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A 1D Continuum Model for Beams
with Pantographic Microstructure:
Asymptotic Micro-Macro Identification
and Numerical Results

Emilio Barchiesi, Francesco dell’Isola, Marco Laudato, Luca Placidi
and Pierre Seppecher

Abstract In the standard asymptotic micro-macro identification theory, starting

from a De Saint-Venant cylinder, it is possible to prove that, in the asymptotic limit,

only flexible, inextensible, beams can be obtained at the macro-level. In the present

paper we address the following problem: is it possible to find a microstructure pro-

ducing in the limit, after an asymptotic micro-macro identification procedure, a con-

tinuum macro-model of a beam which can be both extensible and flexible? We prove

that under certain hypotheses, exploiting the peculiar features of a pantographic

microstructure, this is possible. Among the most remarkable features of the result-

ing model we find that the deformation energy is not of second gradient type only

because it depends, like in the Euler beam model, upon the Lagrangian curvature,

i.e. the projection of the second gradient of the placement function upon the normal

vector to the deformed line, but also because it depends upon the projection of the

second gradient of the placement on the tangent vector to the deformed line, which is

the elongation gradient. Thus, a richer set of boundary conditions can be prescribed
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for the pantographic beam model. Phase transition and elastic softening are exhibited

as well. Using the resulting planar 1D continuum limit homogenized macro-model,

by means of FEM analyses, we show some equilibrium shapes exhibiting highly

non-standard features. Finally, we conceive that pantographic beams may be used as

basic elements in double scale metamaterials to be designed in future.

Keywords Micro-macro identification ⋅ Asymptotic expansion ⋅ Pantographic

beams ⋅ Continuum models

1 Introduction

Customarily, the theory of nonlinear beams is either postulated by means of a suit-

able least action principle in the so called “direct way” or is deduced, by means of a

more or less rigorous procedure, starting from a three-dimensional elasticity theory.

The first example of direct model can be found in the original paper by Euler [1].

Many epigones of Euler used this approach: a comprehensive account for this proce-

dure can be found in e.g. Antman [2]. On the other hand, by following the procedure

described by De Saint-Venant, one can try to identify the constitutive equation of

an Euler type (1D) model in terms of the geometrical and mechanical properties,

at micro-level, of the considered mechanical systems. This is done, in more mod-

ern textbooks, by using a more or less standard asymptotic micro-macro identifica-

tion procedure, which generalizes the one used by De Saint-Venant for bodies with

cylindrical shape (see for instance [3]). It can be rigorously proven, under a series of

well-precised assumptions, that only flexible and inextensible beams can be obtained

[4–9]. In the present paper we address the following problem: is it possible to find

a microstructure producing, at the macro level and under loads of the same order

of magnitude, a beam which can be both extensible and flexible? Using an asymp-

totic expansion and rescaling suitably the involved stiffnesses, we prove that a panto-

graphic microstructure does induce, at the macro level, the aforementioned desired

mechanical behaviour. In this paper, in an analogous fashion to that of variational

asymptotic methods, and following a mathematical approach resembling that used

by Piola, we have employed asymptotic expansions of kinematic descriptors directly

into the postulated energy functional. Using the so obtained 1D continuum model,

we show some equilibrium shapes exhibiting highly non standard features, essen-

tially related to the complete dependence of the homogenized continuum energy

density functional on the second gradient of the placement field. While in the stan-

dard finite deformation Euler beam theory the energy functional depends only on

the material curvature, i.e. the normalized projection of the second gradient of the

placement on the normal vector to the current configuration, the energy functional

for the nearly-inextensible pantographic beam model depends also on the projection

of the second gradient of the placement on the tangent vector to the current con-

figuration. Thus, the full decomposition of the second gradient of the placement is

present in the latter model. Generalized continua [10–14], and in particular higher
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gradient theories, see [15] or [16] for a comprehensive review, are able to describe

behaviours which cannot be accounted for in classical Cauchy theories [17–24]. In

the literature, several examples can be found motivating the importance of gener-

alized continua: electromechanical [25] and biomechanical [26–29] applications,

elasticity theory [30–35], capillary fluids analysis [36], granular micromechanics

[37–39], robotic systems analysis [40, 41], damage theory [42–47], and wave prop-

agation analysis [48–52]. Furthermore, second gradient continuum models always

appear when the considered micro-system is a pantographic structure [53–60]. A

comprehensive review on the modeling of pantographic structures can be found in

[61, 62]. Several results of numerical investigations can be found in [30, 63–71],

while for an outline of recent experimental results we refer to [72, 73]. The work

is organized in the following way. In Sect. 2, we discuss the geometry of the panto-

graphic beam micromechanical model. Once the general expression for the micro-

model energy is given, we restrict to the quasi-inextensibility case, where small elon-

gation of oblique fibers is assumed. The micro-model energy is then represented as

a function of the macroscopic kinematical descriptors and the further specializa-

tion to the (complete) inextensibility of the oblique fibers is considered. In Sect. 3

we perform a heuristic homogenization procedure and we discuss the feature of the

1D continuum model. In particular, we show that such a homogenization procedure

gives rise to a full second gradient theory. In Sect. 4 we show results of numerical

simulations in order to better highlight some non-standard features of the nearly-

inextensible pantographic beam model. Finally, in Sect. 5 we postulate a generalized

strain energy density which includes both the quasi-inextensible pantographic beam

model and the standard Euler beam theory. Euler-Lagrange equations for this gen-

eralized strain energy density are derived together with the corresponding boundary

conditions and the specializations to the two models are performed.

2 Discrete Micro-model

In this section we discuss the discrete micro-mechanical model which is employed

throughout this paper. We begin giving a geometrical description and then we give

a mechanical characterization, by choosing a deformation energy. It is a Hencky-

type spring model with the geometrical arrangement of a pantographic strip. Once

the energy of the micro-model is chosen in its general form, we assume a particular

asymptotic behaviour for some relevant kinematic quantities, i.e. the elongation of

oblique springs, as will be clear in the sequel. We consider the quasi-inextensibility

case, i.e. the relative elongation of the oblique springs is small. As a further spe-

cialisation, the inextensibility case is considered. Finally, after having defined a

micro-macro identification, we express the energy of the micro-system in terms of

macroscopic kinematic descriptors to prepare the field to the homogenization pro-

cedure which will be discussed in details in the next section.



46 E. Barchiesi et al.

2.1 Geometry

In the spirit of [55, 59, 74], in this section we introduce a discrete-spring model

(also referred to as the micro-model, since it resembles the features of a specific

microstructure). The topology and features of the undeformed and deformed discrete-

spring system are summarized in Figs. 1 and 2, respectively. In the undeformed con-

figuration N + 1 material particles are arranged upon a straight line at positions Pi’s,

i ∈ [0;N], with a uniform spacing 𝜀. The basic i-th unit cell centered in Pi is formed

by four springs joined together by a hinge placed at Pi. Between two oblique springs,

belonging to the same cell and lying on the same diagonal, a rotational spring oppos-

ing to their relative rotation is placed. Rotational springs are colored in Fig. 1 in blue

and red.

We denote with pi the position in the deformed configuration corresponding to

position Pi in the reference one. In order to completely describe the kinematics of

the micro-model we have to introduce other descriptors. At this end, the length of

the oblique deformed springs, indicated with l𝛼𝛽i , is introduced, the indices 𝛼 and

𝛽 belonging respectively to the sets {1, 2} and {D, S} and referring to the first and

Fig. 1 Undeformed spring system resembling the micro-structure

Fig. 2 Deformed spring system resembling the micro-structure
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second diagonal and left and right, respectively. Referring to Fig. 2, we consider the

i-th node, notwithstanding that the same quantities can be defined for each node. We

define 𝛼i as the angle between the vectors pi − pi−1 and pi − pi+1, respectively. We

define as 𝜗
𝛼

i the angle measuring the deviation of two opposite oblique springs from

being collinear. In order to illustrate the definition of 𝜑
𝛼𝛽

i , we consider the case 𝛼 = 1
and 𝛽 = D. The quantity 𝜑

1D
i is the angle between the vector pi+1 − pi and the upper

oblique spring hinged at pi. By means of elementary geometric considerations, we

have that

𝜗
1
i = 𝛼i + 𝜑

1D
i − 𝜑

1S
i

𝜗
2
i = 𝛼i + 𝜑

2S
i − 𝜑

2D
i , i ∈ [0;N] . (1)

In the undeformed configuration, see Fig. 1, we have:

l𝛼𝛽i =
√
2
2

𝜀, 𝛼 = 1, 2 𝛽 = D, S i ∈ [0;N]

𝜗
1
i = 𝜗

2
i = 0

‖pi − pi−1‖ = 𝜀, i ∈ [0;N] . (2)

Considering that 𝜑
𝛼D
i , 𝜑

𝛼S
i ∈ [0, 𝜋], by means of the law of cosines, we get:

𝜑
1D
i = cos−1

⎛
⎜
⎜
⎝

‖pi+1 − pi‖2 +
(
l1Di
)2 −
(
l2Si+1
)2

2l1Di ‖pi+1 − pi‖

⎞
⎟
⎟
⎠

𝜑
2D
i = cos−1

⎛
⎜
⎜
⎝

‖pi+1 − pi‖2 +
(
l2Di
)2 −
(
l1Si+1
)2

2l2Di ‖pi+1 − pi‖

⎞
⎟
⎟
⎠

𝜑
1S
i = cos−1

⎛
⎜
⎜
⎝

‖pi − pi−1‖2 +
(
l1Si
)2 −
(
l2Di−1
)2

2l1Si ‖pi − pi−1‖

⎞
⎟
⎟
⎠

𝜑
2S
i = cos−1

⎛
⎜
⎜
⎝

‖pi − pi−1‖2 +
(
l2Si
)2 −
(
l1Di−1
)2

2l2Si ‖pi − pi−1‖

⎞
⎟
⎟
⎠
. (3)
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2.2 Mechanical Model

The micro model energy, written as a combination of the elastic energy contributions

of the springs, is defined as:

 =

∑

i

∑

𝛼,𝛽

ke
𝛼𝛽,i

2

(

l𝛼𝛽i −
√
2
2

𝜀

)2

+
∑

i

∑

𝛼

kf
𝛼,i

2
(
𝜗
𝛼

i
)2 +

+
∑

i

kmi
2
(
‖pi+1 − pi‖ − 𝜀

)2 = (4)

Reminding that 𝜗
𝛼

i = 𝛼i + (−1)𝛼
(
𝜑
𝛼S
i − 𝜑

𝛼D
i

)
, then (4) recasts as:

 =

∑

i

∑

𝛼,𝛽

ke
𝛼𝛽,i

2

(

l𝛼𝛽i −
√
2
2

𝜀

)2

+
∑

i

∑

𝛼

kf
𝛼,i

2
[
𝛼i + (−1)𝛼

(
𝜑
𝛼S
i − 𝜑

𝛼D
i
)]2 +

+
∑

i

kmi
2
(
‖pi+1 − pi‖ − 𝜀

)2
. (5)

In the next subsections we will specialize this form of the energy by means of

assumptions on the properties of the micro-system. In particular, we will discuss

in detail the representation of the micro-energy for the quasi-inextensibility assump-

tion that will be made clear next and, subsequently, for the (complete) inextensibility

cases.

2.3 Asymptotic Expansion and Quasi-inextensibility
Assumption

We postulate that the following asymptotic expansion holds for l𝛼𝛽i

l𝛼𝛽i = 𝜀l̃𝛼𝛽i1 + 𝜀
2 l̃𝛼𝛽i2 + o

(
𝜀
2)

, (6)

where the constant (with respect to 𝜀) term is not present. We now turn to what we

refer to as the quasi-inextensibility case. It consists in fixing the value of the first-

order term in (6) as l̃𝛼𝛽i1 =
√
2
2

. Moreover, to lighten the notation, we drop the subscript

“2” of l̃𝛼𝛽i2 i.e. l̃𝛼𝛽i ∶= l̃𝛼𝛽i2 . Hence, (6) reads as:
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l𝛼𝛽i =
√
2
2

𝜀 + 𝜀
2 l̃𝛼𝛽i + o

(
𝜀
2)

. (7)

2.4 Piola’s Ansatz

The reference shape of the macro-model is a one-dimensional straight segment 

and we introduce on it an abscissa s ∈ [0,B]—where B = N𝜀 is the length of 

which labels each position in  . Proceeding as in the pioneering works of Gabrio

Piola, an Italian mathematician and physicist who lived in the 1800s (see [75] for a

historical review), we introduce the so-called kinematical maps, i.e. some fields in

the macro-model that uniquely determine pi and l̃𝛼𝛽i :

𝜒 ∶ [0,B] → 

l̃𝛼𝛽 ∶ [0,B] → ℝ+
, (8)

with  the Euclidean space on 𝕍 ≡ ℝ2
. We choose 𝜒 to be the placement function

of the 1D continuum and, hence, it has to be injective. The current shape can be

regarded as the image of the (sufficiently smooth) curve 𝝌 ∶ [0,B] →  and, unlike

the reference shape, it is not parameterized by its arc-length and it is not a straight line

in general. In order for these fields to uniquely determine the kinematical descriptors

of the micro-model (i.e. pi and l̃𝛼𝛽i ), we use the Piola’s ansatz and impose

𝜒

(
si
)
= pi

l̃𝛼𝛽
(
si
)
= l̃𝛼𝛽i , ∀i ∈ [0;N] . (9)

2.5 Micro-model Energy as a Function of Macro-model
Descriptors

In this subsection we obtain the micro-model energy for the quasi-inextensibility

case in terms of the macroscopic kinematical maps. Assuming that 𝜒 is at least twice

continuously differentiable with respect to the space variable in si’s, we have

𝜒

(
si+1
)
= 𝜒

(
si
)
+ 𝜀𝜒

′ (si
)
+ 𝜀

2

2
𝜒
′′ (si
)
+ o
(
𝜀
2)

𝜒

(
si−1
)
= 𝜒

(
si
)
− 𝜀𝜒

′ (si
)
+ 𝜀

2

2
𝜒
′′ (si
)
+ o
(
𝜀
2)

. (10)
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Plugging (9) in (7) and (10), we get the following expressions:

l𝛼𝛽i =
√
2
2

𝜀 + 𝜀
2 l̃𝛼𝛽
(
si
)
+ o
(
𝜀
2)

pi+1 − pi = 𝜀𝜒
′ (si
)
+ 𝜀

2

2
𝜒
′′ (si
)
+ o
(
𝜀
2)

pi−1 − pi = −𝜀𝜒 ′ (si
)
+ 𝜀

2

2
𝜒
′′ (si
)
+ o
(
𝜀
2)

. (11)

Substituting (11) into (3) and expanding 𝜑
𝛼S
i − 𝜑

𝛼D
i up to first-order with respect to

𝜀, we get

𝜑
𝛼S
i − 𝜑

𝛼D
i =

√
2
4

[
‖𝜒 ′ (si

)
‖2
]′ +
[
l̃(3−𝛼)D

(
si−1
)
− l̃(3−𝛼)S

(
si+1
)]

‖𝜒 ′
(
si
)
‖
√

1 − ‖𝜒
′(si)‖2
2

𝜀 +

+
[
‖𝜒 ′ (si

)
‖2 − 1

] [
l̃𝛼S
(
si
)
− l̃𝛼D

(
si
)]

‖𝜒 ′
(
si
)
‖
√

1 − ‖𝜒
′(si)‖2
2

𝜀 + o (𝜀) . (12)

Finally, substituting (12) in (5) yields the micro-model energy  as a function of

the kinematical descriptors 𝜒 and l̃𝛼𝛽 of the macro-model

 =

∑

i

∑

𝛼,𝛽

ke
𝛼𝛽,i𝜀

4

2

(
l̃𝛼𝛽i
)2

+
∑

i

kmi 𝜀
2

2
(
‖𝜒 ′

i ‖ − 1
)2 +

+
∑

i

∑

𝛼

kf
𝛼,i𝜀

2

2

{
𝜗
′ (si
)
+ (−1)𝛼

√
2
4

[
‖𝜒 ′ (si

)
‖2
]′ +
[
l̃(3−𝛼)Di

(
si−1
)
− l̃i

(3−𝛼)S (si+1
)]

‖𝜒 ′
(
si
)
‖
√

1 − ‖𝜒
′(si)‖2
2

+

+ (−1)𝛼
[
‖𝜒 ′ (si

)
‖2 − 1

] [
l̃𝛼Si
(
si
)
− l̃i

𝛼D (si
)]

‖𝜒 ′
(
si
)
‖
√

1 − ‖𝜒
′(si)‖2
2

}2

, (13)

where 𝛼i = 𝜀𝜗
′ (si
)

has been used and

𝜗
′ =

𝜒
′
⟂ ⋅ 𝜒 ′′

‖𝜒 ′‖2
,
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with 𝜒
′
⟂ the 90° anti-clockwise rotation of 𝜒

′
, is the material curvature i.e. rate

of change with respect to the reference abscissa of the orientation of the tangent

𝜒
′ (s) = 𝜌 (s)

[
cos 𝜗 (s) 𝐞1 + sin𝜗 (s) 𝐞2

]
to the deformed centerline. We remark that

the micro-model energy, when written in terms of macroscopic fields, contains

already a contribution from the second gradient of 𝜒(s). Finally, it is worth to be

noticed that, for a fixed 𝜀, Eq. (13) provides an upper bound for ||𝜒 ′||, i.e. ‖𝜒 ′‖ <
√
2

, even if no kinematic restrictions directly affect ||𝜒 ′||.

2.6 The Inextensibility Case

We consider now the case of inextensible oblique springs. This translates in con-

sidering l̃𝛼𝛽i = 0 and it is referred as the inextensibility case. Moreover, for the sake

of simplicity we consider the elastic constants of the rotational springs to satisfy

kf1,i = kf2,i ∶= kfi , ∀i ∈ [1;N] . We remark that l̃𝛼𝛽i = 0 implies, through a purely geo-

metric argument, that 𝜑
S1
i+1 = 𝜑

S2
i+1 = 𝜑

D1
i = 𝜑

D2
i ∶= 𝜑i. Once the kinematic restric-

tions implied by the inextensibility assumption have been presented, we are ready to

define the micro-model energy (5) as

 =

∑

i
kfi
∑

𝛼

[
𝛼i + (−1)𝛼

(
𝜑i − 𝜑i−1

)]2

2
+
∑

i

kmi
2
(
‖pi+1 − pi‖ − 𝜀

)2
. (14)

Proceeding in analogy with the previous construction, we introduce the kinematical
map

𝜑 ∶ [0,B] →
[
0, 𝜋

2

]

and, then, we perform the Piola’s ansatz by imposing

𝜑

(
si
)
= 𝜑i, ∀i ∈ [0;N] . (15)

Assuming both 𝜒 and 𝜑 to be at least one time continuously differentiable with

respect to the space variable in si and taking into account the Piola’s ansatz (15),

we have

pi+1 − pi = 𝜀𝜒
′ (si
)
+ o(𝜀)

𝜑i−1 − 𝜑i = −𝜀𝜑′ (si
)
+ o(𝜀). (16)
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Substituting (16) into (14) yields the micro-model energy for the inextensibility case

in terms of the kinematical quantities of the macro-model

 =

∑

i
kfi 𝜀

2 [
𝜗
′2 (si
)
+ 𝜑

′
i
2 (si
)]

+
∑

i

kmi 𝜀
2

2
(
‖𝜒 ′

i ‖ − 1
)2

. (17)

We now impose the so-called internal connection constraint:

√
2𝜀 cos𝜑

(
si
)
= ‖𝜒

(
si+1
)
− 𝜒

(
si
)
‖, (18)

which, up to 𝜀-terms of order higher than one, reads:

√
2 cos𝜑 = ‖𝜒 ′‖. (19)

This constraint ensures that, in the deformed configuration, the upper-left spring of

the i-th cell is hinge-joint with the upper-right spring of the (i − 1)-th cell, and the

lower-left spring of the i-th cell is hinge-joint with lower-right spring of the (i − 1)-th
cell. Due to this constraint, the maps 𝜑 and 𝜒 are not independent and it is possible

to rewrite the expression of the micro-model energy in terms of the placement field

𝜒(s) only. Indeed, deriving (19) with respect to the space variable yields

−
√
2𝜑′ (si

)
sin𝜑

(
si
)
= ‖𝜒 ′ (si

)
‖′, (20)

which, in turn, implies

𝜑
′ (si
)
= −

‖𝜒 ′ (si
)
‖′

√
2 sin𝜑

(
si
) .

Reminding 𝜑 ∈ [0, 𝜋] and taking into account (19), we get:

𝜑
′
i = −

‖𝜒 ′
i ‖

′

√
2
√
1 − cos2𝛾i

=

= −
‖𝜒 ′

i ‖
′

√
2 − ‖𝜒 ′

i ‖
2
.

Hence, in the inextensibility case, the micro-model energy (17) can be recast, as a

function of the macro-model descriptor 𝜒 only, as
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 =

∑

i
kfi 𝜀

2

⎡
⎢
⎢
⎢
⎣

[
𝜗
′ (si
)]2 +

⎛
⎜
⎜
⎜
⎝

‖𝜒 ′ (si
)
‖′

√
2 − ‖𝜒 ′

(
si
)
‖2

⎞
⎟
⎟
⎟
⎠

2
⎤
⎥
⎥
⎥
⎦

+
∑

i

kmi 𝜀
2

2
(
‖𝜒 ′ (si

)
‖ − 1
)2

(21)

Clearly, since the inextensibility case is just a special case of the quasi-inextensibility

case, it is possible to show that this expression can be also obtained in a more direct

way from (13) by setting l̃𝛼S
(
si
)
= 0 and kf1,i = kf2,i ∶= kfi .

3 Continuum-Limit Macro-model

In this section, by performing the final steps of the heuristic homogenization proce-

dure presented throughout this paper, we derive a 1D continuum model, also referred

to as the macro-model, associated to the aforementioned micro-structure. Besides,

we analyse the quasi-inextensibility and inextensibility cases and we obtain the cor-

responding macro-model energies in terms of the displacement field 𝜒 .

3.1 Rescaling of Stiffnesses and Heuristic Homogenization

The preliminary step to perform the homogenization procedure consists into the

definition of the quantities 𝕂e
𝛼𝛽,i, 𝕂

f
𝛼,i and 𝕂m

i . These quantities are scale invariant,

meaning that they do not depend on 𝜀. Their role is to keep track of the asymp-

totic behaviour of the stiffnesses ke
𝛼,𝛽,i, k

f
𝛼,i, and kmi of the micro-model springs. More

explicitly, we assume:

ke
𝛼𝛽,i(𝜀) =

𝕂e
𝛼𝛽,i

𝜀
3 ; kf

𝛼,i(𝜀) =
𝕂f

𝛼,i

𝜀

; kmi (𝜀) =
𝕂m

i

𝜀

. (22)

We remark that in this rescaling, as 𝜀 approaches zero, the ratio between the stiffness

ke
𝛼𝛽,i of the oblique springs and the stiffness kf

𝛼,i will approach infinity with a rate of

divergence in 𝜀 equal to two, i.e.
ke
𝛼𝛽,i

ke
𝛼,i

∼ 𝜀
2
. Now, we are ready to perform the homog-

enization procedure. Firstly, we consider the more general quasi-inextensibility case.

For simplicity, let us set

𝕂e
1D,i = 𝕂e

1S,i = 𝕂e
2D,i = 𝕂e

2S,i ∶= 𝕂e
i ; 𝕂f

1,i = 𝕂f
2,i ∶= 𝕂f

i . (23)

Let us introduce the kinematical maps
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𝕂e ∶ [0,B] → ℝ+; 𝕂f ∶ [0,B] → ℝ+; 𝕂m ∶ [0,B] → ℝ+

such that they satisfy the following Piola’s ansatz:

𝕂e (si
)
= 𝕂e

i ; 𝕂f (si
)
= 𝕂f

i ; 𝕂m (si
)
= 𝕂m

i . (24)

Substituting (22) in (13), taking into account (23) and (24), and letting 𝜀 → 0 yield

 =

∫


𝕂e

2
(
l̃1S
)2

ds +
∫


𝕂e

2
(
l̃1D
)2

ds +
∫


𝕂e

2
(
l̃2S
)2

ds +
∫


𝕂e

2
(
l̃2D
)2

ds +

+
∫


𝕂f

2

{

𝜗
′ +

−
√
2
(
‖𝜒 ′‖2

)′ − 4
[(
l̃2D − l̃2S

)
−
(
‖𝜒 ′‖2 − 1

) (
l̃1D − l̃1S

)]

‖𝜒 ′‖
√
2 − ‖𝜒 ′‖2

}2

ds +

+
∫


𝕂f

2

{

𝜗
′ +

√
2
(
‖𝜒 ′‖2

)′ + 4
[(
l̃1D − l̃1S

)
+
(
‖𝜒 ′‖2 − 1

) (
l̃2S − l̃2D

)]

‖𝜒 ′‖
√
2 − ‖𝜒 ′‖2

}2

ds +

+
∫


𝕂m

2
(
‖𝜒 ′‖ − 1

)2
ds. (25)

which is the continuum-limit macro-model energy for a 1D pantographic beam under

the hypothesis of quasi-inextensible oblique micro-springs. It is worth to remark

that, when 𝕂m = 0, l̃𝛼𝛽 = 0 and 𝜒 (s) = Cs𝐞1, with C ∈ ℝ, the beam undergoes a

floppy mode i.e. (25) vanishes. Thus, under the above conditions, the configuration

𝜒 (s) = Cs𝐞1 is isoenergetic to the undeformed configuration for any C. For a fixed

𝜀, considering kmi = 0 and l̃i
𝛼𝛽 = 0 in the micro-model energy (13), we have that

𝜒(si) = Csie1 is a floppy mode for the micro-model as well. This means that the

homogenization procedure that we have carried out has preserved a key feature of

the micro-model. Up to now, the expression of the continuum limit homogenized

energy depends both on the kinematical maps 𝜒 and l̃. In the next section we show

that, at equilibrium, it is possible to write the macro-energy in terms of the placement

field only.

3.2 Macro-model Energy as a Function of the Placement
field

We now equate to zero the first variations of (25) with respect to l̃𝛼𝛽’s, i.e. we look for

stationary points, with respect to l̃𝛼𝛽 , of (25). This is a necessary first order condition
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for optimality. In the continuum limit homogenized energy no spatial derivatives

of l̃𝛼𝛽 appear. Such energy depends only by linear and quadratic contributions in

l̃𝛼𝛽 . Hence, this process yields four algebraic linear equations in l̃𝛼𝛽 . Solving these

equations gives l̃𝛼𝛽 at equilibrium

l̃1D =
√
2
2

𝕂f (
𝜒
′′ ⋅ C + 𝜗

′D
)

l̃2D =
√
2
2

𝕂f (
𝜒
′′ ⋅ C − 𝜗

′D
)

l̃1S =
√
2
2

𝕂f (−𝜒 ′′ ⋅ C − 𝜗
′D
)

l̃2S =
√
2
2

𝕂f (−𝜒 ′′ ⋅ C + 𝜗
′D
)

(26)

with

C =
𝜒
′

2𝕂f‖𝜒 ′‖2 − 1
2

(
𝕂e‖𝜒 ′‖2 + 8𝕂f

)

D =
‖𝜒 ′‖
√
4L̃2 − ‖𝜒 ′‖2

𝕂eL̃2
(
‖𝜒 ′‖2 − 2

)
− 2𝕂f‖𝜒 ′‖2

.

From (26) we can get, in some particular cases, interesting information about the

properties of the pantographic beam. Firstly, let us notice that l̃1D = −l̃1S and l̃2D =
−l̃2S. Moreover, we also notice that when 𝜒

′ = 𝜌𝐞1, with 𝜌 independent of the

abscissa s, then, as 𝜒
′′

vanishes, l̃𝛼𝛽 = 0 i.e. the fibers undergo no elongation.

Instead, when 𝜒
′ (s) = 𝜌 (s) 𝐞1, with 𝜌 depending on s, then l̃1D = l̃2D = −l̃1S = −l̃2S.

This remarkable and counter-intuitive feature can be used as a possible benchmark

test to validate, as 𝜀 approaches zero, a numerical scheme based on the discrete

micro-model. Let us consider the case of non-zero bending curvature, i.e. 𝜗
′ ≠ 0,

when 𝜒
′′ ⋅ C << 𝜗

′D, which implies that l̃1D = −l̃2D = −l̃1S = l̃2S. If 𝜗
′
> 0 then

l̃1D, l̃2S > 0 and l̃2D, l̃1S < 0 while, if 𝜗
′
< 0 then l̃1D, l̃2S < 0 and l̃2D, l̃1S > 0. We are

now ready to express the macro-model energy  (𝜒) as a function of the placement

𝜒 only, by substituting (26) in (25):
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 (𝜒 (⋅)) = min
l̃𝛼𝛽 (⋅)

 =

∫


𝕂e𝕂f

{ (
𝜌
2 − 2
)

𝜌
2
(
𝕂e − 4𝕂f

)
− 2𝕂e

𝜗
′2 + 𝜌

2
(
2 − 𝜌

2
) [

𝜌
2
(
𝕂e − 4𝕂f

)
+ 8𝕂f

]𝜌′2
}

ds +

+
∫


𝕂m

2
(𝜌 − 1)2 ds =

=
∫


𝕂e𝕂f (‖𝜒 ′‖2 − 2
)

‖𝜒 ′‖4
[
‖𝜒 ′‖2

(
𝕂e − 4𝕂f

)
− 2𝕂e

]
(
𝜒
′
⟂ ⋅ 𝜒 ′′)2

ds +

+
∫


𝕂e𝕂f
(
2 − ‖𝜒 ′‖2

) [
‖𝜒 ′‖2

(
𝕂e − 4𝕂f

)
+ 8𝕂f

]
(
𝜒
′ ⋅ 𝜒 ′′)2

ds +

+
∫


𝕂m

2
(
‖𝜒 ′‖ − 1

)2
ds. (27)

We observe that, for 0 < 𝜌 <

√
2 and for any choice of the positive macro-stiffnesses

𝕂e
, 𝕂f

and 𝕂m
, (27) is positive definite. Moreover, not only we can classify this

homogenized model as a second gradient theory, but we notice that the full second

gradient 𝜒
′′

of 𝜒 contributes to the strain energy. Indeed, beyond the usual term(
𝜒
′
⟂ ⋅ 𝜒 ′′)

related to the Lagrangian curvature, also the term
(
𝜒
′ ⋅ 𝜒 ′′)

, deriving from

the presence of the oblique springs, appears. There is a remarkable feature in this

model which deserves to be discussed. From (27), it is clear that in the limit ||𝜒 ′|| →√
2 the model exhibits a so-called phase transition: it locally degenerates into the

model of an uniformly extensible cable, notwithstanding that

√
2 is an upper bound

for 𝜌. Indeed,

(
𝜌
2 − 2
)

𝜌
2
(
𝕂e − 4𝕂f

)
− 2𝕂e

→ 0

𝜌
2

(
2 − 𝜌

2
) [

𝜌
2
(
𝕂e − 4𝕂f

)
+ 8𝕂f

] → +∞,

so that no deformation energy is stored for finite bending curvature and, in order

for the energy to be bounded for bounded deformations, 𝜌
′

must approach zero,

meaning that the elongation must be locally uniform. Further developments of this

model could consist in contemplating a phase transition to a model that, for finite

bending curvature, entails a non-zero stored deformation energy.

3.2.1 Non-dimensionalization

In order to handle more easily the model in the numerical implementation and in the

interpretation of the corresponding results, we turn to the use of non-dimensional
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quantities. Therefore, we introduce the following non-dimensional fields:

s = Bs; 𝜒 = B𝜒 ; 𝕂e = K𝕂
e
; 𝕂f = K𝕂

f
; 𝕂m = Km𝕂

m
.

In terms of these new quantities, we can recast (27) as

K
B ∫

1

0

𝕂
e
𝕂

f (
‖𝜒 ′‖2 − 2

)

‖𝜒 ′‖4
[
‖𝜒 ′‖2

(
𝕂

e
− 4𝕂

f)
− 2𝕂

e]
(
𝜒
′
⟂ ⋅ 𝜒 ′′

)2
ds +

+K
B ∫

1

0

𝕂
e
𝕂

f (
𝜒
′ ⋅ 𝜒 ′′

)2

(
2 − ‖𝜒 ′‖2

) [
‖𝜒 ′‖2

(
𝕂

e
− 4𝕂

f)
+ 8𝕂

f ] ds +

+KmB
∫

1

0

𝕂
m

2

(
‖𝜒 ′‖ − 1

)2
ds (28)

where the symbol <<
′
>> denotes differentiation with respect to the dimensionless

abscissa s.

3.3 The Inextensibility Case

Let us focus now on the inextensibility case. The homogenization procedure follows

the same lines of the previous case. Indeed, keeping in mind (23) and (24), letting

𝜀 → 0 in (21) yields the continuum-limit macro-model energy for the inextensibility

case

∫


{
𝕂f
[
𝜗
′2 + 𝜌

′2

2 − 𝜌
2

]
+ 𝕂m

2
(𝜌 − 1)2

}
ds =

=
∫


{

𝕂f

[(
𝜒⟂ ⋅ 𝜒 ′′)2

‖𝜒 ′‖4
+

(
𝜒 ⋅ 𝜒 ′′)2

‖𝜒 ′‖2
(
2 − ‖𝜒 ′‖2

)

]

+ 𝕂m

2
(
‖𝜒 ′‖ − 1

)2
}

ds.

(29)

This result is consistent with the quasi-inextensibility case. Indeed, we could have

found (29) also by letting 𝕂e → +∞ in (27). Let us remark that, also in this case,

the homogenized continuum model, due to the richness of the mictrostructure, gives

rise to a full second gradient theory.
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3.3.1 Linearization

An interesting connection can be traced with the existing literature on the formula-

tion of 1D continuum homogenized model for microstructured media and, in par-

ticular, for pantographic ones. Indeed, this connection is traced by considering a

linearization of the pantographic beam energy in the (complete) inextensibility case.

We set 𝜒 (s) =
(
s
0

)
+ 𝜂ũ, with ũ independent of 𝜂, i.e. we linearize with respect to

the displacement u = 𝜒 (s) −
(
s
0

)
, and 𝕂m = 0. By means of simple algebra manip-

ulations it is possible to derive the deformation energy in Eq. (5) (with K+ = K−
) of

[10] (see also [21]):

∫


𝕂f‖u′′‖2 ds. (30)

We remark that in the linearized energy (30) the transverse displacement and the

axial one decouple.

4 Numerical Simulations

In the sequel, 𝕂m = 0 will be considered, which means that the standard quadratic

additive elongation/shortening contribution to the deformation energy will be turned

off. This is made in order to better highlight some non-standard features of the nearly-

inextensible pantographic beam model. In this section we show numerical results for

the quasi-inextensible and inextensible pantographic beam model and for the geo-

metrically non-linear Euler model. We remind that these cases stand for 𝕂e
< +∞

and 𝕂e → +∞, respectively. Two benchmark tests are exploited in order to illustrate

peculiar and non-standard features of the pantographic beam model. Convergence

of the quasi-inextensible pantographic beam model to the completely inextensible

one is shown, by means of a numerical example, as the macro-stiffness 𝕂e
related to

elongation of the oblique springs approaches +∞. This is due to the fact that, as it

is clear from Eq. (25), if 𝕂e → +∞ , then l̃𝛼𝛽 → 0. Of course, the same discussion

and simulations can be made for the micro-model and this could be the subject of

a further investigation. For the sake of self-consistence, we recall that the deforma-

tion energy of the geometrically non-linear Euler model employed in the following

simulations is the following

∫


{
Ke

2
(
‖𝜒 ′‖ − 1

)2 + Kb

2

[
𝜒
′′ ⋅ 𝜒 ′′

‖𝜒 ′‖2
−
(
𝜒
′ ⋅ 𝜒 ′′

‖𝜒 ′‖2

)2
]}

ds =

=
∫


{
Ke

2
(𝜌 − 1)2 + Kb

2
𝜗
′2
}

ds
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and we notice that, while in the nearly-inextensible pantographic beam model both

𝜌 and 𝜗 can be enforced at the boundary, for the non-linear Euler model it can be

done for 𝜗 only, as no spatial derivative of 𝜌 appears in the energy.

4.1 Semi-circle Test

We consider for both the nearly-inextensible pantographic beam model and the geo-

metrically non-linear Euler beam model the reference domain to be the interval

[0, 2𝜋]. We enforce the following boundary conditions for both models

1. 𝜒 (0) = 𝟎; 2. 𝜒 (2𝜋) = 2𝐞1; 3. 𝜗 (0) = −𝜋

2
; 4. 𝜗 (2𝜋) = 𝜋

2

and, for the nearly-inextensible pantographic beam model, we also have the follow-

ing two additional constraints

5. 𝜌 (0) = 𝜌0; 6. 𝜌 (2𝜋) = 𝜌0.

In Fig. 3 (up) the deformed shapes for the nearly-inextensible pantographic beam

model and for the geometrically non-linear Euler beam model (GNEM) are shown

for different values of 𝜌0 reported in the legend. In Fig. 3 (down) the elongation

𝜌 − 1 for the nearly-inextensible pantographic beam model and for the geometrically

non-linear Euler beam model (GNEM) is shown for different values of 𝜌0 reported

in the legend. It is remarkable that passing from 𝜌0 > 1 to 𝜌 < 1 there is a change

of concavity in the elongation for the pantographic beam model. In Fig. 4 (up) the

deformed shapes for the nearly-inextensible pantographic beam model (blue) and for

the inextensible pantographic beam model (green) with 𝜌0 = 1.4 are compared. Of

course, the area spanned by the quasi-inextensible pantographic beam includes that

Fig. 3 Semi-circle test. Deformed shapes for the nearly-inextensible pantographic beam model

and for the geometrically non-linear Euler beam model (GNEM). (left). Elongation 𝜌 − 1 versus

the reference abscissafor the nearly-inextensible pantographic beam model and for the geometri-

cally non-linear Euler beam model (GNEM) (right). Numbers in the legends stands for different

dimensionless values of 𝜌0
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Fig. 4 Semi-circle test. Deformed shapes for the nearly-inextensible pantographic beam model

(blue) and for the inextensible pantographic beam model (green) with 𝜌0 = 1.4 (left). Energy of the

nearly-inextensible pantographic beam model (ordinate) asymptotically tends to the energy of the

inextensible pantographic beam model (asymptote) as 𝕂e
(abscissa) → +∞ (right)

of the (completely) inextensible one. In Fig. 4 (down) it is numerically shown that

the energy of the nearly-inextensible pantographic beam model (ordinate) asymptot-

ically tends to the energy of the inextensible pantographic beam model (asymptote)

as 𝕂e
(abscissa) → +∞.

4.2 Three-Point Test

We consider for both the quasi-inextensible pantographic beam model and the geo-

metrically non-linear Euler beam model the reference domain to be the interval [0, 2].
We enforce the following boundary conditions for both models:

1. 𝜒 (0) = 𝟎; 2. 𝜒 (1) ⋅ 𝐞2 = u; 3. 𝜒 (2) = 𝟎; 4. 𝜗 (0) = 0; 5. 𝜗 (2) = 0.

In Fig. 5 the deformed shapes for the nearly-inextensible pantographic beam

model (red, light blue) and for the geometrically non-linear Euler beam model (blue,

green) are shown for different values of u in the legend. Figure 6 shows, for different

values of the parameter u, the elongation 𝜌 − 1 versus the reference abscissa for the

nearly-inextensible pantographic beam model. The parameter u is increasing from

bottom to top. We observe that, as u increases, at some point, there is a concavity

change in the elongation plot and, increasing further the parameter u, curves start to

intersect. This means that, for some points of the beam an increase of the prescribed

displacement u implies a decrease in the elongation. Figure 7 shows the pulling force,

i.e. Lagrange multiplier associated to the weak constraint 𝜒 (1) ⋅ 𝐞2 = u, changed of

sign, applied at the midpoint in order to vertically displace it of an amount u. In the

nearly-inextensible pantographic beam model (blue) negative stiffness property, also

known as elastic softening, is observed, while in the geometrically non-linear Euler

beam model (green) elastic softening is not observed. Figure 8 shows the plot of l̃1D
versus reference abscissa for different values of u in the legend. Analogous plots hold

for l̃2D, l̃1S and l̃2S.
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Fig. 5 Three-point test. Deformed shapes for the nearly-inextensible pantographic beam model

(red, light blue) and for the geometrically non-linear Euler beam model (blue, green) for different

values of u in the legend

Fig. 6 Three-point test. Elongation 𝜌 − 1 versus the reference abscissa for the nearly-inextensible

pantographic beam model. The parameter u is increasing from bottom to top. We observe that,

While increasing u, there is a concavity change at some point. Increasing further the parameter u,

curves start to intersect

4.3 Modified Three-Point Test

We consider for both the quasi-inextensible pantographic beam model and the geo-

metrically non-linear Euler beam model the reference domain to be the interval [0, 2].
We enforce the three-point test boundary conditions for both models

1. 𝜒 (0) = 𝟎; 2. 𝜒 (1) ⋅ 𝐞2 = u; 3. 𝜒 (2) = 𝟎; 4. 𝜗 (0) = 0; 5. 𝜗 (2) = 0

with the additional condition, at the midpoint s = 1,

6. 𝜌 (1) ≃
√
2.
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Fig. 7 Three-point test. Pulling force (i.e. Lagrange multiplier associated to the weak constraint

𝜒 (1) ⋅ 𝐞2 = u), changed of sign, applied at the midpoint in order to vertically displace it of an

amount u (abscissa). In the nearly-inextensible pantographic beam model (blue) elastic soften-

ing is observed, while in the geometrically non-linear beam model (green) elastic softening is not

observed

Fig. 8 Three-point test. Plot

of l̃1D versus reference

abscissa for different values

of u in the legend. Analogous

plots hold for l̃2D, l̃1S and l̃2S

Fig. 9 shows the deformed configuration for the nearly-inextensible pantographic

beam model, while in Fig. 10 the elongation 𝜌 − 1 versus the reference abscissa for

the nearly-inextensible pantographic beam model is shown.

5 Euler-Lagrange Equations

Let us consider an internal (potential) unit line energy density of the form

W = G (𝜌)
2

𝜌
′2 + F (𝜌)

2
𝜗
′2 + H (𝜌) (31)

with 𝜌 and 𝜗 such that 𝜒
′ = 𝜌

(
cos 𝜗𝐞1 + sin 𝜗𝐞2

)
= 𝜌𝐞 (𝜗), and G, F, H functions

from ℝ+
⊇ A to ℝ+

. We recall that 𝜌
′ = 𝜒

′′⋅𝜒 ′

‖𝜒 ′‖
, 𝜗

′ = 𝜒
′′⋅𝜒 ′

⟂

‖𝜒 ′‖2
. We remark that, when
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Fig. 9 Modified three-point test. Deformed configuration for the nearly-inextensible pantographic

beam model

Fig. 10 Modified three-point test. Elongation 𝜌 − 1 versus reference abscissa for the nearly-

inextensible pantographic beam model

the specialization

⎧
⎪
⎨
⎪
⎩

G (𝜌) = 0
F (𝜌) = Kb ≥ 0
H (𝜌) = Ke

2 (𝜌 − 1)2 , Ke ≥ 0
(32)

of (31) is considered, we find the geometrically nonlinear Euler model while, when

the specialization

⎧
⎪
⎪
⎨
⎪
⎪
⎩

G (𝜌) = 𝕂e𝕂f 𝜌
2

(2−𝜌2)[𝜌2(𝕂e−4𝕂f )+8𝕂f ] , 𝕂
e ≥ 0, 𝕂f ≥ 0

F (𝜌) = 𝕂e𝕂f (𝜌2−2)
𝜌
2(𝕂e−4𝕂f )−2𝕂e , 𝕂e ≥ 0, 𝕂f ≥ 0

H (𝜌) = 𝕂m

2 (𝜌 − 1)2 , 𝕂m
> 0

(33)
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of (31) is considered, we find the nearly-inextensible pantographic beam model. We

now consider the functional

 (𝜌 (⋅) , 𝜗 (⋅) , 𝜒 (⋅) ,Λ (⋅)) =

=
∫


{
W − bext ⋅ 𝜒 − 𝜇

ext ⋅ 𝜗 + Λ ⋅
[
𝜒
′ − 𝜌𝐞 (𝜗)

]}
ds +

−
∑

s=0,L
Rext (s) ⋅ 𝜒 (s) −

∑

s=0,L
Mext (s) ⋅ 𝜗 (s) , (34)

where ∫

bext ⋅ 𝜒 + 𝜇

ext ⋅ 𝜗 ds +
∑

s=0,L Rext (s) ⋅ 𝜒 (s) +
∑

s=0,L Mext (s) ⋅ 𝜗 (s) is the

work done by external distributed and concentrated forces and couples. The first

variation of the functional  in (34) is

𝛿 (𝜌 (⋅) , 𝜗 (⋅) , 𝜒 (⋅) ,Λ (⋅) , 𝛿𝜌 (⋅) , 𝛿𝜗 (⋅) , 𝛿𝜒 (⋅) , 𝛿Λ (⋅)) =

=
∫


{
1
2
𝜕G
𝜕𝜌

(𝜌) 𝜌′2 + 1
2
𝜕F
𝜕𝜌

(𝜌)𝜗′2 + 𝜕H
𝜕𝜌

(𝜌) − Λ ⋅ 𝐞 (𝜗) −
[
G (𝜌) 𝜌′

]′
}

𝛿𝜌 ds +

+
∫


{
−
[
F (𝜌)𝜗′

]′ − 𝜇 − Λ × 𝜒
′
}
𝛿𝜗 +

(
−b − Λ′) ⋅ 𝛿𝜒 +

[
𝜒
′ − 𝜌𝐞 (𝜗)

]
⋅ 𝛿Λ ds +

+
[
G (𝜌) 𝜌′𝛿𝜌

]L
0 +
{[
F (𝜌)𝜗′ −Mext]

𝛿𝜗

}L
0 +
[(
Λ − Rext) ⋅ 𝛿𝜒

]L
0 =

=
∫


{
1
2
𝜕F
𝜕𝜌

(𝜌)𝜗′2 + 𝜕H
𝜕𝜌

(𝜌) − 1
2
𝜕G
𝜕𝜌

(𝜌) 𝜌′2 − Λ ⋅ 𝐞 (𝜗) − G (𝜌) 𝜌′′
}

𝛿𝜌 ds +

+
∫


{
−
[
F (𝜌)𝜗′

]′ − 𝜇 − Λ × 𝜒
′
}
𝛿𝜗 +

(
−b − Λ′) ⋅ 𝛿𝜒 +

[
𝜒
′ − 𝜌𝐞 (𝜗)

]
⋅ 𝛿Λ ds +

+
[
G (𝜌) 𝜌′𝛿𝜌

]L
0 +
{[
F (𝜌)𝜗′ −Mext]

𝛿𝜗

}L
0 +
[(
Λ − Rext) ⋅ 𝛿𝜒

]L
0 .

By applying the Fundamental Lemma of Calculus of Variations, we find the Euler-

Lagrange equations:

1. 1
2
𝜕G
𝜕𝜌

(𝜌) 𝜌′2 + 1
2
𝜕F
𝜕𝜌

(𝜌) 𝜗′2 + 𝜕H
𝜕𝜌

(𝜌) − Λ ⋅ 𝐞 (𝜗) −
[
G (𝜌) 𝜌′

]′ = 0

2.
[
F (𝜌) 𝜗′

]′ + 𝜇 + Λ × 𝜒
′ = 0

3. b + Λ′ = 0

4. 𝜒
′ − 𝜌𝐞 (𝜗) = 0
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and the corresponding boundary conditions:

G (𝜌 (0)) = 0 ∨ 𝜌
′ (0) = 0 ∨ Dirichlet Conditions on 𝜌 in s = 0

G (𝜌 (L)) = 0 ∨ 𝜌
′ (L) = 0 ∨ Dirichlet Conditions on 𝜌 in s = L

F (𝜌 (0)) 𝜗′ (0) −Mext (0) = 0 ∨ Dirichlet Conditions on 𝜗 in s = 0
F (𝜌 (L)) 𝜗′ (L) −Mext (L) = 0 ∨ Dirichlet Conditions on 𝜗 in s = L

Λ (0) − Rext (0) = 0 ∨ Dirichlet Conditions on 𝜒 in s = 0
Λ (L) − Rext (L) = 0 ∨ Dirichlet Conditions on 𝜒 in s = L.

We now analyze the two specializations (32) and (33) of (31). Let us first analyze

(32). The Euler-Lagrange equations reduce to

1. Ke (𝜌 − 1) − Λ ⋅ 𝐞 (𝜗) = 0

2.
[
Kb

𝜗
′]′ + 𝜇 + Λ × 𝜒

′ = 0

3. b + Λ′ = 0

4. 𝜒
′ − 𝜌𝐞 (𝜗) = 0, (35)

complemented with the following boundary conditions

Kb
𝜗
′ (0) −Mext (0) = 0 ∨ Dirichlet Conditions on 𝜗 in s = 0

Kb
𝜗
′ (L) −Mext (L) = 0 ∨ Dirichlet Conditions on 𝜗 in s = L

Λ (0) − Rext (0) = 0 ∨ Dirichlet Conditions on 𝜒 in s = 0
Λ (L) − Rext (L) = 0 ∨ Dirichlet Conditions on 𝜒 in s = L. (36)

We notice that (35)1 is an algebraic equation in 𝜌, and it gives:

𝜌 = 1 + Λ ⋅ 𝐞 (𝜗)
Ke . (37)



66 E. Barchiesi et al.

The direct integration of Eq. (35)3 gives:

Λ =
∫

s

0
b ds + Rext (0) , (38)

while, plugging (38) in (37) yields

𝜌 = 1 +
[
∫

s
0 b ds + Rext (0)

]
⋅ 𝐞 (𝜗)

Ke , (39)

and plugging (39) and (38) in (35)2 yields

[
Kb

𝜗
′]′ + 𝜇 + Λ ×

(
1 + Λ ⋅ 𝐞 (𝜗)

Ke

)
𝐞 (𝜗) = 0,

which is a 2nd order O.D.E. in the unknown 𝜗. This O.D.E. is complemented with

boundary conditions (36)1,2. Finally, one recovers𝜒 by integrating (35)4 and by using

the Dirichlet boundary conditions on 𝜒 . Let us turn to the study of the specialization

(33) of the unit line potential energy density in Eq. (31). By explicitly computing the

partial derivatives of the functions F, G, H with respect to 𝜌, we get the following

Euler-Lagrange equations for the nearly-inextensible pantographic beam model:

1.
𝕂e𝕂f [16𝕂f

𝜌 + (𝕂e − 4𝕂f )𝜌5
]

(𝜌2 − 2)2
[
(𝕂e − 4𝕂f )𝜌2 + 8𝕂f

]2 𝜌
′2 −

16𝕂e(𝕂f )2
𝜌

[
(𝕂e − 4𝕂f )𝜌2 − 2𝕂e)

]2 𝜗
′2 + 𝕂m(𝜌 − 1) − Λ ⋅ 𝐞(𝜗) +

−
[
𝕂e𝕂f 𝜌

2
𝜌
′

(
2 − 𝜌

2
) [

𝜌
2
(
𝕂e − 4𝕂f

)
+ 8𝕂f

]
]′

= 0

2.
[
𝕂e𝕂f

(
𝜌
2 − 2
)

𝜌
2
(
𝕂e − 4𝕂f

)
− 2𝕂e

𝜗
′
]′

+ 𝜇 + Λ × 𝜒
′ = 0

3. b + Λ′ = 0
4. 𝜒

′ − 𝜌𝐞 (𝜗) = 0,

complemented with the following boundary conditions:

𝜌
′ (0) = 0 ∨ Dirichlet Conditions on 𝜌 in s = 0

𝜌
′ (L) = 0 ∨ Dirichlet Conditions on 𝜌 in s = L

𝕂e𝕂f

(
𝜌
2(0) − 2

)

𝜌
2(0) (𝕂e − 4𝕂f ) − 2𝕂e 𝜗

′(0) −Mext(0) = 0 ∨ Dirichlet Conditions on 𝜗 in s = 0

𝕂e𝕂f

(
𝜌
2(L) − 2

)

𝜌
2(L) (𝕂e − 4𝕂f ) − 2𝕂e 𝜗

′(L) −Mext(L) = 0 ∨ Dirichlet Conditions on 𝜗 in s = L

Λ (0) − Rext (0) = 0 ∨ Dirichlet Conditions on 𝜒 in s = 0
Λ (L) − Rext (L) = 0 ∨ Dirichlet Conditions on 𝜒 in s = L.
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For the (completely) inextensible pantographic beam model, from Eq. (29) we have

that:

G(𝜌) = 2𝕂f

2 − 𝜌
2

F(𝜌) = 2𝕂f

H(𝜌) = 𝕂m(𝜌 − 1)2.

Therefore, Euler-Lagrange equations for the inextensible pantographic beam model

recast as

1. 2𝜌𝕂f

(2 − 𝜌
2)2

𝜌
′2 + 2𝕂m(𝜌 − 1) − Λ ⋅ 𝐞(𝜗) −

[
2𝕂f

2 − 𝜌
2 𝜌

′
]
= 0′

2. 𝜇 + Λ × 𝜒
′ = 0

3. b + Λ′ = 0
4. 𝜒

′ − 𝜌𝐞 (𝜗) = 0,

complemented with the following boundary conditions:

𝜌
′ (0) = 0 ∨ Dirichlet Conditions on 𝜌 in s = 0

𝜌
′ (L) = 0 ∨ Dirichlet Conditions on 𝜌 in s = L

2𝕂f
𝜗
′(0) −Mext(0) = 0 ∨ Dirichlet Conditions on 𝜗 in s = 0

2𝕂f
𝜗
′(L) −Mext(L) = 0 ∨ Dirichlet Conditions on 𝜗 in s = L

Λ (0) − Rext (0) = 0 ∨ Dirichlet Conditions on 𝜒 in s = 0
Λ (L) − Rext (L) = 0 ∨ Dirichlet Conditions on 𝜒 in s = L.

We believe that the use of the techniques employed in [74], which have been

exploited to analytically determine remarkable properties of the extensible Euler

beam model in finite deformation regime, can be fruitfully applied to the examined

pantographic beam model. Also the numerical exploitation of the Euler-Lagrange

equations through, e.g., a shooting method, could be useful to explore the set of

solutions. This might be of help in shedding light on the mathematical properties of

the quasi-inextensible and inextensible pantographic beam models.

6 Conclusions

In this work, we have modeled and analyzed a pantographic microstructure giving

rise, after a homogenization procedure, to a 1D continuum model for a beam which
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exhibits many interesting non-standard features. We have provided a characterization

of the kinematics of the proposed discrete Hencky-type spring model which resem-

bles the geometrical arrangement of a pantographic strip. Once the kinematics of

the micro-model has been discussed, we have given a mechanical characterization

of the micro-system, by specifying the general form of the deformation energy. Sub-

sequently, we postulated an asymptotic expansion for one of the microscopic descrip-

tors, i.e. the elongation of the oblique springs. Besides, by choosing the value of the

first-order term of this expansion, we considered the so-called quasi-inextensibility

case, which corresponds to the quasi-inextensibility of the oblique springs. Succes-

sively, following the Piola’s ansatz, we introduced the so-called kinematical maps,

i.e. some fields in the macroscopic model that uniquely determine the microscopic

kinematical descriptors. By means of these kinematical maps, namely the placement

function 𝜒 and the elongation of the oblique springs l̃𝛼𝛽 , we have written the micro-

model energy for the quasi-inextensibility case in terms of macroscopic descriptors.

The resulting micro-model energy contains already a contribution from the second

gradient of 𝜒(s) and it provides an upper bound ||𝜒 ′|| <
√
2, even if no kinematic

restrictions directly affect ||𝜒 ′||. Successively, we have considered the case of (com-

pletely) inextensible oblique springs by means of two equivalent procedures. We also

verified that, as it is obvious, requiring the kinematic descriptor l̃𝛼𝛽 , standing for

the elongation of the oblique springs, to vanish implies that the quasi-inextensible

pantographic beam model specializes to the (completely) inextensible pantographic

beam model. In order to give a better insight into the peculiar properties of this

problem, we also derived “ab imis fundamentis” the micro-model energy of the

inextensible pantographic beam model, whose kinematics is characterized by the

positions pi only, as a function of the macroscopic kinematical descriptor 𝜒 eval-

uated in si’s. Following a procedure analogue to the quasi-inextensibility case, we

defined the micro-model energy for the inextensibility case and, once the kinemati-

cal maps was introduced by means of the Piola’s ansatz, we have written it in terms

of these macroscopic descriptors. Then, we have imposed the so-called internal con-

nection constraint, which ensures that, in the deformed configuration, the upper-left

spring of the i-th cell is hinge-joint with the upper-right spring of the (i − 1)-th cell,

and the lower-left spring of the i-th cell is hinge-joint with lower-right spring of the

(i − 1)-th cell. After that, we have performed a heuristic homogenization procedure

in order to derive a 1D continuum model, also referred to as the macro-model and

characterized by its deformation energy, associated to the aforementioned micro-

structure in the quasi-inextensibility and inextensibility cases. The preliminary step

to perform the homogenization procedure has been to define scale-invariant quan-

tities, whose role is to keep track of the asymptotic behaviour of the stiffnesses of

the micro-model springs. We first performed the homogenization procedure for the

quasi-inextensibility case by computing the limit 𝜀 → 0 in the expression of the

micro-model energy written in terms of macroscopic kinematical descriptors. The

resulting continuum-limit macro-model energy describes a 1D pantographic beam

under the hypothesis of quasi-inextensible oblique micro-springs. The macroscopic

beam, when 𝕂m = 0, l̃𝛼𝛽 = 0, and 𝜒(s) = Cse1, undergoes a floppy mode. This is
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a key feature of the micro-model energy which was preserved by the homogeniza-

tion procedure that we have carried out. Moreover, we observed that not only this

homogenized model can be classified as a second gradient theory, but we noticed

that the full second gradient 𝜒
′′

of 𝜒 contributes to the strain energy. Indeed, beyond

the usual term (𝜒 ′
⟂ ⋅ 𝜒 ′′) related to the Lagrangian curvature, also the term (𝜒 ′ ⋅ 𝜒 ′′),

deriving from the presence of the oblique springs, appears. Finally, we remarked

that, in the limit ||𝜒 ′|| →
√
2, the model exhibits a so-called phase transition, i.e. it

locally degenerates into the model of an uniformly extensible cable, notwithstanding

that

√
2 is an upper bound for 𝜌. Subsequently, we have performed the homogeniza-

tion procedure also for the (complete) inextensibility case. The homogenization pro-

cedure has followed the same lines of the quasi-inextensibility case and it yields a

continuum-limit macro-model energy consistent with the quasi-inextensibility case.

An interesting connection with the existing literature on 1D continuum homogenized

models for microstructured media, and in particular for pantographic ones, has been

traced by considering the linearization of the pantographic beam energy in the (com-

plete) inextensibility case. Furthermore, it has to be remarked that, of course, what

has been presented in this paper is not the only possible homogenization technique.

Indeed, many other procedures, like coarse-graining, hydrodynamical limits [76–79]

for many-particle systems, and computational homogenization [80–82], are being

employed in literature, and they deserve to be better understood. The numerical solu-

tion of the homogenised continuum model has been addressed by means of the finite

element method in three exemplary cases, trying to highlight the main differences

with the classical finite deformation Euler beam model. In particular, in order to

better highlight some non-standard features of the nearly-inextensible pantographic

beam model, we have considered as vanishing the standard quadratic additive elonga-

tion/shortening contribution to the deformation energy. These benchmark tests were

exploited in order to illustrate some peculiar features of the pantographic beam model

and the convergence of the quasi-inextensible pantographic beam model to the com-

pletely inextensible one. In particular, we have performed for the nearly-inextensible

pantographic beam model and for the geometrically non-linear Euler model what has

been referred to as the semi-circle test, the three-point test and the modified three-

point test. The weak form deriving from the stationarity of the energy functional has

been projected on the basis of Hermite cubic interpolants. Further improvements of

this approach could include the use of isogeometric analysis, which has found wide

application for beam elements [83–91]. Indeed, spline functions employed in that

approach allow to ensure higher continuity between elements and other many desir-

able properties. Finally, through a standard variational procedure, we have provided

the explicit form of the Euler-Lagrange equations and of the corresponding boundary

conditions for a general potential energy density functional which includes as par-

ticular cases the quasi-inextensible pantographic beam model and the Euler beam

model. Moreover, we have given the explicit form of the Euler-Lagrange equations

and of the boundary conditions for the quasi-inextensible and completely inextensi-

ble pantographic beam model. It is conceivable that pantographic beams can be used

as building blocks for more complex double scale materials.
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