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Abstract

This work investigates the role of the filters implemented on Analog-to-Digital Converters for the reconstruction of
magnetic resonance images. We analyze the effects of these filters both from a theoretical and an experimental point of
view and demonstrate how it may lead to severe degradation of the reconstructed images when the distance between
consecutive samples is larger than Shannon’s limit. Based on these findings, we propose a mathematical model
and a numerical algorithm that allow to mitigate such filtering effects both for linear and nonlinear reconstructions.
Experiments on simulated and real data on a 7 Tesla scanner show that the proposed ideas allow to significantly
improve the overall image quality. These findings are particularly relevant for high resolution imaging and for recent
sampling schemes saturating the maximum gradient amplitude. They also open new challenges in sampling theory.

1 Introduction

The standard acquisition model in magnetic resonance imaging (MRI) states that the Fourier transform of an image
u : Q — C is sampled on a set of discrete points, in what is commonly called the k-space. The set Q C R? is the field
of view, with d = 2 or d = 3 denoting the space dimension. A particularity of MRI is that these samples are measured
along several parametrized curves \: [0,7] — RY, called k-space trajectories or shots. Given a sampling period At
and letting @ denote the Fourier transform of the image u, the measured samples are therefore modeled as

y; = wA(AL), M

where j € N denotes the index of the measurement [17]. Most commonly, these points lie on a grid, which is filled
by parallel Cartesian lines [24], but non-Cartesian sampling such as spiral trajectories [35] may also be used for their
greater sampling efficiency and are becoming increasingly popular with the advent of compressed sensing [31].

The model expressed in equation (1) does not account for the analog-to-digital converter (ADC), which converts the
continuous signal f(t) = 4(A(¢)) into discrete values. The model that describes this process is a linear time invariant
filter of the type:

y; = (hx f)(jAD), @)

where * denotes a convolution operator and £ is a filter that depends on the ADC technology. The main contribution of
this article is twofold: First, we demonstrate that neglecting the filtering effect in model (2) can have a dramatic impact
on the reconstruction quality for large sampling periods At. Secondly, numerical algorithms are proposed that allow
to handle the unwanted side-effects caused by the filtering.

We give particular attention to two typical situations: a simple integrator ADC and more advanced bandlimiting

filters which are used in modern MRI scanners.
* Integration effect. The earliest ADCs were integrating ADCs, meaning that the ADC simply integrates the
Fourier transform @ along the k-space path . This model reads as y; = |, (jﬁtl) A W(A(t)) dt and can be cast into
equation (2) by choosing h = 1y a¢. The interest of choosing a large sampling period At is to increase the
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signal-to-noise ratio (SNR) since more signal is averaged over time [20], which is a typical reasoning in MRI
physics. We will see later that this benefit might not compensate the downsides that come with it.

* Bandlimiting filtering. On most MR scanners, the ADC bandwidth reaches several megahertz, while the re-
ceiver bandwidth usually ranges from about 5 to 500 kHz [4, 18]. To produce the measurements at the desired
sampling rate, the digitized data is filtered before decimation [21, 5, 40]. This bandlimiting step can be expressed
as (2) and has different purposes [21, 22]: 1) it discards the spurious noise and high frequencies from the free
induction decay signal and ii) it allows to avoid aliasing of the temporal signal f. In particular, when using
Cartesian trajectories, wraparound effects are prevented by cutting of the signal which is outside of the field of
view in the readout direction [34, 30], as will be seen in the next section. A perfect bandlimiting filter takes the
form h(t) = sinc(t/At).

To the best of our knowledge, the effects of ADC filtering on MR image reconstruction for non Cartesian trajectories
have only been described scarcely in the literature. The manufacturers design these filters based on Cartesian sampling.
This results in filters that may be unadapted to other sequences. In the mathematics community, we are not aware of a
single paper in sampling theory which accounts for them. More generally, we are not aware of any reference that takes
this effect into account in a reconstruction algorithm. We came across this phenomenon while trying to reconstruct
real MR images and it took us a lot of time and experiments to disentangle the possible sources of reconstruction
errors. The purpose of this paper is to illustrate the consequences of these filters, to provide criteria when they need to
be accounted for, to show how they can be estimated in practice and how their effect can be mitigated using adapted
reconstruction algorithms. The proposed algorithms are then tested against simulated and real data, showing significant
improvement in the reconstruction quality, especially when using the novel trajectories designed in the framework of
compressed sensing.

Notation

We assume that the image domain is = [—1/2,1/2]?. We chose to work in 2D to simplify the exposition, but an
extension to 3D is direct. The domain can be shifted and inflated to account for a different field of view with scaling
arguments. Let u :  — C denote a magnetic resonance image in L?(Q). Its Fourier transform is defined for all
£ € R?by

a(f):/QeXp(—ZLﬂx,g))u(x) dx.

Notice that with the choice Q@ = [—1/2,1/2]?, Shannon’s sampling theorem [39] suggests to sample the Fourier
transform on a Cartesian grid, with grid size of length less than 1.

The notation ¢ stands for the Dirac delta function at 0, while §,, stands for the Dirac delta function at a position x.
Given two functions f and g, the tensor product of f and g is defined by (f ® g)(x,y) = f(x) - g(y) for all z,y. We
recall that the Fourier transform preserves the tensor form, i.e. 7(f ® g) = F(f) @ F(g).

2 The deleterious consequences of filtering

The aim of this section is to describe the effects of ADC filtering on image reconstructions and to ascertain when it is
important to account for them.

2.1 The case of Cartesian sampling

The filtering effect in the case of Cartesian sampling with constant speed s can be understood by an analytical argumen-
tation. In that case, for each sampling point, the filtering is performed along the readout direction only. A convenient
way to formalize this observation is to introduce the tensor product filter i = g ® 9, where g(t) = h(t/s) and to
observe that the acquisition model (2) can then be written as

Yig = (Ux 1) (1A, JAE) 3



where (i,7) € {—n/2,n/2 — 1}? describe the set of sample indices, A&, A&, denote the grid spacing in the Fourier
domain, and n € 2N is the number of samples in each k-space direction.

Now, by not accounting for the filtering effect, the best we can hope for is to reconstruct an image u* of the form
u* = F Y (@ f1) = u - p, where y is given by

p=Flged=F(9eF ' (0=F 9ol
Depending on the filter h, different effects can be expected.
Integration. In the case of an integration filter, we have h = 1o ], where At is the sampling period. Hence, we get
|u*|(z,y) = sAt|u(x, y)sinc(sAtz)]. (€))

The filtering effect produces an image modulated by a sinc. Depending on the spacing between samples sAt,
this effect will either just lower the contrast at the image boundaries or create low frequency oscillations.

Sinc. By using a sampling period At, the standard Shannon-Nyquist sampling theorem states that it is impossible to

reconstruct frequencies beyond the interval [ = [—ﬁ, ﬁ] The usual way to avoid aliasing effects, is to use

a perfect bandlimiting filter of the type h = 1. In that case, we would get h(t) = sinc (Ait) and

u|(z,y) = sAtu(z,y)| 1 2

. #]
2sAt’ 2sAt

(x). %)

The filtering effect in that case simply clips the image in one direction. This effect can be used to avoid aliasing
of the out of field of view image contents [34, 30, 28].

We now propose to simulate the effect using 4 different Cartesian sequences with A{ = sAt € {%, 1,2,4}. The
value A§ = 1/2 corresponds to the most standard Cartesian trajectory in MRI (oversampling factor of 2 along the
readout direction). The value A = 1 corresponds exactly to the Shannon’s limit sampling rate for an image supported
on [—1/2,1/2].

The measurements are simulated by incorporating the filtering effect as expressed in equation (3). The recon-
struction algorithm is based on a standard inverse discrete Fourier transform (which does not account for any filtering
effects). Fig. 1 and 2 show the results for the integration and the sinc filtering respectively as well with a cross section
of the images. The modulation due to the integration filtering can be seen on the cross sections for all values of AE.
The effect of the sinc filtering is only observable for A{ € {2,4}: the disk is clipped with an irreversible loss of
information. In MRI, this property is sometimes seen as beneficial since it avoids aliasing in the readout direction
[34, 30, 28]. It can also be used to focus on smaller region of interest.

2.2 The case of arbitrary trajectories

For more general trajectories, it is difficult to derive an analytical description of the filtering effects. The proposed
sampling model can be expressed as

Yi = / adps;, (6)

where dyu; is a singular measure supported on a 1-dimensional curve. To the best of our knowledge, this problem has
not been studied in the literature yet. A closely related issue was investigated by Aldroubi in [3]. Therein, he addresses
the question of the existence of a stable linear reconstruction algorithm for bounded measures p; with compact support,
two conditions that are not met in our setting. In what follows, we therefore restrict ourselves to provide experimental
simulations based on spiral trajectories, which are one of the most widespread non-Cartesian trajectories.

Fig. 3 shows a sampling pattern made of 200 interleaved spirals, which were designed using the method proposed
in [27]. Each spiral is depicted with a different color going continuously from blue to green. The number of samples
is equal to 153600, while the reference image contains 512 x 512 pixels: this corresponds to a subsampling factor of
1.7. Notice that while the distance between consecutive samples is about 1 pixel in the k-space center, it reaches about
5 pixels in the outer part, meaning that the filtering effect will have a higher impact on high frequencies. Images of a
brain phantom [19] were reconstructed using a total variation based, nonlinear reconstruction algorithm described in
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Figure 1: The integration effect with a Cartesian sampling. Note: the images might be complex valued, and we only
display their modulus. This explains why negative oscillations are seen as positive values.

Section 4.3.3. Fig. 4 shows the consequences of the integration and the sinc filtering on the images acquired with the
spiral trajectory. In case of integration (Fig. 4e), the reconstructed image suffers from severe artifacts including a space
varying blur, some contrast losses, a slight rotation (visible only when superimposing ground truth and reconstruction)
and a modulation. In the case of bandlimiting filtering (Fig. 4f), the image quality degrades even more: a magnified
region shows the loss of resolution as compared to the ground truth (Fig. 4d).

2.3 Experimental validation of the filtering effects

To verify the expected effects of the ADC, an ex vivo baboon brain was imaged using a gradient recalled echo (GRE)
sequence to acquire Cartesian and spiral data.

2.3.1 The trajectories and sampling steps

In the case of Cartesian sampling, we set 6t = 105 with a field-of-view (FOV) of 20 x 20 c¢m? for a target resolution
of 256 x 256. We then designed three trajectories composed of 256 lines with different sampling periods At €
{6t,26t,80t}. When considering a normalized FOV, those downsampling factors correspond to a grid spacing in the
k-space of A = % A¢ = 1 and A¢ = 4 respectively. For the case A = 4, we interleaved four sets of trajectories to
fill the whole Cartesian grid, i.e. sampling the Fourier transform at Shannon’s rate.

In the case of spiral trajectories, we set 6t = 5us with the same field-of-view (FOV) of 20 x 20 cm?. Spirals were
designed using the method proposed in [27] and were made of 20 shots for a target resolution of 512 x 512. In that
experiment, we also studied the cases At € {dt, 26t, 86t }. For the largest sampling period, we interleaved 4 spirals to
measure as much information as for At = 26t.



Figure 2: The sinc filtering effect with Cartesian sampling. Note: in this experiment, some ringing appears on the
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Figure 3: Two zooms on a sampling pattern made of 200 interleaved spirals. Each spiral has a different color.

(a) Center

2.3.2 Filtering effects on experimental data

(b) Boundary

The reconstruction results using a standard conjugate gradient algorithm are displayed in Fig. 5.
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Figure 4: Example for reconstructions of an image sampled along the spirals shown in Fig. 3. The total variation based
reconstruction algorithm does not account for the filtering effect. Top: the reconstruction of a Dirac comb illustrates
the impulse response of the reconstruction algorithm. As can be seen, both the integrating filter (int) and the perfect
bandlimiting filter (sinc) smooth out the image by integrating it along pieces of arcs with a width that increases radially.
Bottom: smoothing effects of both filters can be observed on a phantom image.

In the case of Cartesian trajectories, no filtering effects are observed for A = % (Fig. 5a). For A¢ = 1, correspond-
ing to a sampling pattern at Shannon’s rate, two black bands appear at the top and bottom of the image (Fig. 5b). For
the image on Fig. Sc corresponding to A& = 4, four horizontal black bands can be observed and the object is cropped
along the readout direction. This perfectly matches the effects described in Section 2.1 (Fig. 1 and 2), confirming that
the MR scanner applies a bandlimiting filter on the temporal signal.

In the case of spiral sampling, the image corresponding to At = 5us on Fig. 5d is near perfectly resolved. For
At = 10us, the image gets slightly more blurry and the contrast is slightly deteriorated. For At = 40us, the effect
gets disastrous, with some parts of the image disappearing and strong rotational blurs.

The experiments provided in this section reveal that the usual ADC filters produce effects that can be neglected
from a perceptual viewpoint when the maximal distance between consecutive samples is below half the Nyquist
limit. The effect becomes visible starting from the Nyquist rate and becomes dramatic at twice this limit.
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Figure 5: Direct reconstruction results of experimental data for the Cartesian trajectories with a linear reconstruction
algorithm (top) and spiral trajectories with a total variation based reconstruction (bottom). For each trajectory, we used
different sampling periods. Note that we adapted the contrast to better highlight the effect.

3 Estimating the filters

The way the signal is digitized and processed depends on the MR receiver hardware, with specifications that are usually
not transparent to the user. In the following part, we therefore design a reverse engineering technique to estimate the
filter h.

3.1 A filter estimation procedure
The principle reads as follows:

¢ Set a sampling period dt, a downsampling factor p € N, a number of measurements m € pN and a trajectory
A [0,mdt] — R2

* Generate a first set of measurements yo € C™ by sampling f = 4 o A with the rate At = Jt.
* Generate a second set of measurements y; € C™/P by sampling f with the rate At = pét.

The proposed filtering model (2) can be conveniently expressed by setting

y1 = (hxyo) | p, (7



where * denotes the convolution product and | p is the downsampling by a factor p.

Recovering h knowing p, y and y; is a difficult calibration problem. It amounts to finding a linear time invariant
operator that matches the two sets of measurements y, and y;. Without the decimation operator | p, it would boil
down to a deconvolution problem, which is usually ill-posed [41, 36]. The decimation makes the problem even harder.
This being said, a few elements simplify the problem. First, the calibration sequence is computed off-line once for all.
Hence, the same trajectory can be played multiple times in order to improve the signal-to-noise-ratio. Moreover, the
trajectory played to calibrate the system can be chosen so as to improve the identifiability of the filter h. Ideally, it
should stay close to the k-space center, where a lot of signal is available. In addition, it should sweep a large range of
frequencies to help evaluating the action of the filter at every frequency. A simple and popular trajectory complying
with these criteria, is a linear chirp, i.e. a function of the form A(t) = (Kkmax sin(wt?), 0) for some frequency w and
small amplitude k., [1]. This trajectory might not be feasible for a large range kp,.x or frequency w. It is possible to
project it onto the set of admissible trajectories using the algorithm proposed in [13], see Fig. 6a. The same trajectory
can then be rotated a few times to yield more information, cf. Fig. 6b.

Since the problem is ill-posed, we propose to solve the following variational problem to recover h:

1 @
h@%glgll(h*yo ip)*Y1\|§+§|\LhH§v (®)
where v > 0 is a regularization parameter and L is a suitable regularizing operator. In all our experiments we set L to
be the discrete derivative and solve (8) with a linear conjugate gradient descent. The choice of the simplest Tikhonov
regularization is to avoid introducing prior information beyond smoothness of the filter. In all our experiments, the
parameter o was tuned manually: it is chosen as small as possible while still allowing to avoid the spurious oscillations
likely due to noise.

Estimation on simulated data In the synthetic experiment of Fig. 6, we defined h as an ideal bandlimiting filter,
see the blue dashed line in Fig. 6d. We used 64 rotated and projected linear chirps, see Fig. 6b and measured the brain
phantom from Fig. 4d along them. We also used an alternative spiral [44] based scheme with twice the number of
samples of the chirps experiment. We then added 1% of noise to the measurements and solved the problem (8). The
regularization parameter o was tuned manually. The estimation result is shown in Fig. 6¢ in the time domain and in
Fig. 6d in the frequency domain. As can be seen, the chirps based estimation is faithful to the true filter despite some
residual noise. The spiral based estimate is far less convincing, though the general shape of the filter in the frequency
domain is correct. This shows the importance of choosing a suitable sampling scheme for an accurate estimation of h.

Estimation on experimental data We also evaluated the filter on a 7-Tesla MR scanner (Siemens Healthineers,
Erlangen, Germany) with a 1Tx/32Rx head coil (Nova Medical, Wilmington, MA, USA). The maximum gradient
amplitude was 80 mT'/m and the maximum slew-rate was 200 T'/m/s. Here, the minimum dwell-time was 2 us. All
experiments reported in this paper were conducted using this scanner.

To evaluate the filter, we used 256 chirps on 32 channels. This led to the results depicted in Fig. 7: the filter is
rather close to a sinc, with a frequency response that clearly cuts off the high frequencies, and a plateau on the low
frequencies. The regularization parameter « was tuned manually to avoid oscillations while still limiting the smoothing
due to the quadratic term. Notice that this calibration procedure needs to be performed only once and the obtained filter
can be used for every reconstruction trajectory. Hence, we will use the estimated filter in the reconstruction experiments
of Section 5.

4 Handling the filtering effects in reconstruction algorithms

4.1 Discretizing the image

Let n € 2N denote a resolution parameter. In this paper, we assume that the true magnetization v can be written as
u = ug * P, where

Uqg = Z u[lmy]az/n]/n (9)

—n/2<i,j<n/2
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Figure 6: Validation of the estimation procedure. a) the initial chirp and their projection to make the trajectory feasible.

b) 64 chirps used to estimate the filter. Each of them crosses the center 20 times. c) The estimation in the time domain.
d) The estimation in the frequency domain.

is an atomic discretization of the image with u € C"*™ and 1 : [—¢, €]> — R is a compactly supported interpolation
kernel. The interest of this decomposition lies in the fact that it allows using nonuniform fast Fourier transforms.
The simplest interpolation kernel ¢ that will be used in all the experiments of this paper is the spline of order 0:

oom) = {1 if —1/(2n) <,y < 1/(2n),

0 otherwise.

4.2 Fast implementation of the forward model

In order to reconstruct the image, almost every reconstruction algorithm requires an implementation of the forward
measurement operator and its adjoint. In this section, we therefore propose a numerical algorithm to evaluate integrals
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Figure 7: Filter estimated on a real 7T scanner.

of the form:

yi = /R h(iAt — t)a(A(2)) dt. (10)

It is based on a combination of numerical integration and the nonuniform Fast Fourier transform.

4.2.1 The NFFT

The atomic structure in (9) allows using the non uniform Fast Fourier Transform (NFFT or NUFFT) [16, 23] to get a
numerical expression of 4 at a set of locations k = (k[0],...,k[m — 1]) € R™*2 in the k-space. We let k; and ks
denote the two spatial components of k. The NFFT allows evaluating rapidly with a high precision, all components of
tq(k), defined by

agk[l) = Y uli,j]exp(—2ur(iki[I] + jkz[I])).

—n/2<i,j<n/2

While a naive implementation of the sum would require O(mn?) operations, the NFFT reduces the complexity to
O(n?log(n) + m|log(€)|?), where € is the desired precision. The constants involved in the O depend on the locations
of the sampling points k.

By using a matrix-vector product notation, this can be rewritten as @4(k) = Nju, where N}, € C™*"” is the NFFT
matrix. Then, to get the values of @, we simply use the formula @ = @iy ® ). Overall, the mapping (u, k) — a(k) = &

is given by i = ¢(k) ©® Nju.

4.2.2 Integration along the curve

The principle In order to compute the integrals (10), we propose to use simple numerical integration procedures.
Letting p € N denote an upsampling parameter, we shall use the following approximation:

yi = (hx [Y[IAL) =Y " hy - a(AGAL = jot)), (11)
JEL

where 0t = At/p and where the weights h; can be chosen either by using the estimation procedure proposed in Section
3.1 or taken equal to h(jot) if an analytical version of & is available. More advanced Newton-Cotes formula [38] could
also be used. The values @ (A(¢At — jdt)) can be evaluated efficiently with the NFFT, and the weights h; only need to
be computed once at the start of the algorithm.

10



The forward model A can now be completely described. Letting k denote the vector of discrete locations with
components k[i] = A(idt) for 0 < ¢ < mp — 1, it takes the form

Au=HX,N;u,

where H is the discrete convolution operator in equation (11) and where X, : z — 1/3(k) O z.

The case of multiple coils In the case of multiple coils, the forward model can be written as
Au= (HZ;N;Su,...,HE,N;S, u)’,

where S, = diag(sy) is the diagonal matrix associated to the k-th sensitivity profile and n. is the total number of
receiver coils.

How to choose the value of p? The oversampling factor p should be selected carefully to avoid large computing
times while still mitigating the filtering effects. As was explained in Section 2.1, no effect is perceived when the
maximal distance between consecutive samples is below 1/2 (half the Nyquist distance on a normalized FOV). Given
a trajectory )\, the maximal distance between two consecutive samples is given by A, = \\}\\\OOAt. If A i below
1/2, p can be safely chosen equal to 1, and the proposed forward model boils down to the standard MRI model. In the
other cases, we wish to find the minimum value of p such that ||A||o,0t < 1/2, leading to the choice p = [2||A||o A].
In practice, this typically yields values of p in the range {1,...,4}.

4.3 Reconstruction algorithms

Once the forward operator and its adjoint are properly described, many existing algorithms based on variational prin-
ciples, such as [37, 31] can be used out of the box. In this work, we make us of simple linear reconstructions based on
the linear conjugate gradient method and more advanced nonlinear approaches.

4.3.1 Estimating the sensitivities

In all the experiments performed in this paper, we first acquire a reference image with a standard Cartesian trajectory
sampled at twice Shannon’s rate along the readout direction. This allows to simply estimate the sensitivities by using
the sum-of-square approach [33].

4.3.2 Linear reconstructions

One of the simplest ways to reconstruct an image is to solve the following Tikhonov-regularized least squares problem:

1 le}
in —|[Au—y||% + =||ul|3.

Iin o f|Au—yll; + > flullz

The same formulation is used in the popular reconstruction method SENSE [37]. The optimality conditions for this

problem read as (A*A + al)u = A*y, which can be solved with a linear conjugate gradient method.

4.3.3 Nonlinear reconstructions

Nonlinear reconstructions are known to yield better results than linear ones, especially in the regime of subsampled
data [6, 29, 9]. The whole field of compressed sensing [31, 8], which under certain assumptions guarantees exact
reconstructions, is based on ¢!-regularized problems. In this paper, our nonlinear reconstructions are based on the
resolution of the following formulation:

1 2
Inin of|Au -yl + aR(u), (12)

where R : C*° = R U {+0o0} is a regularization term describing prior information on the image that is sought to

be recovered. This type of problem can be solved efficiently by using a Douglas-Rachford algorithm [14]. Letting
1

f(u) = 3[|Au —y/||3, it reads as follows:

11



(a) Ground truth (b) Standard (c) Proposed

Figure 8: Reconstructions of the brain phantom image sampled along spirals without (b) and with (c) accounting for
the bandlimiting filtering effects. For each case, we used a total variation based reconstruction with a manually tuned
regularization parameter.

1. Input: initial guess vy € C"’ and parameter v > 0.
2. up = PI‘OX,Y.f(Vk).
3. V41 = Vi —ug + PI'OXA/.O[.R(2111C — Vk).

The proximal operator Prox s of a convex function f is thereby defined by

Proxs(z) = argmin f(u) + 1||u —z|2.
ueCn? 2
Step 2) of the algorithm can be interpreted as the resolution of the inverse problem using Tikhonov regularization.
It can be solved using a linear conjugate gradient algorithm. Step 3) can be seen as solving a denoising problem and
depending on the choice of the prior R, different algorithms can be used. The sequence (uy)ren can be shown to
converge to a global minimizer of (12) if R is a convex closed function with nonempty interior. In this work, we define
R as the total variation of the image [10] and solve the proximal of Step 3) with the method proposed in [43].

5 Reconstruction results

In this section, we demonstrate how the proposed reconstruction algorithms perform on simulated and experimental
data and compare with results obtained by traditional approaches.

5.1 Simulated data

We first consider the case of a sampling pattern based on fast spiral trajectories proposed in [44, 15]. We designed
a sampling pattern made of 128 interleaves. Each interleave lasts 1ms and is sampled at the minimum dwell-time of
2 ps. It is therefore composed of 500 samples. This corresponds to an undersampling factor of 4. Here, the maximum
gradient amplitude was 65 mT"/m. During one dwell-time, the traveled k-space distance is therefore 5.53 m !, which
is larger than the Nyquist rate of 4 m ™! (the FOV is 25 cm).

We simulated measurements of a brain phantom incorporating the bandlimiting filtering estimated from our 7T
scanner in Section 3.1. Fig. 8b displays the brain phantom image reconstructed with the nonlinear algorithm of Section
4.3.3 that does not include the filtering in the forward model. Note that this corresponds to a standard MR recon-
struction methodology. We reconstructed the same data with the method proposed in Section 4 that accounts for the
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filtering effect. The result is displayed in Fig. 8c. By looking at the magnified regions, we notice that the proposed
reconstruction was able to recover the fine structural details present in the ground truth image (Fig. 8a), which had
disappeared in the standard reconstruction (Fig. 8b).

In all experiments, the regularization parameter a of equation (12) was manually tuned so as to produce the best
possible result from a perceptual point of view. We had to choose it larger for the standard model, since otherwise
strong oscillations would have appeared in the reconstructed image, with no significant increase in the level of details.

5.2 Experimental data

The proposed acquisition model and reconstruction schemes were tested on experimental data acquired from both
spiral [27] and Sparkling [7, 12, 26] sampling patterns. In both cases, the forward operator of Section 4 is based
on the filter estimation shown in Fig. 7. Hence, these experiments are based on a real calibration procedure. The
regularization parameter « in equation (12) was selected carefully to reduce the effects of the nonlinear regularizer
while still removing noise.

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
(a) The whole trajectory. (b) Zoom in the center

Figure 9: Sparkling trajectory and a magnified region of the k-space center. Black dots correspond to measured samples
and a single shot is depicted in red.

5.2.1 Spiral sampling

The spiral trajectory used for the acquisition was the same as in the simulated data of Fig. 8. The reconstruction results
are displayed in Fig. 10. In this example, we used a nonlinear reconstruction algorithm. Even though the reconstruction
accounting for the filtering effect is not perfect it is clearly superior to a standard reconstruction.

5.2.2 Sparkling sampling

The recently introduced Sparkling trajectories are novel non-Cartesian trajectories that produce optimal variable-
denisty sampling patterns by taking full advantage of the hardware capacity [7, 12, 26].

The trajectory used in our experiments consisted of 128 shots composed of 512 samples each for a target resolution
of 512 x 512, corresponding to a subsampling factor of 4 which was chosen based on an empirical study of the
maximum acceleration factors in MRI [25]. The proposed sampling scheme allows to keep a high image quality while
reducing the scanning time significantly. A typical trajectory is displayed in Fig. 9, where a magnified region of the
k-space center is displayed in Fig. 9b. As can be seen for the considered trajectory, the distance between consecutive
samples is larger than a pixel, be it in the central region or at the k-space boundary.
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(a) Standard, SNR=19.48dB (b) Proposed, SNR=25.62dB

Figure 10: Linear reconstructions of an ex vivo baboon brain acquired with a set of interleaved spiral trajectories,
without (a) and with (b) the bandlimiting filtering accounted for. Acquisitions were prospectively performed on a 7
Tesla MR scanner.

An ex vivo human brain was imaged and reconstructed with a total variation based, nonlinear reconstruction algo-
rithm and with the proposed method with p = 4. The results are displayed in Fig. 11. Once again, the improvement of
quality allowed by the proposed approach is striking, especially in the temporal lobes of the brain.

6 Discussion and Conclusion

In this work, we illustrated how the anti-aliasing filters implemented in analog-to-digital converters can be detrimental
to the reconstruction quality of MRI images. Depending on the speed of the trajectory and on the sampling period,
the effect caused by the filters reaches from barely perceptible to drastic and irreversible loss of information. For
many trajectories, such effects can be handled quite simply by reducing the dwell-time, however, this might not be a
sufficient countermeasure when using fast trajectories which saturate the maximum gradient amplitude. In that case,
the proposed numerical algorithms mitigate these effects significantly. The enhanced reconstruction quality comes at
the expense of a higher numerical complexity, with computing times typically multiplied by factors ranging from 2 to
4 compared to standard approaches.

The findings of our work might question why such anti-aliasing filters are used in practice. While they make perfect
sense when the aim is to reduce the field of view using Cartesian sampling (which is the dominant sampling pattern
in commercial systems), their pertinence becomes less obvious with more exotic trajectories and modern nonlinear
reconstruction algorithms.

Let us consider their pros and cons. On the positive side, filtering allows to reduce noise and spurious interferences
and to increase the signal-to-noise-ratio, which may sometimes be critical when little signal is available. In the case
of Cartesian trajectories and bandlimiting filters, it allows to cut-off signal that is beyond the desired field of view. It
also allows to reduce the number of measurements and hence leads to faster reconstruction algorithms. In addition,
it is physically impossible to measure point-wise values of f, and the filtering is an effect that cannot be avoided, up
to the temporal resolution of the ADC. On the negative side, applying filters trades temporal resolution for signal-
to-noise-ratio. It is however well known in the field of inverse problems that it is much harder to gain resolution
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(a) Standard, SNR=5.45dB (b) Proposed, SNR=17.38dB

Figure 11: Nonlinear, total variation based reconstructions of ex vivo humain brain with a Sparkling trajectory, without
(a) and with (b) the bandlimiting filtering accounted for. Acquisitions were prospectively performed on a 7 Tesla MR
scanner.

than signal-to-noise-ratio. State-of-the-art denoisers are suspected to be close to an optimal performance [11], while
blurring induces an irreversible loss of information.

Overall, we believe that the increase of computational power using massively parallel architectures, makes the argu-
ments supporting the reduction of data partly irrelevant. A striking side-result of this work is that the older technology
of integrating ADC is somewhat preferable to more complex bandlimiting ADCs, since the integrating filters do not
cause an irreversible loss of information when using the proposed algorithms (compare Fig. 1 and Fig. 2). In addition,
we speculate that it may be beneficial to use time-varying sampling periods. In the center of the k-space, a lot of signal
is usually available, allowing to use very short sampling periods. On the contrary, as the sampling trajectory gets more
distant to the center, the sampling period could be increased in order to retrieve information above the quantization
level despite the signal decay.

The key factor to know whether a trajectory is acceptable or not for standard reconstruction methods is the maximal
distance between consecutive samples. Nearly no effect should be observed below half a pixel, slight effects will be
observed between half a pixel and 1.5 pixels, and significant problems should appear beyond. The recent advances
in sampling theory advocate the use of more complex trajectories with high speeds [42, 32, 2, 26] that may cross the
critical regime of sampling distances. In particular, Weiger et al. use a gradient amplitude of 200 mT'/m [42], which
would necessitate a sampling bandwidth of BW = 2 - diam({2) - G4 = 4.25 M H = for a standard field-of-view
of 25 ¢m. This is far above the maximum sampling rate offered by the current MR vendors, which do not go beyond
1 M Hz to the best of our knowledge. Those arguments make us believe that the proposed analysis and algorithmic
framework should be taken under consideration in the development of sequences and MR scanners.

On the side of mathematics, we believe that this paper offers new challenges in sampling theory. The experiments
in this paper show that the sampling model (6) is realistic and accurate. Surprisingly though, we are not aware of a
theory allowing to explain why and how this model leads to stable reconstructions.
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