
1

Interlinked Visual Tracking and
Robotic Manipulation of Articulated Objects

Antonio Paolillo, Kévin Chappellet, Anastasia Bolotnikova, Abderrahmane Kheddar

Abstract—Robotic manipulation tasks require the knowledge
on the configuration of the object in use. Since most objects are
generally not equipped with any sensor, an estimator is required.
Furthermore, if an object is articulated, i.e. includes passive
joints, the estimation process has to reconstruct the pose of the
object floating base and its joints variables, concurrently with
the manipulation control. We address the estimation problem
with an online virtual visual servoing paradigm written as a
quadratic program. Our estimator is integrated in closed-loop
with the manipulation control governing the robot, which is also
a quadratic program. Tracking and manipulation experiments,
using a humanoid, show the effectiveness of our approach.

Index Terms—Sensor-based Control, Visual Tracking, Percep-
tion for Grasping and Manipulation.

I. INTRODUCTION

IN the perspective of having domestic or office robots ma-
nipulating and interacting with articulated human-tailored

objects, such as households appliances, they shall be em-
bedded with perception capabilities allowing to monitor the
state of such objects, whose models are usually available. For
example, to manipulate the drawer of a dresser (see Fig. 1), a
robot needs the knowledge of the handle pose to grasp it, and
the drawer joint position to control the opening motion.

In doing so, the estimation and the manipulation processes
have to be jointly integrated with the whole body control of
the robot, to be consistent with other motion constraints such
as (auto)collision avoidance, joint torque and state limits, etc.

The original motivation behind this work (beyond its other
potential use), is to close the loop on a multi-objective task-
space controller formulated as a quadratic program (QP) that
models the manipulated object as an augmentation of the robot
structure [1], [2]. Indeed, robot(s) and manipulated objects are
integrated in a “multi-robot system” that is controlled with
a single QP when they come to interact. Subsequently, the
decision variables of classical QP frameworks controlling a
single robot –that are the generalized joint acceleration and
contact forces, are augmented by those of the manipulated
(articulated) objects resulting in a multi-robot QP (MQP)
control framework. The MQP requires the current state value
of the overall multi-robot system to close the loop and update

Manuscript received: November, 21, 2017; Revised February, 2, 2018;
Accepted April, 23, 2018.

This paper was recommended for publication by Editor Jana Kosecka upon
evaluation of the Associate Editor and Reviewers’ comments. This work is
supported in part by the H2020 COMANOID EU project and the CNRS-
AIST-AIRBUS Joint Research Program.

All the authors are with the CNRS-University of Montpellier, Labora-
toire d’Informatique de Robotique et de Microéectronique de Montpellier
(LIRMM), IDH Group, France. author-surname@lirmm.fr

Digital Object Identifier (DOI): see top of this page.

image planes
∗

i
θ∗
i

ρ∗
i

u

v features of interest

Fc

Fo

ℓi

zc

xc

yc

Fig. 1. A case example of domestic robotic manipulation: a humanoid pulls
the drawer of a dresser. The scene observed by the robot camera is used to
estimate the dresser configuration and achieve the manipulation task.

the models used in the tasks and constraints. Unless they
are other robots, the manipulated articulated objects are not
equipped with sensors measuring their configuration. There-
fore, since the robot can be embedded with a camera, we first
considered existing articulated objects tracking methods that
reveal limitations we discuss in Section II. We devised a con-
figuration estimator as a virtual visual servoing in Sect. III and
formulate it as a QP (Sect. IV), using proper visual features
as described in Sect. V. This allows integrating constraints
on the estimation variable, and the implementation tools from
the MQP control framework, see experiments in Sect. VI.
Limitations and perspectives are discussed in Sect. VII.

II. BACKGROUND

Tracking of articulated systems, such as hands [3], human
bodies [4] and robotic structures [5] is an active area of
research in computer vision. However, these methods present
serious drawbacks for feedback control: in general, they are (i)
computationally demanding, (ii) not validated against ground-
truth measurements (only superposed skeleton on image ren-
dering), (iii) can experience convergence issues, (iv) some
have jumps or jerkiness in frame-to-frame estimation, (v) some
assume fixed cameras, and (vi) many are tailored for a specific
item (e.g. only hands).

In order to be integrated into a robotic feedback control
loop, a tracking algorithm has to be free from the mentioned
drawbacks and rely on standard robot computational and
sensory equipment. In this direction, joint encoder, depth

2

images [6] or their combination [7], [8] can be used to track a
robotic arm. However, these methods are unsuitable for objects
not equipped with encoders, or would require that the robot is
in stable contact with the object, which is restrictive.

RGB-D images are used to estimate pose, shape and
structure of an object in [9]. In [10] a depth-based method,
robust to calibration errors, estimates the state of a robotic
arm in closed-loop manipulation tasks. However, for many
manipulation tasks, the object-camera distance may not exceed
the minimum range required by some depth sensors. Moreover,
depth sensors using infrared do not work outdoor and those
using LIDAR are computationally expensive. Stereo-vision,
instead, needs additional steps to solve the reconstruction
problem. This motivates us to use only monocular images.

Model-based approaches using single cameras are suitable
to achieve our goal. The object geometric and appearance
model are used in [11] to estimate the joints position and
velocity, but not that of the floating base. In [12], the tracking
of complex structures is handled imposing motion constraints
to rigid objects tracking. Another interesting articulated object
tracker has been proposed in [13]; it uses the virtual visual
servoing (VVS) paradigm [14] and has real-time estimation
capabilities [15]. Therefore, we took inspiration from [13] but
our solution has a lighter formulation, is easier to implement,
and estimates directly the object configuration. Moreover, we
formulate the problem as a QP to be merged with QP-based
control frameworks. In a previous work [16], we used points
as visual features (structuring the object with known markers
was required) and formulated the problem as a classic VVS.

Summing-up, the main features of our framework are:
• formulation of the articulated objects tracking as a QP;
• a perception algorithm providing the feedback based on

an image processing procedure enhanced with the track-
ing information; structuring of the object is not required:
line features, easily detectable at the object edges, are
considered as feedback in the tracking;

• a learning-based procedure to automatically initialize our
tracking;

• experiments assessing the effectiveness of our approach
and the interlink between the estimation and the control.

III. PROBLEM FORMULATION

We address the articulated objects estimation problem with
the VVS paradigm. Visual servoing [17] provides the camera
velocity vc to achieve a cartesian task, zeroing the error
between measured (s) and desired (s∗) visual features. Sim-
ilarly, VVS computes the velocity of a virtual camera, whose
unknown pose p in the cartesian space is defined in corre-
spondence of some virtual visual features s(p), reconstructed
by using the scene and the camera projection model. The
real camera pose p∗ is defined in correspondence of s∗, the
same visual features as measured on the image plane. The
convergence of s(p) to s∗ implies the convergence of p to
p∗. Thus, the VVS can estimate the camera pose integrating
vc. This technique was introduced as an augmented reality
tool [14], used to estimate the pose of an object moving in
the camera frame, and extended to articulated objects in [13].

Fig. 1 shows a robot looking at the drawer of a dresser that
needs to be opened to a given amount. The robot camera frame
Fc is the reference having the focal point as origin with the z-
axis aligned with the focal one. The image plane is defined by
the u-v coordinates system, where the abscissa axis is oriented
as xc and the ordinate as yc; Fo is a given floating base (FB)
frame of the object.

The real configuration of the articulated object is

q∗ =
(
p∗o

Tϕ∗o
Tq∗j

T
)T
∈ Rm, (1)

where p∗o and ϕ∗o are the 3D position and orientation of Fo
w.r.t. Fc, respectively; q∗j ∈ Rn is the n joint coordinates
vector of the articulated object.

The choice of the orientation parametrization is crucial,
since Fo can change substantially w.r.t. Fc. We choose a
practical 3D orientation representation by applying the log-
arithmic map to the quaternion. This allows to use a minimal
representation with the benefit of the unit quaternion (see more
details in [18]). Using this representation, the FB pose can be
expressed with 6 parameters (i.e., m = 6 + n).

Let ` be a vector of f object features of interest (points,
lines or any geometrical primitives of the object). To avoid
any structuring of the object, we use lines, that are identified
by three parameters in the cartesian space (` ∈ R3f). The
projection of ` on the image plane provides f visual lines,
each one expressed in the form u cos θi+ v sin θi = ρi, where
ρi is the length of the segment perpendicular to the i-th line
and joining the origin of the image plane, and θi is the angle
between this segment and the abscissa axis (see Fig. 1).

On the one side, the motion of the real visual features is
induced from the articulated object-camera relative motion.
Their parameters θ∗i and ρ∗i (i = 1, . . . , f) are stacked in
s∗ ∈ R2f . On the other side, the configuration q of the
virtual articulated object, affects the motion of the virtual
visual features θi(q) and ρi(q), collected in s(q) ∈ R2f . They
depend on: (i) the current estimation of q, used to update the
geometric model and calculate the lines ` in Fc and, (ii) the
camera intrinsic parameters, used to project the lines on the
image plane. Since Fc is the reference, the camera extrinsic
parameters are not needed for the projection.

The tracking algorithm estimates q∗ given the object geo-
metric model, containing N ordered lines `m ∈ R3N (` ⊆ `m)
and vertices pm ∈ R3N expressed in Fo. The model is used
to build s(q); s∗ is measured on the image.

IV. VISUAL TRACKING OF ARTICULATED OBJECTS

In this section we describe our approach. Firstly, we recall
the classical VVS and then propose the QP-based extension.

A. Classic VVS-based tracking scheme

The VVS error is the difference between virtual and real
features, e = s(q)− s∗. Each virtual feature i motion obeys

ṡi(q) = −LiJi(q)q̇ = Aiq̇ (2)

where the dot over the variables denotes the time derivative,
Ji is the 6×m Jacobian of the object link where the i-th line

3

is defined (details are given in the Appendix), and Li is the
2× 6 image Jacobian associated to the i-th line [19]:

Li =(
λθicθi λθicθi −λθiρ −ρcθ −ρsθi −1
λρicθi λρisθi −λρiρi sθi(1 + ρi

2) −cθi(1 + ρ2
i) 0

)
(3)

with sx being sin(x) and cx being cos(x), λθi = (aisθi −
bicθi)/di and λρi = (aiρisθi + biρicθi + ci)/di. The scalars
ai, bi, ci, di are the coefficients of a plane πi supporting the i-
th line, computed as πi = Pi po. Pi is the dual Plücker matrix
associated to the line `i, and po is the estimated position of
Fo. Both Pi and po are available in the estimation routine as
described below.

The dynamics of the error writes as ė = Aq̇ − ṡ∗, where
A = (A1, . . . ,Af)T is the 2f×m articulation matrix relating
the FB and joints velocity to that of the visual features.
Imposing a stable dynamics of the error, we have

q̇ = −λA#e+A#ṡ∗ (4)

where λ is a positive gain and A# the pseudoinverse of A. At
steady state, (4) gives an estimate of the object FB and joint
velocities, from which q is obtained by integration.

B. Formulation of the VVS-based tracking as a QP

We formulate the estimation problem as a QP for the
following reasons: it allows to (i) take into account modelling
and measurement error [20] (ii) add constraints (equalities or
inequalities) on the estimation variables (e.g. joint limits), and
more importantly (iii) integrate the estimation to the control
in the same unified framework. Indeed, since many robotic
control framework are based on a QP that also includes
visual servoing tasks [21], it is reasonable to think about the
articulated object tracker written as a QP.

The VVS rationale in Sect. IV-A can be written as a
minimization problem. Since the decision variable of the QP
robot controller (see Sect. VII) is the acceleration of the multi-
robot configuration, it is convenient to define q̈ as state of our
“QP-VVS”. Thus, the objective function writes:

fo(q̈) = 1
2‖k(s∗−s(q)) + b(ṡ∗− ṡ(q)) + (s̈∗− s̈(q))‖2 (5)

with k a positive constant gain and b = 2
√
k. From (2), it is

s̈i(q) = Ȧiq̇ +Aiq̈ (6)

where Ȧi = −L̇iJi − LiJ̇i, i = 1, . . . , f . Substituting (2)
and (6) in (5), the QP providing the double derivative of the
articulated object configuration can be written as follows:

q̈ = arg min
q̈∈S

1
2 q̈

TQq̈ + cT q̈

S = {q̈ |Kq̈ ≤ k}
(7)

from which q is obtained by numerical integration. In (7),
Q = ATA, c = −AT [k(s∗−s(q))+b(ṡ∗−Aq̇)+ s̈∗−Ȧq̇];
s̈∗ and ṡ∗ are obtained by numerical derivation. S represents
the set of feasible q̈ accounting for the kinematic and dynamic
constraints of the articulated object. For instance, to impose
limits on q, one could set K = [−Im, Im]T and k =
[−2(qTmin − qT − q̇TTs)/T 2

s , 2(qTmax − qT − q̇TTs)/T 2
s]T [2],

for each new image frame I do
s∗ ← TRACK FEATURES(I)
while ||eθ|| > eth,θ ∧ ||eρ|| > eth,ρ do
`← UPDATE MODEL(q)
for each visual feature i do
Ji ← COMPUTE JACOBIAN(q)
J̇i ← COMPUTE JAC. DERIVATIVE(q, q̇)
πi ← COMPUTE SUPPORTING PLANE(`i, q)
si(q)← PROJECT(`i)
Li ← COMPUTE IMAGE JACOBIAN(πi, si(q))
L̇i ← COMPUTE IM. JAC. DER.(πi, si, π̇i, ṡi)
Ai = −Li Ji, Ȧi = −L̇iJi −LiJ̇i

end for
q̈ = arg min 1

2 q̈
TQq̈ + cT q̈

q ← DOUBLE INTEGRATION(q̈)
end while

end for

Fig. 2. Algorithm realizing the VVS-based tracking of articulated objects.

where Im is the m×m identity matrix; qmin and qmax define
the range in which q is constrained; Ts is the sampling time.

Fig. 2 presents the whole routine computing q. An edge
tracker (see Sect. V-C) processes the image I acquired by
the camera to provide the vector s∗. Then, using the current
estimation q, the model of the object is updated, so that the
positions of the features ` are also estimated and available
for subsequent computations. Thus, for each visual features
i = 1, . . . , f the following actions are carried out:
• Jacobian Ji and its time derivative J̇i are computed using

current q and q̇ (see the Appendix);
• a supporting plane πi is computed using the line Plücker

coordinates and the current estimate of the FB position;
the derivative π̇i is also numerically computed;

• virtual visual feature si(q) is obtained projecting `i on
the image plane, using the camera projection model;

• the image Jacobian Li and its time derivative L̇i are com-
puted using the estimate of the plane and the coordinates
of the visual feature, and their time derivatives;

• the i-th block of the articulation matrix, Ai, is obtained.
At the end of these steps, the articulation matrix is fully
built, Q and c can be computed and the QP solved. Since
the estimate is accurate only when the tracking converges, an
inner loop repeats the tracking operations until the norm of
the VVS error on θ and ρ (eθ and eρ, respectively) decreases
below desired precision thresholds eth,θ and eth,ρ.

V. PERCEPTION OF THE VISUAL FEATURES

We explain the methods used to measure s∗ and reconstruct
s(q), and how the perception algorithm copes with the initial-
ization phase, the missing/occluded lines and the real-virtual
features correspondence. The whole algorithm is based on the
so-called edges_table that contains the following data for
each of the N edges of the object model:
• id, its identification number;
• part_id, the identification number of its object link;
• tracked, its boolean indicating if tracked;

4

• visible, boolean indicating its visiblity on the image;
• its θ and ρ visual line parameters on the image plane;
• θ̄ and θ (ρ̄ and ρ) upper and lower bounds of its θ (ρ),

respectively; they define a range where to search for it;
• p1 and p2, its extreme points used to define a region of

interest (ROI) where to search for it;
• l, its length.

The geometric information (θ-ρ parameters, p1, p2, l) are
given only for the tracked edges, i.e., ∀ id ∈ T = {1, . . . , N |
trackedid = “true”}. The part_id field is known in
advance and read from the object geometric model. All the
other data is updated at each new acquired image by the
perception algorithm, as described below.

A. Initialization

To make the algorithm start, the edges_table and the
configuration vector q have to be initialized. To this end, two
initialization procedures are provided: manual and automatic.

Firstly, a set of f edges to track is decided (see Sec. VI),
to which the corresponding tracked value is set to “true”.
For all the other edges, this field is initialized to “false”.

The manual initialization consists in pointing on the image
the f chosen edges one by one. This operation fills the corre-
sponding edges_table fields related to the θ-ρ parameters,
p1,2 and, consequently, l. The upper and lower bounds are
initialized as θid = θid−mθ, θ̄id = θid+mθ, ρid = ρid−mρ

and ρ̄id = ρid+mρ, ∀ id ∈ T ; mθ and mρ are two heuristic
margins, used to be conservative with the lines searching
operations. Furthemore, selecting 4 points on the image of
the object, and considering the corresponding points on the
object in Fo (stored in the model), the initial estimate q is
obtained by solving a perspective-n-point problem.

The automatic initialization is enabled by learning an object
appearance model. To create a dataset for the learning, one
visual marker is placed on the object, and image frames
containing the object are acquired. The frames are processed
to remove the visual marker by replacing area behind it with
nearby pixel values, while using the marker pose to project
predefined set of object landmarks onto the image. The pose
of the marker is not always well estimated. Thus, a round of
manual check is required to ensure high quality of the training
data. The resulting dataset is used to learn the histogram of
oriented gradients (HOG) filter [22] and to train landmark
prediction model [23]. During the initialization phase, learned
models are applied to the first frame(s), 4 detected landmarks
on the FB are used in order to estimate q, which is then used
to project auxiliary landmarks to the image for estimation of
initial tracked lines extreme points and, consequently, the θ-ρ
parameters and length.

B. Reconstruction of the Virtual Line Features

The reconstruction of the virtual lines consists in filling the
vector s(q), given the current value of the object configuration
q. During this process, the model information is used to update
visible, p1 and p2 in the edges_table.

The virtual lines are obtained by executing three steps. First,
the current estimate of the object configuration q is used to

(a) Moving-edge used in [13]. (b) Hough-guided used in this work.

Fig. 3. Comparison between two algorithms to track the real line features.

update the model, i.e., compute the model lines `m in Fc.
Then, the tracked field of the table is used to select, among
all the `m, the f features ` to be considered for the VVS.
The correspondence between the virtual and real features is
made at this stage, since the tracked field is also used to
perform the detection of the real lines (see Sect. V-C). Then,
the projection of ` on the image plane gives the vector s(q).
For all the lines whose tracked value is false, p1 and p2 are
updated with the edges vertices contained in the model (pm).
Furthermore, using the information of the lines `m in Fc, it is
possible to find out the lines that are visible, and update the
visible field accordingly.

C. Tracking of the Real Line Features

The tracking of the real lines is based on the processing of
the current image I acquired by the camera and, using the
current information contained in the edges_table, filling
the vector s∗ and updating some of the table entries.

In [13] and [14] the lines at the borders of an object
are tracked using the so-called moving-edge algorithm. We
encountered problems to apply this technique when the parts
of the articulated object move apart (see Fig. 3a). Therefore,
we developed a Hough-guided procedure consisting of the
following steps. Firstly, apply the Canny operator to provide
a black and white map of the edges in the image. For each
tracked line at the previous image (tracked is true), select
a ROI and then apply on it the Hough transform of the edges
map to detect the edges extreme points from which the θ-ρ
are computed (a typical result is shown in Fig. 3b).

For each edge id ∈ T , the ROI selection is performed
according to the values stored in p1 and p2 and using
two margins mROI,x and mROI,y . Furthermore, to refine the
searching of the line, only the Hough’s output ranging in (θ, θ̄)
and (ρ, ρ̄) are considered and merged together.

If the detection process succeeds in finding the edge, then
the θ-ρ parameters given by Hough are used to update the
table and compose the vector s∗. The extreme points are
used to fill the p1 and p2 fields. If the detection process
fails, the tracked entry for that line is set to “false”. In
this case, a recovery strategy is activated to find a substitute
among the lines in the table that have the part_id same
as the line just lost, and whose visible value is “true”.
If the new detected line has a length (l) greater than a
threshold, then it is considered in the tracking. Otherwise,
the last detected edge is kept in the table. The recovery
strategy also helps the tracker with temporary failures of
the detection, trying to regain the convergence to the real
object from the current status of the edges_table. The θ-ρ

5

(a) (b) (c) (d) (e)

Fig. 4. First tracking experiment. The learning-based algorithm recognizes the parts of the printer (a) and provides VVS with initialization: the green rectangle
shows HOG-based detection, the purple dots show prediction of the front face landmarks that are used to compute the initial pose estimate (displayed as a
RGB frame); yellow and red points are auxiliary landmarks projected on the image using the estimate q. After a transient phase (b), the virtual features (blue
lines) converge to their real red counterparts (c), and correctly track the printer FB and the paper tray motion (d). The algorithm copes with visual occlusions
(e), and accidental failures of the lines detection: e.g., in (d) line 2 is substituted with line 8.

bounds are updated as x̄id = max (xid, xid + ẋidTs) + mx,
and xid = min (xid, xid + ẋidTs) − mx, ∀ id ∈ T and
x ∈ {θ, ρ}. In the above relationships, the derivative term can
be computed numerically or, if the tracker converges, using the
information available in the VVS, i.e., (θ̇id, ρ̇id)T ≈ Aiq̇.

VI. EXPERIMENTAL RESULTS

The presented results are obtained by tracking two articu-
lated objects: a printer with the prismatic joint of its paper
tray, and a cabinet with its door revolute joint. The tracking
provides the objects FB pose and the joint variable (m = 7).

Our results are obtained using different numbers of line
features. Indeed, the VVS estimation depends on the number
of the f tracked lines and their relative position. For example,
to correctly estimate the FB pose, a minimal set of 3 non-
coplanar lines is required to ensure that the stacked image
Jacobian, and consequently the articulation matrix, is full
rank (the same problem is remarked in the dual context of
VS [19]). The lines coplanarity can be detected with additional
computation. However, we decided to track more lines than the
minimal required, to create redundancy and avoid rank defi-
ciency. This solution, paid in terms of a higher computational
cost, is shown to be feasible in the results presented below.
Furthermore, increasing the dimension of the feedback helps to
have more robust tracking results with respect to the perception
process noise and bad detection of the line features. Thus, we
chose the lines number f driven by the trade-off between high
tracking performance and low computational cost. Note that
the algorithm (shown in Fig. 2) scales linearly with f . In the
experiments with the printer we used 4 lines on the FB and
one on the paper tray; for the cabinet we used 5 lines on the
FB and 2 on the door.

The algorithm run on a PC with an i7 2.60 GHz CPU and
8 GB of RAM, processing the images from the monocular
camera of a XtionPRO live RGB-D sensor, that gives a video
stream of 640 × 480 pixels at 30 Hz. Since the frequency
of the estimation process is, in general, higher, the remaining
time is used by the inner loop to make the VVS converge.
An offline calibration procedure provides the camera intrinsic
parameters used to compute the projection model. The real
lines detection algorithm is based on the OpenCV library. A
low-pass frequency filter is used to clear the noise from the
configuration estimate, the detected lines and their derivative.

We propose two sets of experiments. The first aims at
evaluating the tracking performance, the latter shows the

effectiveness of the tracking for robotic manipulation tasks.
All the experiments, along with the online camera images, are
included in the video accompanying this paper.

A. Visual Tracking of Articulated Objects

As detailed in Sect. IV, we used as feedback only the lines
that are detectable at the borders of the objects. However, for
the first set of experiments, we also placed two markers boards
on the FB and on the link of the objects. These markers are
not considered in our estimator but processed by the Aruco
library [24] to reconstruct the objects configuration, considered
for comparison in our work. For this set of experiments, the
thresholds of the error used to stop the inner loop were tuned
to eth,θ = eth,ρ = 0.015.

In the first experiment we tracked the printer, initializing
the algorithm with the automatic procedure (Sect. V-A). The
parameters for the lines searching algorithm (Sect. V-C) were
set to mθ = 0.035 and mρ = 12 whereas the margins on the
ROI were set to mROI,x = 30 and mROI,y = 10. The VVS-QP
gain was heuristically set to k = 750. In this experiment, the
average time spent by the lines tracking process was 5.79 ms,
and 8.31 ms by the VVS estimation (corresponding to an
average of 366 iterations of the inner loop). The tracking
process steps and performance are shown in Fig. 4.

In the second experiment, we tracked the cabinet. We
intentionally bad initialized the algorithm using the manual
procedure. The parameters of the algorithm were set as fol-
lows: mθ = 0.035, mρ = 10, mROI,x = 45 and mROI,y = 25;
k = 2500. On average, the lines tracking took 5.63 ms,
the estimation 12.83 ms (435 inner iterations). During the
experiment the camera moves w.r.t. the object and vice-versa.
Figures 5 and 6 show the plots of the cabinet position and ori-
entation (transformed in roll-pitch-yaw angles), respectively.
After an initial transient time required to recover the bad
initialization, the signals provided by the VVS (blue traces
with triangular markers) converge to the pose of the cabinet.
The results are compared with the Aruco signals (red dashed
lines). The door joint angle is plotted in Fig. 7: the VVS and
Aruco output match quite well along all the experiment.

In a third experiment, the printer is tracked in a cluttered
environment (Fig. 8a) using both the classic and QP formalism
of the VVS. Details of the tracker show that the QP-VVS ben-
efits from the inclusion of the kinematic constraints (Fig. 8b)

6

0.02

0.04

0.06

0.08

0.1

0.12

x
 [m

]
VVS
Aruco

-0.08

-0.06

-0.04

-0.02

0

0.02

y
 [m

]

VVS
Aruco

0 10 20 30 40 50
t [s]

0.48

0.5

0.52

0.54

0.56

0.58

z
 [m

]

VVS
Aruco

Fig. 5. Second tracking experiment: the cabinet FB position.

2

2.2

2.4

ro
ll

 [r
ad

]

VVS
Aruco

0.5

0.6

0.7

0.8

pi
tc

h
 [r

ad
] VVS

Aruco

0 10 20 30 40 50
t [s]

-0.2

0

0.2

0.4

0.6

0.8

ya
w

 [
ra

d]

VVS
Aruco

Fig. 6. Second tracking experiment: the cabinet FB orientation.

0 10 20 30 40 50
t [s]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

q
1
 [

ra
d]

VVS
Aruco

Fig. 7. Second tracking experiment: the cabinet revolute joint angle.

when the noise on the detected lines can produce results not
consistent with the object geometry (Fig. 8c).

B. Robotic Manipulation of Articulated Objects

In the second set of experiments we made HRP-4 robot
manipulate the articulated objects. To this end, the estimation
output given by the VVS-based scheme is used as feedback
in the MQP framework to control the “robot+object” system,
as mentioned in Sect. I. Among the others, the framework
allows to define contact constraints between the robot and the
object to be manipulated, actually coupling the two parts in a
single system. Once that the contact is established, the overall
system can be controlled with both cartesian and postural
tasks. Indeed, in order to grasp the object, a cartesian error
τh = ph − ph,d is defined, where ph is the current value of

(a)

(b)

(c)

Fig. 8. Third tracking experiment: the printer in a cluttered evironment (a).
Detail of the tracker using the the QP-VVS (b) and the classic formalism (c).

the robot hand pose and ph,d is the object pose to be grasped,
given by the tracking algorithm. For the manipulation task, an
error is defined as τq = q1 − q1,d, where q1,d (desired object
joint value) is provided by some form of planning, while q1

(current object joint value) is estimated by our method. To
execute the grasping or the manipulation task, a new term
is properly added in the cost function of the MQP, that tries
to zero the corresponding error. Each term is given a gain,
imposing a decrease rate of the task error, and a weight,
defining the priority of the task. The constraints and the tasks
are added or removed in the MQP with a state machine.

In this set of experiments, we used the manual initialization.
We tuned the parameters of the perception algorithm as
follows: mθ = 0.35, mρ equal to 12 for the printer and 10 for
the cabinet, mROI,x = 40 and mROI,y = 10. The gain of the
VVS-QP was tuned to k = 750 for the printer and k = 1250
for the cabinet; finally, we set to eth,θ = eth,ρ = 0.005.

In the first manipulation experiment, HRP-4 operates the
paper tray of the printer. The robot starts from its operational
configuration, standing in front of the printer and grasping
the tray. Several open/close commands are then sent to the
MQP. The plot of Fig. 9 shows the manipulation commands
(black dash-dot line) that are well followed by the printer
prismatic joint, as estimated by the VVS method (blue line
with triangular markers). With reference to the plot, the contact
constraint between the robot hand and the printer is activated
around time 8 s, after which the robot moves the tray toward
the default desired position, that is 0 m; the first opening
motion is sent at 12 s. One can observe a lag between
command and tracking. This is due to the backlash in the
humanoid-printer system, and the MQP task error decrease
rate. One could also observe a not perfect positioning of the
tray (e.g., at 38 s or 72 s). This is due to the high friction of
the tray mechanism, preventing a smooth manipulation motion

0 10 20 30 40 50 60 70 80
t [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

q
1
 [

m
]

VVS
command

Fig. 9. First manipulation experiment: the printer prismatic joint position.

7

(a) (b) (c)

Fig. 10. Second manipulation experiment. HRP-4 is arbitrarily placed in front
of a cabinet (a). The VVS estimate is used to steer the robot hand to the door,
grasp (b) and open it (c) by adding MQP cartesian/postural tasks.

and a fine positioning. In this experiment, the lines and object
tracking process took an average of 9.79 ms and 8.8 ms (409
inner iterations).

In the second manipulation experiment we achieve both
grasping and operation of the cabinet door. Three significative
snapshots taken from the experiment video are shown in
Fig. 10. Fig. 11 shows that the angle of the door remains
constant while the robot hand is reaching the object. At time
22 s, the hand touches the door and accidentally closes it by
0.1 rad. Then, at 25 s, the contact constraint is activated and
the robot steer the door at the default command (0.8 rad).
Finally, the commands are sent at about 29 s and HRP-4
performs the opening/closing motion as specified by the user.
On an average, the tracking of the lines used 10.38 ms and
the estimation process 8.71 ms (for 277 inner loop iterations).

VII. CONCLUSION AND FUTURE WORK

Our online articulated objects estimator can be written as
a virtual visual servoing quadratic program tracker in the
acceleration space. The estimator and the control framework
cooperates to achieve the desired manipulation task, sharing
information (such as the object model). Interesting perspec-
tives are currently under investigation. In fact, the estimation
can be viewed as an observer that can be explicitly merged
with the whole body robot controller in a more effective single
MQP formulation. In doing so, the idea of task in the robot
control MQP formulation could be generalized to include also
the meaning of estimation. The fundamental challenge is to
find the appropriate conditions to make the “observer” tasks
part of the MQP converge faster then the control per se tasks,
since the latter depends on the first.

We have also shown that our algorithm is able to track
non-structured objects, cope with missing/occluded features
and cluttered environments. However, the use of line features,
as well as any other geometric features, represents also a
limitation. First, not all objects can be identified with simple
geometric features. Second, this kind of information is prone

0 10 20 30 40 50 60 70
t [s]

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

q
1
 [

ra
d]

VVS
command

Fig. 11. Second manipulation experiment: the cabinet revolute joint angle.

to be mistaken with similar visible features not related to the
object. Future work will investigate the possibility to include
in the tracker also other kind of sensory information, such as
reconstructed depth (under certain working conditions), robot
joints encoders (when the robot is in contact with the object)
and other features that can be learned robustly offline.

Tracking and manipulation experiments carried out with
HRP-4 have shown the effectiveness of our approach to be
used in closed-loop control. We believe that our algorithm
can be a good basis for an extension to the tracking of more
complex structures such as human bodies and employed in the
field of physical human-robot interaction.

APPENDIX

The tracking algorithm described in Sect. IV uses the
articulation matrix and its time derivative, i.e., the object and
image Jacobian related to the i-th line feature (Ji and Li,
respectively) and their derivatives (J̇i and L̇i). The first step
is to write the FB Jacobian, Jo. Recall that the FB orientation
ϕo = (ϕ1, ϕ2, ϕ3)T is obtained applying a log map [18] to
the unit quaternion σo = (η, εT)T , ε = (ε1, ε2, ε3)T :

ϕo = logσo = 2 cos−1 η
|ε| ε. (8)

From ϕo, the rotation matrix Ro from Fc to Fo is obtained
applying the exp map to express the orientation in quaternion:

σo = expϕo =
(
cos ᾱ, sin ᾱ

α ϕo
)T

(9)

where α = |ϕo| and ᾱ = α/2; then, Ro is extracted from
the quaternion using the well known relation. The FB angular
velocity is related to the orientation parameters derivative:

ωo = 2ET σ̇o = 2ETJϕϕ̇o. (10)

E is derived from the quaternion propagation rule:

E =

(
−εT

ηI3 − S(ε)

)
(11)

where I3 is the 3 × 3 identity matrix and S(ε) the skew
symmetric matrix associated to ε. In (10), Jϕ is the Jacobian
of σo w.r.t. ϕo, given in [18] and here reported element-wise:

J1,j
ϕ = ∂η

∂ϕj
= −ϕj sᾱ2α , (14)

J i+1,j
ϕ = ∂εi

∂ϕj
=

{
ϕ2
j (

cᾱ
2α2 − sᾱ

α3) + sᾱ
α if i = j,

ϕiϕj
(
cᾱ
2α2 − sᾱ

α3

)
if i 6= j,

(15)

whereas, the derivative of Jϕ is here expressed element-wise

J̇1,j
ϕ = − 1

2α

(
ϕ̇jsᾱ + ϕjα̇

cᾱα−2sᾱ
2α

)
, (16)

8

L̇i =

(
λ̇θisθi + λθicθi θ̇i λ̇θicθi − λθisθi θ̇i −λ̇θiρi − λθi ρ̇i ρ̇isθi + ρicθi θ̇i ρ̇icθi − ρisθi θ̇i 0

λ̇ρisθi + λρicθi θ̇i λ̇ρicθi − λρisθi θ̇i −λ̇ρiρi − λρi ρ̇i −sθi θ̇(1 + ρ2
i) + 2cθiρiρ̇i −cθi θ̇i(1 + ρ2

i)− 2sθiρiρ̇i 0

)
(24)

λ̇θi =
[
(−ȧicθi + asθi θ̇i + ḃsθi + bcθi θ̇i)di + (aicθi − bsθi)ḋi

]
/d2
i (25)

λ̇ρi =
[
(ȧiρisθi + aiρ̇isθi + aiρicθi θ̇i + ḃiρicθi + biρ̇icθi − biρisθi θ̇i + ci)di − (aiρisθi + biρicθi + ci)ḋi

]
/d2
i (26)

J̇ i+1,j
ϕ =

ϕj ϕ̇j
α2

(
cᾱ − sᾱ

ᾱ

)
+ α̇

α

(
cᾱ
2 −

sᾱ
α

)
+

ϕ2
j α̇

α2

(
sᾱ

12−α2

4α2 − 3cᾱ
2α

)
if i = j,

(17)

J̇ i+1,j
ϕ =

ϕiϕ̇j+ϕ̇iϕj
α2

(
cᾱ
2 −

sᾱ
ᾱ

)
+

ϕiϕj α̇
α2

(
sᾱ

12−α2

4α2 − 3cᾱ
2α

)
if i 6= j,

(18)

with α̇ = (ϕ · ϕ̇)/α. Approximations, using Taylor expansion
of sine and cosine, are considered for α ' 0 [18]. From (10):

Jo =

(
I3 O3

O3 2ETJϕ

)
(19)

where O3 is the 3× 3 zero matrix. Its time derivative is

J̇o =

(
O3 O3

O3 2
(
ĖTJϕ +ET J̇ϕ

))
. (20)

We also need the Jacobian of the l-th link expressed in Fc:

Jl =

(
Ro S(po)Ro

O3 Ro

)
Jol = V c

o J
o
l (21)

where Jol is the Jacobian of the link in Fo and V c
o camera-

object velocity twist transformation. It is J̇l = V̇ c
o J

o
l +V c

o J̇
o
l .

Thus, Ji and J̇i can be composed as follows:

Ji =

{
(Jo O6×n) if `i ∈ FB,(
Jo Jl O6×(n−l)

)
if `i ∈ l-th link, (22)

J̇i =

{
(J̇o O6×n) if `i ∈ FB,
(J̇o J̇l O6×(n−l)) if `i ∈ l-th link.

(23)

Finally, the derivative of Li (eq. (3)) and the variables needed
for its computation, are in (24)–(26) at the top of the page.

REFERENCES

[1] J. Vaillant, K. Bouyarmane, and A. Kheddar, “Multi-character physical
and behavioural interactions controller,” IEEE Trans. Visual. Comput.
Graphics, vol. 23, no. 6, pp. 1650–1662, 2017.

[2] K. Bouyarmane, J. Vaillant, K. Chappellet, and A. Kheddar, “Multi-
robot and force task-space control with quadratic programming,” IEEE
Trans. Robot., submitted.

[3] G. Park, A. Argyros, and W. Woo, “Efficient 3D hand tracking in
articulation subspaces for the manipulation of virtual objects,” in 33rd
Computer Graphics International, 2016, pp. 33–36.

[4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2D
pose estimation using part affinity fields,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2017, pp. 1302–1310.

[5] T. Schmidt, K. Hertkorn, R. Newcombe, Z. Marton, M. Suppa, and
D. Fox, “Depth-based tracking with physical constraints for robot
manipulation,” in IEEE Int. Conf. on Robotics and Automation, 2015,
pp. 119–126.

[6] J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework for
learning kinematic models of articulated objects,” Journal of Artificial
Intelligence Research, vol. 41, pp. 477–526, 2011.

[7] C. G. Cifuentes, J. Issac, M. Wüthrich, S. Schaal, and J. Bohg,
“Probabilistic articulated real-time tracking for robot manipulation,”
IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 577–584, 2017.

[8] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
tracking for in-hand 3D object modeling,” Int. J. Robot. Res., vol. 30,
no. 11, pp. 1311–1327, 2011.

[9] R. Martı́n Martı́n, S. Höfer, and O. Brock, “An integrated approach to
visual perception of articulated objects,” in IEEE Int. Conf. on Robotics
and Automation, 2016, pp. 5091–5097.

[10] M. Klingensmith, T. Galluzzo, C. Dellin, M. Kazemi, J. A. D. Bagnell,
and N. Pollard , “Closed-loop servoing using real-time markerless arm
tracking,” in Humanoids Workshop at IEEE ICRA, 2013.

[11] K. Nickels and S. Hutchinson, “Model-based tracking of complex
articulated objects,” IEEE Trans. Robot. Automat., vol. 17, no. 1, pp.
28–36, 2001.

[12] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 7,
pp. 932–946, 2002.

[13] A. I. Comport, E. Marchand, and F. Chaumette, “Kinematic sets for real-
time robust articulated object tracking,” Image and Vision Computing,
vol. 25, no. 3, pp. 374–391, 2007.

[14] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, “Real-
time markerless tracking for augmented reality: the virtual visual ser-
voing framework,” in IEEE Trans. Visual. Comput. Graphics, vol. 12,
no. 4, 2006, pp. 615–628.

[15] X. Gratal, J. Romero, and D. Kragic, “Virtual visual servoing for real-
time robot pose estimation,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 9017–9022, 2011.

[16] A. Paolillo, A. Bolotnikova, K. Chappellet, and A. Kheddar, “Visual
estimation of articulated objects configuration during manipulation with
a humanoid,” in IEEE/SICE Int. Symp. on Syst. Integration, 2017, pp.
330–335.

[17] F. Chaumette and S. Hutchinson, “Visual Servo Control, Part I: Basic
Approaches,” IEEE Robot. Automat. Mag., vol. 13, no. 4, pp. 82–90,
2006.

[18] F. S. Grassia, “Practical parameterization of rotations using the expo-
nential map,” J. of Graphics Tools, vol. 3, no. 3, pp. 29–48, 1998.

[19] I. Sa, S. Hrabar, and P. Corke, “Inspection of pole-like structures using
a visual-inertial aided VTOL platform with shared autonomy,” Sensors,
vol. 15, no. 9, pp. 22 003–22 048, 2015.

[20] X. Xinjilefu, S. Feng, and C. G. Atkeson, “Dynamic state estimation
using quadratic programming,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2014, pp. 989–994.

[21] D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette, “Visual
servoing in an optimization framework for the whole-body control of
humanoid robots,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 608–615,
2017.

[22] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Conf. on Computer Vision and Pattern Recognition,
vol. 1, 2005, pp. 886–893.

[23] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2014, pp. 1867–1874.

[24] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–
2292, 2014.

