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Many dynamical systems can be successfully analyzed by representing them as networks. Em-
pirically measured networks and dynamic processes that take place in these situations show het-
erogeneous, non-Markovian, and intrinsically correlated topologies and dynamics. This makes their
analysis particularly challenging. Randomized reference models (RRMs) have emerged as a general
and versatile toolbox for studying such systems. Defined as ensembles of random networks with
given features constrained to match those of an input (empirical) network, they may for example be
used to identify important features of empirical networks and their effects on dynamical processes
unfolding in the network. RRMs are typically implemented as procedures that reshuffle an empirical
network, making them very generally applicable. However, the effects of most shuffling procedures
on network features remain poorly understood, rendering their use non-trivial and susceptible to
misinterpretation. Here we propose a unified framework for classifying and understanding micro-
canonical RRMs (MRRMs). Focusing on temporal networks, we use this framework to build a
taxonomy of MRRMs that proposes a canonical naming convention, classifies them, and deduces
their effects on a range of important network features. We furthermore show that certain classes of
compatible MRRMs may be applied in sequential composition to generate over a hundred new MR-
RMs from the existing ones surveyed in this article. We provide two tutorials showing applications
of the MRRM framework to empirical temporal networks: 1) to analyze how different features of a
network affect other features and 2) to analyze how such features affect a dynamic process in the
network. We finally survey applications of MRRMs found in literature. Our taxonomy provides a
reference for the use of MRRMs, and the theoretical foundations laid here may further serve as a
base for the development of a principled and automatized way to generate and apply randomized
reference models for the study of networked systems.
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I. INTRODUCTION

Random network models are responsible of major parts
of our theoretical understanding of networked systems
and practical knowledge extracted from networked data.
Well-known examples of such models include the Erdős-
Rényi model [1] – fixing the total number of links – and
the configuration model [2, 3] – fixing the degree se-
quence. A main application of these models is as null
models for hypothesis testing, but their use go beyond
this. To underline their general scope, we here call these
type of models randomized reference models (RRMs).
Much of what we know of the behavior of dynamic pro-
cesses in networks is based on these [4, 5], and they stand
behind many prominent results on network science such
as the absence of epidemic threshold [6], the vulnerability
to attacks [7–10], and the robustness to failures [10–12] in
certain types of networks. These models are also integral
parts of many methods for network data analysis, such
as popular network clustering methods [13, 14], network
motif analysis [15, 16], and the analysis of structural cor-
relations [17, 18]. The above is just a small selection of
applications, but the examples are legion.

As network science has matured there has been an in-
creasing need to go beyond the simple graph represen-
tation for networks, and at the same time repeat the
success of RRMs for these new types of networks. An
important extension to simple graphs are temporal net-
works, which allow the networks’ topology to evolve in
time. RRMs [19] have also emerged as a powerful tool-
box for the study of the dynamics on and of temporal
networks [20, 21] and have been applied to complex sys-
tems in a broad range of fields, including sociology, epi-
demiology, infrastructure, economics, and biology. They
have been used to study how given network features af-
fect other node- or interaction-level features [22–26], and
how the features affect dynamical processes unfolding
in the network [27–44] as well as the network’s control-
lability [45, 46]. Systems studied using temporal net-
work RRMs include: human face-to-face interactions and
physical proximity [30, 32–34, 37–40, 43, 44, 47–50]; pros-
titution networks [28, 33, 40, 44]; brain function [50]; hu-
man mobility [51]; livestock transport [52]; mobile phone
calls and text messages [25, 27, 29, 31, 37]; email corre-
spondences [27, 33, 34, 37, 40, 45, 49, 53]; online commu-
nities [33, 40, 50, 53–55]; editing of Wikipedia pages [56];
and world trade [57–59].

The popularity of RRMs for the study of complex net-
works may be explained by the fact that they may often
be defined simply as numerical procedures that gener-
ate random networks by shuffling the original data, thus
avoiding the need to specify a complete generative model.
The resulting ensemble of randomized networks typically
serves as a null reference, which is compared to the orig-
inal temporal network, or may be compared to a second
ensemble generated by another RRM. For example, by
comparing how a given dynamic process evolves on the
randomized networks with how it evolves on the original

network, we may identify how the randomized features
affect the dynamic process.

The algorithmic definition of RRMs as shuffling meth-
ods makes them simple to apply in very general settings
and with little domain-specific tweaking needed. How-
ever, an important downside to the algorithmic repre-
sentation is that the effects of RRMs on network fea-
tures are rarely investigated systematically and remain
poorly understood. This lack of systematic understand-
ing of the methods is not only a theoretical problem but
it has lead to severe practical problems in the literature.
First, there are no unified naming conventions for the
RRMs. This makes it difficult to compare the methods
used in different studies and has lead to a situation where
the algorithms producing equivalent RRMs are given a
multitude of different names, and possibly worse, where
multiple algorithms producing different RRMs are given
the same names. Second, researchers are confronted with
the problems of how to choose and develop randomization
techniques, in which order they should be applied, and
how to interpret the results. These are crucial choices in
order to be able to identify important features for each
given dynamical phenomenon and for each temporal net-
work under study (problems that are non-trivial even for
simple graphs [26]).

We review temporal network RRMs used in the lit-
erature and find that most of them fall into a class of
methods that gives a uniform probability of sampling all
networks with a given set of features constrained to the
same value as that of the original data [31]. Inspired
by the concept of microcanonical ensembles in statistical
physics [60, 61], we will call these methods microcanon-
ical randomized reference models (MRRMs), and repre-
sent them in a formal framework where they are fully
defined by the set of features they constrain. This prin-
cipled approach has several advantages over the algorith-
mic representation: As MRRMs are completely defined
by the constraints that they impose, we propose an un-
ambiguous naming convention for MRRMs of temporal
networks based on these constraints. Furthermore, this
framework enables us to build a taxonomy of existing
MRRMs, which lists their effects on important temporal
network features and orders them by the amount of fea-
tures they constrain. This hierarchy allows researchers
to apply MRRMs so that the fixed features of the orig-
inal data are systematically reduced. Finally, we show
how and when new MRRMs can be devised by applying
previously implemented algorithms one after another.

Reference modelsz, which keep parts of the features
of original data and shuffle the rest, are clearly widely
applicable outside of temporal networks. For exam-
ple, MRRMs are closely related to exact (permutation)
tests of classical statistics [62] and to conditionally uni-
form graph tests (CUGTs) found in the sociology litera-
ture [53, 63, 64]. Furthermore, even though we are here
mostly concerned with temporal networks, our frame-
work of MRRMs is directly applicable to a far more gen-
eral class of systems, which can be considered as a re-
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alization of a state in a predefined microcanonical state
space. In particular, it may be applied e.g. to correlation
matrices or to more general types of relational data such
as multilayer networks or hypergraphs.

It is our aim that, in addition to categorizing pre-
vious RRMs and surveying the literature, the unified
framework and taxonomy we present would serve as
a starting point for the development of a general and
principled randomization-based approach for the char-
acterization and analysis of networked dynamical sys-
tems. To this end, we provide a practical guide to re-
searchers who want to apply MRRMs to analyze tem-
poral network data. We provide (at https://github.
com/mgenois/RandTempNet) a pure python library im-
plementing the MRRMs presented in this article; fur-
thermore, for applications to larger networks we pro-
vide (at https://github.com/bolozna/Events) a fast
Python library with core functions written in C++ im-
plementing most of the MRRMs.

A. Road map to this article

This article is organized in a way that we start from the
theoretical foundations of temporal networks and ran-
domized reference models and build up to the applica-
tions and literature review. Readers who are solely in-
terested in finding a catalog and classification of existing
MRRMs may jump directly to Section V and refer to
Tables I and II for notation). A brief overview and a
walk-through example of how to apply MRRMs for the
analysis of temporal networks are found in Section VI,
while a literature review of applications of MRRMs to
temporal network data is given in Section VII.

In Section II we provide the basic representations of
temporal networks and lay out the general framework of
microcanonical RRMs. Notably, we introduce the con-
cepts and definitions needed to order and build hierar-
chies of MRRMs used in Section V. Furthermore, we de-
velop a theory for composing MRRMs by applying one
algorithm after another. This is used in Section IV to
implement shuffling methods and can be used to create
new MRRMs not found in the literature yet.

In Section III we list a number of important features
of temporal networks, which are sufficient to fully de-
scribe the MRRMs found in our literature review, and
we establish their hierarchy.

In Section IV we describe how MRRMs are imple-
mented in practice, and we define general classes of gener-
ators of MRRMs. This classification is based on the var-
ious temporal network representations defined in Section
II. Furthermore, we see how the compositions of MRRMs
discussed earlier in theory can be used in practice.

In Section V we use the theory and features defined
earlier to present a naming convention for MRRMs for
temporal networks, and we classify MRRMs found in the
literature and list their effects on important temporal
network features.

In Section VI we give a procedure for statistical anal-
ysis using MRRMs, and we provide two different walk-
through examples of how to apply them to analyze em-
pirical temporal networks. Namely, we give 1) an analy-
sis of how different features of a face-to-face interaction
network constrain and affect other features of the net-
work, and 2) a characterization of how different network
features influence the speed of spreading in an email com-
munication network.

In Section VII we finally give a review of applications
of MRRMs found in the literature.

An appendix lists additional features for describing
MRRMs for directed temporal networks (Appendix A).

II. FUNDAMENTAL DEFINITIONS AND
GENERAL RESULTS

In this section we define fundamental concepts and de-
rive general results for temporal networks and for micro-
canonical randomized reference models (MRRMs). We
focus on microcanonical RRMs as these represent the
class of maximum entropy models that can be obtained
directly by randomly sampling constrained permutations
of an empirically observed network (i.e. by shuffling the
network). We note in passing that, while we here ap-
ply the formalism to the study of temporal networks, the
results derived in subsections II B and II C apply more
generally to MRRMs for any system with a discrete state
space [65].

Subsection II A provides definitions of a temporal net-
work and of the important notion of a temporal network
feature, defined as any function that takes a temporal
network as input and which is used as the constraint
imposed by a MRRM. The subsection also presents two-
level representations of a temporal network which facili-
tate definition of temporal network features (Section III)
and the implementation of many MRRMs (Section IV).
Subsection II B provides a rigorous definition of a MRRM
and introduces its basic properties. It also formalizes
the concept that one MRRM shuffles more than another,
and the partial order of MRRMs induced by this notion
of comparability allows us to build a hierarchy of MR-
RMs (Section V). These hierarchies are also useful in the
practical employment of MRRMs (Section VI).

Finally, Subsection II C considers how we may combine
a pair of MRRMs to form a new MRRM. Composition of
two reference models by applying one shuffling method
after another is a practical way of creating new refer-
ence models. However, not all MRRMs are compatible
in a way that their composition would produce another
MRRM, and in this last subsection we develop the theory
needed to show that two MRRMs are compatible and to
identify the MRRMs resulting from their composition.
The theorems developed in this subsection are instru-
mental for defining the important classes of compatible
MRRMs which are employed in practice in Section IV.

https://github.com/mgenois/RandTempNet
https://github.com/mgenois/RandTempNet
https://github.com/bolozna/Events
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A. Temporal network

We consider a system consisting of N individual nodes
engaging in intermittent dyadic interactions observed
over a period of time from t = tmin to t = tmax; in a
social network, for example, the nodes are persons, in an
ecological network nodes are species, while in a transport
network they are locations. A temporal network is our
representation of such an observation.

Definition II.1. Temporal network. A temporal net-
work G = (V, C) is defined by the set of nodes V =
{1, 2, ..., N} and a set of events C = {c1, c2, . . . , cC},
where each event cq = (iq, jq, tq, τq) denotes an inter-
action between nodes iq and jq during the time-interval
[tq, tq + τq).

Definition II.1 encompasses both temporal networks
with directed interactions (e.g. for phone-call or instant
messaging networks) and undirected interactions (e.g. for
face-to-face or proximity networks), but does not con-
sider possible weights of the events. For directed net-
works, we may adopt the convention that the direction
of an event cq is from iq to jq. For undirected networks,
the presence of the event (iq, jq, tq, τq) implies the sym-
metric interaction (jq, iq, tq, τq), and in practice we may
impose iq < jq for efficient data storage.

For simplicity, we consider only undirected temporal
networks in the main text, and in the same spirit of sim-
plicity we have not considered possible weights of events
in the above definition. However, all models and meth-
ods may be applied directly to temporal networks with
directed and/or weighted events. Furthermore, they may
easily be extended to explicitly take into account the di-
rectionality or weights of interactions by defining the ap-
propriate features (see Appendix A and Section VII).

For some systems, e.g., email communications or in-
stant messaging [27, 33, 34, 37, 40, 45, 49, 53], events
are instantaneous; in other cases, event durations are so
short compared to the time-intervals between them, the
inter-event durations, that they may be treated as instan-
taneous [27, 31]. Both cases are included in the above
framework by setting τ = 0. We may then reduce our
representation of the sequence of events to a sequence of
reduced instantaneous events, leading us to the definition
below.

Definition II.2. Instant-event temporal network. An
instant-event temporal network G = (V, E) is defined
by the set of nodes V = {1, 2, ..., N} and a set of re-
duced events E = {e1, e2, . . . , eE}, where each event
eq = (iq, jq, tq) describes an interaction between nodes
iq and jq at time tq, but where the duration is implicit.

Some systems with continuous dyadic activity, notably
face-to-face interaction and proximity networks [66, 67],
are recorded with a coarse time resolution at evenly
spaced points in time, t = tmin, tmin + ∆t, tmin +
2∆t, . . . , tmax − ∆t. In this case we may either repre-
sent the system as an instant-event network, where the

events mark a beginning of an activity at each measure-
ment time and the time-resolution τ = ∆t is implicit.
Alternatively, and more commonly, the system is repre-
sented as a temporal network, where consecutive mea-
surements of activity between the same pair of nodes are
merged into a single event with the duration τ indicating
the length of the event. Both representations will come
in handy for defining different types of MRRMs.

Definition II.3. Temporal network feature. A feature
x is any function that takes as an input any temporal
networkG. Formally, given a space of temporal networks,
the state space G, x is a function x : G → X , where X is
an arbitrary set.

Typically a feature is a vector-valued function. In this
case X = Rd, where d is the dimension of the feature.
However, the definition allows for more general functions,
e.g., a space of networks.

An important temporal network feature is the static
graph, which summarizes the time-aggregated topology
of a temporal network.

Definition II.4. Static graph. The static graph, Gstat,
is a function which returns a simple unweighted graph
Gstat(G) = (V,L) with the same set of nodes V as the
original temporal network G and the set of links L =
{(i, j) : (i, j, t, τ) ∈ C}, which includes all pairs of nodes
(i, j) that interact at least once in G.

Note that by Def. II.4 the static graph is a feature of a
temporal network. Conversely, we may see the temporal
network as a direct generalization of the static graph to
include information about the time-evolution of the sys-
tem’s topology [20]. Note that here we have defined a
static graph as an unweighted graph, but one could also
use the number of times the contact occurs or the total
duration of contact as an edge weight (see Section III).

1. Two-level temporal network representations

Sometimes it is useful to separate the static structure
and the temporal aspect in the definition of the temporal
network as opposed to having them mixed together like in
definitions II.1 and II.2. This can be done by separating
these two aspects into two levels, either by first defining
the network structure and then how it changes in time, or
by first defining the sequence of activation times and then
the network structure at each of those times. We call the
first of these options a link-timeline network and the sec-
ond a snapshot-graph sequence. These two-level temporal
network representations will be practical for visualizing
temporal networks, defining important temporal network
features (Sec. III), and for designing and implementing
MRRMs for temporal networks (Sec. IV).

Definition II.5. Link-timeline network. A link-timeline
network GL = (Gstat,Θ) represents a temporal network
by using the static graph Gstat = (V,L) to indicate the
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(a)

1

2

3

4

Θ(1,2)

Θ(1,3)

Θ(2,3)

Θ(2,4)

(b)

FIG. 1: Link-timeline network. Graphical
representation of the link-timeline network GL of an
illustrative temporal network consisting of four nodes
and recorded in discrete time. (a) Static graph Gstat

showing links between nodes. Links are drawn between
pairs (i, j) of nodes that interact at least once. (b)

Timelines Θ =
{

Θ(1,2),Θ(1,3),Θ(2,3),Θ(2,4)
}

of the links
L in the graph, showing when each link is active.

pairs of nodes that interact at least once during the ob-
servation period (Def. II.4). To each link (i, j) ∈ L we
associate a timeline Θ(i,j) ∈ Θ, which indicates when the
corresponding nodes interact. Each timeline is given by
a sequence

Θ(i,j) =
((
t1(i,j), τ

1
(i,j)
)
,
(
t2(i,j), τ

2
(i,j)
)
, . . . ,

(
t
n(i,j)
(i,j) , τ

n(i,j)
(i,j)

))
,

(1)
where tm(i,j) is the start of the mth event on link (i, j),
with τm(i,j) its duration, and n(i,j) is the total number of
events taking place over the link [68].

Example II.1. Figure 1 shows an example link-timeline
network of a temporal network consisting of four nodes
and recorded at finite time-resolution. Panel (a) shows
the static graph Gstat, while panel (b) shows the link
timelines Θ.

Alternative to the link timeline networks we may think
of a temporal network as a time-varying sequence of in-
stantaneous graph snapshots. This leads to the following
definition:

Definition II.6. Snapshot-graph sequence. A snapshot-
graph sequence, GT = (T ,Γ), represents a temporal net-
work using a sequence of times, T = (t1, t2, . . . , tT ), and
a sequence of snapshot graphs,

Γ = (Γ1,Γ2, . . . ,ΓT ) , (2)

where for each m = 1, 2, . . . , T , Γm ∈ Γ is associated
to tm ∈ T . The snapshot graphs are defined as graphs
Γm = (V, Etm), where V is the set of nodes and Et is the

FIG. 2: Snapshot-graph sequence. Sequence of
snapshot graphs of the temporal network shown in

Fig. 1.

set of edges for which there is an event taking place at
time t,

Et = {(i, j) : (i, j, t) ∈ E} . (3)

Instantaneous-event networks can be represented as
snapshot-graph sequences by constructing the sequence
of times T as the times at which at least one event takes
place. This is a natural representation especially for net-
works which are recorded with fixed time-resolution (as
the sequence of times becomes T = (∆t, 2∆t, . . . , T )) and
if the time resolution is coarse enough so that the indi-
vidual snapshot graphs do not become too sparse. We
use the shorthand Γt to refer to the snapshot graph as-
sociated with the time t ∈ T (i.e. Γtm for m such that
tm = t).

Example II.2. Figure 2 shows the snapshot-graph se-
quence for the same temporal network as in Fig. 1.

Note that the two-level temporal networks do not add
anything new to the temporal network structure. They
are simply alternative ways of representing them because
any temporal network can be uniquely represented as
a link-timeline network and any instant-event temporal
network can be uniquely represented as a snapshot-graph
sequence. Despite this, the representations are often used
for specific types of systems and they come with their own
perspective on temporal networks.

The link-timeline networks are often used for data that
is sparse in time such that only a few links are active at
each time instant. Furthermore, because the static net-
work is made explicit in its definition it is easy to think
that the temporal network has a latent static network
which manifests as activation events of the links. For ex-
ample, for an email communication data represented as
link-timeline network one might consider the static graph
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as an acquaintance or friendship network where each so-
cial tie is activated during the communication events.
The structure also guides the generation of randomized
reference models, because it is easy to either randomize
the static graph and keep the link timelines, or randomize
the timelines while keeping the static graph.

The snapshot-graph sequences are more likely used for
data that is dense in time such that each snapshot graph
contains a reasonable number of links. Furthermore, this
representation is natural for networks that change in time
while the network nature of the system is still impor-
tant at each separate time instance. For example, for
networks in which the structure changes on the same or
longer timescales as dynamics on that network, it is im-
portant to be able to look at the topology of the network
at each time instance. Here, again, the structure guides
the construction of randomized reference models: It is
convenient to define shuffling methods where the order
of the snapshot graphs change or where each of them are
independently randomized.

The two-level temporal network representations pro-
vide convenient ways to define and generate MRRMs that
constrain certain overall properties. We will explore this
in detail in Section IV and see that many RRMs found
in the literature are implemented this way in Section V.

B. Randomized reference model

Here we give a rigorous definition of a microcanonical
RRM (MRRM). We furthermore develop several related
concepts and properties of MRRMs. We will use these
to consistently describe and hierarchically rank MRRMs
in Sections IV and V.

1. Basic definitions

Consider a predetermined finite [69] Many procedures
leading to a sampling from a conditional probability dis-
tribution P (G|G∗) defined on G could be considered to be
randomized reference models (RRMs). In order for such
models to be useful for testing hypothesis and finding ef-
fect sizes they need to retain some of the properties of the
original network G∗ and randomize others in a controlled
way. In the context of graphs, the most popular choices
of RRMs include Erdős-Renyi (ER) models [1, 2], con-
figuration models [2, 3], and exponential random graph
models [2].

Here we will focus on models that exactly preserve cer-
tain features but are otherwise maximally random, and
call these microcanonical randomized reference models
(MRRMs). In the context of static graphs the variant of
the ER model that returns uniformly at random a graph
with N nodes and L edges, and the variant of the configu-
ration model that returns uniformly a randomly selected
graph with degree sequence k = (ki)i∈V , also known as
the Maslov-Sneppen model [15], are MRRMs.

We will next formally define MRRMs and show that
they have several attractive properties. We shall also
see in Section V that most RRMs for temporal networks
generated by shuffling an input network are of this type.

Definition II.7. Microcanonical randomized reference
model (MRRM). Consider any function x that has the set
G as domain (i.e. a temporal network feature, Def. II.3).
A MRRM, denoted by P[x], is then a model which given
G∗ ∈ G returns G ∈ G with probability:

Px(G|G∗) =
δx(G),x(G∗)

Ωx(G∗) , (4)

where δ is the Kronecker delta function, and Ωx(G∗) =∑
G∈G δx(G),x(G∗) is a normalization constant.

We will sometimes use shorthand notation x∗ = x(G∗),
and Ωx∗ = Ωx(G∗). Furthermore, because the condi-
tional probability depends only on the value of the feature
of G∗ we can define the notation Px(G|x∗) = Px(G|G∗).

In the above definition the feature function x defines
the features of G∗ that are retained in the randomized
reference model. In statistical physics terms Ωx∗ is the
microcanonical partition function and is equal to the mul-
tiplicity of microstates.

Note that restricting ourselves to a single feature en-
tails no loss in generality since any number of distinct
features may be combined into one tuple-valued feature,
e.g., for two distinct features x and y, we may simply de-
fine a third tuple-valued feature z = (x,y) (see Def. II.11
below).

Example II.3. The Maslov-Sneppen model [15] is an
example of a MRRM for static graphs. In the state space
of static graphs it is defined as P[k]. It maps an input
graph G∗ to a microcanonical ensemble of graphs that all
have the same sequence of node degrees k∗ = k(G∗) but
are otherwise uniformly random.

While the definition of MRRMs is written as a con-
ditional probability it is often useful to use alternative
representation of MRRMs.

Definition II.8. MRRM representations:

1. Transition matrix. A MRRM is a linear stochastic
operator mapping the state space G to itself. For
a given indexing of the state space G, we can rep-
resent a MRRM by a transition matrix Px with
elements

Px
ij = Px(Gj |Gi) . (5)

Px is always a block diagonal matrix where inside
each block the elements have the same value.

2. Partition of the state space. The feature function
defines an equivalence relation and thus partitions
the state space [70]: Given x, one can construct a
partition of the state space {Gi} (i.e., a set of sub-
sets of G such that each element of G is in exactly
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one subset) such that G,G′ ∈ Gi if x(G) = x(G′).
The set which G∗ ∈ G belongs to in this parti-
tion is the x-equivalence class of G∗ and is de-
noted by Gx∗ = {G ∈ G : x(G) = x∗}. Note that
the partition function is the cardinality of this set,
Ωx∗ = |Gx∗ |.

3. Shuffling method. An algorithm that transforms
G∗ into G according to Def. II.7. These algorithms
often shuffle some elements of G∗. Note that multi-
ple algorithms or shuffling procedures might corre-
spond to the same MRRM and in this case these are
considered here to be the same shuffling method.

Example II.4. To illustrate the different MRRM rep-
resentations, we consider the state space G of all static
graphs with 3 nodes and the MRRM P[L], defined by the
feature L which returns the number of edges in the net-
work, corresponding to the Erdős-Rényi random graph
model ER(3, L). We number the 8 states in G such that
L(G1) = 0, L(Gi) = 1 for i = 2, 3, 4, L(Gi) = 2 for
i = 5, 6, 7, and L(G8) = 3 [Fig. 3(a)], and we take as
input state the graph G∗ = G5. Figure 3 shows graph-
ically the four different representations of P[L] for the
state space G and the input graph G∗.

All of these representations are equivalent in a sense
that they completely and uniquely specify a MRRM (in
the case of shuffling methods this is by definition). For
example, each P [x] defines exactly one partition and each
partition defines exactly one P [x]. Note that two fea-
ture functions x and y might correspond to the same
partition, transition matrix, or shuffling method, but in
this case the two functions also give the same conditional
probabilities in Def. II.7 and we say that P [x] = P [y].
The power of the equivalence between the different repre-
sentations is that any result proven for one representation
automatically carries over to the others. We will in the
following text switch between the representations to use
the one that is most convenient in each context.

2. Hierarchies of MRRMs

Some MRRMs shuffle more (i.e. keep less) structure
than others. We will next formalize this notion which
allows us to compare MRRMs and build hierarchies be-
tween them. Such hierarchies turn out to be useful for
classification of MRRMs. Furthermore, sequences of MR-
RMs where each one shuffles slightly more structure than
the previous one are often used in practice [26, 31]. A
central concept is that of comparability of MRRMs.

Definition II.9. Comparability. We will write P[x] ≤
P[y] for two MRRMs if there exists a function f for which
y(G) = f(x(G)) for all states G ∈ G. We say that P[x]
and P[y] are comparable if P[x] ≤ P[y] or P[y] ≤ P[x].

The intuition behind this notation is that when P[x] ≤
P[y], then P[y] shuffles more of the given structure than
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FIG. 3: Equivalent MRRM representations. We
consider the state space of all simple graphs with three

nodes and the MRRM P[L] which constrains the
number of edges L in a graph. The state space G is

ordered as shown in (a). The input network is taken to
be G∗ = G5 (highlighted in blue). Panels (b)-(e)

illustrate graphically the four equivalent representations
(Defs. II.7 and II.8) of P[L] when applied to G∗: (b)

The conditional probability PL(Gj |G∗) gives the
probability to generate each state Gj using P[L] with
G∗ as the input state. (c) The block-diagonal stochastic
matrix PL gives the probability to generate any output

state Gj from any given input state Gi (the block
corresponding to the input state G∗ is marked in blue).
(d) The partition of G induced by P[L] consists of the

four distinct sets: G0 = {G1}, G1 = {G2, G3, G4},
G2 = {G5, G6, G7} (marked in blue), and G3 = {G8}.
(e) A shuffling method corresponding to P[L] samples
graphs Gj from G according to PL(Gj |G∗). (Note that

in a real application the number of states in the
ensemble generated by a MRRM is typically very large,

so almost all states are sampled at most once in
practice.)

P[x]. Due to the correspondence between a MRRM and
its feature function, we shall likewise use the notation
x ≤ y when referring to the feature functions.

Example II.5. In the space of all static graphs with
N nodes, one can define the MRRMs corresponding to
the Erdős-Rényi random graph model [1], P[L], and the
Maslov-Sneppen model [15], P[k]. We have L =

∑
i ki/2,

so L is a function of k and P[L] ≥ P[k]. Conversely, k
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P[z] P[y]P[x]

≤ ≥

FIG. 4: Comparability. P[z] is coarser than both P[x]
and P[y] since each set in the partition induced by P[x]
(P[y]) is contained in a set of the partition induced by
P[z]. Conversely, P[x] and P[y] are not comparable.

is not a function of L, so P[L] � P[k], as networks with
different degree sequences can have the same number of
links.

Representing MRRMs as partitions (see Def. II.8) pro-
vides a useful and intuitive way of thinking about com-
parisons of MRRMs, because the MRRM comparison re-
lation is exactly the natural comparison relation of the
partitions.

Proposition II.1. Equivalence with partition refine-
ments. P[x] ≤ P[y] if and only if the partition Gx is
finer than Gy.

Proof. The existence of a function f that allows to calcu-
late y solely from x means that all networks in a given
x-equivalence class Gx∗ (Def. II.8) correspond to the same
value of y. Conversely, each y-value may correspond to
multiple values for x, so different networks in a given y-
equivalence class Gy∗ may correspond to different values
of x. Thus Gx(G∗) ⊆ Gy(G∗) for all G∗ ∈ G. In terms of
partitions this means that x leads to a finer partition of
the state space than y.

Borrowing the terminology from the theory of set par-
titions, we say for P[x] ≤ P[y] that P[x] is finer than P[y]
and equivalently that P[y] is coarser than P[x]. We will
also refer to P[x] as a refinement of P[y] and to P[y] as
a coarsening of P[x]. Figure 4 illustrates the concept of
comparability in terms of partitions.

The partition representation is especially useful here
as the properties of refinements of set partitions are in-
herited to the comparison relation of the MRRMs: for
example, we can now see that the use of the notation
≥ is appropriate as the relation it denotes is indeed a
partial order:

Corollary II.1. Comparability induces a partial order.
The relation ≥ is a partial order over the space of MR-
RMs.

The above corollary follows immediately from the fact
that partition refinement relations give partial orders.
As with any partially ordered set, one can draw Hasse
diagrams to display the relationships between different
MRRMs, and this turns out to be a convenient way of
visually organizing the various MRRMs found in the lit-
erature (see Section V).

The set partitions always have uniquely defined mini-
mum and maximum partitions, and these are meaningful
in the case of MRRMs. We call them the zero and unity
elements.

Definition II.10. Zero and unity elements. The zero
element, P[0] = P[G], is the MRRM which shuffles noth-
ing, i.e. the one that always returns the input network
and where the feature returns the entire temporal net-
work. The unity element, P[1], is the MRRM that shuf-
fles everything, i.e. the one that returns all networks in
the state space with equal probability and where the fea-
ture is constant and does not depend on the input.

The zero element corresponds to the partition where
each network is in its own set and the unity element to
the partition where there is only a single set. The zero
and unity elements are always in the top and bottom of
a hierarchy of MRRMs: P[0] ≤ P[x] ≤ P[1] for any x.

Example II.6. We continue from Example II.5, limit-
ing the state space to the set of simple graphs consisting
of 3 nodes, V = {1, 2, 3}, and 2 links. There are three
such graphs: {G1, G2, G3}, with L(G1) = ((1, 2); (1, 3)),
L(G2) = ((1, 2); (2, 3)), L(G2) = ((1, 3); (2, 3)). Since the
number of links is the same in all graphs, the partition of
the ER model contains only one set GL = {{G1, G2, G3}}.
However, the degree sequences of the networks differ,
k(G1) = (2, 1, 1), k(G2) = (1, 2, 1), and k(G2) = (1, 1, 2),
so the partition related to the Maslov-Sneppen model
separates all networks Gk = {{G1}, {G2}, {G3}}. The
partition Gk is a refinement of GL and thus P[k] ≤ P[L].
Note that for this state space the Maslov-Sneppen model
is the zero element P[k] = P[0] and the ER model is the
unity element P[L] = P[1].

The interesting hierarchical structure is found between
the zero and unity elements, and as we will see, the struc-
ture can very rich. Again, the set partition representa-
tion gives us a glimpse of the theoretical understanding
of this structure. The total number of possible MRRMs
for a given state space G is the same as the number of
possible partitions of the space. This is given by the
Bell number BΩ [71], which grows faster than exponen-
tially with the state space size Ω = |G| [72]. We also
know that even though the number of MRRMs in the
hierarchy can be large, it can only be relatively flat as
compared to this number: The largest possible num-
ber of MRRMs all satisfying a total order (i.e. for which
P[x1] ≥ P[x2] ≥ P[x3] . . .) is the maximum chain length
in the set of partitions of the state space, which is equal
to Ω + 1. Thus, if we insist on selecting a collection of
MRRMs that is totally ordered, we can at most include
an exponentially vanishing part of the possible MRRMs.
However, in practice these theoretical limitations are not
of much concern as the number of possible networks, Ω,
typically is extremely large. A point of practical concern
is that we are often interested in studying the effects
of both MRRMs that randomize temporal features and
MRRMs that randomize topological features of temporal
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networks. Since such MRRMs are generally not compa-
rable (see Section V), we find ourselves constrained to use
and study sets of MRRMs for temporal networks that do
not satisfy a linear order [31].

C. Combining microcanonical randomized
reference models

In this section we explore how two different MRRMs
may be combined to generate another MRRM. In par-
ticular by intersection, which generates a MRRM that
shuffles less than either of the two, and by composition,
which generates a RRM that is not necessarily micro-
canonical, but if it is, it shuffles more than either of the
two. Especially the type of compositions which produce
MRRMs are of practical interest as they provide a way of
producing new shuffling methods by applying one shuf-
fling algorithm after another.

The latter part of this section will be devoted to explor-
ing under which conditions the composition of two MR-
RMs is microcanonical (we then say that the two MRRMs
are compatible). We develop a concept called conditional
independence given a common coarsening and show that
it characterizes compatibility. Finally, we show that spe-
cific types of refinements of compatible MRRMs are also
compatible and identify the way the resulting MRRM
inherits the features of the two input models.

We use these results in Section IV to show that MR-
RMs which shuffle the links are compatible with MRRMs
which randomize the timelines in the link-timeline rep-
resentation of a temporal network (Def. II.5), and that
MRRMs shuffling the order of snapshots are compatible
with MRRMs randomizing the individual snapshots in
the snapshot graph sequence representation (Def. II.6).

1. Intersections and compositions

For any two given features x and y and associated
MRRMs P[x] and P[y], we define the intersection of the
MRRMs, P[x,y], as the MRRM that constrains both fea-
tures simultaneously. We can write the following defini-
tion:

Definition II.11. Intersection of randomized reference
models. The intersection of x and y is (x,y), and for the
models we write P[x,y] = P[(x,y)]

Note that the intersection by definition gives another
MRRM. In terms of conditional probabilities the inter-
section becomes

PG|(x,y)(G|G∗) =
δx(G),x∗δy(G),y∗

Ω(x∗,y∗)
, (6)

where G∗ is the input network, x∗ = x(G∗), and y∗ =
y(G∗).

The partition of G induced by P[x,y] is trivially
given by the set of pairwise intersections between the

P[y]P[x] P[x,y]

FIG. 5: Intersection of MRRMs. The intersection
P[x,y] of two MRRMs, P[x] and P[y], shuffles less than

either of the two. In terms of partitions, P[x,y]
produces the greatest lower bound of P[x] and P[y].

x-equivalence classes and the y-equivalence classes, i.e.
G(x,y)(G) = Gx(G)∩Gy(G) for all G ∈ G, and Ω(x∗,y∗) =
|Gx∗ ∩ Gy∗ | =

∑
G∈G δx(G),x∗δy(G),y∗ That is, the parti-

tion G(x,y is finer than Gx or Gy, and the MRRM P[x,y]
shuffles less (or equally) than P[x] and P[y] (Fig. 5).

The effects of intersection with the zero and unity el-
ements are also easy to see. The unity is a neutral ele-
ment that has no effect on the intersection P[x, 1] = P[x],
because adding a constant to the feature function out-
put doesn’t affect the partitioning of the networks at all.
The zero is an absorbing element P[x, 0] = P[0], because
adding extra information to the feature function that al-
ready contains the full network doesn’t change anything.
In fact, from set partitions we know that the intersection
gives the greatest lower bound of the two partitions [70].

Another, more interesting, way to combine two MR-
RMs is by first applying the shuffling method of one to
the input network G∗, and then applying the second shuf-
fling method to the outputs of the first. This defines a
composition of the two shuffling methods.

Definition II.12. Composition of randomized reference
models. Consider two MRRMs P[x] and P[y] and an in-
put network G∗ ∈ G. The composition of P[y] on P[x],
denoted P[y]P[x], is defined by the conditional probabil-
ity:

Py◦x(G|G∗) =
∑
G′∈G

Py(G|G′)Px(G′|G∗)

=
∑
G′∈G

δy(G),y(G′)

Ωy(G)
δx(G′),x∗

Ωx∗
. (7)

For a given indexing of the state space G, Eqs. (5) and
(7) show that the transition matrix for the composition
of P[y] on P[x] is simply the matrix product of the indi-
vidual transition matrices, Py◦x = PyPx.

Definition II.13. Compatibility. We say that two MR-
RMs P[x] and P[y] are compatible if their composition
P[y]P[x] is also a MRRM.

The notion of compatibility is central as it defines
which MRRMs we may combine through composition to
define a new MRRM.

Proposition II.2. Compatible randomized reference
models commute. If two MRRMs, P[x] and P[y], are
compatible then P[x]P[y] = P[y]P[x].
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Proof. This can be shown by direct calculation by not-
ing that the transition matrices of MRRMs are symmet-
ric. For any two compatible MRRMs, P[x] and P[y],
their compositions P[x]P[y] and P[y]P[x] both define a
MRRM. So the associated transition matrices must be
symmetric (Def. II.8), and

PyPx = (PyPx)ᵀ = (Px)ᵀ(Py)ᵀ = PxPy . (8)

Proposition II.2 means that it does not matter in which
order we apply two compatible MRRMs in the composi-
tion, and consequently that P[y]P[x] and P[x]P[y] define
the same MRRM if P[x] and P[y] are compatible. It also
means that in order to show that two MRRMs are not
compatible, it suffices to show that they do not commute.

Example II.7. Let the state space G be all static graphs
with 3 nodes. As in Example II.4, we number the 8 states
such that G1 is the graph with 0 links, G2 , G3 , and G4
are the states with 1 link, G5 , G6 , and G7 are the states
with 2 links and G8 is the state with 3 links. Let us now
define two MRRMs for this state space:

1. The MRRM P[L], defined by the number of links
L in the graph, partitions the state space in 4 sets
G0 = {G1}, G1 = {G2, G3, G4}, G2 = {G5, G6, G7},
and G3 = {G8}.

2. The MRRM P[δG,G4 ] keeps the state G4 and shuf-
fles all the others. It is defined by the feature
δG,G4 which returns 1 if the state is G4 and 0
for all other states. This MRRM partitions the
state space into two partitions G1 = {G4} and
G0 = {G1, G2, G3, G5, G6, G7, G8}.

With these definitions P[L]P[δG,G4 ] 6= P[δG,G4 ]P[L]; for
example, for G4 the target space of P[L]P[δG,G4 ] is
{G2, G3, G4}, while the target space of P[δG,G4 ]P[L] is
the entire G. So the two MRRMs do not commute
and are thus not compatible. Consequently, the en-
sembles obtained by composition of P[δG,G4 ] and P[L]
are not microcanonical. It is in the above example also
easy to verify that the states generated by P[δG,G4 ]P[L]
on G4 are not equiprobable (PδG,G4◦L(G4) = 1/3 while
PδG,G4◦L(Gi) = 2/21 for all other states).

2. Comparability and compatibility

In order for the concept of compatibility to be practi-
cally useful we need to be able to find out which MRRMs
are compatible and what the result of their compositions
is. Comparable MRRMs are an easy special case in this
regard, as all comparable MRRMs turn out to be com-
patible and their composition simply yields the MRRM
that shuffles more.

Proposition II.3. Comparable microcanonical random-
ized reference models are compatible. Let P[x] and P[y]

be two MRRMs and P[x] ≤ P[y]. Then they are com-
patible and their composition gives P[y]P[x] = P[y].
Proof. Since y is a function of x, its value is the same for
allG which satisfy x(G) = x∗ and is equal to y∗ = y(G∗).
This means that Py(G|G′) = Py(G|G∗) for all G′ ∈ Gx∗ ,
and Eq. (7) reduces to:

Py◦x(G|G∗) = Py(G|G∗)
∑

G′∈Gx∗

Px(G′|x∗)

= Py(G|G∗) , (9)

where the second equality is obtained from the require-
ment that Px must be normalized on Gx∗ . So P[y]P[x] =
P[y], which is a MRRM, showing that P[x] and P[y] are
compatible.

Example II.8. Consider again the MRRMs P[L] and
P[k] from Example II.5. Since they are comparable, they
are compatible according to Proposition II.3. Conse-
quently they commute (Proposition II.2) and P[k]P[L] =
P[L]P[k] = P[L].

We can use Proposition II.2 to show that the compo-
sition of two compatible MRRMs randomizes more than
either of the individual MRRMs.
Proposition II.4. Composition of two compatible MR-
RMs always results in a MRRM which does not shuffle
less. Consider two compatible MRRMs, P[x] and P[y].
Their composition, P[y]P[x], is coarser (or equal) than
both P[y] and P[x], i.e. P[y]P[x] ≥ P[x] and P[y]P[x] ≥
P[y], even if P[x] and P[y] are not comparable.
Proof. Since P[x] and P[y] are compatible, P[y]P[x] is
a MRRM by the definition of compatibility (Def. II.13).
Since G itself is by definition in the target set of any
MRRM applied to G, the target set of P[y]P[x] can never
be smaller than the target set of P[x]. Thus, P[y]P[x] ≥
P[x]. By the same reasoning we obtain that P[x]P[y] ≥
P[y], and since P[x]P[y] = P[y]P[x] (Proposition II.2),
that P[y]P[x] ≥ P[y].

The effect of the composition operation seems to work
in opposite manner to the intersection operation. This
also reflects to the composition of zero and unity elements
(which are compatible with all MRRMs by Proposition
II.3) for which zero is the neutral element P[x]P[0] =
P[x] and unity is the absorbing element P[1]P[x] = P[1].
Furthermore, by Proposition II.4, the composition gives
an upper bound for the two MRRMs (Fig. 6). In fact, the
bound is the least upper bound, and any set of compatible
MRRMs forms a lattice [71], but this connection to the
theory of partially ordered sets is not pursued further
here.

3. Conditional independence and compatibility

Our aim in this section is to be able to compose MR-
RMs to produce new ones, and even though compara-
ble MRRMs are always compatible they are not useful
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P[y]P[x] P[x ∘ y]

FIG. 6: Composition of MRRMs. The composition
P[x ◦ y] of two compatible MRRMs, P[x] and P[y],

shuffles more than (or as much as) either of the two. In
terms of partitions, P[x ◦ y] produces the least upper

bound of P[x] and P[y].

for this purpose as they do not produce a new MRRM.
There are more interesting compositions, but in order
to be able to access these we need a way of character-
izing which pairs of MRRMs are compatible outside of
comparable ones. We will next define the concept of
conditional independence between two features given a
common coarsening of these and show in Theorem 1 that
it is equivalent to compatibility. We next show in The-
orem 2 that certain refinements of compatible MRRMs
(termed adapted refinements) are themselves compati-
ble. Theorem 2 furthermore shows which features their
composition inherits from the original MRRMs.

The theorems will be used in Section IV to show that
certain important classes of MRRMs are compatible. In
particular, we will show that link shufflings, which shuffle
the links in the link-timeline representation of a temporal
network (Def. II.5), are compatible with timeline shuf-
flings, which randomize the individual timelines. This
will be done by first showing that the coarsest possible
link and timeline shufflings are compatible using Theo-
rem 1. Second, noting that all link and timeline shufflings
are adapted refinements of these, Theorem 2 then gives us
that they are compatible, as well as telling us which fea-
tures their composition constrains. The same reasoning
will be applied to show that sequence shufflings, which
shuffle the order of snapshots in the snapshot-graph se-
quence (Def. II.6), and snapshot shufflings, which ran-
domize events inside snapshots, are compatible and to
derive which features their compositions constrain.

Before we can define the concept of conditional inde-
pendence given a common coarsening, we first need to
define the concepts of conditional probability and condi-
tional independence between features.

Definition II.14. Conditional probability of a feature.
The conditional probability of a feature y given another
feature x is the probability Py|x(y†|x∗) that the feature
y takes the value y† conditioned on the value x∗ of the
feature x. It is given by

Py|x(y†|x∗) =
∑
G′∈G

δy†,y(G′)Px(G′|x∗)

=
Ω(y†,x∗)

Ωx∗
. (10)

The conditional probability of a feature satisfies all
properties of usual conditional probabilities. We may no-

tably relate the composition of two MRRMs to the condi-
tional probability of their features using the law of total
probability as Py◦x(G|x∗) =

∑
y† Py(G|y†)Py|x(y†|x∗)

(see the proof of Theorem 1 below). It also allows us to
define the conditional independence in the usual sense as
when Py|x,z(y†|x‡, z∗) = Py|z(y†|z∗) for a given a third
feature z. We shall here be concerned with a stricter ver-
sion of conditional independence which is satisfied when
the feature z is coarser than both y and x. As we show
below, this conditional independence given a common
coarsening is equivalent to x and y being compatible.

Definition II.15. Conditional independence given a
common coarsening. If there exist a feature z that is
a common coarsening of both x and y (i.e. z ≥ x and
z ≥ y) such that Py|x(y†|x(G∗)) = Py|z(y†|z(G∗)) for all
G∗ ∈ G, we will say that y is conditionally independent
of x given their common coarsening z.

As for the usual conditional independence, the condi-
tional independence given a common coarsening defined
above is symmetric in x and y, we show this in the fol-
lowing proposition.

Proposition II.5. Symmetry of the conditional inde-
pendence given a common coarsening. If x is condition-
ally independent of y given a common coarsening z then
y is conditionally independent of x given z

Proof. We note that since z is coarser than x, it follows
that Py|x = Py|x,z (since Gx∗ ⊆ Gz∗ , conditioning only on
x∗ is equivalent to conditioning on both x∗ and z∗), and
in the same manner that Px|y = Px|y,z. Thus, the sym-
metry of the conditional independence given a common
coarsening follows directly from the symmetry of the tra-
ditional conditional independence. For completeness we
demonstrate the symmetry of conditional independence
below.

Consider that x is independent of y conditioned on z,
i.e. Px|z(x†|z∗) = Px|y,z(x†|y‡, z∗). To show that this
implies the symmetric relation, we write out the relation
using Eq. (10):

Ω(x†,z∗)

Ωz∗
=

Ω(x†,y‡,z∗)

Ω(y‡,z∗)

=
Ω(x†,y‡,z∗)

Ω(y‡,z∗)

Ω(x†,z∗)

Ω(x†,z∗)

Ωz∗

Ωz∗

=
Ω(x†,y‡,z∗)

Ω(x†,z∗)

Ωz∗

Ω(y‡,z∗)

Ω(x†,z∗)

Ωz∗

=
Py|x,z(y‡|x†, z∗)
Py|z(y‡|z∗)

Ω(x†,z∗)

Ωz∗
. (11)

This relation (which must be true) is only satisfied if
Py|x,z(y‡|x†, z∗) = Py|z(y‡|z∗), i.e. if y is independent of
x conditioned on z, thus completing the proof.

Because of the symmetry, we can simply say that x
and y are conditionally independent given the common
coarsening z.
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As we stated above, the concept of conditional inde-
pendence given a common coarsening is important be-
cause it is a characterization of compatibility. The fol-
lowing theorem proves this.

Theorem 1. Conditional independence given a common
coarsening is equivalent to compatibility. P[x] and P[y]
are compatible if and only if they are conditionally inde-
pendent given the common coarsening z = x ◦ y.

Proof. To show that conditional independence given a
common coarsening is equivalent to compatibility, we
first show that the former implies the latter and then
that the latter implies the former. To avoid clutter, we
will in the following use the notation y′ as short for y(G′),
as well as y′′ for y(G′′) and x′′ for x(G′′).

Conditional independence given a common
coarsening implies compatibility. We will use the
law of total probability and Proposition II.3 to show this.
We first show that a law of total probability applies to the
probabilities of features. Taking the probability distribu-
tion defining the composition of P[x] and P[y] [Eq. (7)]
and multiplying by the term

∑
y† δy†,y′ = 1, we get:

Py◦x(G|x∗) =
∑
G′∈G

∑
y†

δy†,y′
δy(G),y′

Ωy(G) Px(G′|x∗)

=
∑
y†

δy(G),y†

Ωy(G)
∑
G′∈G

δy†,y′Px(G′|x∗)

=
∑
y†

Py(G|y†)Py|x(y†|x∗) . (12)

To obtain the second equality above we used the prop-
erty of Kronecker delta functions δa,bδb,c = δa,cδb,c, and
the last equality was obtained from the definitions of
Py(G|y†) (Def. II.7) and Py|x(y†|x∗) (Def. II.14). Using
the law of total probability, we now expand Py◦x(G|x∗)
to get:

Py◦x(G|x∗) =
∑
y†

Py(G|y†)Py|x(y†|x∗)

=
∑
y†

Py(G|y†)Py|z(y†|z∗)

= Py◦z(G|z∗)
= Pz(G|z∗) . (13)

Here, the second equality follows from the independence
of x and y (Def. II.15), the second-to-last equality fol-
lows from the law of total probability, and the last from
Proposition II.3 since z ≥ y.

Compatibility implies conditional independence
given a common coarsening. Because x and y are
compatible their composition is a MRRM and we can
choose z = x ◦ y, which by construction is a common
coarsening of x and y. The conditional independence of
x and y given this z can now be shown from its definition

via a direct calculation:

Py|x◦y(y†|x ◦ y(G∗)) =
∑
G′∈G

δy†,y′Px◦y(G′|x ◦ y(G∗))

=
∑
G′∈G

∑
G′′∈G

δx′′,x∗δy†,y′δy′,y′′

Ωy′′Ωx∗

=
∑
G′′∈G

δx′′,x∗δy†,y′′

Ωy′′Ωx∗

∑
G′∈G

δy′,y′′

=
∑
G′′∈G

δx′′,x∗δy†,y′′

Ωx∗

= Py|x(y†|x∗) . (14)

In the third equality we again used the property of Kro-
necker delta functions δa,bδb,c = δa,cδb,c, and in the
second-to-last equality we used the definition of the par-
tition function Ωy′′ .

As discussed above, conditional independence is im-
portant in practice for designing MRRMs that random-
ize both the topology and the time-domain of a tem-
poral network by implementing them as compositions
of MRRMs that randomize different levels in the two-
level temporal network representations introduced in Sec-
tion II A 1. The simple example below illustrates the con-
cepts of conditional independence and compatibility.

Example II.9. Consider a state space with 9 states,
G = {G1, . . . , G9}, which are placed into a square for-
mation such that the states 1 to 3 are in the first
row, 4 to 6 in the second row and 7 to 9 in the third
row. Now we can define two features: fr that re-
turns the row number, and fc that returns the col-
umn number. The partitions these two features induce
are Gfr

= {{G1, G2, G3}, {G4, G5, G6}, {G7, G8, G9}} for
fr and Gfc

= {{G1, G4, G7}, {G2, G5, G8}, {G3, G6, G9}}
for fc. The two features fr and fc are conditionally in-
dependent given 1 (the unity element, i.e., a constant
function). Thus, the corresponding MRRMs, P[fr] and
P[fc], are compatible and their composition is the unity
element P[fr]P[fc] = P[fc]P[fr] = P[1], which shuffles
everything. Indeed, direct computation shows that their
composition is the unity element Pfr Pfc = P1.

The above example illustrates the abstract nature of
the problem of combining MRRMs. In terms of temporal
networks, G may be thought of as the space of all net-
works consisting of 3 nodes and a single event that takes
place during one of three possible snapshots. The two
features may be identified with the features Gstat return-
ing the static network and pL(Θ) returning the number
events on each link and their timings. If we let fr = Gstat

and fc = pL(Θ), then the row number determines the
placement of the link in the static network and the col-
umn number the snapshot during which the event takes
place.

Our main aim when defining compositions has been
to be able to produce new useful MRRMs. With the
help of the concept of conditional independence we are
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now ready to write down a theorem, and a proof, that
will allow us to compose non-comparable MRRMs and
know the features of the resulting model. To do so we
define a special type of adapted refinements of compatible
MRRMs which we can show are also compatible.

Definition II.16. Adapted refinement. Consider two
compatible MRRMs, P[x] and P[y]. Any refinement of
P[x] of the form P[x, f(y)], where f is any function of y,
is said to be adapted to P[y]. We will refer to P[x, f(y)]
as an adapted refinement of P[x] with respect to P[y].

In the following theorem we will now demonstrate that
all adapted refinements of compatible MRRMs are them-
selves compatible, as well as showing which features the
composition of such MRRMs inherits from the individ-
ual MRRMs. This theorem will be very useful in prac-
tice since if we can show that a given pair of MRRMs
are compatible (i.e. using Theorem 1), we get for free
that a whole class of MRRMs, consisting of all adapted
refinements of the original MRRMs, are also compatible.

Theorem 2. Adapted refinements of compatible MR-
RMs are compatible. Consider two compatible MR-
RMs P[x] and P[y], and any adapted refinements of
these, P[y, f(x)] and P[x,g(y)]. Then P[y, f(x)] and
P[x,g(y)] are compatible, and their composition is given
by P[x ◦ y, f(x),g(y)].

Proof. To prove the above theorem, it is sufficient to
prove that (y, f(x)) and x are independent conditioned
on their common coarsening (y ◦ x, f(x)). From this
it then immediately follows that (y, f(x)) and (x,g(y))
are independent conditioned on their common coars-
ening (y ◦ x, f(x),g(y)) and thus that P[y,f(x)] and
P[x,g(y)] are compatible with P[y, f(x)]P[x,g(y)] =
P[y ◦ x, f(x),g(y)]. To develop the proof, we consider
the conditional probability of x given (y, f(x)):

Px|y,f(x)(x†|y∗, f(x∗)) =
Ω(x†,y∗,f(x∗))

Ω(y∗,f(x∗))
. (15)

Since x ≤ f(x), we have Ω(x†,y∗,f(x∗)) = Ω(x†,y∗) when-
ever f(x†) = f(x∗). We use this to rewrite the equation
above, multiplying by the factor Ωy∗/Ωy∗ = 1, along the
way,

Px|y,f(x)(x†|y∗, f(x∗)) =
Ω(x†,y∗)δf(x†),f(x∗)

Ωy∗

Ωy∗

Ω(y∗,f(x∗))

=
Px|y(x†|y∗)δf(x†),f(x∗)

Pf(x)|y(f(x∗)|y∗) . (16)

Now, since x and y are compatible, we have that
Px|y(x†|y∗) = Px|z(x†|z∗), with z = y ◦ x. Furthermore,
it also means that Pf(x)|y(f(x∗)|y∗) = Pf(x)|z(f(x∗)|z∗).
The following calculation shows this:

Pf(x)|y(f(x∗)|y†) =
∑
x‡

Pf(x)|x(f(x∗)|x‡)Px|y(x‡|y†)

=
∑
x‡

Pf(x)|x(f(x∗)|x‡)Px|z(x‡|z†)

= Pf(x)|z(f(x∗)|z†) . (17)

(Note that we do not necessarily have f(x) ≤ z, though.)
Plugging these two identities into Eq. (16) gives:

Px|y,f(x)(x†|y∗, f(x∗)) =
Px|z(x†|z∗)δf(x†),f(x∗)

Pf(x)|z(f(x∗)|z∗)

=
Ω(x†,z∗)δf(x†),f(x∗)

Ωz∗

Ωz∗

Ω(z∗,f(x∗))

=
Ω(x†,z∗,f(x∗))

Ω(z∗,f(x∗))

= Px|z,f(x)(x†|z∗, f(x∗)) . (18)

Since both z∗ ≥ x and f(x∗) ≥ x, we have (z, f(x)) ≥ x,
which together with Eq. (18) shows that x is indepen-
dent of (y, f(x)) conditionally on their common coarsen-
ing (z, f(x)), thus completing the proof.

The new MRRM created using Theorem 2 always car-
ries the composition, x ◦ y, of the two lower bounding
MRRMs in it. It would be desirable to be able to cre-
ate MRRMs that only contain some combinations of pre-
scribed features within it. This is in principle possible if
the two bounding MRRMs are chosen such that they are
fully independent, as shown by the following definition
and corollary.

Definition II.17. Independent MRRMs. P[x] and P[y]
are said to be independent when Py|x(y†|x∗) = Py(y†),
where Py(y†) = Py|1(y†|1).

Corollary II.2. Combining refinements of independent
MRRMs. Consider two independent MRRMs P[x] and
P[y], and two MRRMs, P[y, f(x)] and P[x,g(y)], that
shuffle less. Then P[y, f(x)]P[x,g(y)] = P[f(x),g(y)].

Proof. Because independence is a special case of condi-
tional independence the proof is a direct application of
Theorem 2: P[y, f(x)]P[x,g(y)] = P[x ◦ y, f(x),g(y)] =
P[1, f(x),g(y)] = P[f(x),g(y)].

While it is always possible to construct partitions of
a given state space that are completely independent, it
turns out to be difficult to define independent features of
a temporal network that are useful in practice. We have
found no examples of independent pairs of temporal net-
work MRRMs in the literature (except for the trivial case
where one MRRM is the unit element P[1]). So, while
fully independent MRRMs are interesting due to their
attractive theoretical properties, we will in the following
sections only encounter conditionally independent ones.

III. FEATURES OF TEMPORAL NETWORKS

A typical goal when employing MRRMs is to investi-
gate how given predefined features of a temporal network
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constrain other features of the network, or alternatively
how they affect a dynamical process unfolding on the
network. In this section we define and list a selection of
temporal network features that have been shown to play
an important role in network dynamics, and which are
sufficient to name the MRRMs found in our literature
survey presented in Section V. Table I lists basic features
of temporal networks, often describing single elements of
a network such as nodes or events, and Table II lists dif-
ferent general ways to construct features describing the
whole temporal network by using the basic features as
building blocks.

A feature of a temporal network is any function that
takes a network as an input (Def. II.3). Clearly, there
is a very large number of such functions which could be
defined [73], and as we will see later, a multitude of such
functions have been (often implicitly) used in the litera-
ture. Here we attempt to organize this set of functions
in a way that it is compatible with the different tempo-
ral network representations introduced in Section II and
the concept of order of features given by Def. II.9 and
Proposition II.1.

For definiteness we will here consider features of tem-
poral networks with event durations. In order to make
our description of MRRMs consistent for both networks
with and without event durations, we shall need to mod-
ify the definitions of some of these features for instant-
event networks. We do this in Subsection III A at the
end of this section.

Many features are ones returning a sequence of lower-
dimensional features, e.g., the degree sequence of a static
graph, k, is given by the sequence of the individual node
degrees ki. Temporal network features are often given
by a nested sequence where individual features in the
sequence themselves are a sequence of scalar features.
Sequences and nested sequences can further be turned
into distributions and average values in multiple ways.

We begin by introducing the ordered sequence of a col-
lection of features. It retains both the values of the indi-
vidual features and what they designate in the network.
A MRRM that constrains such a sequence thus produces
reference networks with exactly the same values and con-
figuration of these features as in the input network. In
order to make the notation simpler, and without loss of
generality, we will assume that features returning values
of multiple named entities, such as nodes or links, return
them as sequences that have an arbitrary but fixed order.

Definition III.1. Sequence of features. A sequence of
features is a tuple x = (xq)q∈Q of individual features
ordered according to an arbitrary but fixed index q ∈ Q.

The individual features xq may be any functions, e.g.
scalar functions, sequences of other features, or graphs.
Typically, each xq depends on a different part of the tem-
poral network such as a node i, a link (i, j), or a time t.
We shall in the following use a subscript to index indi-
vidual topological features (e.g. xi or x(i,j) for a feature
of a single node or link, respectively) and superscript for

(2, 3, 2, 1)

(a) Sequence of
static degrees k.

0 1 2 3 4
k

0
1
2
3

p

(b) Distribution of
static degrees p(k).

2

(c) Mean static
degree µ(k).

FIG. 7: Example: Marginals and moments of
one-level sequence. (a) Sequence, (b) distribution,
and (c) mean of the static degrees k∗ of the network

shown in Fig. 1.

temporal ones (e.g. xt for a feature of a single snapshot).
Individual features that depend both on topology and
time are given both a subscript and a superscript index
(e.g. xmi or xm(i,j), where m refers to a temporal ordering).

The basic building blocks of many features constructed
as sequences and used in MRRMs are scalar features de-
scribing single elements of the network (Table I). We will
in the following mainly consider two types of sequences:
one-level sequences of scalar features and two-level se-
quences of sequences of scalar features.

Definition III.2. One-level and two-level sequences.

1. One-level sequence. We refer to a non-nested se-
quence of scalar features, x = (xq)q∈Q, as a one-
level sequence.

2. Two-level sequence. We refer to a nested sequence
of features that are themselves one-level sequences,
x = (xq)q∈Q with xq = (xrq)r∈Rq

, as a two-level
sequence. We refer to the xq as local sequences.

Detailed definitions of particular types of one- and two-
level sequences are given in Table II (symbol: x).

One-level sequences are typically used to represent fea-
tures that are aggregated over the temporal or topolog-
ical dimension of the temporal network, while two-level
sequence are composed of features that depend both on
topology and time. The following examples illustrate
this.

Example III.1. One-level sequence of static degrees. A
well known example of an aggregated graph feature is
the node degree, ki, giving the number of nodes in Gstat

that are connected to the node i. Figure 7(a) shows the
(one-level) sequence of static degrees k∗ = (k∗i )i∈V of the
temporal network shown in Fig. 1.

Example III.2. Two-level sequence of instantaneous de-
grees. A generalization to temporal networks of the static
degree ki of a node is the instantaneous degree dti. It is
given by the number of nodes that the node i is in contact
with at time t. The (two-level) sequence of instantaneous
degrees is d = (dt)t∈T = ((dti)i∈V)t∈T , or alternatively
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TABLE I: Features of temporal networks. Below, “(·)” denotes a sequence, “{·}” denotes a set, “| · |” denotes
the cardinality of a set, and “:” means for which’ or such that.

Symbol Meaning of symbol Definition
[tmin, tmax] Period of observation.
G (Instant-event) temporal network. G = (V, C) (Def. II.1)a / G = (V, E) (Def. II.2)b

V Set of nodes in G. V = {1, 2, . . . , N}
C / E Set of (instantaneous) events in G. C = {c1, c2, . . . , cC} a / E = {e1, e2, . . . , eE} b

cq / eq qth (instantaneous) event. cq = (iq, jq, tq, τq) a / eq = (iq, jq, tq) b

iq, jq Indices for nodes partaking in the qth event.
tq Start time of the qth event.
τq Duration of the qth event.c

N Number of nodes in G. N = |V|
C / E Number of events in G. C = |C| a / E = |E| b

Link-timeline representation
GL Link-timeline network. GL =

(
Gstat,Θ

)
(Def. II.5)

Gstat Static graph. Gstat = (V,L)
L Links in Gstat. L = {(i, j) : (i, j, t, τ) ∈ C} a / L = {(i, j) : (i, j, t) ∈ E} b

L Number of links in Gstat. L = |L|
Vi Neighborhood of node i. {j : (i, j) ∈ L}
Θ Sequence of timelines. Θ = (Θ(i,j))(i,j)∈L

Θ(i,j) Link timeline. Θ(i,j) =
((
t1(i,j), τ

1
(i,j)
)
,
(
t2(i,j), τ

2
(i,j)
)
, . . . ,

(
t
n(i,j)
(i,j) , τ

n(i,j)
(i,j)

))
a /

Θ(i,j) =
(
t1(i,j), t

2
(i,j), . . . , t

w(i,j)
(i,j)

)
b

Snapshot-sequence representation d

GT Snapshot-graph sequence GT = (T ,Γ) (Def. II.6)d

T Sequence of snapshot times. T = (tm)Tm=1
d

Γ Sequence of snapshot graphs. Γ = (Γt)t∈T d

Γt Snapshot graph at time t. Γt = (V, Et) d

Et Instantaneous events at time t. Et = {(i, j) : (i, j, t) ∈ E} d

Topological-temporal (two-level) features
tm(i,j) Event start time. Start time of mth event in timeline Θ(i,j) (Def. II.5)
τm(i,j) Event duration. Duration of mth event in timeline Θ(i,j) (Def. II.5) c

∆τm(i,j) Inter-event duration. ∆τm(i,j) = tm+1
(i,j) − (tm(i,j) + τm(i,j)) a / ∆τm(i,j) = tm+1

(i,j) − t
m
(i,j)

b

tw(i,j) End time of last event on timeline. tw(i,j) = t
n(i,j)
(i,j) + τ

n(i,j)
(i,j)

a / tw(i,j) = t
w(i,j)
(i,j)

b

dti Instantaneous degree at time t. dti = |{j : (i, j, t′, τ) ∈ C and t′ ≤ t < t′ + τ}| a / dti = |{j : (i, j) ∈ Et}| b

vmi Activity start time. Start time of mth interval of consecutive activity of node i.
αmi Activity duration. Duration of mth interval of consecutive activity of node i.c

∆αmi Inactivity duration. ∆αmi = vm+1
i − (vmi + αmi ) a / ∆αmi = vm+1

i − vmi b

Aggregated (one-level) features
n(i,j) Link event frequency. n(i,j) = |Θ(i,j)| c

w(i,j) Link weight. w(i,j) =
∑n(i,j)

m=1 τm(i,j)
a / w(i,j) = |Θ(i,j)| b

ai Node activity. ai =
∑

j∈Vi
n(i,j)

c

si Node strength. si =
∑

j∈Vi
w(i,j)

ki Node degree. ki = |Vi|
At Cumulative activity at time t. At =

∑
i∈V d

t
i = 2|Et|

Special features
Φi Node timeline. Φi =

(
(v1
i , α

1
i ), (v2

i , α
2
i ), . . . , (v

na
i

i , α
na

i
i )
)

a / Φi =
(
v1
i , v

2
i , . . . , v

na
i

i

)
b

Iλ Indicator of connectedness of Gstat. Iλ = 1 if Gstat is connected, Iλ = 0 elsewise.
iso(Γt) Isomorphism class of Γt. Set of graphs obtained by all permutations of node indices in Γt.

a Definition for a temporal network with event durations.
b Definition for an instant-event temporal network.
c Only defined for a temporal network with event durations.
d Only defined for an instant-event temporal network.
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TABLE II: Sequences, distributions, and moments of features. Below, (·) denotes an ordered sequence and
[·] denotes a multiset, equivalent to the empirical distribution.

Symbol Meaning of symbol Definition Example(s)
x One-level sequence of link features. x = (x(i,j))(i,j)∈L

One-level sequence of node features. x = (xi)i∈V Fig. 7(a)
One-level sequence of snapshot features. x = (xt)t∈T
Two-level sequence of link features. x = (x(i,j))(i,j)∈L

a Fig. 9(a)
Two-level sequence of node features. x = (xi)i∈V b Fig. 8(a)

πL Sequence of local distributions on links. πL(x) = (π(i,j)(x(i,j)))(i,j)∈L
d Fig. 9(b)

πV Sequence of local distributions on nodes. πV(x) = (πi(xi))i∈V e Fig. 8(b)
πT Sequence of local distributions in snapshots. πT (x) = (πt(xt))t∈T f Fig. 8(e)
pL Distribution of local sequences on links. pL(x) = [x(i,j)](i,j)∈L

a Fig. 9(c)
pV Distribution of local sequences on nodes. pV(x) = [xi]i∈V b Fig. 8(c)
pT Distribution of local sequences in snapshots. pT (x) = [xt]t∈T c Fig. 8(d)
p Distribution of one-level link features. p(x) = [x(i,j)](i,j)∈L

Distribution of one-level node features p(x) = [xi]i∈V Fig. 7(b)
Distribution of one-level snapshot features p(x) = [xt]t∈T
Global distribution of two-level link features. p(x) = ∪(i,j)∈Lπ(i,j)(x(i,j)) d Fig. 9(g)
Global distribution of two-level node features. p(x) = ∪i∈Vπi(xi) e Fig. 8(k)

µL Sequence of local means on links. µL(x) = (µ(i,j)(x(i,j)))(i,j)∈L
g Fig. 9(d)

µV Sequence of local means on nodes. µV(x) = (µi(xi))i∈V h Fig. 8(f)
µT Sequence of local means in snapshots. µT (x) = (µt(xt))t∈T i Fig. 8(i)
µ Mean of one-level link features. µ(x) =

∑
(i,j)∈L x(i,j)/L

Mean of one-level node features. µ(x) =
∑

i∈V xi/N Fig. 7(c)
Mean of one-level snapshot features. µ(x) =

∑
t∈T x

t/T

Global mean of two-level link features. µ(x) =
∑

(i,j)∈L

∑
m∈M(i,j)

xm(i,j)/(
∑

(i,j)∈LM(i,j)) Fig. 9(h)

Global mean of two-level node features. µ(x) =
∑

i∈V

∑
m∈Mi

xmi /(
∑

i∈VMi) Fig. 8(m)
− Feature is not conserved.

a x(i,j) : Local sequence on link, x(i,j) = (xm(i,j))m∈M(i,j) , where M(i,j) is a temporally ordered index set.
b xi : Local sequence on node, xi = (xmi )m∈Mi , where Mi is a temporally ordered index set.
c xt : Local sequence in snapshot, xt = (xti)i∈V .
d π(i,j)(x(i,j)) : Local distribution on link, π(i,j)(x(i,j)) = [xm(i,j)]m∈M(i,j) .
e πi(xi) : Local distribution on node, πi(xi) = [xmi ]m∈Mi .
f πt(xt) : Local distribution in snapshot, πt(xt) = [xti]i∈V .
g µ(i,j)(x(i,j)) : Local mean on link, µ(i,j)(x(i,j)) =

∑
m∈M(i,j)

xm(i,j)/M(i,j).
h µi(xi) : Local mean on node, µi(xi) =

∑
m∈Mi

xmi /Mi.
i µt(xt) : Local mean in snapshot, µt(xt) =

∑
i∈V x

t
i/N .

d = (di)i∈V = ((dti)t∈T )i∈V since the order of the in-
dices i and t does not matter here. Figure 8(a) shows
the sequence of instantaneous degrees d∗ of the temporal
network shown in Figs. 1 and 2.

Example III.3. Two-level sequence of inter-event du-
rations. A feature of temporal networks that has been
shown to have a profound impact on dynamic processes
is the durations between consecutive events in the time-
lines, termed the inter-event durations and defined by
∆τm(i,j) = tm+1

(i,j) − (tm(i,j) + τm(i,j)). Their (two-level)
sequence is ∆τ = (∆τ (i,j))(i,j)∈L, where ∆τ (i,j) =
(∆τm(i,j))m∈M(i,j) . Here M(i,j) = {1, 2, . . . , n(i,j) − 1}

indexes the inter-event durations in the timeline Θ(i,j)
by temporal order, with n(i,j) the number of events in
the timeline. Note that due to the temporal extent of
the inter-event durations, we cannot inverse the order
of the indices m and (i, j) as we could for the instanta-
neous degrees presented in the previous example. Fig-
ure 9(a) shows the two level sequence of inter-event du-
rations ∆τ ∗ of the temporal network in Fig. 1.

Example III.4. Sequence of snapshot graphs. A no-
table example of a sequence of features that are neither
scalar nor sequences of scalars is the sequence of snapshot
graphs Γ = (Γt)t∈T (Def. II.6). The sequence of snap-
shot graphs for the temporal network of Fig. 1 is shown
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
(0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0);
(0, 2, 1, 1, 1, 1, 0, 1, 2, 2, 2, 0);
(0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0);
(0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0)


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




(0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0);
(0, 2, 1, 1, 1, 1, 0, 1, 2, 2, 2, 0);
(0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0);
(0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0)




(0, 0, 0, 0); (2, 2, 2, 0);
(0, 1, 0, 1); (0, 1, 0, 1);
(1, 1, 0, 0); (0, 1, 1, 0);
(1, 0, 1, 0); (1, 1, 0, 0);
(1, 2, 1, 0); (0, 2, 1, 0);
(1, 2, 0, 1); (0, 0, 0, 0)







(
7/12, 13/12,

1/2, 1/3

)
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0
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15
20

p

(
0, 3/2, 1/2, 1/2, 1/2, 1/2,

1/2, 1/2, 1, 1, 1, 0

)

5/8

(a) Sequence d.

(b) Sequence of local
distributions on nodes,

πV(d).

(c) Distribution of local
sequences on nodes, pV(d).

(d) Distribution of local
sequences in snapshots,

pT (d).

(e) Sequence of local
distributions in snapshots,

πT (d).

(f) Sequence of local means
on nodes, µV(d).

(g) Global distribution,
p(d).

(h) Sequence of local means
in snapshots, µT (d).

(j) Global mean, µ(d).

FIG. 8: Example: Marginals and moments of the two-level sequence of instantaneous node degrees, d.
(a) Sequence and (b)–(j) marginals and moments of the instantaneous degrees d∗ of the network shown in Figs. 1

and 2 . Distributions are shown as multisets whenever this is most convenient.

in Fig. 2.

Instead of constraining an ordered sequence itself,
many MRRMs constrain marginal distributions or mo-
ments of a sequence. Before we define these marginals
and moments in detail for temporal networks, we con-
sider as a simpler example the degree sequence of a static
graph.

Example III.5. From the sequence of degrees in a
static graph, k, we may calculate their marginal dis-
tribution p(k) (equivalent to the multiset of their val-
ues, see Def. III.3 below), as well as their mean µ(k)
(Fig. 7). This leads to three different features, each cor-
responding to a different MRRM: one that constrains the
complete sequence of degrees, P[k], one that constrains

their distribution, P[p(k)], and one that constrains their
mean P[µ(k)] (which is equivalent to P[L] if the num-
ber of nodes N is kept constant). (P[k] and P[p(k)] are
both often referred to as the configuration model or the
Maslov-Sneppen model, and P[µ(k)] = P[L] is the Erdős-
Rényi model with a fixed number of links.) The three fea-
tures (and corresponding MRRMs) satisfy a linear order:
k ≤ p(k) ≤ µ(k).

Since we have both a topological and temporal dimen-
sion in temporal networks, a much larger number of dif-
ferent ways to marginalize the sequence of features is
possible than for a simple static graph. We define be-
low those needed to characterize the MRRMs surveyed
in this article, but many more may be defined (we provide
an extended list in Supplementary Table I as well as hier-
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
(2∆t, 2∆t,∆t);
(4∆t);
(2∆t);
(5∆t)
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


(2∆t);
(4∆t);
(5∆t);
(2∆t, 2∆t,∆t)



0 t 2 t 3 t 4 t 5 t 6 t
0
1
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3

p

(
2∆t, 4∆t,
5∆t, 5∆t/3

)

8∆t/3

(a) Sequence ∆τ .

(b) Sequence of local
distributions on links,

πL(∆τ ).

(c) Distribution of local
sequences on links, pL(∆τ ).

(d) Sequence of local means
on links, µL(∆τ ).

(e) Global distribution,
p(∆τ ).

(f) Global mean, µ(∆τ ).

FIG. 9: Example: Marginals and moments of the
two-level sequence of inter-event durations, ∆τ .
(a) Sequence and (b)–(f) marginals and moments of the

inter-event durations ∆τ for the network shown in
Figs. 1 and 2. Distributions are shown as multisets

whenever this is most convenient.

archies of this extended list of features in Supplementary
Figs. 1 and 2).

Definition III.3. Distribution of feature values. Con-
sider a sequence of features, x = (xq)q∈Q, where the indi-
vidual features xq may be scalar, sequences of scalars, or
more general functions. The distribution of feature val-
ues, denoted pQ′(x), returns the number of times each
possible value of xq or of xrq ∈ xq appears in a mea-
sured sequence x∗ = x(G∗). Formally, the distribution
can be defined as the multiset containing the values of
all elements in x∗ including duplicate values. We will
use square brackets to denote the multiset and may then
write pQ′(x∗) = [x∗q ]q∈Q′ , where Q′ is the index set that

is marginalized over.

The index set Q′ that is marginalized over to construct
the distribution pQ(x) is not necessarily the same as the
original Q used to defined the sequence x = (xq)q∈Q.
For distributions obtained from a one-level sequence x =
(xq)q∈Q, we shall only consider Q′ = Q, while for dis-
tributions over a two-level sequence x = ((xrq)r∈Rq

)q∈Q,
we may marginalize over the outer index Q′ = Q, the
inner indices Rq, or both. Finally, we may also define a
distribution over a sequence of features that are neither
scalar nor sequences, e.g. snapshot graphs. The different
ways to marginalize a sequence of features give rise to
the following different three types of distributions.

Definition III.4. Distributions over a sequence. We
here list different ways to construct distributions of fea-
ture values by marginalizing over a sequence x. The dif-
ferent types of distributions are defined in more detail in
Table II (symbols: p, pL, pV , pT , πL, πV , and πT ).

1. Global distribution p(x). The global distribution
p(x) returns the number of times each possible
scalar value appears in a measured sequence x∗ =
x(G∗). For a one-level sequence x∗ = (x∗q)q∈Q,
it is obtained by marginalizing over the sole index
set Q: p(x∗) = [x∗q ]q∈Q. For a two-level sequence
x∗ = (((xrq)∗)r∈Rq

)q∈Q, it is obtained by marginal-
izing both over the inner and outer index sets, Rq
and Q: p(x∗) = [(xrq)∗]r∈Rq,q∈Q. For simplicity,
we have left out the subscripts in the notation p(x)
since all indices are marginalized over.

2. Distribution of local features pQ(x). For a sequence
of non-scalar features, x = (xq)q∈Q, the distribu-
tion of local features pQ(x∗) = [x∗q ]q∈Q reports the
number of times each possible value of the local fea-
tures xq appears in a measured sequence x∗. Here
each xq may be a local one-level sequence or a more
general feature such as a graph.

3. Sequence of local distributions πQ(x). For a two-
level sequence of features, x = (xq)q∈Q, the se-
quence of local distributions πQ(x) is given by the
ordered tuple πQ(x∗) = (πq(x∗q))q∈Q, where each
local distribution πq(x∗q) = [(xrq)∗]r∈Rq

is the dis-
tribution of the scalar features in the local sequence
x∗q . To avoid confusion with the distribution of lo-
cal sequences, pQ(x), we use the different symbol
πQ(x) to designate the sequence of local distribu-
tions.

The following examples illustrate the different types of
distributions.

Example III.6. Global distribution. The global dis-
tribution p(k∗) = [k∗i ]i∈V of the one-level static degrees
of the temporal network of Figs. 1 and 2 is shown in
Fig. 7(b). The global distributions of the two-level in-
stantaneous degrees and inter-event durations, p(d∗) =
[(dti)∗]t∈T ,i∈V and p(∆τ ∗) = [(∆τm(i,j))∗]m∈M(i,j),(i,j)∈L
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respectively, of the same network are shown in Figs. 8(g)
and 9(e).

Example III.7. Distribution of local features. Two dif-
ferent types of distributions of local sequences of instan-
taneous degrees can be constructed from the sequence of
instantaneous degrees: the distribution of local sequences
of the instantaneous degrees of each node, pV(d∗) =
[d∗i ]i∈V , shown in Fig. 8(c)], and the distribution of lo-
cal sequences of instantaneous degrees of nodes in each
snapshot, pT (d∗) = [(dt)∗]t∈T , shown in Fig. 8(d) for the
temporal network illustrated in Figs. 1 and 2. From the
sequence of inter-event durations, we can construct the
distribution of local sequences of inter-event durations on
the links, pL(∆τ ∗) = [∆τ ∗(i,j)](i,j)∈L, shown in Fig. 9(c).
From the snapshot-graph sequence, we can construct the
distribution of snapshot graphs pT (Γ∗) = [(Γt)∗]t∈T .

Example III.8. Sequence of local distributions. We
can also construct two different sequences of local dis-
tributions from the sequence of instantaneous degrees:
the sequence of local distributions of the instantaneous
degrees of each node, πV(d∗) = ([(dti)∗]t∈T )i∈V , shown
in Fig. 8(b), and the sequence of local distributions
of instantaneous degrees in each snapshot, πT (d∗) =
([(dti)∗]i∈V)t∈T , shown in Fig. 8(e). The sequence of lo-
cal distributions of inter-event durations, πL(∆τ ∗) =
([(∆τm(i,j))∗]m∈M(i,j))(i,j)∈L, is shown in Fig. 9(b). We
cannot construct a sequence of local distributions from
the sequence of snapshot graphs since they are not se-
quences.

After the above definitions of different local and global
marginalizations of a sequence of features, we now con-
sider ways to define its moments. We shall here consider
only first-order moments, i.e. means, but note that one
may generally consider also higher order moments such
as covariances. As for the distributions, it is natural to
define the mean of a one- or two-level sequence simply
as the average over the values of their scalar elements.
For a two-level sequence, we may additionally construct
a sequence of means of the local sequences.

Definition III.5. Means of a one- or two-level sequence
of features. We shall consider two different ways to av-
erage over a one- or two-level sequence. Detailed defini-
tions for specific kinds of features are given in Table II
(symbols: µ, µL, µV , and µT ).

1. Global mean µ(x). The global mean µ(x) of
a sequence of features is defined as the aver-
age over all individual scalar features in x. For
a one-level sequence, it is given by µ(x∗) =∑
q∈Q x

∗
q/Q, where Q is the number of elements

in x∗. For a two-level sequence, it is µ(x∗) =∑
q∈Q

∑
r∈Rq

(xrq)∗/(
∑
q∈QRq), where Rq is the

number of elements in x∗q .

2. Sequence of local means µQ(x). For a two-level
sequence x = (xq)q∈Q, the sequence of local means

µQ(x) is defined as the sequence of the means of
each local sequence xq. Each of these local means
is given by µq(x∗q) =

∑
r∈Rq

(xrq)∗/Rq.

The different types of means obtained are illustrated
in the following examples.

Example III.9. Global mean. The mean
of the one-level sequence of static degrees,
µ(k∗) =

∑
i∈V k

∗
i /N , of the temporal network in

Fig. 1 is shown in Fig. 7(c). The global mean
of the two-levels instantaneous degrees, µ(d∗) =∑
i∈V

∑
t∈T (dti)∗/(NT ), is shown in Fig. 8(j), and the

global mean of the inter-event durations, µ(∆τ ∗) =∑
(i,j)∈L

∑
m∈M(i,j)

(∆τm(i,j))∗/
∑

(i,j)∈LM(i,j), is shown
in Fig. 9(f).

Example III.10. Sequence of local means. Sequences
of local means of the instantaneous degrees can be con-
structed in two ways: as the sequence of local means
of the instantaneous degrees of each node, µV(d∗) =
(
∑
t∈T (dti)∗/T )i∈V , shown in Fig. 8(f), and as the se-

quence of local means of the instantaneous degrees in
each snapshot, µT (d∗) = (

∑
i∈V(dti)∗/N)t∈T , shown

in Fig. 8(h). For the inter-event durations, as single
sequence of local means can be constructed, namely
the sequence of local means on each link, µL(∆τ ∗) =
(
∑
m∈M(i,j)

(∆τm(i,j))∗/M(i,j))(i,j)∈L [Fig. 9(d)].

The distributions and means defined above are func-
tions of the sequence of features, so they are all coarser
than the sequence. Many of them are also comparable
(though not all of them), so we can establish a hierarchy
between them using Proposition II.1. Table II lists all dis-
tributions and moments for features of links, nodes, and
snapshots, and we establish their hierarchies in Fig. 10.

By combining Tables I and II, as shown in the exam-
ples above, we may describe most features constrained
by MRRMs found in the literature.

Some of the different basic features listed in Table I are
also pairwise comparable. This enables us to construct
a hierarchy of the different features listed in Table I to-
gether with their marginals and moments (Table II). Fig-
ure 11 shows such a hierarchy. It may be used to derive
which features are conserved by a MRRM that constrains
a given feature: the MRRM conserves all features that
are below the constrained feature in the hierarchy.

Note that if two features are not comparable, it does
not imply that they are independent. So one cannot con-
clude from the absence of a link between two features in
Fig. 11 that one does not influence the other, only that
it does not constrain it completely; the features may be
correlated. The correlations between features that are
neither comparable nor independent depend on the in-
put temporal network that is considered. Thus, they can
only be investigated on a case-by-case basis.
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(a) (b) (c)

FIG. 10: Hierarchies of the marginals and
moments of a sequence of features. An arrow from
a higher node to a lower one indicates that the former
feature is finer than the latter. Thus, a MRRM that
conserves the former feature necessarily conserves all

downstream features. Conversely, a MRRM that
randomizes a given feature also randomizes any features

upstream of it as well. (a) For one-level sequences of
features, namely the aggregated features k, a, n, s, and
w, and A, and the link-timeline features t1, and tw. (b)
For two-level sequences of features of nodes , namely α,
∆α and d. (c) For two-level sequences of features of

link timelines, namely τ and ∆τ .

A. Notation for features of instant-event networks

Whenever possible we use the same symbols and names
for features of instant-event temporal networks as for net-
works with event durations. However, we have adopted a
different notation for the number of instantaneous events
on a link, w(i,j), than for the number of events on a link,
n(i,j) (Table I). This is needed to make our description of
MRRMs consistent when they are applied to both tempo-
ral networks and instant-event networks (see discussion
in Section V B below). This furthermore means that si
denotes the total number of instantaneous events that a
node partakes in for instant-event networks, and that ai,
and n(i,j) are not defined for these networks. Similarly
the event durations τm(i,j) and activity durations αm(i,j) are
not defined for instant-event networks.

Several other definitions are changed slightly to accom-
modate the fact that instantaneous events do not have
durations. This is namely the case for L, Θ(i,j), ∆τm(i,j),
tw(i,j), ∆αm(i,j), and Φi (Table I) . Conversely, the snapshot-
graph sequence is only defined for instant-event networks,
and thus so are also the following associated features: T ,
Γt, and Et.

IV. SHUFFLING METHODS

We give in this section a description of several impor-
tant shuffling methods. These are used to formulate and
generate MRRMs in practice. We categorize them into
different classes depending on which parts of a tempo-
ral network they randomize. We furthermore show that

some of these classes are compatible (Def. II.13), and we
discuss how this can be used in the design of shuffling
methods.

For practical purposes we are interested in compar-
ing randomized networks to the original network. So
we are in general only interested in shuffling methods
that constrain the set of nodes V, the recording inter-
val [tmin, tmax], and the number of events, C or E. We
shall call such a shuffling method an event shuffling or
an instant-event shuffling based on whether they shuffle
the events in a temporal network while keeping their du-
rations intact or shuffle the instantaneous events in an
instant-event network, respectively.

Since all event and instant-event shufflings constrain V,
[tmin, tmax], and E, we shall omit these from the names
of methods in order to avoid clutter.

Definition IV.1. Event shuffling. We define an event
shuffling as a shuffling method that generates networks
from an input temporal network by randomizing one or
multiple of the indices i ∈ V, j ∈ V, t ∈ [tmin, tmax] in all
of the events while conserving their durations. An event
shuffling thus constrains V, [tmin, tmax], and p(τ ).

Definition IV.2. Instant-event shuffling. We define an
instant-event shuffling as a shuffling method that gen-
erates networks by randomizing one or multiple of the
indices i ∈ V, j ∈ V, t ∈ T in all of the instantaneous
events in an input instant-time temporal network. An
instant-event shuffling thus constrains V, T , and E.

The coarsest event shuffling is the shuffling method
that randomizes everything but V, [tmin, tmax], and p(τ ).
Leaving out V and [tmin, tmax] since all MRRMs we con-
sider constrain these, it is named P[p(τ )]. The coarsest
possible instant-event shuffling, which constrains only V,
T , and E, is recognized as the unity element (Def. II.10)
and is consequently named P[1].

Formally speaking any event shuffling is a refinement of
an instant-event shuffling, so all event shufflings are also
instant-event shufflings. In practice, any event shuffling
may be applied to shuffle an instant-event network, where
it then simply corresponds to the instant-event shuffling
that conserves all the same features except p(τ ). It is use-
ful however to distinguish between the two since instant-
event shufflings may be used to randomize the event du-
rations of temporal networks, differently from any event
shuffling. This is done by first representing each event
in the temporal network by a sequence of consecutive in-
stantaneous events and then shuffling this instant-event
network using the chosen instant-event shuffling. Con-
tiguous series of events are then concatenated to turn the
generated instant-event temporal network into a tempo-
ral network with randomized event durations (see Sec-
tion V B below).

We will now define four further constrained event shuf-
flings, namely timeline shufflings, link shufflings, snap-
shot shufflings, and sequence shufflings. These can be im-
plemented directly using the nested network representa-
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Time aggregated Link timelines

Node timelines Structure aggregated

FIG. 11: Feature hierarchy diagram. An arrow from a higher ranking (more central) to a lower ranking feature
(vertex in the diagram) indicates that the former feature is finer than the latter. Thus, a MRRM that constrains a

given feature also constrains all downstream features. Conversely, a MRRM that randomizes (i.e. does not constrain)
a given feature does not constrain any of the upstream features either. See Tables I and II for definitions of the

features. A star (∗) emanating from a node indicates that lower hierarchical levels follow as shown in Fig. 10. The
color coding shows what type of features the features correspond to: time-aggregated features (i.e. topological and
weighted), link-timeline features, node-timeline features, and structure-aggregated features (i.e. purely temporal).

tions introduced in Section II A 1 (timeline and link shuf-
flings using the link-timeline representation, and snap-
shot and sequence shufflings using the snapshot-sequence
representation). Timeline and link shufflings, as well as
snapshot and sequence shufflings, are compatible. This
lets us generate new microcanonical RRMs as composi-
tions of these.

A. Link and timeline shufflings

Definition IV.3. Link shuffling. A link shuffling
P[f(L), pL(Θ)] is an event or instant-event shuffling that
constrains all the individual timelines, i.e. the multiset
pL(Θ) = [Θ(i,j)](i,j)∈L. It randomizes the values of i and
j for each link (i, j) ∈ L, while respecting a constraint
given by any function f of L.

In practice a link shuffling is implemented by ran-
domizing the links L in the static graph, using e.g. the
Maslov-Sneppen model (P[k]) or the Erdős-Rényi model
(P[L]), and redistributing the timelines Θ(i,j) ∈ pL(Θ)
at random on the new links without replacement. The
coarsest link shuffling is P[pL(Θ)], which shuffles the
static graph using P[L].

Definition IV.4. Timeline shuffling. A timeline shuf-
fling P[L, f(pL(Θ))] is an event or instant-event shuf-
fling that constrains L (and thus also Gstat). It shuffles
the events on the timelines while respecting a constraint
given by any function f of pL(Θ).

Timeline shufflings conserve the static graph Gstat by
construction. The coarsest timeline instant-event shuf-
fling is P[L], while the coarsest timeline event shuffling is
P[L, p(τ )].
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Proposition IV.1. Link shufflings and timeline shuf-
flings are compatible. Any link shuffling P[f(L), pL(Θ)]
and timeline shuffling P[L,g(pL(Θ))] are compatible and
their composition is given by P[L, f(L),g(pL(Θ))] .

Proof. It is clear that the content of the individual time-
lines Θ(i,j) ∈ pL(Θ) does not in any way constrain what
values L may take, only their number L does. Further-
more, the number of ways that we can distribute the
L timelines on the links is independent of the particu-
lar configuration of L, so ΩL′,pL(Θ∗) = ΩL′′,pL(Θ∗) for
all L′, L′′. Similarly the way we can distribute the E
instantaneous events on the timelines depends only on
L through L, so also ΩL′,L∗ = ΩL′′,L∗ for all L′, L′′.
This means that ΩL′,L∗ ∝ ΩL′,pL(Θ∗) for all L′, and
since the conditional probabilities must be normed, that
PL|pL(Θ)(L†|pL(Θ∗)) = PL|L(L†|L∗), i.e. that L and
pL(Θ) are independent conditioned on L. Since L ≥ L
and L ≥ pL(Θ), it then follows from Theorem 1 that L
and pL(Θ) are compatible. This shows that the coars-
est link shuffling, P[pL(Θ)], and the coarsest timeline
shuffling, P[L], are compatible. We next note that any
link and timeline shufflings are adapted refinements of
P[pL(Θ)] and P[L], respectively (compare Defs. IV.3 and
IV.4 with Def. II.16). So applying Theorem 2 gives that
any link shuffling P[pL(Θ), f(L)] and any timeline shuf-
fling P[L,g(pL(Θ))] are compatible and that their com-
position is P[L, f(L),g(pL(Θ))].

B. Sequence and snapshot shufflings

Definition IV.5. Sequence shuffling. A sequence shuf-
fling P[f(t), pT (Γ)] is a timeline shuffling that con-
strains the distribution of instantaneous snapshot graphs,
pT (Γ). It randomizes the order of snapshots, i.e. the set
T , in a manner that may depend on any function f of
the times of the events, t.

The coarsest sequence shuffling is P[pT (Γ)]. As noted
in the definition above, all sequence shufflings are time-
line shufflings as pT (Γ) ≤ L. They are thus compatible
with link shufflings, but it is practical to define them
separately as they are furthermore compatible with the
snapshot shufflings defined below.

Definition IV.6. Snapshot shuffling. A snapshot shuf-
fling P[t, f(pT (Γ))] is an event or instantaneous-event
shuffling that constrains the time of each event, i.e. t.
It randomizes each snapshot graph Γt individually in a
manner that may be constrained by any function f of
pT (Γ).

Snapshot shufflings are typically implemented by ran-
domizing the snapshot graphs individually and indepen-
dently using any shuffling method for static graphs. The
coarsest snapshot shuffling is P[t], which is equivalent to
P[A] since any permutation of event indices is indistin-
guishable from another.

Sequence and snapshot shufflings are naturally defined
as instant-event shufflings since they rely on randomiz-
ing either the order of temporal snapshots and the events
inside each snapshot, respectively. It is however possible
to define snapshot event shufflings which conserve event
durations of a temporal network (see Section V G), while
it is not generally possible to design microcanonical se-
quence shufflings that conserve event durations in prac-
tice since event durations induce correlations between
neighboring snapshots.

Proposition IV.2. Sequence shufflings and snap-
shot shufflings are compatible. Any sequence shuf-
fling P[f(t), pT (Γ)] and snapshot shuffling P[t,g(pT (Γ))]
are compatible and their composition is given by
P[p(A), f(t),g(pT (Γ))] .

Proof. Following the same reasoning as in the proof of
Proposition IV.1, we note that Ωt′,pT (Γ∗) = Ωt′,p(A∗) for
all t′ and that p(A) satisfies p(A) ≥ t and p(A) ≥ pT (Γ).
Thus, t is independent of pT (Γ) conditioned on p(A). So
the coarsest sequence and snapshot shufflings, P[pT (Γ)]
and P[t] are compatible by Theorem 1. Consequently,
since all sequence shufflings P[f(t), pT (Γ)] and snap-
shot shufflings P[A, f(pT (Γ))] are adapted refinements
of P[pT (Γ)] or P[t], respectively (Def. II.16), Theorem 2
tells us that they are compatible and that their compo-
sition is P[p(A), f(t),g(pT (Γ))].

Proposition IV.3. Link shufflings and sequence shuf-
flings are compatible. Any link shuffling P[f(L), pL(Θ)]
and any sequence shuffling P[f(t), pT (Γ)] are compatible.

Proof. Since sequence shufflings are timeline shufflings,
they are by virtue of Proposition IV.1 also compatible
with link shufflings.

V. CLASSIFYING RANDOMIZED REFERENCE
MODELS

In this section we describe and classify MRRMs found
in the literature based on the theory developed in Sec-
tions II and IV and the features defined in Section III.
We also introduce several new MRRMs, which primarily
are event-shuffling versions of existing instant-event shuf-
flings and vice-versa. We provide unambiguous canoni-
cal names for the MRRMs (see Def. V.1 below) and we
describe how they affect the temporal network features
listed in Table I.

All the MRRMs described here fall in two general
classes depending on whether they are applied to tempo-
ral networks with event durations (Def. II.1) or to tempo-
ral networks with instantaneous events (Def. II.2): event
shufflings (Def. IV.1) shuffle events in temporal networks
while conserving event durations; instant-event shufflings
(Def. IV.2) shuffle instantaneous events in instant-event
temporal networks. Note that it is possible to randomize
the event durations of a temporal network by first dis-
cretizing its events and then shuffling this instant-event
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network using an instant-event shuffling. We describe
how this can be done in detail below.

It is also possible to combine two different MRRMs
to form a new MRRM by applying the second MRRM
to each graph in the ensemble generated by the first.
This defines a composition of the MRRMs (Def. II.12)
and results in a model that shuffles more than either of
the two original MRRMs. Not all compositions lead to
a microcanonical RRM, however. We refer to pairs of
MRRMs whose composition does result in a microcanon-
ical RRM as compatible (Def. II.13). As shown in Sec-
tion IV, link shufflings and timeline shufflings are com-
patible (Proposition IV.1), while sequence shufflings are
compatible with both snapshot shufflings and link shuf-
flings (Propositions IV.2 and IV.3). Some MRRMs gen-
erated by composition of two other MRRMs are listed in
Subsection V I, but many more may be generated directly
from the existing MRRMs described below by applying
any pair of compatible ones in composition. The num-
ber of new MRRMs we can generate this way is given
by the number of pairs of compatible MRRMs that are
not comparable (for the shufflings listed in Table III, this
number is 156).

The MRRMs are described in detail below and their
effects on network features are summarized in Table III.
Three figures additionally provide hierarchical orderings
of the MRRMs: Fig. 12 shows the hierarchy of link shuf-
flings (Def. IV.3); Fig. 13 shows the hierarchy of time-
line shufflings (Def. IV.4), including sequence shufflings
(Def. IV.5); Fig. 14 shows the hierarchy of snapshot shuf-
flings (Def. IV.6).

This section is organized as follows. Subsection V A
first defines the naming convention we will use for MR-
RMs for temporal networks. Subsection V B describes
how to apply instant-event shufflings to generate MR-
RMs that randomize event durations of temporal net-
works. Subsection V C presents the basic, i.e. the coars-
est (Def. II.9), instant-event and event shufflings. Subsec-
tions V D–V G present the four restricted classes of shuf-
flings defined in Section IV, namely link shufflings (V D),
timeline shufflings (V E), sequence shufflings (V F), and
snapshot shufflings (V G). Event and instant-event shuf-
flings are presented in separate lists in each subsection.
Subsection V H describes several MRRMs that can be
classified as intersections of link and timeline shufflings
or of timeline and snapshot shufflings. Subsection V I de-
scribes compositions of MRRMs found in the literature.
Subsection V J discusses microcanonical RRMs that use
additional metadata on nodes. Subsection V K finally
surveys reference models that are not MRRMs. These
are namely canonical RRMs and reference models that
do not maximize entropy. Of the latter we discuss in
particular models based on bootstrapping.

A. Naming convention

Definition V.1. Naming convention for MRRMs for

FIG. 12: Hierarchy of link shufflings. An arrow
from a higher MRRM to a lower one indicates that the
former MRRM is finer than the latter and thus strictly
more constrained. See Tables I and II for definitions of
the features and Section V D for definitions of the link
shufflings. P[n, pL(Θ)], P[w, pL(Θ)], and P[L, pL(Θ)]

are also timeline shufflings (Section V E).

temporal networks. A MRRM is completely defined by
the feature(s) it constrains (Def. II.7), so we use a naming
convention that lists the corresponding set of features. In
particular, if a MRRM constrains the features x and y,
we name it P[x,y].

Our naming convention is not unique as we may devise
different ways to name the same MRRM (see for example
the description of the MRRM P[w, t] in Subsection V H
below). However it is unambiguous as a set of features
uniquely defines a single MRRM (Def. II.7). This means
that a name always uniquely defines a MRRM.

Since MRRMs in practice always constrain the set of
nodes V, the recording time-interval [tmax, tmin], and the
number of instantaneous events E, we exclude these fea-
tures from the canonical names of MRRMs in order to
avoid clutter.

B. Applying instant-event shufflings to temporal
networks with event durations

Event shufflings by definition conserve the events’ du-
rations in a temporal network, but we may randomize the
durations by first representing the temporal network as
an instant-event network and then applying an instant-
event shuffling to it using the following procedure:

i) Choose an appropriate time-resolution for discretiza-
tion. A natural choice may be the time-resolution of
recordings, but for high resolution measurements a lower
time-resolution may be more practical.

ii) Construct the corresponding instant-event temporal
network by defining an instantaneous event between a
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TABLE III: Effects of MRRMs on features of temporal networks. See Tables I and II for symbol definitions
and Def. V.1 for naming. Note that a feature that is not constrained (−) by a shuffling methods is not necessarily

completely randomized either (see discussion at the end of Sec. III).

Canonical name Common name∗ One-level Two-level
topological weighted temp. node link
Gstat ki L ai

† si n(i,j)
† w(i,j) At αmi

† ∆αmi dti τm(i,j)
† ∆τm(i,j) t

1
(i,j) t

w
(i,j)

Instant-event shufflings:
P[1] Instant-event shuffling − − − − µ − − µ − − µ − − − −
Timeline shufflings:
P[L] Timeline shuffling x x x − µ − µ µ − − µ − − − −
P[w] x x x − x − x µ − − µ − − − −
P[w,t1,tw] x x x − x − x µ − − µ − − x x
P[πL(∆τ )] x x x x x x x µ − − µ µL πL − −
P[πL(∆τ ),t1,tw] x x x x x x x µ − − µ µL πL x x
Sequence shufflings:
P[pT (Γ)] Sequence shuffling x x x − x − x p − − pT − − − −
P[pT (Γ),sgn(A)] x x x − x − x p, sgn − − pT − − − −
Snapshot shufflings:
P[t] Snapshot shuffling − − − − µ − − x − − µT − − − −
P[t,Φ] − − − − µ − − x x x µT − − − −
P[d] − − − − µ − − x x x x − − − −
P[iso(Γ)] − − − − µ − − x − − πT − − − −
P[iso(Γ),Φ] − − − − µ − − x x x πT − − − −
Intersections:
P[L,t] x x x − µ − µ x − − µT − − − −
P[w,t] Timestamp shuffling x x x − x − x x − − µT − − − −
Compositions:
P[L] − µ x − µ − µ µ − − µ − − − −
P[k, p(w), t] − x x − µ − p x − − µT − − − −
P[k, Iλ, p(w), t] Iλ x x − µ − p x − − µT − − − −
Event shufflings:
P[p(τ )] Event shuffling − − − − µ − − µ − − µ p − − −
Link shufflings:
P[pL(Θ)] Link shuffling − µ x µ µ p p x − − µT pL pL p p

P[Iλ, pL(Θ)] Iλ µ x µ µ p p x − − µT pL pL p p

P[k, pL(Θ)] Maslov-Sneppen − x x µ µ p p x − − µT pL pL p p

P[k, Iλ, pL(Θ)] Iλ x x µ µ p p x − − µT pL pL p p

Timeline shufflings:
P[L,p(τ )] Timeline shuffling x x x − µ µ µ µ − − µ p − − −
P[πL(τ )] x x x x x x x µ − − µ πL − − −
P[πL(τ ),t1,tw] x x x x x x x µ − − µ πL µL x x
P[πL(τ ),πL(∆τ )] x x x x x x x µ − − µ πL πL − −
P[πL(τ ),πL(∆τ ),t1] x x x x x x x µ − − µ πL πL x x
P[per(Θ)] x x x x x x x µ − − µ x x − −
P[τ ,∆τ ] x x x x x x x µ − − µ x x − −
Snapshot shufflings:
P[p(t, τ )] − − − − µ − − x − − µT πT − − −
Intersections:
P[L,p(t, τ )] x x x − µ µ µ x − − µT πT − − −
P[n,p(t, τ )] Timestamp shuffling x x x x µ x µ x − − µT πT − − −
P[L,pL(Θ)] x x x µ µ p p x − − µT pL pL p p

P[w,pL(Θ)] x x x µ x p x x − − µT pL pL p p

P[n,pL(Θ)] x x x x µ x p x − − µT pL pL p p

∗ Multiple common names for a MRRM may exist; in these cases we report the others in the main text.
† Feature only defined for temporal networks with event durations.
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FIG. 13: Hierarchy of timeline shufflings. An arrow from a higher MRRM to a lower one indicates that the
former MRRM is finer than the latter and thus strictly more constrained. See Tables I and II for definitions of the

features and Section V E for definitions of the timeline shufflings. P[pT (Γ), sgn(A)] and P[pT (Γ)] are sequence
shufflings (Section V F). P[n, pL(Θ)], P[w, pL(Θ)], and P[L, pL(Θ)] are also timeline shufflings (Section V E), and

P[n, p(t, τ )], P[L, p(t, τ ), P[w, t], and P[L, t] are also snapshot shufflings (Section V G).

FIG. 14: Hierarchy of snapshot shufflings. An
arrow from a higher MRRM to a lower one indicates

that the former MRRM is finer than the latter and thus
strictly more constrained. See Tables I and II for

definitions of the features and Section V G for
definitions of the snapshot shufflings. P[n, p(t, τ )],
P[L, p(t, τ ), P[w, t], and P[L, t] are also timeline

shufflings (Section V E).

pair of nodes at the start of each time-interval during
which the nodes are in contact (in the temporal network
shown Fig. 1 this splits the four long events into two
instantaneous events each and creates one instantaneous
event for each of the shorter events).

iii) Randomize this instant-event network using an
instant-event shuffling.

iv) Recreate a randomized version of the temporal net-
work by concatenating consecutive instantaneous events
between the same nodes into single events.

Table III show the effects of both event and instant-
event shufflings on the features of a temporal network.
To understand the effects of the same shufflings on an
instant-event network one should simply ignore the fea-
tures that are not defined for instant-event temporal net-
works, i.e. ai, n(i,j), αm(i,j) and τm(i,j).

From the above procedure, the number of instanta-
neous events on a link in the generated instant-event net-
work is seen to correspond to the weight w(i,j) of the link
in the original temporal network. Using w(i,j) to desig-
nate the number of instantaneous events on the links in
the instant-event network thus makes it possible to name
each event and instant-event shuffling based on the fea-
tures they conserve in a consistent manner, no matter
whether the shuffling is applied to a temporal network
or an instant-event temporal network. It follows from
this alternative definition of w(i,j) that si designates the
activity of the node i in an instant-event network (see
Section III A for further discussion).

C. The basic instant-event and event shufflings

We first present the coarsest possible instant-event and
event shufflings.
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1. Instant-event shuffling

P[1] shuffles the instantaneous events at random with-
out any constraints. P[1] is thus the coarsest
instant-event shuffling possible, and more generally
the coarsest MRRM in the space of all MRRMs
that conserve the nodes V, the recording interval
[tmin, tmax] and the number of events E. P[1] was
employed in Ref. [44].

2. Event shuffling

P[p(τ )] constrains only the set of event durations but
randomizes everything else in the network. P[p(τ )]
is the coarsest event shuffling.

D. Link shufflings

Link shufflings (Def. IV.3) alter the aggregate net-
work topology but conserve temporal structure locally
on each link. Link shufflings always conserve pL(Θ) and
all coarser features (see Fig. 11), while time-aggregated
features may be constrained or randomized depending
on the link shuffling. Link shufflings are compatible with
timeline shufflings (Subsec. V E) and with sequence shuf-
flings (Subsec. V F).

All link shufflings may be defined as event shufflings
since they automatically constrain the contact durations
(i.e. since p(τ ) ≥ pL(Θ)). They are ordered hierarchi-
cally in the Hasse diagram shown in Fig. 12.

1. Event shufflings

P[pL(Θ)] shuffles the links and associated timelines be-
tween all node pairs (i, j) without any constraints
on the static network structure. This corresponds
to drawing Gstat uniformly from the ensemble of
all Erdős-Rényi (ER) [1] random graphs with the
same nodes V and number of links L as the original
network and redistributing the timelines Θ(i,j) ∈
pL(Θ) on the new links at random. P[pL(Θ)] was
employed in Ref. [33] where it was referred to as the
Erdős-Rényi model. It is the coarsest link shuffling,
so we may simply refer to it as link shuffling.

P[Iλ, pL(Θ)] adds the additional constraint to P[pL(Θ)]
that the static network of the sampled reference
networks must be connected (if it was in the in-
put network). P[Iλ, pL(Θ)] was called rewiring in
Ref. [47] and random network in Ref. [31].

P[k, pL(Θ)] shuffles the links and associated timelines
between all node pairs (i, j) while keeping the se-
quence of degrees, k, constrained. The procedure
is typically implemented using the algorithm of

Maslov and Sneppen [15] or by using the configura-
tion model [2]. P[k, pL(Θ)] was called randomized
edges in Refs. [20, 46, 53] random link shuffling in
Ref. [21], and randomized structure in Ref. [40].

P[k, Iλ, pL(Θ)] adds the additional constraint to
P[k, pL(Θ)] that the static network must be con-
nected. P[k, Iλ, pL(Θ)] was called configuration
model in Ref. [31].

E. Timeline shufflings

Timeline shufflings (Def. IV.4) randomize the individ-
ual timelines Θ(i,j) without changing the topology of the
aggregated network. Thus, they always constrain Gstat

and all coarser features (see Fig. 11), while they typ-
ically randomize temporal-topological features of both
links and nodes. Timeline shufflings are compatible with
link shufflings (Subsec. V D).

The timeline shufflings listed below are ordered hierar-
chically in the Hasse diagram shown in Fig. 13.

1. Instant-event shufflings

P[L] completely randomizes the events over all the links,
while conserving L and thus Gstat. It was called
random(ized) contacts in Refs. [20, 53]. It is the
coarsest possible timeline shuffling and we may thus
refer to it simply as the timeline shuffling.

P[w] randomizes the timestamps of the instananeous
events on each individual timeline, i.e. it con-
strains only w. P[w] was called random time(s)
in Refs. [20, 21, 45, 53], uniformly random times in
Ref. [31], temporal mixed edges in Ref. [52], pois-
sonized IEIs in Ref. [47], and SRan in Ref. [30].
P[w] was also employed in Refs. [44, 74].

P[w,t1, tw] redistributes instantaneous events inside
each timeline at random (constraining w) while
constraining the times of the first and last events
constrained, t1, and tw, respectively. It is a max-
imum entropy version of one of the poor man’s
methods introduced in [35] (see Section V K 2).

P[πL(∆τ )] shuffles the instantaneous events while con-
serving the distribution of inter-event durations on
each link, πL(∆τ ). It is the instant-event shuffling
equivalent of P[πL(τ ),πL(∆τ )] defined below.

P[πL(∆τ ),t1] shuffles the inter-event durations between
the instantaneous events on each link while keep-
ing the times of the first event on each link
fixed. P[πT (∆τ ),t1] was named shuffled IEIs in
Refs. [47, 48].
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2. Event shufflings

P[L,p(τ )] constrains the static network structure Gstat

and otherwise shuffles the events completely at ran-
dom between all timelines. P[L,p(τ )] is the coarsest
timeline event shuffling, and is the event shuffling
equivalent of the instant-event shuffling P[L]. We
may consequently refer to P[L, p(τ )] as the timeline
(event) shuffling.

P[πL(τ )] redistributes the events uniformly inside each
timeline. The inter-event durations are random-
ized and asymptotically follow exponential distri-
butions. P[πL(τ )] is an event-shuffling version of
the instant-event shuffling P[w].

P[πL(τ ),t1,tw] redistributes the events inside each time-
line, while keeping starting times of the first and
last events constrained, but otherwise uniformly.
P[πL(τ ), t1, tw] is a natural refinement of P[w, t1,
tw] to make it an event shuffling.

P[πL(τ ), πL(∆τ )] shuffles the event and inter-event du-
rations on each link. P[πL(τ ), πL∆τ ] is referred
to as interval shuffling in Ref. [32].

P[πL(τ ), πL∆τ ,t1] adds another constraint to P[πL(τ ),
πL(∆τ )] so that it conserves the first event time
on each link (it is an event shuffling variant of the
instant-event shuffling P[πL(∆τ ),t1]).

P[per(Θ)] randomly translates the timelines on each link
individually using periodic boundary conditions.
P[per(Θ)] was named random offset in Ref. [37].

P[τ ,∆τ ] is a refinement of P[per(Θ)] that imposes hard
boundary conditions instead of periodic ones.

F. Sequence shufflings

Sequence shufflings (Def. IV.5) are are a particular
kind of instant-event timeline shufflings. They random-
ize the sequence of snapshots while leaving the indi-
vidual snapshots unchanged. They thus generally de-
stroy temporal correlations in link- and node-activities.
Conversely, since they conserve pT (Γ) they conserve the
weighted aggregated network, w, and consequently Gstat,
as well as all instantaneous topological correlations in-
side snapshots (see Fig. 11). This in particular means
that sequence shufflings are also timeline shufflings (see
Def. IV.5), and are thus compatible with both snapshot
shufflings (Subsec. V G) and timeline shufflings (Sub-
sec. IV.4) .

We have identified the following two sequence shuf-
flings in the literature. These are included in the Hasse
diagram shown in Fig. 13.

1. Instant-event shufflings

P[pT (Γ)] randomly shuffles the timestamps of the snap-
shots. P[pT (Γ)] was named reshuffled sequences in
Ref. [50]; it appears in Refs. [38], in Ref. [52] as ran-
dom ordered, in Ref. [45] as shuffled times, and in
Ref. [43] as reshuffle. Since it is the coarsest possi-
ble sequence shuffling, we simply name it sequence
shuffling.

P[pT (Γ),sgn(A)] shuffles the timestamps of the snap-
shots where at least one event takes place, i.e.
where sgn(At) = 1. It thus constrains the func-
tion sgn(A) = (sgn(At))t∈T . It was employed in
Ref. [45] with the name of shuffled times.

G. Snapshot shufflings

Snapshot shufflings (Def. IV.6) conserve the start times
t of all events. They are typically implemented by ran-
domizing the instantaneous snapshot graphs Γt corre-
sponding to each time t ∈ T , As a consequence, all
snapshot shufflings found in the literature are instant-
event shufflings, but they may also be implemented as
event shufflings—we give one example in this section and
two others in Section V H. Snapshot shufflings all con-
strain t (and thus A); they generally destroy temporal-
topological features of links, and may or may not con-
strain temporal topological features of nodes (i.e. d and
coarser features) depending on the snapshot shuffling (see
Fig. 11). Snapshot shufflings are compatible with se-
quence shufflings (Subsec. V F).

The snapshot shufflings listed below are ordered hier-
archically in the Hasse diagram shown in Fig. 14.

1. Instant-event shufflings

P[t] randomly shuffles the instantaneous events inside
each snapshot. This is equivalent to generating
each snapshot Γt as an instance of an Erdős-Rényi
graph with N nodes and Et = At/2 edges. P[t]
is the coarsest possible snapshot shuffling, and we
thus also refer to it simply as snapshot shuffling. It
was called random network in Ref. [45].

P[t,Φ] shuffles the events inside each snapshot while ad-
ditionally constraining the set of nodes that are ac-
tive at each t, i.e. it constrains Φ. P[t,Φ] provides
a rare MRRM that conserves the nodes’ activity
and inactivity durations (besides the finer P[d] in-
troduced below).

P[d] resamples the events inside each snapshot while
constraining the instantaneous degrees d of each
node. P[d] was called time ordered and reshuffled
networks in Ref. [52] and degree preserved network
in Ref. [45], and was also applied in Ref. [55].
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P[iso(Γ)] consists in randomizing the identity of the
nodes in each time snapshot. Each snapshot graph
in the randomized network (Γt)′ is thus isomor-
phic to the corresponding Γt of the original net-
work, (Γt)′ ' Γt, i.e. the shuffling constrains the
isomorphism class of all snapshot graphs, iso(Γ) =
(iso(Γt))Tm=1. P[iso(Γ)] was named anonymize in
Ref. [43].

P[iso(Γ),Φ] consists in randomizing the identity of nodes
at each time step, but only nodes that are active
are shuffled. It thus combines P[iso(Γ)] and P[Φ]
by intersection.

2. Event shufflings

P[p(t, τ )] randomly shuffles the events between links in
a temporal network while keeping the time at
which each event occurs and its duration con-
strained. P[p(t, τ )] is an event-shuffling version of
the instant-event shuffling P[t] defined above.

H. Intersections of two shufflings

Several shuffling methods constrain features corre-
sponding to two of the classes above and can thus be
classified as intersections of these. We have namely found
shuffling methods in the literature that are intersections
of timeline and snapshot shufflings and of link and time-
line shufflings.

1. Instant-event shufflings

The two following instant-event shufflings are intersec-
tions of timeline and snapshot shufflings. They are thus
compatible with both link shufflings (Subsec. V D) and
sequence shufflings (Subsec. V F). The shufflings are in-
cluded in the Hasse diagrams in Figs. 13 and 14.

P[L,t] resamples the events inside each snapshot while
constraining Gstat, i.e. assigning the resampled
events only to node pairs with at least one event
in G. Each snapshot is thus a subgraph of Gstat in
which At links are chosen at random.

P[w,t] randomly shuffles the timestamps tq of all events,
while keeping iq and jq fixed, i.e. it constrains
(i, j) = (iq, jq)Qq=1 and p(t) = {tq}Qq=1. In a com-
pletely equivalent manner, we may define the shuf-
fling by constraining the timestamps t and permut-
ing the pairs (iq, jq), i.e. constraining w. Due to the
indistinguishability of networks obtained through
permutation of event indices, both are equivalent
to conserving w and A. For convenience, we choose
the canonical name P[w,t] which conveys that it is
both a timeline shuffling and a snapshot shuffling.

P[w,t] is a very popular MRRM. It was named per-
muted times in Ref. [53], and called time-shuffled
or time-shuffling in Refs. [22, 25, 27, 31, 39], ran-
domly permuted times in Refs. [20, 34, 46, 49],
random dynamic in Ref. [28], random time shuf-
fle in Ref. [37], reconfigure in Ref. [43], and shuffled
time stamps in Ref. [21]. It was also employed in
Refs. [29, 33, 48, 54].

2. Event shufflings

The two following event shufflings are intersections of
timeline and snapshot shufflings. They are thus compat-
ible with both link shufflings (Subsec. V D) and sequence
shufflings (Subsec. V F). The shufflings are included in
the Hasse diagrams in Figs. 13 and 14.

P[L,p(t, τ )] randomly shuffles the events while constrain-
ing their starting times as well as Gstat. It can be
seen as a refinement of P[L,t] defined above to net-
works with event durations.

P[n,p(t, τ )] is an event shuffling variant of P[w,t] de-
fined above. It conserves the distribution of event
durations, their starting times, and the links and
their event frequencies n, but not necessarily their
weights w.

The three following event shufflings are intersections
between link shufflings and timeline shufflings. They are
thus compatible with link shufflings (Subsec. V D), as
well as timeline (Subsec. V E) and sequence shufflings
(Subsec. V F). The shufflings are included in the Hasse
diagrams in Figs. 12 and 13.

P[L,pL(Θ)] randomly shuffles the timelines between all
links while keeping the static network Gstat fixed.
P[L,pL(Θ)] was named link-sequence shuffled in
Refs. [27, 31, 39], edge randomization in Ref. [20],
and link shuffling in Refs. [32, 42].

P[w,pL(Θ)] shuffles timelines Θ(i,j) between links with
the same weight w(i,j). P[w,pL(Θ)] was named
equal-weight link-sequence shuffled in Refs. [27, 31,
39] and was also called equal-weight edge random-
ization (EWER) in Ref. [20].

P[n,pL(Θ)] shuffles timelines between links with the
same event frequency n(i,j). P[n,pL(Θ)] is a nat-
ural alternative to P[w,pL(Θ)] for temporal net-
works with event durations, where n has a similar
role to the one w has in networks with instanta-
neous events.

I. Compositions of two shufflings

We may combine two compatible MRRMs by compo-
sition (i.e. applying the second MRRM to the networks



30

generated by the first) to randomize at different levels
at the same time (see Section II C). For example, com-
plete randomization of an instant-event temporal net-
work, while keeping the number of links fixed, may be
obtained by randomly permuting the links between all
pairs of nodes using the link shuffling P[pL(Θ)] and ran-
domly permuting the instantaneous events on and be-
tween the links using the timeline shuffling P[L]. The
resulting model is P[L] (Proposition IV.1). Since com-
patible MRRMs commute, it does not matter in which
order we apply them (Proposition II.2).

We list here only examples we have found in the lit-
erature, all of which are compositions of link and time-
line shufflings. The number of different MRRMs that
may generated by composition is given by the number of
combinations of compatible shufflings, and is thus much
larger than this (see discussion at the start of this sec-
tion).

1. Instant-event shufflings

P[L] is generated by the composition of P[pL(Θ)] and
P[L]. It was called all random in Ref. [53].

P[k,p(w),t] applies P[pL(Θ),k] and P[w,t] in composi-
tion. It was called randomized edges with randomly
permuted times in Refs. [20, 46].

P[k,Iλ,p(w),t] adds the additional constraint to
P[k,p(w),t] that the static graph must be con-
nected. It is the composition of P[pL(Θ),Iλ,k]
and P[w,t] and was called configuration model in
Refs. [27, 39].

J. Randomization based on metadata

The availability of metadata offers the possibility to
impose additional external constraints in the MRRMs.
This allows studying effects that are not purely due to
the structure and dynamics of the network. For instance,
in Ref. [25], the age, gender, and type of subscription of
mobile phone users were known; in Ref. [28], the authors
used shuffling methods respecting the bipartite structure
of a sex worker-buyer interaction network, and Ref. [42]
used a shuffling that rewired links between each pair of
predefined node groups in face-to-face networks.

These metadata MRRMs are all a type of stochas-
tic blockmodel [75]. They may be defined by assign-
ing a color to each node, i.e. to which group it belongs
among a set of R predefined groups. The node col-
ors are fixed by the vector σ = (σ1, σ2, . . . , σN ), where
σi ∈ {1, 2, . . . , R}. An R × R group contact matrix, ΣL
[with elements given by the number of links between
groups, (ΣL)σσ′ =

∑
(i,j)∈L(δσi,σδσj ,σ′ + δσj ,σδσi,σ′)],

typically fixes the number of links between members
of each group [we may alternatively fix the number of
events instead using a matrix ΣC , with elements given by

(ΣC)σσ′ =
∑

(i,j,t,τ)∈C(δσi,σδσj ,σ′ + δσj ,σδσi,σ′)]. These
two additional constraints enables us to define MRRMs
that impose structure or dynamics determined by the
metadata.

We may also directly use this blockmodel MRRM con-
struction to conserve the bipartite structure of a net-
work as in [28] by imposing two groups and a per-
fectly antidiagonal ΣL, with (ΣL)11 = (ΣL)22 = 0 and
(ΣL)12 = (ΣL)21 = L. We may finally allow both σ and
Σ to vary over time in order to capture temporal changes
in the group structure.

We classify below and in Table IV MRRMs relying on
metadata.

P[pL(Θ),σ,ΣL] shuffles the links in the static graph while
constraining the group appartenance of each node,
σ, and the number of links between each group,
ΣL. It was employed in Ref. [42], where it was
called CM-shuffling.

P[k,pL(Θ),σ,ΣL] randomizes Gstat while constraining
the group structure, as P[pL(Θ),σ,ΣL] does, while
additionally constraining the node degrees k.
P[pL(Θ),k,σ,ΣL] was used to constrain the bipar-
tite structure of the network and was named ran-
dom topological in Ref. [28].

P[k,p(w),t,σ,ΣL] is generated by composition of the
metadata reliant model P[pL(Θ),k,σ,ΣL] with
P[w,t]. It was named random dynamic topologi-
cal in Ref. [28].

P[G,p(σ)] shuffles the group affiliations (colors) of the
nodes at random (i.e. it randomizes the order of
σ). It thus destroys all correlations between node
color and network structure and dynamics. It is
equivalent to permuting the links while constrain-
ing the static graph to be isometric to the orig-
inal static graph, and thus could also be named
P[iso(Gstat),pL(Θ),σ,ΣL], but we use the above
name for conciseness. It was employed in Ref. [25],
where it was called node type shuffled data.

K. Other reference models

We have above restricted ourselves to microcanonical
RRMs as they are the only maximum entropy reference
models that can be generated by shuffling elements of
an empirical temporal network and they constitute the
largest part of RRMs for temporal networks found in the
literature.

In this section, we briefly discuss other types of ref-
erence models for temporal networks. These models
can be divided into three general classes: (1) canonical
RRMs, which correspond to generalized canonical ensem-
bles of random networks defined by a generative model;
(2) data-driven reference models that do not maximize
entropy; (3) bootstrap methods, which are a particular,
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TABLE IV: Effects of metadata-dependent shufflings on features of temporal networks. Special metadata
symbols are the color (group affiliation) of a node, σi, and the group contact matrices ΣL and ΣE (see main text for
definitions and Tables I and II for other symbols). Note that a feature that is not conserved (−) by a randomization

procedure is not necessarily completely randomized either (see discussion at the end of Sec. III).

Canonical name Meta One-level Two-level
topological weighted temp. node link

σi ΣL ΣE Gstat ki L a†i si n(i,j)
† w(i,j) A

t αmi
† ∆αmi dti τm(i,j)

† ∆τm(i,j) t
1
(i,j) t

w
(i,j)

P[pL(Θ),σ,ΣL] x x − − µ x µ µ p p x − − µT pL pL p p

P[k,pL(Θ),σ,ΣL] x x − − x x µ µ p p x − − µT pL pL p p

P[k,p(w),t,σ,ΣL] x x − − x x − µ − p x − − µT − − − −
P[G,p(σ)] p x − x x x x x x x x x x x x x x x
† Feature only defined for temporal networks with event durations.

but important, type of reference models that do not max-
imize entropy.

1. Canonical randomized reference models

Canonical RRMs present alternatives that are very
close in spirit to the microcanonical RRMs considered
here. They permit to sample canonical ensembles of
networks, i.e. ensembles where selected features are con-
strained only on average, 〈x(G)〉 = x(G∗), instead of
exactly, x(G) = x(G∗), as is the case for MRRMs. (One
often talks of soft constraints for the canonical ensemble
and hard constraints for the microcanonical ensemble).
Such canonical generative models are also known as ex-
ponential random graph models (ERGMs) [2, 76] and
allow to model the expected variability between samples
(see discussion in [77, Section 4]). They are thus expected
to have a lower generalization error than microcanonical
RRMs. Additionally, due their soft constraints, canonical
models are typically more amenable to analytical treat-
ment than their microcanonical counterparts [78].

Conversely, the main advantage of MRRMs is that they
are usually defined as data shuffling methods, which are
often easier to construct than methods that generate net-
works from scratch. They are thus generally the only
type of models that realistically capture many of the tem-
poral and topological correlations present in empirical
networks, which explains their popularity for analyzing
temporal networks. In particular, it is easy to generate
microcanonical RRMs that impose features such as the
global activity timeline A or temporal correlations in in-
dividual timelines, which is difficult and often currently
impossible to do using a generative model. Perhaps due
to the difficulty in defining generative reference models
that capture empirical temporal correlations, these are
currently almost exclusively defined for static networks
or to model either memoryless dynamics [27, 40, 47, 79]
or dynamics with limited temporal correlations [80–84]
A notable exception is a recent study combining Markov
chains with change point detection to model multiscale
temporal dynamics [85]. We shall not discuss canonical

RRMs in more detail here, but refer to [76] for a recent re-
view of ERGMs for temporal networks and to [77, 86] for
recent developments in such models for static networks.

2. Reference models that do not maximize entropy

Several reference models exist that impose a constraint
that is not justified solely by the data (the empirical tem-
poral network) in conjunction with the maximum entropy
principle [61]. Such reference models thus introduce new
order that is not found in the original network. Here we
discuss different types of such reference models and give
examples.

Delta function constraints. Some studies have consid-
ered reference models where what we may call a delta
function constraint was imposed on a set of features of
the temporal network. Specifically they constrained all
instances of this feature to have the same value, i.e. to
follow a delta distribution. This is different from (and
more constrained than) the maximum entropy distribu-
tion. The SStat method introduced in Ref. [30] imposes
a fixed number of events in each snapshot (equal to the
mean number of events per snapshot in the empirical net-
work). Holme [35] introduced three reference models that
all three impose a delta-function constraint (referred to
as poor man’s reference models since they do not satisfy
the maximum entropy principle and provide only a single
reference network instead of an ensemble [21]): equalizing
the inter-event durations ∆τm(i,j) while constraining t1(i,j),
tw(i,j) and w(i,j) for each link (i, j) ∈ L (a non-MaxEnt
version of P[w, t1, tw]); shifting the whole sequence of
events (sequences of event and inter-event times) on each
link in order to make t1(i,j) = tmin or to make tw(i,j) = tmax
for all (i, j) ∈ L.

Biased sampling. Kovanen et al. [22] proposed a bi-
ased version of P[w,t], where instead of swapping times-
tamps of events at random, for each instantaneous event
(i, j, t) they drew m other events at random from the set
of instantaneous events E and swapped the timestamps of
(i, j, t) and the other event (i′, j′, t′) among the m drawn
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for which t′ was closest to t. This reference model thus
retains some temporal correlations due to the biased sam-
pling, where the parameter m controls the force of this
bias and thus of temporal correlations (for m = 1 the ref-
erence model is equal to P[w,t]). The same method was
also employed in Refs. [25, 56]. Valdano et al. [43] con-
sidered a heuristic variant of P[pT (g)] (called reshuffle-
social, where they only permuted snapshots inside inter-
vals where nodes showed approximately the same median
social strategy [87], where the social strategy of a node
i is defined as the ratio γti = kδ,ti /sδ,ti of its degree kδ,ti
and its strength sδ,ti in a network aggregated over δ = 20
consecutive snapshots from t − δ∆t to t. The empiri-
cal temporal network that they investigated showed very
clear spikes in γti separated by low-γti intervals, referred
to as γ-slices, which allowed them to permute snapshots
within each γ-slice only.

Time reversal. A quick but informal to gain insight
into the role of causality in the contact dynamics is to re-
verse the order of the snapshots [20–22, 46]. This method
obviously does not increase entropy as the time-reversed
network is unique, but it may be used as a simple way to
study the importance of causality in the temporal net-
work. A time-reversal MRRM may in principle be de-
fined as one that returns an input temporal network and
its time-reversed version with equal probability.

3. Bootstrap methods

Bootstrap methods are based on sampling with re-
placement, whereas MRRMs are based on sampling with-
out replacement (i.e. shuffling). Resampling with re-
placement means that network features are not con-
strained exactly as for shuffling methods. The hope when
using bootstrapping can thus be to capture some of the
out-of-sample variability. The set of states that may
be generated is strongly constrained by the particular
dataset however, so bootstrapping does not generate a
maximum entropy model. Though it may be seen as
a means to approximate one, it does not come with the
same statistical guarantees as microcanonical and canon-
ical RRMs do. So the nice theoretical results and guaran-
tees that exist for microcanonical RRMs (see Sec. II) do
not hold for bootstrapping, and additional care is advised
when analyzing results obtained using bootstrapping.

Two bootstrap methods used in the literature are de-
scribed below. The method called time shuffling in
Ref. [32] constrains the number of events per link n ex-
actly and resamples the event durations τ from the global
distribution p(τ ) with replacement. The method called
time shuffling in Ref. [42] constrains the static network
Gstat and bootstraps n(i,j), t1(i,j) for all links from the
global distributions p(n) and p(t1), respectively, and then
bootstraps the n(i,j) event durations τm(i,j) and (n(i,j)−1)
of inter-event durations ∆τm(i,j) for each link (i, j) ∈ L
from the global distributions p(τ ) and p(∆τ ), respec-

tively.

VI. ANALYSIS AND HYPOTHESIS TESTING
USING RANDOMIZED REFERENCE MODELS

In this section we outline a general procedure for us-
ing MRRMs in statistical analysis and hypothesis testing,
and we provide two walk-through examples of the use of
nested series of MRRMs to analyze empirical temporal
networks: In Subsection VI A, we analyze the features in
a dataset of face-to-face interactions in a primary school;
in Subsection VI B, we explore the effects of different fea-
tures of a mobile phone call network on the temporal
distances between nodes, which summarize how fast a
dynamical process may spread in the network.

MRRMs permit us to perform null-model based analy-
sis and hypothesis testing for temporal networks. Loosely
speaking, they permit us to answer the question: can a
given set of features alone explain the phenomenon we
observe in the original temporal network? Furthermore,
by using a nested series of (comparable and/or compati-
ble) MRRMs, we may answer the questions: what is the
effect of individual features and which feature is most im-
portant for the phenomenon we observe? For example:
“Are heterogeneous distributions of inter-event durations
and link weights enough to explain how a dynamical pro-
cess propagates through a network and is the result sig-
nificantly different from reference networks where only
one of the distributions is heterogeneous?” [27]. Alter-
natively: “Is the original network significantly different
from a random network with the same link weights and
overall activity patterns?” [25].

Practically speaking, statistical testing using a given
MRRM, P[x], builds on the same three general steps as
used in permutation tests in classical statistics:

1. Calculate some summary statistic of the original
(input) temporal network, y(G∗), e.g., a given fea-
ture of the network such as a marginal distribution
of features or the frequencies of given network sub-
graphs [16, 25], or some statistic of a dynamical
processes on the networks such as the distribution
of arrival times of a simulated spreading process at
each node [32] .

2. Apply a shuffling method corresponding to P[x],
and calculate for the resulting randomized network
G′ the value y(G′) of the same summary statistic
as above. Repeat this step many times in order to
sample Gx(G∗) and obtain a null distribution of y
under the model P[x].

3. Compare the values of y of the original network G∗
to its null distribution. If the two do not agree, the
reference model is highly unlikely as the sole expla-
nation of the observed data and we may conclude
that the constrained feature x is not enough to ex-
plain what we see in the original network. Con-
versely, if the two do agree, we may conclude that
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x can alone explain what we see in the original net-
work.

The above procedure may also be used to compare two
ensembles of randomized networks created using different
MRRMs in order to pinpoint the individual effects of
the different features that are conserved/destroyed by the
different models. More generally, we may want to apply a
series of hierarchically nested MRRMs and compare them
in order to discern the individual and collective effects of
a range of network features.

One is often more interested in computing and com-
paring effect sizes (e.g. how much faster/slower does a
contagion process spread in the randomized networks?)
and qualitative comparisons (e.g. does the distribution of
inter-event durations have a broad tail or not?), rather
than performing categorical hypothesis testing (i.e. us-
ing the p-value). Thus, we do not necessarily seek to
reject or confirm null hypotheses about data, but rather
to use MRRMs as an investigative tool to first flesh out
qualitative effects linked to different features and second
investigate quantitative effect sizes.

A. Walkthrough example: analyzing face-to-face
interactions using MRRMs

In this subsection we apply a selection of MRRMs
to illustrate how they can be used to methodically ex-
plore different features and build a statistical portrait of
a temporal network. We analyze a SocioPatterns dataset
of face-to-face interactions recorded in a primary school
[88, 89], which is freely available at www.sociopatterns.
org/datasets. The data were recorded with a time-
resolution of 20 s and form a temporal network consisting
of 242 nodes and 77 521 events of varying duration. The
applied MRRMs are listed hierarchically in Fig. 15.

Figure 16 illustrates our statistical portrait of the tem-
poral network. It quantifies how each MRRM changes a
selection of temporal network features. Namely, the time-
line of cumulative node activity, A; the distributions of
five time-aggregated (one-level) features: the node de-
grees, p(k), the link weights and event frequencies, p(w)
and p(n), and the node strengths and activities, p(s) and
p(a); as well as global distributions of four temporal-
structural (two-level) features: the event and inter-event
durations on links, p(τ ) and p(∆τ ), and the node activ-
ity and inactivity durations, p(α) and p(∆α). The dif-
ferences are quantified by the Jensen-Shannon divergence
(JSD) [90] between the null distributions and their distri-
bution in the empirical network (for the activity timeline
A, the difference is quantified by the L1 distance). The
values of the features in the empirical network and for
each MRRM are shown in Supplementary Figs. 3 and 4.

We first study the activity timeline A. It is by
construction completely constrained by all link shuf-
flings and snapshot shufflings, while at the opposite
end it is essentially completely randomized by P[πL(τ )],

Timeline shufflingsLink shufflings

Snapshot
shuffling

Event shuffling

FIG. 15: MRRMs employed in the analysis of
face-to-face interactions in a primary school.
P[p(τ )], described in detail in Section V C, is the

coarsest (most random) event shuffling possible. See
Section V D for definitions of link shufflings, Section V E

for timeline shufflings, Section V G for the snapshot
shuffling P[p(t, τ )], and Section V H for the intersections

P[n, pL(Θ)], P[L, pL(Θ)], and P[L, p(t, τ )].

P[L, p(τ )], and P[p(τ )] (see Supplementary Fig. 4).
This shows that A is not constrained by the static
graph of the network. Comparison between P[p(τ )]
and P[πL(τ ),πL(∆τ )] shows that the distribution of
inter-event durations does affect A, but not to a large
extent. Comparing this with P[πL(τ ), t1, tw] shows
that the timing of the first and last events on each
link does on the other hand have a significant effect
on A in the network. Furthermore, comparison with
P[πL(τ ),πL(∆τ ), t1] shows that constraining both t1

and tw together with πL(∆τ ) imposes an even stronger
constraint on the activity timeline (see also Supplemen-
tary Fig. 4).

We next consider time-aggregated features of the tem-
poral network, starting with the distribution of node de-
grees, p(k). This feature is constrained by most of the
MRRMs applied, with the exception of P[pL(Θ)] (which
draws Gstat from an Erdős-Rényi model), and P[p(t, τ )]
and P[p(τ )] (which do not conserve the number of links
in Gstat). The high divergence seen for P[pL(Θ)] shows
that the empirical network’s degree distribution is signif-
icantly nonrandom (even if it does not seem to follow a
broad-tailed distribution, see Supplementary Fig. 3).

Most of the MRRMs also conserve the distributions
of link weights and event frequencies, p(w) and p(n),
respectively, with the exceptions P[L, p(τ )] (which con-
serves the static structure, but not the heterogeneity in

www.sociopatterns.org/datasets
www.sociopatterns.org/datasets
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FIG. 16: Effects of the MRRMs on different features of a temporal network of face-to-face
interactions in a primary school. Each panel shows the difference between the value of the feature in the

empirical network and its null distribution under each model (red symbols for MRRMs that do not constrain the
feature, and blue symbols for MRRMs that do) as well as the differences between its value in different randomized
networks in each null ensemble (black). The latter serves as a benchmark that shows the expected difference due to

random fluctuations if a null model were true. For the activity timeline A, the difference is quantified as the
L1-distance between the activity at each time. For all other features, the difference is quantified as the

Jensen-Shannon divergence (JSD) between the global distributions of the values of individual scalar features. Each
box-and-whiskers summarizes the distribution of the differences over 100 randomized networks generated by the

MRRM in question: boxes show the 1st and 3rd quartiles; whiskers extend to 1.5 times the interquartile range or to
the minimum (maximum) value, whichever is smaller; values beyond the whiskers are marked by open circles.
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the number and durations of events in timelines), and
P[p(t, τ )] and P[p(τ )] (which do not conserve the num-
ber of links in Gstat). The effects of these shufflings on
p(w) and p(n) are very similar, highlighting the fact that
w and n are highly correlated features. Note that the
smaller divergences seen for the more random P[p(τ )]
than for P[L, p(τ )] are due to the JSD putting most
weight on low values of w(i,j) and n(i,j) since these are
most probable. Since P[p(τ )] produces a much larger
number of links than in the original network but con-
serves the number of events, it also produces a large
fraction of links with low w(i,j) and n(i,j), similarly to
the original network. Conversely, P[L, p(τ )] conserves
the number of links and homogenizes w(i,j) and n(i,j),
leading to fewer low values of these.

The majority of the shufflings do not constrain the
distributions of node strengths and activities, p(s) and
p(a), but as for p(w) and p(n), their effects on the two
features are very similar. Due to this we take p(a) as ex-
ample and note that the results are similar for p(s). The
distribution of ai in the empirical network is indistin-
guishable from networks generated by P[k, pL(Θ)]. This
shows that p(a) is simply determined by the convolu-
tion of the individual distributions of k and n and that
correlations between the two are unimportant. Com-
parison with P[L, p(τ )] and P[pL(Θ)] shows that both
p(n) (randomized by P[L, p(τ )]) and p(k) (randomized
by P[pL(Θ)]) are needed to reproduce the non-random
shape of p(a) though.

We finally investigate temporal-structural features of
nodes and links. We note first that the distribution of
event durations, p(τ ) is conserved by all MRRMs by con-
struction.

The distribution of inter-event durations on the links,
p(∆τ ), is constrained by all link shufflings, but not by
most of the other shufflings. Comparison of the effects
of P[πL(τ ), t1, tw] and P[πL(τ )] demonstrates that the
timing of the first and last events in the timelines con-
strain the inter-event durations to some degree in the net-
work (see also Supplementary Fig. 4). The much larger
divergence found for P[L, p(τ )] highlights that the num-
ber of events n(i,j) on each link strongly influences the
inter-event durations.

None of the MRRMs completely constrain the distri-
butions of the nodes activity and inactivity durations,
p(α) and p(∆α). However, all link shufflings produce
null distributions that are relatively close to the empir-
ical ones, though they are still statistically significantly
different. This indicates that the temporal correlations
of the individual links’ activity strongly constrain the
nodes’ activity. More surprisingly, the small divergence
observed in p(α) for P[L, p(t, τ )] and P[p(t, τ )] as com-
pared to the other MRRMs points to the global tim-
ing of the events as the most important of the features
in determining the node activity durations in the net-
work. It is more important than the number of events
and the distributions of inter-event durations on the
links. Conversely, we see that the distribution of inter-

event durations, πL(∆τ ), is the most important tempo-
ral feature in determining the nodes’ inactivity durations,
p(∆α), while the timing of the events is a close second
(compare P[πL(τ ),πL(∆τ ), t1] and P[πL(τ ),πL(∆τ )]
to P[L, p(t, τ )], and these three to P[πL(τ ), t1, tw] and
P[πL(τ )]).

As seen in Supplementary Figs. 3 and 4, the distribu-
tions of the different features obtained from a single ran-
domized network generally vary little around their me-
dian, even though the empirical network studied here is
of relatively modest size.

B. Walkthrough example: analyzing temporal
distances in a communication network using

MRRMs

In this subsection we give an illustrative example how
to use the hierarchy of MRRMs to analyze how the differ-
ent features of a temporal communication network affects
the temporal distances between nodes in the network (de-
fined as the minimal times required for any contagion
process to spread between the nodes). This example ad-
ditionally serves to showcase a graphical representation
that incorporates both the hierarchy of the MRRMs and
their effects on a scalar feature, and which provides an
intuitive way to interpret the results (see Fig. 17). As dis-
cussed in Section VII below, understanding how different
features affect spreading was the starting point of some
of the early studies employing MRRMs in temporal net-
works, and here we reproduce some of those results with
a different data set. However, the analysis pipeline intro-
duced here does not only work for temporal distances,
but can be used for any other scalar-valued feature.

The data used here is a publicly available temporal
mobile phone communication network published by Wu
et al. [91]. Here we focus on the first company with
44431 nodes and around 5.5 × 105 instantaneous events
taking place over 30 days. Distances in temporal net-
works is a multifaceted topic [92], but here we quantify
the distances in a network by a single number describ-
ing the typical temporal distance in the network. More
specifically, we calculate the expected temporal distance
to reach half of the nodes in the network, i.e. the expected
median temporal distance 〈d1/2(G)〉, where the expecta-
tion is evaluated over all nodes and all times as source
points. The temporal distance from one node i to another
node j is defined as the time required for the fastest possi-
ble spreading process starting at a given time t to spread
from i to j [93]. Formally, this fastest possible spreading
is modeled by a deterministic susceptible-infectious (SI)
process where susceptible nodes are infected immediately
by contact with an infectious node. When evaluating the
distances we use periodic boundary conditions in time to
remove boundary effects [27].

Figure 17 displays 〈d1/2(G)〉 for the original data and
for several MRRMs. The figure is organized in a way
that the hierarchies (see Section V) are visible similar to
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FIG. 17: The expected median temporal distance
values for a hierarchy of MRRMs. Each circle in
the figure represents a single MRRM. The horizontal

location of the circle reports the expected median
temporal distance 〈d1/2(G)〉 of the MRRM. An arrow
from a MRRM (P[x]) at a higher location to a lower

one (P[y]) means that the former shuffles less than the
latter (P[x] ≤ P[y]). A canonical name of each MRRM
is given above each circle and a common name below it

(see Section V). In the common names the word
randomization is always removed for brevity, and the
&-sign denotes that both MRRMs are applied to the

data in composition (Def. II.12). Colored links indicate
that the same features were removed: t for green links,
w ↪→ L, pL(w) for blue links, and pL(Θ) ↪→ t for orange

links.

Figures 12 – 15. Reading the figure from top to bottom
now yields a picture of what happens when the original
data is shuffled more and more, i.e., when the temporal
features present in the data are destroyed one by one by
the MRRMs. All of the arrows are pointing either almost
directly downwards or down and left, which means that,
for this network and these set of MRRMs, randomizing
more never leads to longer temporal distances.

The overall activity sequence t, including the daily and
weekly changes in the activity, does not have a noticeable
effect on the temporal distances on these MRRMs: Re-

moving the constraint on t when going from P [w, t] to
P [w] and from P [L, pL(w), t] to P [L, pL(w)] almost does
not change the temporal distances at all. Similarly, shuf-
fling the inter-event times while keeping the first activa-
tion time with P [πL(∆τ), t1] barely changes 〈d1/2(G)〉,
showing that higher-order temporal correlations between
events over the same link has a very small effect on the
temporal distances of the original data.

Adding the shuffling of the weights of the network –
i.e. replacing the feature that keeps the weights of the
links, w, with the one only keeping the links and the
weight distribution, L and pL(w) – makes the tempo-
ral paths around 7–9 days faster. The pairs of MR-
RMs corresponding to this replacement are P [w, t] to
P [L, pL(w), t], P [w] to P [L, pL(w)], and P [w, pL(Θ)] to
P [L, pL(Θ)]. Note that in the MRRM P [L, pL(Θ)] the
weight distribution pL(w) is kept implicitly by the link
sequence distribution pL(Θ), because pL(Θ) ≤ pL(w).

Finally the largest change in the temporal distance are
seen when the times of the link sequences, pL(Θ), are
shuffled such that they simply follow the overall activ-
ity sequence t. In these transitions, from P [w, pL(Θ)] to
P [w, t] and from P [L, pL(Θ)] to P [L, pL(w), t], the tem-
poral distances are reduced on average by around 12–14
days.

Almost no combination effects were observed for these
data: removing each feature had a very similar effect –
with variations of around 2 days – independently of the
other features that were kept. This allows a very sim-
ple summarization of the results: The typical temporal
distance in the data is around 73 days and in the most
random MRRM applied here around 48 days. Out of
that difference, around 12–14 days is explained by link
activation sequence features (such as bursts [27]), 7–9
days are by weight-topology correlations (such as weak
links located in bridge positions [18, 94]), and 4 days by
link-sequence-topology correlations (such as correlations
in times at which two neighbors of a node are communi-
cated with [27, 31]).

This analysis can be made more detailed by adding
more fine-scaled features related to timings of events or
link weights. Alternatively, the analysis could be widened
by including topological MRRMs such as the configura-
tion model.

VII. APPLICATIONS OF RANDOMIZED
REFERENCE MODELS

The applications of MRRMs for temporal networks are
manifold, but all follow two main directions: (i) study-
ing how the network and ongoing dynamical processes are
controlled by the effects of temporal and structural cor-
relations that characterize empirical temporal networks,
and (ii) highlighting statistically significant features in
temporal networks.

(i) Dynamical processes have been studied by using
data-driven models, where temporal interactions are ob-
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tained from real data, while the ongoing dynamical pro-
cess is modeled by using any conventional process def-
inition [20, 95] and typically simulated numerically on
the empirical and randomized temporal networks [95, 96].
One common assumption in all these models is that infor-
mation can flow between interacting entities only during
their interactions. This way the direction, temporal, and
structural position, duration, and the order of interac-
tions become utmost important from the point of view
of the dynamical process. MRRMs provide a way to sys-
tematically eliminate the effects of these features and to
study their influence on the ongoing dynamical process.
This methodology has recently shown to be successful in
indicating the importance of temporality, bursty dynam-
ics, community structure, weight-topology correlations,
and higher-order temporal correlations on the evolution
of dynamical processes, just to mention a few examples.

(ii) MRRMs have also commonly been used as null
models to find statistically significant features in tem-
poral networks (often termed interaction motifs) or cor-
relations between the network dynamics and node at-
tributes. This approach is conceptually the same as using
the configuration model to detect overrepresented sub-
graphs (termed motifs) in static networks [16, 97, 98].
The difference here is that the studied networks vary in
time, which induces further challenges.

In the first three subsections of this section (Sub-
secs. VII A–VII C), we review studies applying MRRMs
to study various dynamical processes in empirical tem-
poral networks. In the fourth part of this section (Sub-
sec. VII D) applications to inferring statistically signif-
icant motifs and correlations in network dynamics will
be discussed briefly. Finally, in the last subsection (Sub-
sec. VII E) we discuss a pair of recent papers that have
applied MRRMs to study temporal network controllabil-
ity. We will in the following include data-driven refer-
ence models that are not maximum entropy models (i.e.
the reference models discussed in Subsecs. V K 2–V K 3).
While they do not come with the same formal statisti-
cal guarantees as maximum entropy RRMs do, they have
nevertheless been useful in identifying important features
in temporal networks.

A. Contagion processes

Contagion phenomena is the family of dynamical
processes that has been studied the most using MR-
RMs. Since epidemics, information, or influence are
all transmitted by person-to-person interactions (to a
large extent), the approximation provided by contact-
data-driven simulations are indeed closer to reality than
other conventional methods based solely on analytical
models. MRRMs became important in this case to help
understand which temporal or structural features of real
temporal networks control the speed, size, or the crit-
ical threshold of the outbreak of any kind of epidemic
process. In the following we will address various types

of contagion dynamics ranging from simple to complex
spreading processes, focusing on findings that are due to
MRRMs. For detailed definitions and features of the dif-
ferent contagion processes we refer readers to the recent
review by Pastor-Satorras et al. [95].

1. SI process

The susceptible-infected (SI) process is the simplest
possible contagion model. Here nodes can be in two
mutually exclusive states: susceptible (S) or infectious
(I). Susceptible nodes (initially everyone except an ini-
tial seed node) become infected with rate β when in con-
tact with an infected node. This process does not dis-
play a phase transition since each node (belonging to the
seeded component of the network) becomes infected in
the end (almost surely), i.e. the fraction of infected nodes
〈I(t)〉/N tends to 1. The single parameter β controls the
speed of saturation, thus by considering the limit β →∞
one can simulate the fastest possible contagion dynam-
ics on a given network. In this case the infection times
correspond to the temporal distances between the seed
and the nodes that get infected. This can be seen as a
”light-cone” defining the horizon of propagation in the
temporal network [53].

Early motivation to use RRMs of temporal networks
was to understand why models of information diffusion
unfold extremely slowly in communication networks even
when modeled by the fastest possible spreading model,
i.e. an SI process with β → ∞ [27]. In this study
two mobile communication networks and an email net-
work were taken as temporal networks to study this phe-
nomenon [99]. The study introduced four MRRMs and
measured the average fraction of infected nodes to study
the early and late time behavior of the spreading process.
As compared to the diffusion on the original sequence
(which takes about 700 days for full penetration) the
fastest null model was P[Iλ,k,p(w),t] (Sec. V I), remov-
ing all structural and temporal correlations while keeping
only the empirical heterogeneities in the node degrees, k,
and link weights, p(w), as well as the cumulative activity
over time, A). At the same time, the largest contribution
to the overall acceleration effect appeared once apply-
ing the P[w, t] and P[L,pL(Θ)] models (Sec. V H). This
lead to the conclusions that the bursty interaction dy-
namics and the Granovetterian weight-topology correla-
tions [94] are dominantly responsible for the slow spread-
ing of information in these systems. On the other hand
the P[w,pL(Θ)] model (Sec. V H), which eliminates all
causal correlations between events taking place on adja-
cent links but conserves the weighted network structure
and temporal correlations in individual timelines, was ob-
served to slightly slow down the process during the early
phase, while accelerating it in the long run. As an al-
ternative possible explanation, effects of circadian fluc-
tuations, were also studied here via two canonical RRMs
where interaction times were generated by either a ho-
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mogeneous or an inhomogeneous Poisson process (with
the rate of creation of new events set equal to either
the mean (time-averaged) or the instantaneous rate of
event creation, respectively). These models thus con-
served 〈w(i,j)〉 and (〈w(i,j)〉, 〈At〉), respectively. These
generative models demonstrated that although circadian
fluctuations may cause short term fluctuations in the
overall speed of the spreading process, on the longer tem-
poral scale they have negligible effects on the spreading
dynamics.

Three other null models were introduced by Kivelä
et al. [31] to study the same process on the same em-
pirical networks. They applied P[w] (Sec. V E) to ran-
domize all temporal correlations while conserving the ag-
gregated structure, and P[k, Iλ, pL(Θ)] and P[Iλ, pL(Θ)]
(Sec. V D) to randomize the static network topology
while conserving all temporal correlations in individual
timelines. They concluded that, while temporal corre-
lations have much stronger effects on the dynamics, the
heterogeneous degree distribution of the underlying so-
cial structure initially accelerates the spreading while
slowing it down on the long run. Additionally, their main
conclusion was that the slow diffusion can be partially ex-
plained by the timings of individual call sequences. The
spreading is strongly constrained by the frequency of in-
teractions, i.e. the high variance in the inter-event dura-
tions causes the residual waiting (relay times) times to
be large, and makes the spreading slower than the Pois-
sonian case.

Another study by Gauvin et al. [32] analyzed face-
to-face interaction networks and employed MRRMs to
identify the effective dynamical features, responsible for
driving the diffusion of epidemics in local settings like
schools, hospitals, or scientific conferences. To under-
stand the dominant temporal factors driving the epi-
demics in these cases, they took both a bottom-up ap-
proach by using generative network models, and a top-
down approach by employing two shuffling methods (cor-
responding to MRRMs) and a bootstrap method. They
shuffled event and inter-event durations on individual
links using P[πL(τ ),πL(∆τ )] (Sec. V E), they shuffled
the timelines between existing links using P[L,pL(Θ)]
(Sec. V H), and they finally bootstrapped the global dis-
tribution of event durations p(τ ) while keeping the num-
ber of events n on each link fixed. In this study, time was
not taken as a global measure but interpreted to be node
specific. Each node was assigned with an activity clock
measuring the time that a node spent in interaction with
others. This way, for an SI process, which was initiated
from a seed node i at time t and which reached node j
at time tj , the arrival time of node j was not defined
as tj − t but the cumulative duration of all of j’s events
during the period from t to tj . Simulating the SI process
this way, they measured the distribution of arrival activ-
ity times, defined as the time it takes for the infection,
starting from a random seed node, to reach a node in the
network (measured using the nodes activity clock). To
compare different null models they calculated Kullback-

Leibler divergences between the corresponding arrival-
time distributions. From these measurements they con-
cluded that the bursty nature of interaction dynamics has
the strongest effect on the speed of spreading, while the
heterogeneity in the number of events per link n and the
synchronized contact patterns (typical in a school dur-
ing breaks) also have a strong effect on the contagion
dynamics.

Perotti et al. [74] studied the effect of temporal spar-
sity, an entropy-based measure quantifying temporal het-
erogeneities on the empirical scale of average inter-event
durations 〈∆τm(i,j)〉. As a reference model the authors
used P[w] (Sec. V E). They showed via the numerical
analysis of several temporal datasets and using analyti-
cal calculations that there is a linear correspondence be-
tween the temporal sparsity of a temporal network and
the slowing down of a simulated SI process.

A unique temporal interaction dataset was studied by
Rocha et al. [28], which recorded the interaction events
of sex sellers and buyers in Brazil. The system is a
temporal bipartite network where connections only exist
between sellers and buyers. Using this dataset the au-
thors studied, among other questions, the effects of tem-
poral and structural correlations on simulated SI (and
SIR) processes. They introduced three different MRRMs
imposing a bipartite network structure (obtained using
the metadata-dependent blockmodel MRRMs discussed
in Sec. V J with two groups and a perfectly anti-diagonal
contact matrix between the groups. Their first model,
P[k,pL(Θ),σ,ΣL], was used to destroy any structural cor-
relations in the bipartite structure while keeping tempo-
ral heterogeneities unchanged (except for link-link tem-
poral correlations). Conversely, their second null model,
P[w,t] (Sec. V H), destroyed all the temporal structure
except global activity patterns, but kept the weighted
(bipartite) network structure unchanged. Their third
model, P[k,p(w),t,σ,ΣL] (Sec. V J) was generated as the
composition of the two others. Interestingly, they ob-
served that bursty patterns accelerate the spreading dy-
namics, contrary to other studies [27, 29, 31, 32, 74].
At the same time they showed that structural correla-
tions slow down the dynamics in the long run, and by
applying the two reference models at the same time,
that bursty temporal patterns and structural correlations
together slows spreading initially and speeds it up for
later times. The authors arrived at the same conclu-
sion using SIR model dynamics (for definition see Section
VII A 2 below), with the additional observation that tem-
poral effects cause relatively high epidemic thresholds as
compared to degree-heterogeneous static networks, where
thresholds are vanishing [95]. Note that the accelerating
effect of burstiness in this case was explained later by the
non-stationarity of the temporal network [35, 44]
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2. SIR and SIS processes

The Susceptible-Infected-Recovered (SIR) and
Susceptible-Infected-Susceptible (SIS) processes are two
other dynamical processes that have been widely studied
on temporal networks using MRRMs. In addition to
the S→I transition of the SI process, in the SIR (SIS)
process infected nodes transition spontaneously to a
recovered, R (susceptible, S), state with rate γ (or
after a fixed time θ), after which they cannot (can) be
re-infected again. These processes are characterized by
the basic reproduction number R0 = β/γ and display a
phase-transition between a non-endemic and an endemic
phase. An analogy with information diffusion can
easily be drawn, where the infection is associated to
the exposure to a given information, while spontaneous
recovery mimics that the agent later forgets the given
information.

One of the first studies addressing SIR dynamics using
MRRMs was published by Miritello et al. [29] and inves-
tigated mobile phone communication networks. In their
model they used β as the control parameter while letting
the recovery time θ for each node be constant. They used
two reference models. The first was the P[w,t] (Sec. V H)
model, used to study the effects of bursty interaction dy-
namics on global information spreading. Their second
null model applied a local shuffling scheme that cannot
evidently be interpreted as a MRRM for networks since
it considers only local information and not the whole net-
work. It investigates the effects of group conversations on
local information spreading. In this case they considered
an event (i → j) and its preceding one (∗ → i) reach-
ing the node i. To eliminate local causal correlations
between the two events they randomized relay times by
selecting randomly a time for the (∗ → i) event from the
times of any event observed in the dataset. Both refer-
ence models preserve the link weights w, the duration
of interactions, and also the circadian rhythms of human
communications. As their first conclusion, they realized
that relay times depend on two competing properties of
communication. While burstiness induces large trans-
mission times, thus hindering any possible infection, ca-
sual interaction patterns translate into an abundance of
short relay times, favoring the probability of propagation.
They also showed that the outbreak size of the simulated
SIR process depends counterintuitively on β. More pre-
cisely, if β is small the spreading is faster and reach a
larger fraction of nodes in the original temporal network
than in the P[w,t] model. While on the contrary, if β
is large the process evolves slower and unfolds in smaller
cascades on the original data relative to the P[w,t] model.
If β is large, the information propagates easily but its is
affected strongly by large inter-event durations and lo-
cal correlations, while if β is small the propagation is
more successful at the local scale thus reaching a larger
fraction of nodes in the original temporal network even
if temporal correlations are present. To quantitatively
explain these effects the authors introduce the dynam-

ical tie strength to represent the network as static and
show that the phenomena can be explained by the com-
petition of heterogeneous interaction patterns and local
causal correlations.

Génois et al. studied the effects of sampling of face-to-
face interaction data on data-driven simulations of SIR
(and SIS) processes [42], and proposed an algorithm for
compensating for the sampling effect by reconstructing
surrogate versions of the missing contacts from the in-
complete data, taking into account the network group
structure and heterogeneous distributions of n(i,j), τm(i,j),
and ∆τm(i,j). Using the reconstructed data instead of the
sampled data allowed to trade in a large underestimation
of the epidemic risk by a small overestimation; here the
epidemic risk was quantified by the fraction of recovered
(susceptible) nodes in the stationary state and the proba-
bility that the epidemics reached at least 20% of the pop-
ulation. They used MRRMs to investigate and explain
the reasons for the small overestimation of the epidemic
risk when using the reconstructed networks. They ap-
plied following reference models: P[πL(τ ),πL(∆τ )]; the
metadata-dependent shuffling P[pL(Θ),σ,ΣL]; a boot-
strap method, resampling p(n), p(τ ), p(∆τ ), and p(t1);
and finally applied P[pL(Θ),σ,ΣL] in composition with
the bootstrap method. This allowed them to conclude
that the overestimation was due to higher order tempo-
ral and structural correlations in the empirical temporal
networks, which however are notoriously hard to quantify
and to model.

The effect of birth and death of links on epidemic
spreading was demonstrated by Holme and Liljeros [35]
using twelve empirical temporal networks. They investi-
gated an ongoing link picture where the lifetime of social
ties is irrelevant as links are assumed to be created and
end before and after the observation period; and a link
turnover picture where social links are assigned with a
lifetime being created and dissolved during the observa-
tion. To understand which case is more relevant for mod-
eling epidemic spreading, they defined three determin-
istic poor man’s reference models [21] (see Sec. V K 2).
Their first reference model conserved t1, tw, and w, and
equalized all inter-event durations in the timelines, elimi-
nating the effects of heterogeneous inter-event durations.
Their second and third models aimed to neutralize the
effects of the beginning and ending times of active in-
tervals, thus they shifted the active periods of each link
either to the beginning or to the end of the observation
period, i.e. they set t1(i,j) = tmin or tw(i,j) = tmax for all
(i, j) ∈ L, respectively, while keeping the original se-
quence ∆τ of inter-event durations on the links. The
authors presented an exhaustive analysis by simulating
SIR and SIS processes on each dataset using the orig-
inal event sequences, and each reference model. They
explored the entire phase space in each case. They con-
cluded that for both processes, while shifting activity pe-
riods (either way) induce large differences in the final
fraction of infected nodes, equalizing the inter-event du-
rations while keeping the times of the first and last events
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on each link only marginally changes the outcome. This
indicates that it is enough to consider only the observed
lifetime of links while their fine-grained dynamics is less
relevant in terms of modeling spreading processes.

Valdano et al. [43] proposed an infection propaga-
tor approach to compute the epidemic threshold of dis-
crete time SIS (and SIRS) processes on temporal net-
works. Their aim was to account for more realistic effects,
namely a varying force of infection per contact, the possi-
bility of waning immunity, and limited time resolution of
the temporal network. To better understand the effects
of temporal aggregation and correlations on the estima-
tion of the epidemic threshold they used three different
MRRMs, as well as a heuristic reference model, and ap-
plied them on face-to-face interaction datasets recorded
in school settings. The three MRRMs were: P[pT (Γ)]
(Sec. V F), P[w,t] (Sec. V H), and P[iso(Γ)] (Sec. V G).
They measured, for different recovery rates, how the epi-
demic threshold changed as a function of the aggregation
time window relative to the case with the highest tempo-
ral resolution. They considered two different aggregation
strategies: where the link weights (i) were or (ii) were
not considered. They showed that the obtained thresh-
olds were mostly independent of the cumulative activity
of the network, and more related to specific time-evolving
topological structures. Finally, they considered a fourth
heuristic reference model, which shuffled the snapshot or-
der, but only within a given number of slices, this way
keeping control on the length of temporal correlations de-
stroyed (see description in Sec. V K 2). They showed that
long range temporal correlations, which in turn lead to
repeated interactions and strong weight-topology corre-
lations, must be considered to provide a good approxima-
tion of the epidemic threshold on short temporal scales
and for slow epidemics.

Finally, there has been a single study using MRRMs
with rumor spreading dynamics [36]. It considered the
Daley-Kendall model, which is very similar to the SIR
model with the exception that nodes do not recover
spontaneously but via interactions with other infected
or recovered (stifler) nodes. The aim of this study was
to understand the effects of memory processes, induc-
ing repeated interactions between people, on the global
mitigation of rumors in large social networks. Using
a mobile phone communication dataset they utilized a
directed temporal network snapshot shuffling, P[d→],
which constrained the instantaneous out-degree dmi→ of
each node in each snapshot (see Appendix A). In prac-
tice this amounted to randomizing the called person for
each event in order to eliminate the effects of repeated
interactions over the same link. This MRRM randomized
the topological and temporal correlations in the network,
destroyed link weights, and increased the static node de-
grees considerably. Results were confronted with corre-
sponding model simulations, which verified that memory
effects play the same role in data-driven models as was
observed in the case of synthetic model processes, namely
they keep rumors local due to repeated interactions over

strong ties.

3. Threshold models

A third family of spreading processes are complex con-
tagion processes, which are often used to model social
contagion. These models capture the effects of social in-
fluence, which is considered via a non-linear mechanism
for contaminating neighboring nodes (typically a thresh-
old mechanism). In the conventional definition of thresh-
old models [100] nodes can be in two mutually exclusive
states, non-adopter (i.e. susceptible) – initially all but
one node – and adopter (i.e. infectious) – initially a ran-
domly selected seed node – and each node i is assigned
a threshold φi defining the necessary number kIi or frac-
tion kIi /ki of adopter neighbors to make the node (with
total degree ki) adopt. We refer to the first variant as
the Watts threshold model with absolute thresholds, and
the second as the Watts threshold model with relative
thresholds. The central question here is the condition
needed to induce a large adoption cascade that spreads
all around the network. These models are highly con-
strained by the network structure and dynamics as the
distribution of individual thresholds determine the condi-
tions for global cascades. This is fundamentally different
from SIR type of dynamics (called simple contagion pro-
cesses) which are highly stochastic, driven by random
infection and recovery. In the latter case, transmission
of infection is not fully determined by structural prop-
erties but possible even via a single stimuli coming from
an infected neighbor. The conventional threshold model
introduced by Watts [100], and other related dynami-
cal processes have been thoroughly studied on static net-
works, however their behavior on temporal networks has
been addressed only recently by studies using RRMs.

Karimi and Holme [33] studied two different threshold
models on six empirical datasets of time-resolved human
interactions. They studied both the relative threshold
and the absolute threshold Watts models [100], where
the numbers of adopted neighbors kIi (δ) and all neigh-
bors ki(δ) were calculated over a given memory time
window δ. Their main goal was to identify the effect
of temporal and structural correlations on the size of the
emerging cascade as function of the threshold φ (chosen
to be equal for every node) and the memory time window
size. For the model with fractional thresholds they ob-
served that the cascade size decreased with φ and with
the time window length, while for the absolute thresh-
old model it increased with longer time windows. They
furthermore employed two MRRMs: P[w,t] (Sec. V H)
and P[pL(Θ)] (Sec. V D). They found that in the frac-
tional threshold model temporal correlations (burstiness)
allowed smaller cascades to evolve in most of the cases,
while in the absolute threshold model the effect was the
contrary. An exception they found was a conference set-
ting, where temporal correlations increased the cascade
size, while structural correlations slightly decreased it.
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As they explained, this may be due to specific constraints
in this setting as bursty interaction patterns appeared
synchronously during the conference breaks where also a
large number of simultaneous interactions appeared be-
tween people discussing in groups.

Backlund et al. [37] also studied the effects of temporal
correlations on cascades in threshold models on temporal
networks. In their study, they introduced a stochastic
and a deterministic threshold model. Their stochastic
model is a linear threshold model where the probability
of adoption increases linearly with the fraction of adopt-
ing neighbors observed in a finite time window prior to
the actual interaction. Note that in this case, rapidly re-
peated interactions with an adopted neighbor does not in-
crease the adoption probability per interaction. However,
since adoption potentially occurs after every interaction,
bursty interaction patterns evidently affects the adoption
process. Conversely, in their deterministic model they
employed the conventional deterministic threshold rule,
thus assigning a relative threshold to a node (the same
for each of them, as in Ref. [33]), which then certainly
adopts after this fraction of adopted neighbors has been
reached within a finite observation window. Note that
in each model when calculating the actual threshold of
a node they considered the static degree ki, aggregated
over the whole observation period, in the denumerator,
and not the degree ki(δ), aggregated over the time win-
dow δ only as in [33]. They applied two MRRMs to four
different temporal interaction datasets. They used the
P[w,t] (Sec. V H) model to destroy all temporal corre-
lations while keeping circadian fluctuations, and intro-
duced another model, P[per(Θ)], that randomly shifts
each individual timeline using periodic boundary condi-
tions to keep all temporal correlations inside each time-
line and destroy correlations between events on adjacent
links as well as circadian fluctuations. After simulat-
ing both models, they found that increasing the memory
length (time window size) facilitates spreading, and so
does the removal of temporal correlations using P[w,t].
This way they concluded that burstiness negatively af-
fects the size of the emerging cascades. At the same time,
they found that higher order temporal-structural corre-
lations, removed by P[per(Θ)] (Sec. V E), facilitate the
emergence of large cascades. In addition, they observed
that for the deterministic model, high degree nodes tend
to block the spreading process, contrary to the case of
simple contagion. For complex contagion, hubs are un-
likely to interact with enough adopters to reach their
adoption threshold.

A somewhat different picture was proposed by Tak-
aguchi et al. [34], where the authors used a threshold
model denoted history dependent contagion. This model
is an extension of an SI process with a threshold mecha-
nism. Here each node has an internal variable measuring
the concentration of pathogen and is increased by unity
after a stimuli arrived via temporal interactions with in-
fected neighbors. However, this concentration decays ex-
ponentially as function of time in the absence of inter-

action with infected nodes. A node becomes infected if
its actual concentration reaches a given threshold, after
which it remains in the infected state. They simulated
this model on two different temporal interaction networks
and measured the fraction of adopters as function of time.
In order to identify the effects of bursty interaction pat-
terns they used the P[w,t] model (Sec. V H), which lead
to a slower spreading dynamics. From this they argued
that burstiness increases the speed of spreading in both
datasets. Furthermore, they showed through the analysis
of single link dynamics, that this acceleration was mostly
due to the bursty patterns on separate links and not due
to correlations between bursty events on adjacent links
or to the overall structure of the network.

B. Random walks

Random walks are some of the simplest and most stud-
ied dynamical processes on networks. On a temporal
network, a random walk is defined by a walker, which is
located at a node at time t, and can be re-located to the
node’s current neighbors in each timestep. The walker
chooses the neighbor to which it jumps either at ran-
dom or with a probability proportional some link weight.
A central measure is here the mean-first passage time
(MFPT), defined as the average time taken by the ran-
dom walker to arrive for the first time at a given node,
starting from some initial position in the network. An-
other important measure is the coverage defined as the
number of different vertices that have been visited by the
walker up to time t.

Starnini et al. [30] studied stationary properties of
random walks on temporal networks, and used refer-
ence models to define ways to synthetically extend their
temporal face-to-face interactions datasets with limited
observation length. They assumed periodic temporal
boundary conditions on their empirical temporal net-
work (their first model), with weak induced biases as dis-
cussed in an earlier paper [92]. Their second model, P[w]
(Sec. V E), kept all weighted features of the aggregated
network, but destroyed all temporal correlations and in-
duced Poissonian interaction dynamics. Finally, they
introduced a third heuristic reference model in which
they impose a delta function constraint on the number
of events starting at each time step (see Sec V K 2), ran-
domly drawing the pairs of nodes that interact in order
to approximately conserve n and finally bootstrap the
event durations from p(τ ). This approximately conserves
certain important statistical properties of the empirical
event sequence, namely p(n) and p(τ ), but not A and
p(∆τ ). After providing a mean field solution, they mea-
sured the MFPT and coverage on the original and syn-
thetic sequences. They found that the results for empiri-
cal sequences deviated systematically from the mean field
prediction and from the results for the reference models,
inducing a slowdown in coverage and MFPT. They con-
cluded that this slowdown is not due to the heterogene-
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ity of the durations of conversations, but uniquely due
to what they term temporal correlations (which, given
the reference models they tested, encompasses the time-
varying cumulative activity, the broad distribution of
inter-event durations, and higher-order temporal corre-
lations between different events).

Delvenne et al. [40] also addressed random walks on
temporal networks. They used MRRMs in order to un-
derstand which factor is dominant in determining the re-
laxation time of linear dynamical processes to their sta-
tionary state. They introduced a general formalism for
linear dynamics on temporal networks, and showed that
the asymptotic dynamics is determined by the compe-
tition between three factors: a structural factor (com-
munities) associated with the spectral properties of the
Laplacian of the static network, and two temporal factors
associated to the shape of the waiting-time distribution,
namely its burstiness coefficient (defined in [101]) and the
decay rate of its tail. They demonstrated their method-
ology on six empirical temporal interaction networks
and used two RRMs. The link shuffling P[k, pL(Θ)]
(Sec. V D) aimed to remove the effects of the structural
correlations. In this case they found that in sparse net-
works, structure remains the dominant determinant of
the dynamics as sparsity results in the inevitable creation
of bottlenecks for diffusion even in a random network. On
the other hand, in denser structures the removal of com-
munities leads to the dominance of temporal features.
The other null model, a generative reference model using
a homogeneous Poisson process to generate events and
constraining only Gstat and the mean number of events
〈E〉 (see Sec. V K 1), destroyed all temporal and weight
correlations while conserving the static network struc-
ture, leading to the evident dominance of the network
structure in regulating the convergence to stationarity.

A greedy random walk process and a non-backtracking
random walk process were studied by Saramäki and
Holme on eight different human interaction datasets in
Ref. [41]. A greedy random walker always moves from
the occupied node to one of its neighbors whenever pos-
sible. Thus its dynamics is more sensitive to local tem-
poral correlations in the network. A non-backtracking
greedy random walker is additionally forbidden to return
to its previous position. Thus, it is forced to move to a
new neighbor or wait until the next event which moves
it to a new neighbor. The authors studied what types of
temporal correlations are determinant during these dy-
namics by using the P[w,t] model (Sec. V H) and mea-
suring the coverage of the walker after a fixed number of
moves. They found that after removing temporal correla-
tions using P[w,t], the walker reached considerably more
nodes. They explained this observation by the dominant
effects of bursty (ping-pong) event trains on single links
which trap the walker for a long time going back and
forth between two nodes. In addition, they also indi-
cated somewhat weaker effects of larger temporal motifs
such as triangles. They finally traced the entropy of the
greedy walkers and concluded that, on average, the en-

tropy production rates measured in the original event
sequences were lower than for randomized data, indicat-
ing more predictable node sequences of visited nodes in
the empirical case.

C. Evolutionary games

Evolutionary games [102] define another set of dynam-
ical processes which have historically been studied on
networks. They are analogous to several social dilem-
mas where the balance of local and global payoffs drive
the decision of interacting agents. Any agent may choose
between two strategies (Cooperation or Defection) and
can receive four different payoffs (Reward, Punishment,
Sucker, or Temptation). The relative values of Tempta-
tion and Sucker determines the game, where players up-
date their strategy depending on the state of their neigh-
bors with a given frequency and tend to find an optimal
strategy to maximize their benefits.

Cardillo et al. [38] studied various evolutionary games
on temporal networks and asked two questions: “Does
the interplay between the time scale associated with
graph evolution and that corresponding to strategy up-
dates affect the classical results about the enhancement of
cooperation driven by network reciprocity?” and “what
is the role of the temporal correlations of network dynam-
ics in the evolution of cooperation?”. They analyzed two
human interaction sequences, and for comparison they
applied the sequence shuffling P[pT (Γ)] (Sec. V F), and
the activity-driven model [79]. As a parameter to con-
trol the time-scale of the network, they varied the size of
the integration time window defining a single snapshot
of the temporal networks and measured the fraction of
cooperators after the simulated dynamics reached equi-
librium. They showed for all social dilemmas studied
that cooperation is seriously hindered when agent strate-
gies are updated too frequently relative to the typical
time scale of interactions, and that temporal correlations
between links are present and lead to relatively small
giant components of the graphs obtained at small aggre-
gation intervals. However, when one use randomized or
synthetic time-varying networks preserving the original
activity potentials but destroying temporal correlations,
the structural patterns on the reference networks change
dramatically. Effects of the temporal resolution on coop-
eration are smoothed out, and due to the lack of temporal
and structural correlations, cooperation may persistently
evolve even for moderately small time periods.

D. Temporal motifs and networks with attributes

Another direction of application of RRMs is to high-
light significant temporal correlations of motifs in inter-
action signals or when interactions may correlate with
additional node attributes.



43

For directed temporal networks, one simple applica-
tion of MRRMs was introduced by Karsai et al. [23],
who analyzed the correlated activity patterns of individ-
uals, which induced bursty event trains. They found that
the number of consecutive events arriving in clusters are
distributed as a power-law. To identify the reason be-
hind this observation they used a very simple MRRM
that shuffled the inter-event durations between consecu-
tive event pairs, P[s→, p(∆τ )] (see Appendix A for defi-
nitions of features of directed temporal networks). They
found that in the shuffled signal, bursty event trains were
exponentially distributed, which evidently indicated that
bursty trains were induced by intrinsic correlations in the
original system and were not simply due to the broad dis-
tribution of inter-event durations.

In another study, Karsai et al. [24] also applied this
framework to identify whether correlated bursty trains
of individuals is a property of nodes or links. Using a
large mobile phone call interaction dataset, the observa-
tion was made that bursty train size distributions were
almost the same for nodes and links. This suggests that
such correlated event trains were mostly induced by con-
versations by single peers rather than by group conversa-
tions. To further verify this picture, the fraction of bursty
trains of a given size emerging between a varying num-
ber of individuals were calculated in the empirical event
sequence and in a directed network MRRM, P[w,p(∆τ )]
(see Appendix A), where the receivers of calls were shuf-
fled between calls of the actual caller. This reference
model leaves the timing of each event unchanged, thus
leading to the observation of the same bursty trains, and
keeps the instantaneous and static out-degrees of individ-
uals. However, since the receivers are shuffled, potential
correlations that induce bursty trains on single links are
eliminated. Results showed that the fraction of single link
bursty trains drops from ∼ 80% to ∼ 20% after shuffling
in call and SMS sequences. This supports the hypothesis
that single link bursty trains are significantly more fre-
quent than one would expect from the null hypothesis,
which is then rejected.

However, real temporal networks commonly reveal
more complicated temporal motifs, whose detection was
first addressed by Kovanen et al. [22]. They proposed a
method to identify mesoscale causal temporal patterns
in interaction sequences where events of nodes do not
overlap in time. This framework can be used to identify
overrepresented patterns, called temporal motifs which
are not only similar topologically but also in the tem-
poral order of the events. They propose different RRMs
to quantify the significance of different temporal motifs.
They used P[w,t] (Sec. V H), and they introduced a non-
maximum-entropy reference model which biases the sam-
pling of the ensemble of temporal networks defined by
P[w,t] in order to keep some temporal correlations in
the sequence (see Sec. V K 2). To do so, they selected
randomly for each event in a motif m other events from
the sequence and chose the one which was the closest
in time to the original event in focus. If m = 1 the

model is identical to P[w,t], while the larger m is the
more candidate events there are, thus the more likely
it is to find one close to the original event. They fur-
thermore suggested that to remove causal correlations
from the sequence, one may simply reverse the interac-
tion sequence and repeat the motif detection procedure
(see Sec. V K 2). They used these reference models in the
same spirit as the configuration model is used to identify
motifs in static networks [97, 98]. Here, applying P[w,t]
and its biased version as null models to detect motifs con-
sisting of three events, they found that motifs between
two nodes, i.e. bursty link trains, are the most frequent,
and motifs which consist of potentially casually corre-
lated events are more common than non-causal ones.

In another study by the same authors [25], the same
methodology was used to identify motifs in temporal
networks where nodes (individuals) were assigned with
metadata attributes like gender, age, and mobile sub-
scription types. Beyond the P[w,t] model (Sec. V H), the
authors introduced the metadata MRRM P[G, p(σ),ΣL]
(Sec. V J), which shuffles single attributes between nodes.
In addition, they applied the biased version of P[w,t] in-
troduced in [22] (see Sec. V K 2), which accounts for the
frequency of motif emergence in the corresponding static
weighted network without considering node attributes.
Using this non-maximum-entropy reference model and
the two MRRMs they found gender-related differences
in communication patterns and showed the existence of
temporal homophily, i.e. the tendency of similar individ-
uals to participate in communication patterns beyond
what would be expected on the basis of their average
interaction frequencies.

The dynamics of egocentric network evolution was
studied by Kikas et al. [103], where they used a large
evolving online social network to analyze bursty link cre-
ation patterns. First of all they realized that link creation
dynamics evolve through correlated bursty trains. They
verified this observation by comparing the distribution
of inter-event durations (measured between consecutive
link creation events) to those generated by the directed-
network MRRM P[s→, p(∆τ )] (see Appendix A), where
inter-event durations were randomly shuffled. In addi-
tion, they classified users based on their link creation ac-
tivity signals (where activity was measured as the number
of new links added within a given month). They showed
that bursty periods of link creation are likely to appear
shortly after the creation of a user account, or when a
user actively use free or paid services provided by the
online social service. In order to verify these correlations
they used a reference model where they shuffled link cre-
ation activity values between the active months of a given
user and found considerably weaker correlations between
the randomized link creation activity signals and service
usage activity signals of people.

Finally, in a different framework, a special kind of
metadata reference model was also used by Karsai et al.
[104] to demonstrate whether the effect of social influence
or homophily is dominating during the adoption dynam-
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ics of online services on static networks. This reference
model did not consider randomizing the temporal net-
works, but rather node attributes linked to the dynamics
of the game (i.e. a purely metadata MRRM – Sec. V J
– coupled with a dynamical process on the network);
we include it in this survey to demonstrate the scope
of maximum entropy shuffling methods beyond random-
izing network features solely. In case of real adoption
cascades, these two mechanisms may lead to similar col-
lective adoption patters at the system level. In reality,
influence-driven adoption of an ego can happen once one
or more of its neighbors have adopted, since their actions
may then influence the decision of the central ego. Conse-
quently, the time-ordering of adoptions of the ego and its
neighbors matters in this case. Homophily-driven adop-
tion is, however, different. Homophily drives social tie
formation such that similar people tend to be connected
in the social structure. In this case connected people may
adopt because they have similar interests, but the time
ordering of their adoptions would not matter. There-
fore, it is valid to assume that adoption could evolve in
clusters due to homophily, but these adoptions would ap-
pear in a random order. In order to demonstrate these
differences, the authors used a reference model where
they shuffled all adoption times between adopted nodes
and confronted the emerging adoption rates of innova-
tor, vulnerable, and stable adopters (for definitions see
[100, 104]) to the adoption rates observed in the empirical
system. They found that after shuffling the rate of inno-
vators considerably increased, while the rate of influence
driven (vulnerable and stable) adoptions dropped. This
verified that adoption times matters during real adoption
dynamics, thus the social spreading process was predom-
inantly driven by social influence. Note that in this case
the network was static and shuffling was applied on the
observed dynamical process. We mention this example
here to demonstrate the potential of MRRMs in other
settings.

E. Network controllability

We finally mention two recent studies of the controlla-
bility of temporal networks that have leveraged MRRMs.
Control of a dynamical system aims at guiding a system
to a desired state by designing the inputs to the sys-
tem [105]. Although control theory has a long history
as a branch of engineering applied to diverse subjects, it
was only recently that we saw a general theory of the
controllability of the systems in which elements interact
in a networked manner [106]. The key finding was that
sparse networks require more driver nodes (i.e. the nodes
receiving the designed input) than dense networks, and
that the driver nodes are not necessarily hubs in gen-
eral [106]. An algorithm to approximate the minimal set
of driver nodes was also proposed in [106], based on find-
ing the maximum matching in the network.

It is natural to think of extending the theory for static

networks to temporal networks. Pósfai and Hövel made
the first study in this direction, in which they consid-
ered a discrete-time linear dynamical system with time-
varying interactions [45]. The focal measure of controlla-
bility is the size of the structural controllable subspace.
The structural controllable subspace is defined by the
subset of nodes satisfying that any of their final states
at time t is realizable from any initial state in at most
a number τ of time-steps by appropriately tuning the
non-zero elements of the adjacency and input matrices
as well as the input signals. First, they proved a theo-
rem stating that a node subset is a structural controllable
subspace if and only if any node in the subset are con-
nected to disjoint time-respecting paths from the nodes
receiving the input signals. This theorem implies that,
keeping the same average instantaneous degree, the tem-
poral network with a heavy-tailed πT (d) is more difficult
to control than a network with a homogeneous πT (d)
because the presence of hubs in snapshots decreases the
number of disjoint time-respecting paths. They examine
this theoretical argument by comparing the structural
controllable subspace for an empirical temporal network
to the ensembles produced by following the four MRRMs:
P[w,t] (Sec. V H), P[pT (Γ),sgn(t)] (Sec. V F, and P[t]
and P[d] (Sec. V G). The sizes of the maximum structural
controllable subspace for P[w,t] and P[t] were generally
larger than that for the original network. This result
suggests that the homogenization of πT (d) and thus the
elimination of hubs in snapshots increases the controlla-
bility of networks, which is consistent with the theoretical
argument. For the other two MRRMs, the controllabil-
ity of P[d] is almost the same as the original network
and P[pT (Γ),sgn(A)] has a slightly lower controllability
than the original network. These results implies that the
higher-order structural correlations in snapshots have lit-
tle effect on network controllability and that the temporal
correlations over successive snapshot present in the orig-
inal network contribute to enhance the controllability to
some extent.

Recently, Li et al. [46] showed that temporal networks
have a fundamental advantage in controllability com-
pared to their static network counterparts. They com-
pared the time and energy required to achieve the full
controllability of the network, when driving nodes in
the sequence of snapshots or the single aggregated net-
work. The numerical experiments on multiple empirical
networks demonstrated that temporal networks can be
fully controlled more efficiently in terms of both time
and energy than their static counterparts. They argued
that this advantage comes from temporality itself, but
not from particular temporal features, by showing that
a set of different MRRMs, namely P[w, t] (Sec. V H),
P[k, pL(Θ)] (Sec. V D), and P[k, p(w), t] (Sec. V I), as
well as the time reversal reference model (Sec. V K 2),
achieve more efficient controllability than their aggre-
gated counterparts.
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VIII. CONCLUSION

We have here introduced a fundamental framework for
microcanonical randomized reference models (MRRMs).
This enabled consistent naming, analysis, and classifi-
cation of MRRMs for temporal networks. We have used
this framework to describe numerical shuffling procedures
found in the literature rigorously in terms of microcanon-
ical RRMs, built a taxonomy of these RRMs, and sur-
veyed their applications to the study of temporal net-
works. This framework also allowed us to define condi-
tions for when we may combine two MRRMs in a com-
position to generate a new MRRM and to derive which
features it inherits from them. Such compositions of com-
patible MRRMs makes it possible to easily generate hun-
dreds of new MRRMs from the dozens existing ones.

Many MRRMs are easily implemented by numerical
shuffling methods. As such MRRMs provide an outstand-
ing and very generally applicable toolbox for the analysis
of dynamical networked systems. Their main advantages
being their wide applicability and relative ease of imple-
mentation: they only require the definition of a corre-
sponding unbiased shuffling method. This means that
they can be used to test the importance of any given fea-
ture provided a corresponding shuffling method, and may
in principle be used to generate model networks that are
arbitrarily close to empirical ones.

Shuffling methods provide an interesting alternative to
more elaborate generative models, and can be seen as
a top-down approach to modeling by progressively ran-
domizing features of an empirical network, as opposed to
the bottom-up approach of generative models. Each ap-
proach has its strengths and weaknesses (as discussed in
Sec. V K 1). We believe that shuffling methods are best
used as exploratory tools to identify important qualita-
tive features and effects. Generative models can then
be used to explore them quantitatively and to perform
model selection in order to identify potential underlying
generative mechanisms.

We have focused on undirected and unweighted tempo-
ral networks, but the extension of the basic microcanoni-
cal RRM framework introduced in Section II to any other
type of network is trivial as it can be applied to any
discrete structure. Extending the rest of the framework
may require defining new ways of representing the struc-
ture and defining appropriate features. This is straight-
forward for directed (see Appendix A) and edge-valued
temporal networks. Temporally varying multilayer net-
works [107] require the definition of three-level nested
features. Furthermore, a MRRM-based framework can
be developed for any other types of multilayer networks,
such as multiplex networks or networks of networks, and
even for structures beyond networks such as hypergraphs.
Finally, it should be helpful to define a similar framework
for canonical reference models (see Section V K 1) as more
of such models are emerging.

It is our intention that this framework and collection
of MRRMs will serve as a reference for researchers who

want to employ MRRMs to analyze temporal networks
and dynamical processes taking place on them. With the
foundations for MRRMs aid here we are ready to repeat
the success stories of RRMs for static networks, and may
even go much further.

Notable important challenges remain which may now
be addressed using the formalism defined here. For exam-
ple, how to automatize the definition and classification of
new MRRMs, which would allow a user to simply state
the set of features she wants to constrain to generate a
corresponding ensemble of networks. How to automatize
the choice of MRRMs in order to most efficiently infer
which features of an empirical temporal network control a
given dynamical phenomenon, i.e. identifying which mod-
els best divide the space of network features (for single
features this corresponds to cuts in the dependency di-
agram, Fig. 11). How to characterize automatically the
effect of a MRRM on temporal network features that are
not comparable to nor independent of the features con-
strained by the MRRM.

We note finally that it is a notoriously difficult prob-
lem to design unbiased shuffling methods for MRRMs
that take higher order topological correlations into ac-
count [26, 108]. This may put natural barriers on the pos-
sible resolution of exact MRRMs. Instead, approximate
procedures for generating such MRRMs would have to
be considered, and their accuracy may be gauged by how
closely they reproduce features which we know should be
constrained by the MRRM.
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Python/C++ software packages. M.G., M. Karsai, M.
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Appendix A: Randomized reference models for
directed temporal networks

Two of the studies in the survey above (Sec. VII) con-
sidered MRRMs specifically defined for directed temporal
networks, namely P[d→] and P[s→, p(∆τ )]. The inclu-
sion of MRRMs for directed networks is straightforward
as it simply requires defining the appropriate directed
features. For features of links, no generalizations are
necessary since they all generalize automatically to di-
rected networks by using the convention that (i, j) des-

ignates an interaction from i to j. However, since in
directed networks a link from i to j does not imply the
presence of the reciprocal link from j to i, the interpre-
tation of link features may change. For each feature of
nodes, three generalizations typically exist: an outgoing
version, e.g., the out-strength si→, an ingoing version,
e.g., the in-strength si←, and a combined version, e.g.,
the total strength si = si→ + si←. We list some general-
izations of node features to directed temporal networks
in Table V.
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[31] Kivelä, M. et al. Multiscale analysis of spreading in a
large communication network. J. Stat. Mech. Theory
Exp 2012, P03005 (2012).



47

TABLE V: Additional features of directed temporal networks. Generalizations of node features in Table I
to directed networks. Link features are the same as for undirected networks. Below, (·) denotes an ordered sequence,

{·} denotes an unordered set, | · | denotes the cardinality of a set, : means “for which” or “such that”.

Symbol Meaning of symbol Definition
Topological-temporal features
Vi→ Outgoing neighborhood of node. Vi→ = {j : (i, j) ∈ L}
Vi← Incoming neighborhood of node. Vi← = {j : (j, i) ∈ L}
Vi Neighborhood of node. Vi = {j : (i, j) ∈ L or (j, i) ∈ L}
Topological-temporal features
dti→ Instantaneous out-degree. dti→ = |{j : (i, j) ∈ Et}|
dti← Instantaneous in-degree. dti← = |{j : (j, i) ∈ Et}|
dti Instantaneous (total) degree dti = |{j : (i, j) ∈ Et or (j, i) ∈ Et}|
Φi→ Node activity timeline. Φi→ =

(
(v1
i→, α

1
i→), (v2

i→, α
2
i→), . . . , (vai→

i→ , αai→
i→ )

)
αmi→ Activity duration. Consecutive interval during which i has at least one outgoing contact.
∆αmi→ Inactivity duration. ∆αmi→ = vm+1

i→ − (vmi→ + αmi→)
Aggregated features
ai→ Outgoing node activity. ai→ =

∑
j∈Vi→

n(i,j)

ai← Ingoing node activity. ai← =
∑

j∈Vi←
n(i,j)

ai (Total) node activity. ai =
∑

(i,j)∈Li
n(i,j)

si→ Node out-strength. si→ =
∑

(i,j)∈Li→
w(i,j)

si← Node in-strength. si← =
∑

(i,j)∈Li←
w(i,j)

si Node (total) strength. si =
∑

(i,j)∈Li
w(i,j)

ki→ Node out-degree. ki→ = |Vi→|
ki← Node in-degree. ki← = |Vi←|
ki Node (total) degree. ki = |Vi|

[32] Gauvin, L., Panisson, A., Cattuto, C. & Barrat, A. Ac-
tivity clocks: spreading dynamics on temporal networks
of human contact. Sci. Rep. 3, 3099 (2013).

[33] Karimi, F. & Holme, P. Threshold model of cascades in
empirical temporal networks. Physica A 392, 3476–3483
(2013).

[34] Takaguchi, T., Masuda, N. & Holme, P. Bursty Commu-
nication Patterns Facilitate Spreading in a Threshold-
Based Epidemic Dynamics. PLoS One 8 (2013).

[35] Holme, P. & Liljeros, F. Birth and death of links control
disease spreading in empirical contact networks. Sci.
Rep. 4, 4999 (2014).

[36] Karsai, M., Perra, N. & Vespignani, A. Time varying
networks and the weakness of strong ties. Sci. Rep. 4,
4001 (2014).
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Supplementary TABLE I: Extended list of marginals and moments of a sequence of features. Below, (·)
denotes an ordered sequence and [·] denotes a multiset, equivalent to the empirical distribution.

Symbol Meaning of symbol Definition
x One-level sequence of link characteristics. x = (x(i,j))(i,j)∈L

One-level sequence of node characteristics. x = (xi)i∈V
One-level sequence of snapshot characteristics. x = (xt)t∈T
Two-level sequence of link characteristics. x = (x(i,j))(i,j)∈L

a

Two-level sequence of node characteristics. x = (xi)i∈V b

πL Sequence of local distributions on links. πL(x) = (π(i,j)(x(i,j)))(i,j)∈L
d

πV Sequence of local distributions on nodes. πV(x) = (πi(xi))i∈V e

πT Sequence of local distributions in snapshots. πT (x) = (πt(xt))t∈T f

pL Distribution of local sequences on links. pL(x) = [x(i,j)](i,j)∈L
a

pV Distribution of local sequences on nodes. pV(x) = [xi]i∈V b

pT Distribution of local sequences in snapshots. pT (x) = [xt]t∈T c

µL Sequence of local means on links. µL(x) = (µ(i,j)(x(i,j)))(i,j)∈L
g

µV Sequence of local means on nodes. µV(x) = (µi(xi))i∈V h

µT Sequence of local means in snapshots. µT (x) = (µt(xt))t∈T i

pL(πL) Distribution of local distributions on links. pT (πL(x)) = [π(i,j)(x(i,j))](i,j)∈L
d

pV(πV) Distribution of local distributions on nodes. pV(πV(x)) = [πi(xi)]i∈V e

pT (πT ) Distribution of local distributions in snapshots. pT (πT (x)) = [πt(xt)]t∈T f

pL(µL) Distribution of local means on links. pL(µL(x)) = [µ(i,j)(x(i,j))](i,j)∈L
g

pV(µV) Distribution of local means on nodes. pV(µV(x)) = [µi(xi)]i∈V h

pT (µT ) Distribution of local means in snapshots. pT (µT (x)) = [µt(xt)]t∈T i

p Distribution of one-level link characteristics. p(x) = [x(i,j)](i,j)∈L

Distribution of one-level node characteristics p(x) = [xi]i∈V
Distribution of one-level snapshot characteristics p(x) = [xt]t∈T
Global distribution of two-level link characteristics. p(x) = ∪(i,j)∈Lπ(i,j)(x(i,j)) d

Global distribution of two-level node characteristics. p(x) = ∪i∈Vπi(xi) e

µ Mean of one-level link characteristics. µ(x) =
∑

(i,j)∈L x(i,j)/L

Mean of one-level node characteristics. µ(x) =
∑

i∈V xi/N

Mean of one-level snapshot characteristics. µ(x) =
∑

t∈T x
t/T

Global mean of two-level link characteristics. µ(x) =
∑

(i,j)∈L

∑
m∈M(i,j)

xm(i,j)/(
∑

(i,j)∈LM(i,j))

Global mean of two-level node characteristics. µ(x) =
∑

i∈V

∑
m∈Mi

xmi /(
∑

i∈VMi)
− Feature is not conserved.

a x(i,j) : Local sequence on link, x(i,j) = (xm(i,j))m∈M(i,j) .
b xi : Local sequence on node, xi = (xmi )m∈Mi .
c xt : Local sequence in snapshot, xt = (xti)i∈V .
d π(i,j)(x(i,j)) : Local distribution on link, π(i,j)(x(i,j)) = [xm(i,j)]m∈M(i,j) .
e πi(xi) : Local distribution on node, πi(xi) = [xmi ]m∈Mi .
f πt(xt) : Local distribution in snapshot, πt(xt) = [xti]i∈V .
g µ(i,j)(x(i,j)) : Local mean on link, µ(i,j)(x(i,j)) =

∑
m∈M(i,j)

xm(i,j)/M(i,j).
h µi(xi) : Local mean on node, µi(xi) =

∑
m∈Mi

xmi /Mi.
i µt(xt) : Local mean in snapshot, µt(xt) =

∑
i∈V x

t
i/N .
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(a) (b) (c)

Supplementary FIG. 1: Extended hierarchy of the marginals and moments of a sequence of
characteristics. An arrow from a higher node to a lower one indicates that the former feature is finer than the

latter. Thus, a MRRM that conserves the former feature necessarily conserves all downstream features. Conversely,
a MRRM that randomizes a given feature also randomizes any features upstream of it as well. (a) For one-level

sequences of features, namely the aggregated features k, a, n, s, and w, and A, and the link-timeline features t1,
and tw. (b) For two-level sequences of features of nodes , namely α, ∆α and d. (c) For two-level sequences of

features of link timelines, namely τ and ∆τ .
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Time aggregated Link timelines

Node timelines Structure aggregated

Supplementary FIG. 2: Extended hierarchy of different temporal network features. An arrow from a
higher ranking (more central) to a lower ranking feature (node in the diagram) indicates that the former feature is

finer than the latter. Thus, a MRRM that constrains the feature in a given node also constrains all features of
downstream nodes. Conversely, a MRRM that randomizes (i.e. does not constrain) the feature of a given node does
not constrain any of the features of upstream nodes either. See Table I in the main text and Supplementary Table I

for definitions of the features. A star (∗) emanating from a node indicates that lower hierarchical levels follow as
shown in Supplementary Fig. 1. The color coding shows what type of features the features correspond to:
time-aggregated features (i.e. topological and weighted), link-timeline features, node-timeline features, and

structure-aggregated features (i.e. purely temporal).
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P[p(t, τ )]
P[pL(Θ)]

P[k, pL(Θ)]
P[L, pL(Θ)]

P[n, pL(Θ)]

Supplementary FIG. 3: Effects of different link and event shufflings on temporal network features.
Values of a selection of features in the empirical face-to-face interaction network considered in Section VI A of the

manuscript and in randomized networks generated from it. Original data is in black. Randomized data is in blue if
constrained, in red if not. Red lines are medians over 100 randomizations, red areas show 90 % confidence intervals.
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P[L, p(τ )]
P[πL(τ )]

P[πL(τ ), t 1
, tw]

P[πL(τ ),πL(∆τ )]

P[πL(τ ),πL(∆τ ), t 1]

Supplementary FIG. 4: Effects of different timeline shufflings on temporal network features. Values of
a selection of features in the empirical face-to-face interaction network considered in Section VI A of the manuscript
and in randomized networks generated from it. Original data is in black. Randomized data is in blue if constrained,

in red if not. Red lines are medians over 100 randomizations, red areas show 90 % confidence intervals.



Supplementary Note: Names of MRRM algorithms in the Python
library

Instant-event shufflings

• P[1]: P__1

Timeline shufflings.

• P[L]: P__L

• P[w]: P__w

• P[w, t1tw]: P__w_t1_tw

• P[πL(∆τ )]: P__pidtau

• P[πL(∆τ ), t1tw]: P__pidtau_t1_tw

Sequence shufflings.

• P[pT (Γ)]: P__pGamma

• P[pT (Γ), sgn(A)]: P__pGamma_sgnA

Snapshot shufflings.

• P[t]: P__t

• P[t,Φ]: P__t_Phi

• P[d]: P__d

• P[iso(Γ)]: P__isoGamma

• P[iso(Γ),Φ]: P__isoGamma_Phi

Intersections.

• P[L, t]: P__L_t

• P[w, t]: P__w_t

Compositions.

• P[L]: P__pTheta with P__L_E

• P[k, p(w), t]: P__pTheta with P__w_t

• P[k, Iλ, p(w), t]: with P__w_t

Event shufflings

• P[p(τ )]: P__ptau

Link shufflings.

• P[pL(Θ)]: P__pTheta

• P[Iλ, pL(Θ)]: P__I_pTheta

• P[k, pL(Θ)]: P__k_pTheta

• P[k, Iλ, pL(Θ)]: P__k_I_pTheta

Timeline shufflings.

• P[L, p(τ )]: P__L_ptau

• P[πL(τ )]: P__pitau

• P[πL(τ ), t1tw]: P__pitau_t1_tw

• P[πL(τ ),πL(∆τ )]: P__pitau_pidtau

• P[πL(τ ),πL(∆τ ), t1]: P__pitau_pidtau_t1

• P[per(Θ)]: P__perTheta

• P[τ ,∆τ ]: P__tau_dtau

Snapshot shufflings.

• P[p(t, τ )]: P__pttau

Intersections.

• P[L, p(t, τ )]: P__L_pttau

• P[n, p(t, τ )]: P__n_pttau

• P[L, pL(Θ)]: P__L_pTheta

• P[w, pL(Θ)]: P__w_pTheta

• P[n, pL(Θ)]: P__n_pTheta

Metadata shufflings

Link shufflings.

• P[pL(Θ),σ,ΣL]: P__pTheta_sigma_SigmaL

• P[k, pL(Θ),σ,ΣL]: P__k_pTheta_sigma_SigmaL

• P[G, p(σ)]: P__G_psigma

Compositions.

• P[k, p(w), t,σ,ΣL]: P__k_LCM with P__w_t
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