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Abstract—Efficient resource utilization becomes a major
concern as large-scale computing infrastructures such as su-
percomputers and clouds keep growing in size. Malleability,
the possibility for resource managers to dynamically increase
or decrease the amount of resources allocated to a job, is a
promising way to save energy and cost.

However, state-of-the-art parallel and distributed storage
systems have not been designed with malleability in mind. The
reason is mainly the supposedly high cost of data transfers
required by resizing operations. Nevertheless, as network and
storage technologies evolve, old assumptions about potential
bottlenecks can be revisited.

In this study, we model the duration of the commission
operation, for which we obtain theoretical lower bounds. We
then consider HDFS as a use case, and we show that our
lower bound can be used to evaluate the performance of the
commission algorithms. We show that the commission in HDFS
can be greatly accelerated. With the highlights provided by our
lower bound, we suggest improvements to speed the commission
in HDFS.

Keywords-Elastic Storage, Distributed File System, Malleable
File System, Lower Bound, Commission

I. INTRODUCTION

Reducing idle resources is a major concern for large-
scale infrastructures such as clouds and supercomputers, as
it directly leads to lower energy consumption and lower
costs for the end user. Job malleability is an effective means
to reduce idle resources. It consists of having the resource
manager dynamically increase or decrease the amount of
resources allocated to a job.

Resource managers for malleable jobs [1], [2] and mal-
leable frameworks [3], [4], [5] have been proposed in earlier
work. However, these frameworks are still limited by the
fact that the distributed storage system1 they rely on is not
malleable. In frameworks where such a storage system is
deployed in compute nodes along with the job, such as
HDFS, this prevents any kind of malleability from the job
altogether.

Most distributed storage systems already provide basic
commission (adding nodes) and decommission (removing
nodes) operations, usually for maintenance purposes. They

1This work can easily be applied not only to distributed file systems but
also to various kinds of distributed storage systems. Because of this, we
use the denomination Distributed Storage System in this paper.

are rarely used in practice for optimizing resource usage,
however, since they are assumed to have high performance
overhead. With faster networks and faster storage devices
(e.g., SSDs, NVRAM, or even in-memory file systems [6]),
it is time to revisit this assumption and evaluate whether
malleability can be a feature in future distributed storage
systems. Fast storage resizing can indeed favor a quick re-
sponse to new requests for resources or to sudden variations
in workload.

In this report, we focus on the cost of the commis-
sion operation in the context of distributed storage sys-
tems that leverage data replication. We devise theoretical,
implementation-independent lower bounds of the time re-
quired to undertake this operation. These models provide a
baseline to evaluate implementations of the commission. As
a case study, we evaluate how HDFS, a representative state-
of-the-art distributed file system with a commission mecha-
nism already implemented, compares with these theoretical
bounds. We show that the commission mechanism used by
HDFS is not optimized to be fast. We suggest modifications
that would improve commission times in HDFS.

This work extends our previous work [7], which was
focusing solely on the decommission. Decommission is only
half of the operations needed for complete malleability.
Thus, in this work we complete our previous study by
providing a lower bound for the commission, as well as the
study of the commission mechanism implemented in HDFS.

II. CONTEXT AND MOTIVATION

In this section, we discuss the relevance of malleability
in general and for storage systems specifically.

A. Relevance of malleability

Malleable jobs are jobs for which the amount of comput-
ing resources can be increased or decreased in reaction to an
external order, without needing to be restarted. Malleability
is an effective means to reduce the amount of idle resources
on a platform. It helps users save money on cloud resource
rental or make better usage of the core-hours allocated to
them on supercomputers. It also gives the platform operator
more resources to rent, while cutting down the energy wasted
by idle resources.



Some frameworks [3], [4], [5] provide support for mal-
leability. However, few applications are malleable in prac-
tice. Many workflow execution engines such as the ones
presented by Wilde et al. [8] make workflows malleable:
each job can be executed on any resource; and once the
jobs running on a node are finished, the node can be given
back to the resource manager. However, efficient support for
malleable storage is missing.

Note that the notion of malleability, coming from the
scheduling field, differs from horizontal scalability. Mal-
leability refers to the possibility for a job to be dynamically
resized, whereas scalability refers to the performance of a
system at various scales.

B. Relevance of distributed storage system malleability

Having an efficient malleable distributed storage system,
that is, a file system in which storage resources can be dy-
namically and efficiently added and removed, could benefit
both cloud computing and HPC systems.

Cloud platforms: One of the key selling points of cloud
platforms is their elasticity: one can get almost as many
resources as needed. In practice, however, most applications
must be stopped and restarted to use newly allocated re-
sources. This lack of dynamism is in part explained by the
inefficiency of existing mechanisms for resource commission
and decommission and in part by the fact that some services
deployed along with applications, in particular data storage
services, are not themselves dynamic.

A malleable distributed storage system, able to add and
release nodes dynamically and efficiently without having
to be restarted, would enable truly dynamic elasticity on
the cloud through on-the-fly resource reallocation. The gain
in efficiency would be even larger when compute and
storage resources are located on the same nodes; efficient
dynamic commission and decommission would then operate
for computation and storage at the same time.

HPC systems: Similar benefits can be expected in
HPC. Past efforts to bring malleability to HPC jobs [4],
[9] could be completed by providing a malleable file system
able to efficiently leverage the presence of storage devices
on compute nodes; for example, Theta [10], at Argonne
National Laboratory, features such devices.

III. RELATED WORK

Malleability has been explored in past work in various
ways. Some work focused on implementing malleable ap-
plications [3], [4], [5]; some focused on resource managers
able to exploit optimization opportunities available with
malleable jobs [1], [2]; many efforts were dedicated to
scheduling malleable jobs [11], [12]. Rare, however are
papers focusing on the malleability of file systems.

Among them, the SCADS Director [13] is a resource
manager that aims to ensure some service-level objective by
managing data: it chooses when and where to move data,

when and if some nodes can be added or removed, and
the number of replicas needed for each file, thanks to the
interface proposed by the SCADS file system. The authors of
this work propose an algorithm for node commission but do
not study its efficiency. Their algorithm includes a decision
mechanism for determining which nodes to add. In contrast,
we assume that the file system must follow commands from
an independent resource manager, and we propose a lower
bound for the commission time that can be integrated in
external scheduling strategies.

Lim, Babu, and Chase [14] propose a resource manager
based on HDFS. It chooses when to add or remove nodes
and the parameters of the rebalancing operations. However,
it simply uses HDFS without considering the time of the
commission operation. Both [13] and [14] focus on ways to
leverage malleability rather than on improving it. They are
complementary to our work.

Another class of file systems implements malleability
to some extent: for example, Rabbit [15], Sierra [16], or
SpringFS [17] shut down nodes to save energy. Because of
the fault tolerance mechanism, these nodes must be ready to
rejoin the cluster quickly, and the data cannot be erased from
them. This difference has many important consequences.
Instead of commissioning nodes, they update the information
already present on the node, which is mainly a problem of
data consistency, whereas we focus our attention on the time
needed to distribute data. In our work we consider a more
general case of node commission, the newly added nodes
do not host any data and must receive some to be able to
service requests. This gives more freedom to the resource
manager to reach its objective, whether it is saving energy,
improving resource utilization, or maximizing gains.

The commission mechanism is a particular case of re-
balancing the data on a cluster: some nodes are empty (the
newly added ones), and the other ones host data, and after the
commission we want all of them to host the same amount of
data. Efficient data rebalancing has been extensively studied
in different contexts: for RAID systems [18], for HDFS [19],
or for hash tables [20]. To the best of our knowledge,
however, no studies focus on the minimum duration of data
rebalancing.

IV. HYPOTHESES

To be able to compute a lower bound, we make several
hypotheses regarding the initial state of the storage system.

A. Scope of our study: which type of storage system?

Because this work is the complement of a previous one
[7], the scope of the study is mainly determined by the
decommission mechanism. This mechanism is similar to the
one often used for fault tolerance. When a node crashes, its
data needs to be recreated on the remaining nodes of the
cluster. Similarly, when a node is decommissioned, its data
needs to be moved onto the remaining nodes of the cluster.



With this in mind, we reduce the scope of our study
to storage systems using data replication as their fault
tolerance mechanism. This crash recovery mechanism is
highly parallel and is fast: most of the nodes share some
replicas of the data with the crashed nodes and thus can
send its data to restore the replication level to its original
level. Moreover, this technique does not require much CPU
power.

We do not consider full node replication, used in systems
where sets of nodes host exactly the same data, since the
recovery mechanism is fundamentally different from the one
used with data replication. We also exclude from our scope
systems using erasure coding for fault tolerance, such as
Pelican [21], since such mechanisms require CPU power to
regenerate missing data, and a theoretical lower bound would
therefore have to take into account the usage of the CPU to
be as realistic as possible.

Another major fault tolerance mechanism for storage
systems is lineage, used in Tachyon [22] for Spark [23].
We do not consider lineage in this paper because the base
principles differ greatly from the ones needed for efficient
decommission. With lineage, the sequence of operations
used to generate the data is saved safely; and, in case of
a crash, the missing data is regenerated. Consequently, a
file system using lineage must be tightly coupled with a
framework, and the CPU power needed to recover data
depends on the application generating the data.

B. Hypotheses about the cluster

We make three hypotheses about the cluster in order to
build a comprehensible lower bound.

Hypothesis 1: Cluster homogeneity
All nodes have the same characteristics, in particular the

same network throughput (SNet ) and storage write and read
throughputs (SWrite,SRead).

Moreover, we assume that either the network or the
storage is the bottleneck for the commission or the decom-
mission. Both operations rely heavily on data transfers, so
those aspects are likely to be the bottlenecks.

Hypothesis 2: Ideal network
The network is full duplex, data can be sent and received

with a throughput of SNet at any time, and there is no
interference.

Since no network is ideal, the bisection bandwidth is a
better metric to use for the network, and the interference
problem can be taken into account by using a bandwidth
measured in the presence of interference (or provided by
some model that is interference-aware). Doing so would
provide a better estimation of the time needed for both
operations, but the time provided would not be a lower
bound anymore.

Hypothesis 3: Ideal storage system

The writing speed is not higher than the reading speed
(SWrite ≤ SRead). The device must share its I/O time between
reads and writes and thus cannot sustain simultaneous reads
and writes at maximum speed (during any span of time t, if
a time tRead ≤ t is spent reading, the storage cannot write
for more than t− tRead , and conversely).

Hypothesis 3 holds for most modern storage devices.
Moreover, we assume that all resources are available for

both the commission operation without restrictions.

C. Hypotheses on the initial distribution of the data
The initial data distribution is important for the perfor-

mance of the commission operation. Thus we make some
hypotheses in this respect.

Hypothesis 4: Load-balancing
All N nodes initially host the same amount of data D.

Hypothesis 4 matches the load-balancing target of policies
implemented in existing file systems, such as HDFS [19] or
RAMCloud [6].

We distinguish between data and unique data. The data is
the amount of space used to store information on the storage
system, including the replicas. The unique data is the data
without the redundancy of the replicas.

We denote any item stored on the cluster as an object
(which, for a file system, can be a file or a chunk of a file).
The amount of unique data is the size of all objects stored,
while the amount of data stored is r times larger because of
the replication of data.

Hypothesis 5: Data replication
Each object stored in the storage system is replicated

on r ≥ 2 distinct nodes. The probability of finding a given
object on a node is uniform and independent.

We denote as exclusive data of a subset of nodes the data
that has all its replicas on nodes included in the specified
subset.

Hypothesis 6: Uniform data distribution
All sets of r distinct nodes host the same amount of

exclusive data, independently of the choice of the r nodes.
Since there are

(N
r

)
distinct sets of r distinct nodes in a

system of N nodes, each such set of r nodes hosts exactly
ND/

(
r
(N

r

))
exclusive data.

The rationale behind this hypothesis is the effect of
fault on load-balancing. The fault tolerance mechanism can
accommodate r− 1 simultaneous faults at most. In such a
situation, in order to recover as quickly as possible, the
remaining n+ 1− r nodes should have to recreate replicas
for the same, minimum amount of data regardless of which
nodes crashed. Thus, each possible set of r distinct nodes
has the same amount of exclusive data.

Since there is a total of ND
r unique data and

(N
r

)
sets of r

distinct nodes, each set of r nodes has exactly ND/
(

r
(N

r

))
of exclusive data.



From Hypothesis 6, we deduce Property 1.

The probability of finding a given object on all the
nodes in a set of r distinct nodes is uniform and independent
of the chosen set. (Prop. 1)

D. Formalizing the problem
At the end of both the commission and decommission

operations, the data distribution should satisfy the following
objectives.

Objective 1: No data loss
No data can be lost during either operations.

Objective 2: Maintenance of the replication factor
Each object stored on the storage system is replicated on

r distinct nodes. The probability of finding an object on a
node is uniform and independent. Moreover, the replication
factor of the objects should not drop below r during the
operations.

Objective 3: Load-balancing
All nodes host the same amount of data D′.

Objective 4: Uniform data distribution
All sets of r distinct nodes host the same amount of

exclusive data, independently of the choice of the r nodes.
Objective 1 is obvious for a storage system. Objec-

tives 2, 3, and 4 are the counterparts of Hypotheses 5, 4,
and 6 and are here to ensure a data distribution that is the
same as if the cluster always had its new size.

Both the hypotheses and the objectives are rarely attained
in practice. However, they reflect the goal of the load-
balancing policies implemented in many current state-of-
the-art distributed file systems such as HDFS [19] or RAM-
Cloud [6].

V. LOWER BOUND FOR THE COMMISSION

In this section, we study the time needed to commission
nodes in a cluster.

A. Problem definition
Commissioning (adding) nodes to a storage system in-

volves two steps. First, the cluster receives a notification
about nodes ready to be used. Second, the data stored in the
cluster is balanced among all nodes to homogenize the load
on the servers.

Ideally, at the end of the operation, the system should
not have any traces of the commission; it should appear as
if it always had the larger size. It is important in order to
ensure a normal operating state, as well as to prepare for
any operation of commission or decommission that could
happen afterwards.

In this work, we look for a lower bound tcom of the time
needed to commission a set of x empty nodes (new nodes)
to a cluster of N nodes (the old nodes). At the end of the
commission, all objectives defined earlier (Objectives 1, 2,
3, and 4) must be satisfied.

B. Data to move

The commission is mainly a matter of transferring data
from old to new nodes. In the following parts, the amount
of data to transfer from sets to sets is quantified.

1) Data needed per new node: With the objectives of
not losing data, of maintaining data replication, and of load-
balancing (Objectives 1, 2, and 3) and the fact that each of
the N nodes initially host D data (Hypothesis 4), we deduce
the following.

Each node must host D′ = ND
N+x of data at the end of

the commission. (Prop. 2)

Demonstration:
Objectives 1 and 2 ensure that there is as much data on

the cluster at the end of the commission as there was in
the initial situation.

Objective 3 ensures that each node hosts the same
amount of data.

Thus, the amount of data on a node at the end of the
commission D′ is the total amount of data on the cluster
divided by the number of nodes:

D′ =
ND

N + x
.

QED

2) Data needed by the new nodes: With the amount of
data needed per node, we obtain the amount of data that
must be written onto the new nodes.

D→new = xD′ = xND
N+x (Prop. 3)

Demonstration:
There are x new nodes, and each hosts D′ of data. Thus

D→new = xD′ =
xND
N + x

.

QED

3) Required data movements from old to new nodes:
Without considering data replication, the old nodes should
transfer to the new nodes as much data as they need.

Because of data replication, however, some objects must
have multiple replicas to be written on the new nodes. This
requirement is particularly important because those objects
could be sent once to new nodes and then forwarded from
new nodes to new nodes to reduce the amount of data to
send from old nodes to new ones.

Let us denote as pi the probability that an object has
exactly i replica(s) on the new nodes. Since we want a
specific final distribution of data, those probabilities are
known.

pi =


(x

i)(
N

r−i)
(N+x

r )
∀0≤ i≤ r

0 ∀i > r
. (Def. 1)



Detail:
The problem is modeled as an urn problem: x white

balls, N black ones. We extract r of them (Hypothesis 6)
and compute the probability that exactly i white balls are
selected.

QED
The problem is modeled as an urn problem: x white balls,

N black ones, we extract r of them (Hypothesis of uniformity
6) and compute the probability that exactly i white balls are
selected.

Properties on the probabilities: The following are use-
ful properties on the probabilities for computing the lower
bound of the commission time.

∑
r
i=0 pi = 1 (Prop. 4)

Demonstration:
All files have between 0 and r replicas on the new nodes.

QED

∑
r
i=0 ipi =

xr
N+x . (Prop. 5)

Demonstration:
The data stored on the new nodes at the end of the com-

mission Dnew can be expressed in two different manners:
• With the amount of data per node:

Dnew = x
ND

N + x
• With the probability of finding a replica on them:

Dnew =
ND

r

r

∑
i=0

ipi

Thus,
r

∑
i=0

ipi =
xr

N + x
.

QED

Minimum amount of data to read and send from old
nodes: Of all unique data, only the part that has at least
a replica to place on the new nodes must be moved. This
amount is expressed as Dold→new.

Dold→new = ND
r (1− p0). (Prop. 6)

Demonstration:
All the unique data that must be transferred to new nodes

must be read from the old nodes.

Dold→new =
ND

r

r

∑
i=1

pi

Dold→new =
ND

r
(1− p0)

QED

1) Cluster objects according to the
placement of their replica; i.e.,
two objects whose replicas are on
the same set of servers will be
considered in the same cluster.

2) Divide {clusters} according the
proportions in the new placement;
i.e., from a given cluster C of
objects, pick randomly a proportion
pi (for i in [0,r]) of objects that
will be replicated i times in the
new servers.

3) For each subdivision, assign the
corresponding number of replicas to
the new nodes uniformly and remove
the same number of replicas from
the old nodes uniformly.

Algorithm 1: Algorithm designed to rebalance data without
transferring data between old nodes.

Data that can be moved from either new or old nodes
to new nodes: Of course, reading and sending the minimum
amount of data are not enough to complete the commission.
The remaining data can be read either from old nodes or
from new nodes after they receive the first replicas (from the
old nodes). The total amount of this data is Dold/new→new.

Dold/new−>new = ND
rx (

rx
N+x + p0−1). (Prop. 7)

Demonstration:
Dold/new→new is the amount of data that must be stored

on new nodes D→new minus the replicas that can be read
only from old nodes Dold→new.

Dold/new→new = D→new−Dold→new

=
xND
N + x

− ND
r

(1− p0)

=
ND
rx

(
rx

N + x
+ p0−1)

QED

4) Data placement that does not involve data transfers
between old nodes: The preceding sections focused on the
data transfers to new nodes; however, data transfers between
old nodes could compete with the essential ones.

To avoid data transfers between old nodes, we need to
design a data redistribution scheme for the old and new
nodes that has the following property: the data that was
present initially on an old node is either staying on it or
being transferred to new nodes.

Assuming that objects can always be divided in
multiple objects of any smaller size, Algorithm 1 avoids



all data transfers between old nodes and satisfies all the
objectives. (Prop. 8)

Demonstration:
Objectives 1 and 2 are satisfied by design since data is

transferred from node to node.
No data transfers occur between old nodes by design.
Quantifying data transfers
Let Sr

old be the set of sets of r distinct old nodes.
Sr

old contains exactly
(N

r

)
elements.

Let A be a set of r distinct old nodes (A ∈ Sr
old).

Let DA be the amount of data exclusive to A.

DA =
ND
r
(N

r

)
The second step of Algorithm 1 divides the exclusive

data of A into r+1 distinct subsets of sizes D0
A, ..., Dr

A.

∀0≤ i≤ r,Di
A = piDA

Then, during the third step of Algorithm 1, for all i ∈
[0,r], each new node receives a part di

A of the exclusive
data stored on D.

∀0≤ i≤ r,di
A =

iDi
A

x

During the same phase, each node in A loses dri
A of the

exclusive data initially storage on A.

∀0≤ i≤ r,dri
A =

iDi
A

r
Load-balancing (Objective 3)
Algorithm 1 assigns D′new data to each new node. D′new

is the sum of all di
A for all possible i and A.

D′new = ∑
A∈Sr

old

r

∑
i=0

di
A

= ∑
A∈Sr

old

r

∑
i=0

iDi
A

x

=

(
N
r

) r

∑
i=0

NDipi

rx
(N

r

)
=

ND
xr

r

∑
i=0

ipi

=
xD

N + x
(with prop. 5)

= D′

Algorithm 1 leaves D′old data to an old node n. D′old is
D minus the sum of all dri

A for all possible i and all A that
include n.

Let Sr
old(n) be the set of sets of r distinct nodes that

include n. Sr
old(n) contains

(N−1
r−1

)
sets.

D′old = D− ∑
A∈Sr

old(n)

r

∑
i=0

dri
A

= D− ∑
A∈Sr

old(n)

r

∑
i=0

iDi
A

r

= D− ∑
A∈Sr

old(n)

r

∑
i=0

NDipi

r2
(N

r

)
= D−

(
N−1
r−1

)
ND

r2
(N

r

) r

∑
i=0

ipi

= D−
(

N
r

)
r
N

ND
r2
(N

r

) xr
N + x

(with prop. 5)

= D− xD
N + x

= D′

With this, the objective of load-balancing is satisfied.
Exclusive data (Objective 4)
Let A be a set of r distinct nodes.
Let k be the number of new nodes in A.
Let Dex be the amount of exclusive data on A.
In order to show that the distribution satisfies objective

4, Dex should be equal to ND
r(N+x

r )
.

The amount of exclusive data on A is composed of
objects that have r−k replicas on old nodes and k replicas
on new nodes. Before being assigned to the new nodes,
the k replicas could have been on any other two old
nodes. Sicne the algorithm does not move data between
old nodes, however, the data present on the old nodes after
the redistribution was initially on the same old nodes.

From this, we deduce that Dex is the product of the
following.

1) nb, the number of sets of r distinct nodes containing
the r− k old nodes of A;

2) Dk
A, the amount of data from a set of r distinct

nodes that was assigned to exactly k new nodes by
Algorithm 1;

3) premain, the proportion of that data that remains on
the r− k old nodes of A;

4) pdistr, the proportion of that data that is assigned to
the k new nodes of A;

Using the urn problem, we have

premain =

(r−k
r−k

)(k
0

)( r
r−k

) =
1( r

r−k

)
pdistr =

(k
k

)(x−k
0

)(x
k

) =
1(x
k

)
nb =

(
N− r+ k

k

)
.

Thus,
Dex = nb×Dk

A× premain× pdistr.



After simplification,

Dex =
ND

r
(N+x

r

) .
Thus, the objective of uniformity is satisfied. QED

With this result, since no data transfers are required
between old nodes, it will not have any impact on the lower
bound of the time needed to commission nodes.

Of course, in practice objects cannot be indefinitely di-
vided. So when relaxing the goals of load-balancing and
uniform data distribution, as it is in practice, the data
transfers between old nodes can be ignored.

C. A lower bound when the network is the bottleneck

We can determine the time needed to transfer data from
the amount of data. However, two cases must be considered,
depending on the relative speed of the network with respect
to that of the storage. In the first, a slow network is the
bottleneck, and the nodes do not receive data fast enough to
saturate the storage’s bandwidth. In the second case, storage
is slow and becomes a bottleneck (i.e., storage cannot write
at the speed at which the data is received from the network).

In this section, we consider the case where the network
is the bottleneck of the system.

1) Many possible bottlenecks: The operation of commis-
sion is composed of multiple concurrent actions such as
sending and receiving data. Moreover, two strategies are
possible when sending data: send the minimum amount of
data from old nodes and forward it between new nodes, or
balance the amount of data sent by the old and the new
nodes.

Thus, we design a lower bound of the time needed by
each action; and then, because all actions must finish to
complete the commission, we extract the maximum of the
times required for each action to obtain the lower bound of
the time needed to commission nodes.

2) Receiving data: Each new node must receive D′ data,
with a network throughput of SNet . Thus the time needed to
do so is at least Trecv.

Trecv =
ND

(N+x)SNet
(Prop. 9)

Demonstration:

Trecv =
D′

SNet
.

Since D′ = ND
N+x ,

Trecv =
ND

(N + x)SNet
.

QED

3) Sending the minimum from old nodes: If one chooses
the strategy of sending as little data as possible from old
nodes, the minimal time needed is Told→new.

Told→new = D
rSNet

(1− p0) (Prop. 10)

Demonstration:

Told→new = Dold→new/Sold
Net ,

where Sold
Net = NSNet , the aggregated network speed of

the old nodes.
Thus,

Told→new =
D

rSNet
(1− p0).

QED

Of course, sending the minimum from old nodes means
that the new nodes will spend some time Tnew→new to forward
the data.

Tnew→new = ND
rxSNet

∑
r
i=2(i−1)pi (Prop. 11)

Demonstration:

Tnew→new = Dold/new→new/Snew
Net ,

where Snew
Net = xSNet , the aggregate network speed of the

new nodes. Thus,

Tnew→new =
ND

rxSNet

r

∑
i=2

(i−1)pi

QED

4) Balancing the sending operations between old and new
nodes: The previous strategy can be easily improved when
the new nodes spend more time forwarding data than the
old nodes spend sending it (i.e. Tnew→new > Told→new). In
this situation, the old nodes should send more data, thus
reducing the amount that must later be forwarded by new
nodes.

In that case, the minimum time required to send all the
needed data to their destination is T balanced

→new .

T balanced
→new = xND

(N+x)2SNet
(Prop. 12)

Demonstration:
Let us denote as Y the amount of data that must be

transferred between new nodes to balance send times for
transfers from old to new nodes and between new nodes.

T balanced
old→new =

D→new−Y
Sold

Net
=

1
NSNet

(x
ND

N + x
−Y )

T balanced
new→new =

Y
Snew

Net
=

1
xSNet

Y

Then T balanced
old→new = T balanced

new→new, and thus Y = x2ND
(N+x)2

QED



5) Properties: A few useful properties can be deduced.

If Told→new ≤ Tnew→new, then
Told→new ≤ T balanced

→new ≤ Tnew→new. (Prop. 13)

Demonstration:
Assuming Told→new ≤ Tnew→new, we have the following.

Told→new ≤ Tnew→new

1− p0 ≤
N
x

r

∑
i=2

(i−1)pi

r

∑
i=1

pi ≤
N
x

r

∑
i=1

(i−1)pi

r

∑
i=1

pi ≤
N
x

r

∑
i=1

ipi−
N
x

r

∑
i=1

pi

x
N
(1+

N
x
)

r

∑
i=1

pi ≤
r

∑
i=1

ipi

(
x
N
+1)

r

∑
i=1

pi ≤
r

∑
i=1

ipi

T balanced
→new −Told→new

=
D

SNet

(
xN

(N + x)2 −
1− p0

r

)
=

D
rSNet

(
N

N + x

r

∑
i=1

ipi−
r

∑
i=1

pi

)
using the properties on pi

≥ D
rSNet

(
N

N + x
N + x

x

r

∑
i=1

pi−
r

∑
i=1

pi

)
using the assumption

≥ 0

Tnew→new−T balanced
→new

=
D

SNet

(
N
rx

r

∑
i=2

(i−1)pi−
xN

(N + x)2

)

=
D

SNet

(
N
rx

r

∑
i=2

(i−1)pi−
N

r(N + x)

r

∑
i=0

ipi

)
with prop. 5

=
ND

xrSNet

(
r

∑
i=1

ipi−
r

∑
i=1

pi−
x

N + x

r

∑
i=1

ipi

)

=
ND

xrSNet

(
N

N + x

r

∑
i=1

ipi−
r

∑
i=1

pi

)

≥ ND
xrSNet

(
N

N + x
N + x

N

r

∑
i=1

pi−
r

∑
i=1

pi

)
using the assumption

≥ 0

QED

If Told→new ≥ Tnew→new, then
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Figure 1. Important times when adding nodes to a cluster of 20 nodes
each hosting 100 GB of data, SNet = 1 GBps, r = 3.

Told→new ≥ T balanced
→new ≥ Tnew→new. (Prop. 14)

Demonstration:
Basically the same as Property 13. QED

Trecv ≥ T balanced
→new (Prop. 15)

Demonstration:

Trecv−T balanced
→new =

N2D
(N + x)2SNet

≥ 0.

QED

6) Commission time with a network bottleneck: The
commission, in the case of a network bottleneck, cannot
be faster than tcom.

tcom = max(Told→new,Trecv) (Prop. 16)

Demonstration:
The commission time is the maximum between Trecv

(time to receive data) and the time to send the
data: Told→new (if Tnew→new ≤ Told→new) or T balanced

old→new (if
Tnew→new ≥ Told→new).

After applying Properties 13, 14, and 15, we have

tcom = max(Told→new,Trecv).

QED

Indeed, the minimum commission time is at least as long
as the time needed to receive the data and at least as long as
the time needed to send it (balancing the sending operations
between old and new nodes if needed).

In Figure 1, we can observe the different minimum times
that have been used in constructing the lower bound in the
context of a 20-node cluster initially hosting 100 GB of
data per node. When less than 40 nodes are added at once,



the bottleneck is the reception of the data by the new nodes.
When more than 40 nodes are added, however, the old nodes
do not manage to send the data they have to send as fast as
the new nodes can receive it, and thus the emission is the
bottleneck.

D. A lower bound when the storage is the bottleneck
In the case of a storage bottleneck, similar actions to the

network bottleneck case are required (reading and writing
data), but the lower bound of the time needed to finish each
action depends on the characteristics of the storage devices.

In the following, the lower bounds of each action are
evaluated in the context of a storage bottleneck.

1) Writing data: Each new node must write D′ data on
its storage, it takes at least Twrite.

Twrite =
ND

(N+x)SWrite
(Prop. 17)

Demonstration:

Twrite =
D′

SWrite
.

Twrite =
ND

(N + x)SWrite
.

QED

2) Reading the minimum from old nodes: The part of the
data that must be read from old nodes can be read in at least
Told→new.

Told→new = D(1−p0)
rSRead

(Prop. 18)

Demonstration:

Told→new =
Dold→new

Sold
Read

.

where Sold
Read = NSRead is the aggregated reading speed

of the old nodes.
Thus,

Told→new =
D(1− p0)

rSRead
.

QED

3) When buffering is possible: If the data can be put
in a faster buffer than the storage (typically from drive to
memory), reading from memory is a lot faster than from
disk and thus can be ignored.

In this case, the relevant objects are read once from the
storage of the old nodes, sent to new nodes, stored in the
storage and onto a buffer, and then forwarded from the buffer
to other new nodes if needed.

In that case, the minimal time needed for the commission
is

tcom = max(Twrite,Told→new). (Prop. 19)
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Figure 2. Important times when adding nodes to a cluster of 20 nodes
each hosting 100 GB of data. SRead = SWrite = 1 GBps, r = 3.

Demonstration:
The commission cannot be faster than reading all unique

data and writing it. QED

In Figure 2, we can observe the different times that are
important in constructing the lower bound in the context of
a 20-node cluster initially hosting 100 GB of data per node.

As in the case of a network bottleneck, when less than
40 nodes are added at once, the writing is the bottleneck. In
contrast, when more than 40 nodes are added simultaneously,
the old nodes are not numerous enough to read the unique
data they must read as fast as the new nodes can write it.

4) When buffering is not possible: Buffering may not be
usable, in particular in the case of in-memory storage (in
this case, the buffer would have the same throughput as the
main storage).

Because the storage cannot read and write at the same
time (Hypothesis 3), the new nodes should prioritize their
writing. When the number of commissioned nodes increases,
however, the old nodes will spend more time reading all the
data (T alldata

old→new) than the new nodes will spend writing it
(TWrite).

T alldata
old→new = xD

(N+x)SRead
(Prop. 20)

Demonstration:

T alldata
old→new =

D′

SRead

=
xD

(N + x)SRead
.

QED

In this situation, the new nodes can spend some time
to forward data to other new nodes and reduce the time
(T balanced

old→new) needed to read data from the old nodes.

T balanced
old→new = xND

(N+x)2
SRead+SWrite
SReadSWrite

(Prop. 21)
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Figure 3. Important times when adding nodes to a cluster of 20 nodes
each hosting 100 GB of data. SRead = SWrite = 1 GBps, r = 3.

Demonstration:
Let y be the proportion of time used to write data on

new nodes.
During the time t,
DR

o = tNSRead data is read from the old nodes,
DR

n = t(1− y)xSRead data is read from the new nodes,
DW

o = 0 data is written on old nodes,
DW

n = tyxSWrite data is written on new nodes.

DW
n +DW

o = DR
o +DR

n

Thus, y = (N+x)
x

SRead
SRead+SWrite

and T balanced
old→new = D→new

xySWrite

T balanced
old→new =

xND
(N + x)2

SRead +SWrite

SReadSWrite
.

QED

Thus, when no buffering is possible, the time needed to
commission nodes is

tcom =

{
Twrite if x≤ NSRead

SWrite
,

max(Told→new,T balanced
old→new) else.

(Prop. 22)

Demonstration:
If TWrite ≤ T alldata

old→new, then the balanced strategy is used.
Similarly to Property 13, we have

TWrite ≤ Told→new ≤ T alldata
old→new.

However, the old nodes still have to send the minimum
amount of data for a duration of Told→new.

In the other case, writing is the bottleneck, and TWrite is
the time needed for the commission.

tcom = max(TWrite,Told→new,T balanced
old→new)

QED

In Figure 3, we show the different times that are important
in constructing the lower bound, in our usual example of a
20-node cluster. When less than 20 nodes are added, the
bottleneck is the new nodes not writing fast enough. When
between 20 and 80 nodes are added at once, the old nodes
cannot read all the data fast enough by themselves; thus the
new nodes start to forward part of the data they receive to
other new nodes. But when more than 80 nodes are added
at once, the new nodes do not manage to read the unique
data they must read fast enough and are the bottlenecks.

E. Observation

In both cases of a storage bottleneck and a network
bottleneck, the more nodes that are commissioned at once,
the faster the operation finishes.

Thus, it is faster to add many nodes at once to match
the workload than to add few nodes after few nodes until
the workload is matched.

VI. COMMISSION IN HDFS

In this section we focus on the commission in HDFS
and compare the obtained commission times with the lower
bound from Section V.

1) Testbed: The experiments presented in this section
have been performed on the Grid’5000 [24] experimental
testbed. The grisou cluster from Nancy was used for the
commission measurements. Each node has 16 cores, 128
GB of RAM, a 10 Gbps network interface, and two hard
drives. The file system’s cache has been reduced to 64 MB
in order to limit its effects as much as possible.

2) HDFS: We deployed HDFS and Hadoop 2.7.3. One
node acted as both DataNode (slave of HDFS) and NameN-
ode (master of HDFS) while the others were used only as
DataNodes. One drive was reserved for HDFS to store its
data. Most of the configuration was left to its default values,
including the replication factor, which was left unchanged
at 3.

The data on the nodes was generated using the Ran-
domWriter job of Hadoop, which yields a typical data
distribution for HDFS.

3) HDFS in memory: To experiment RAM-based storage
with HDFS, we used the same setup as in the paper
introducing Tachyon [22]: a tmpfs partition of 96 GB was
mounted, and HDFS used it to store data. A tmpfs partition
is a space in RAM that is used exactly (and natively by
Linux systems) as a file system. It is seen as a drive by
HDFS, but the speeds are a lot higher (6 GB/s reading and
3 GB/s writing), moving the bottleneck from the drives to
the network.

A. Experiment protocol

To measure the commission time of HDFS, we first
deployed it on 10 nodes, and then a subset of the unused
nodes in the cluster (with 2 to 30 nodes) was randomly



selected and added to HDFS. HDFS does not rebalance the
data by itself, however, thus we used the internal rebalancer
to balance the data between new and old nodes. The recorded
time is the time taken by the rebalancer to balance the data
between old and new nodes, since adding nodes takes hardly
any time compared with the time needed to balance the data
among the nodes.

For all experiments with in-memory storage, measure-
ments were repeated 10 times (these experiments lasted for
39 h). Because of the duration of the experiments, however,
measurements for disk drive storage were repeated 5 times
(the experiements lasted for 84 h).

B. Rebalancing algorithm used in HDFS

Algorithm 2 is used by HDFS to rebalance the data in
a cluster. As done for the decommission, some parameters
of this algorithm were adjusted to improve the commission
time. The delay between two iterations was reduced from
9 s to 1 s. Moreover, HDFS checks whether the wave of
transfers is finished only every 30 s; this delay has also been
reduced to 1 s. The rebalancer limits both the throughput
of each node used for rebalancing data and the number of
concurrent data transfers. Both limits have been removed.
The threshold of the rebalancing done by HDFS is set to
2%, which means that the rebalancing will stop if all nodes
are within a 2% margin of the total node capacity of their
ideal amount of data.

C. Commission in HDFS

Figures 4 and 5 show the time needed by HDFS to
commission nodes to a cluster of 10 nodes with various
amounts of data initially on the nodes.

Figure 4 presents the duration of the commission oper-
ation when the network is the bottleneck, while Figure 5
shows the duration of the commission operation when the
storage (drives) is the bottleneck. Both figures show the
same pattern: the lower bound and the observed results are
opposite of each other. The lower bound suggests that the
time needed to commission nodes should decrease as the
number of added nodes increases, but the commission times
of HDFS increase greatly as the number of new nodes grows.

These are not surprising results: the rebalancing algorithm
is different from an optimal commission algorithm. The
rebalancing algorithm was designed to balance the load
across storage nodes, without the constraint that some of
these nodes just arrived.

The results highlight the fact that this rebalancing
algorithm was not designed to be fast but, on the
contrary, to limit the impact of a rebalancing operation
on the performance of HDFS. Our lower bound, on the
other hand, has been designed with commission speed
as the primary objective.

1) Compute the average data per
available node on the cluster; it
is the amount of data each node
should be hosting.

2) Compute the threshold; it is a
percentage of the total capacity
of the nodes, given by the user.

3) Cluster nodes according to the
amount of data hosted:

• if they host more than
average+threshold, they are
Over-Utilized;

• else if they host more than
average, they are Above-Average;

• else if they host more than
average-threshold, they are
Below-Average;

• else, if they host less than
average+threshold, they are
Under-Utilized.

4) Pair the nodes (source and target)
with the following priority:

• Over-Utilized and Under-Utilized,
• Over-Utilized and Below-Average,
• Under-Utilized and Above-Average.

5) Select data to move from the source
to the target:

• Target must not already host the
same object.

• Data must not already be
scheduled to move.

6) Execute the moves, no more than
threshold amount of data is moved
during each iteration.

• Replicas can be sent from the
source directly

• or from another node hosting the
replica.

7) Wait for all transfers to finish.
8) Repeat from the first step until

all nodes are Above-Average or
Below-Average.

Algorithm 2: Algorithm used by HDFS to rebalance
the data among the nodes, in the case of a single-rack
configuration.
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Figure 4. Commission time measured when there is a network bottleneck.
The minimum theoretical time obtained with the lower bound is added.
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Figure 5. Commission time measured when there is a storage bottleneck.
The minimum theoretical time obtained with the lower bound is added.

D. Hints to improve the commission mechanism

The lower bound highlighted two important bottlenecks:
the reception (or writing) of the data and the old nodes
sending (reading) data. Hence, in order to improve the
commission in HDFS (or any distributed storage system
using replication), the old nodes should send as little data
as possible, while the reception of data on the new nodes
should be balanced.

VII. CONCLUSION

Efficient commission of nodes are essential to enable the
design of malleable distributed storage systems. To the best
of our knowledge, this is the first study that provides a
lower bound for the duration of this operation, regardless of
their implementation. Using these generic lower bounds, we
study the commission of HDFS and highlight potential im-
provements thanks to the better understanding of the various
possible bottlenecks of the operation. For the commission,
we show that the implementation of the mechanism in HDFS
is not optimized for speed and could be greatly accelerated.

These results opened various leads for future work. The
next step is the development of a benchmark to evaluate
the practical performance of both migration operations on
a given platform. This benchmark could help design and
optimize the malleability mechanisms before implementing
them in a real distributed storage system.

Another challenge left for future work is the implemen-
tation of an efficient malleable distributed storage system in
order to evaluate its benefits on real use cases.
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[5] J. Buisson, F. André, and J. Pazat, “A Framework for
Dynamic Adaptation of Parallel Components,” International
Conference Parallel Computing, pp. 1–8, 2005.

[6] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Lev-
erich, D. Mazières et al., “The Case for RAMClouds: Scal-
able High-Performance Storage Entirely in DRAM,” ACM
SIGOPS Operating Systems Review, vol. 43, no. 4, pp. 92–
105, 2010.

[7] N. Cheriere and G. Antoniu, “How Fast Can One Scale Down
a Distributed File System?” in BigData 2017, 2017.

[8] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Es-
pinosa et al., “Parallel Scripting for Applications at the
PetaScale and Beyond,” Computer, vol. 10, pp. 50–60, 2009.

[9] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta,
and L. V. Kale, “A Batch System with Efficient Adaptive
Scheduling for Malleable and Evolving Applications,” Inter-
national Parallel and Distributed Processing Symposium, pp.
429–438, 2015.

[10] “Theta,” www.alcf.anl.gov/theta, Accessed 19/06/17.
[11] K. Jansen and L. Porkolab, “Linear-Time Approximation

Schemes for Scheduling Malleable Parallel Tasks,” Algorith-
mica, vol. 32, pp. 507–520, 2002.



[12] G. Mounie, C. Rapine, and D. Trystram, “Efficient Approx-
imation Algorithms for Scheduling Malleable Tasks,” ACM
Symposium on Parallel Algorithms and Architectures, vol. 3,
pp. 23–32, 1999.

[13] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I.
Jordan, and D. A. Patterson, “The SCADS Director: Scaling
a Distributed Storage System under Stringent Performance
Requirements,” USENIX Conference on File and Storage
Technologies, pp. 163–176, 2011.

[14] H. C. Lim, S. Babu, and J. S. Chase, “Automated Control
for Elastic Storage,” International Conference on Autonomic
Computing, pp. 1–10, 2010.

[15] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch,
and K. Schwan, “Robust and Flexible Power-Proportional
Storage,” ACM Symposium on Cloud Computing, pp. 217–
228, 2010.

[16] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: Prac-
tical Power-Proportionality for Data center Storage,” Confer-
ence on Computer Systems, p. 169, 2011.

[17] L. Xu, J. Cipar, E. Krevat, A. Tumanov, N. Gupta, C. Mellon
et al., “SpringFS : Bridging Agility and Performance in
Elastic Distributed Storage,” USENIX Conference on File and
Storage Technologies, pp. 243–255, 2014.

[18] A. Miranda and T. Cortes, “CRAID: Online RAID Upgrades

Using Dynamic Hot Data Reorganization.” in FAST, vol. 14,
2014, pp. 133–146.

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” IEEE Symposium on Mass
Storage Systems and Technologies, pp. 1–10, 2010.

[20] P. B. Godfrey and I. Stoica, “Heterogeneity and Load Balance
in Distributed Hash Tables,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, 2005, pp. 596–606.

[21] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass,
D. Harper et al., “Pelican: A Building Block for Exascale
Cold Data Storage,” in Operating Systems Design and Imple-
mentation, 2014, pp. 351–365.

[22] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica,
“Reliable, Memory Speed Storage for Cluster Computing
Frameworks,” in ACM Symposium on Cloud Computing,
2014, pp. 1 – 15.

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster Computing with Working Sets,”
HotCloud, vol. 10, no. 10, p. 95, 2010.

[24] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez,
E. Jeannot, E. Jeanvoine et al., “Adding Virtualization Capa-
bilities to the Grid’5000 Testbed,” in Cloud Computing and
Services Science, 2013, vol. 367, pp. 3–20.


