Mat. Nauk, 14(2(86)), 3–86. (In Russian. English translation in:
Selected Works of A.N. Kolmogorov: Volume III: Information Theory and the Theory of
Algorithms (Mathematics and its Applications), Kluwer Academic Publishers, 1992.)

Martin, N. F. G., & England, J. W. (1981). Mathematical theory of entropy (J. K. Brooks, Ed.).
Addison-Wesley.

Slissenko, A. (1991). On measures of information quality of knowledge processing systems.
Information Sciences: An International Journal, 57–58, 389–402.

Slissenko, A. (2011). On entropy in computations. In Proc. of the 8th intern. conf. on com-
puter science and information technology (csit’2011), september 26–30, 2011, yerevan,
armenia. organized by national academy of science of armenia (pp. 25–30). National
Academy of Science of Armenia. (ISBN 978-5-8080-0797-0)

Slissenko, A. (2012). Towards analysis of information structure of computations. In
Proc. of international conf. philosophy, mathematics, linguistics: Aspects of interaction
(phml’2012) may 22–25, 2012, saint petersburg, russia (pp. 182–192). International
Mathematical Euler Institute, Russian Academy of Sciences, Saint Petersburg, Russia.
(ISBN 978-5-9651-0642-4)

