
HAL Id: hal-01817568
https://hal.science/hal-01817568v2

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Truncation Bounds for Differentially Finite Series
Marc Mezzarobba

To cite this version:
Marc Mezzarobba. Truncation Bounds for Differentially Finite Series. Annales Henri Lebesgue, 2019,
2, pp.99-148. �10.5802/ahl.17�. �hal-01817568v2�

https://hal.science/hal-01817568v2
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Annales Henri Lebesgue
2 (2019) 99-148

MARC MEZZAROBBA

TRUNCATION BOUNDS FOR
DIFFERENTIALLY FINITE
SERIES
BORNES DE TRONCATURE POUR LES
SÉRIES DIFFÉRENTIELLEMENT FINIES

Abstract. — We describe a flexible symbolic-numeric algorithm for computing bounds
on the tails of series solutions of linear differential equations with polynomial coefficients. Such
bounds are useful in rigorous numerics, in particular in rigorous versions of the Taylor method
of numerical integration of ODEs and related algorithms. The focus of this work is on obtaining
tight bounds in practice at an acceptable computational cost, even for equations of high order
with coefficients of large degree. Our algorithm fully covers the case of generalized series
expansions at regular singular points. We provide a complete implementation in SageMath
and use it to validate the method in practice.

Résumé. — Nous décrivons un algorithme symbolique-numérique souple pour le calcul de
bornes sur les restes de solutions séries d’équations différentielles linéaires à coefficients polyno-
miaux. Ces bornes sont destinées au calcul numérique rigoureux, et utiles notamment dans des
versions rigoureuses de la méthode de Taylor d’intégration des EDO ou d’autres algorithmes
apparentés. L’objectif principal de ce travail est d’obtenir des bornes fines en pratique pour un
coût de calcul acceptable, y compris dans le cas d’équations d’ordre élevé à coefficients de grand
degré. Notre algorithme couvre entièrement le cas des développement en séries généralisées au
voisinage de points singuliers réguliers. Nous présentons une implémentation complète de la
méthode en SageMath, et nous l’utilisons pour valider son bon comportement en pratique.

Keywords: rigorous computing, symbolic-numeric algorithms, D-finite functions, error bounds.
2010 Mathematics Subject Classification: 33F05, 34M03, 65G20, 65L70.
DOI: https://doi.org/10.5802/ahl.17
(*) This work was supported in part by ANR grant ANR-14-CE25-0018-01 (FastRelax).

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.17

100 M. MEZZAROBBA

1. Introduction

1.1. Context

From the point of view of rigorous numerics, computing the sum of a power series

(1.1) u(z) =
∞∑
n=0

unz
n

at a point ζ ∈ C of its disk of convergence means obtaining an arbitrarily tight
enclosure of u(ζ) given ζ. This reduces to computing, on the one hand, enclosures of
the coefficients un, and on the other hand, a rigorous bound on the remainder, that
is, a quantity B(ζ,N) such that

(1.2) |uN :(ζ)| 6 B(ζ,N) where uN :(z) =
∞∑
n=N

unz
n.

In order for the method to yield arbitrarily tight enclosures, the bound B(ζ,N)
should at least tend to zero as N grows.
In the present work, we are interested in the case where the coefficients un of the

series (1.1) are generated by a linear recurrence with polynomial coefficients. In other
words, there exist rational functions b1, . . . , bs over some subfield K ⊆ C such that,
for large enough n, the coefficient un is given by

(1.3) un = b1(n)un−1 + · · ·+ bs(n)un−s.

Equivalently, the analytic function u(z) satisfies a linear ordinary differential equation
(ODE) with coefficients in K(z),

(1.4) ar(z)u(r)(z) + · · ·+ a1(z)u′(z) + a0(z)u(z) = 0.

Functions with this property are called differentially finite (D-finite) or holonomic.
Under this assumption, computing the coefficients and the partial sum given

sufficiently many initial values is not a problem in principle (though one needs to
bound the round-off error if the computation is done in approximate arithmetic, and
numerical instability issues may occur). The question we consider here is the following:
assuming that the series (1.1) is given by means of the differential equation (1.4) and
an appropriate set of initial values, how can we compute bounds of the form (1.2)
on its remainders?
Theoretical answers to this question have long been known. In fact, textbook proofs

of existence theorems for solutions of linear ODEs implicitly contain error bounds
whose computation often can be made algorithmic, even in the nonlinear case. More
specifically, the basic idea of the very method we use here can be traced back to
Cauchy’s 1842 memoir [Cau42] on the “calcul des limites”, or method of majorants
as it is now called. (See Henrici [Hen86, Section 9.2] or Hille [Hil97, Sections 2.4–
2.6] for modern presentations of the classical method of majorants.) Yet, the basic
method is not enough, by itself, to produce tight bounds in practice at a reasonable
computational cost.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 101

1.2. Contribution

The goal of the present article is to describe a practical and versatile algorithm for
these bound computations. Our method fully covers the case of expansions at regular
singular points of the ODE (see Section 5.1 for reminders), including expansions
in generalized series with non-integer powers and logarithms. (It does not apply in
the irregular case, even to individual solutions that happen to be convergent.) It
is designed to be easy to implement in a symbolic-numeric setting using interval
arithmetic, and to be applicable to fast evaluation algorithms based on binary
splitting and related techniques [CC90]. We provide a complete implementation in
the SageMath computer algebra system, and use it to assess the tightness of the
bounds with experiments on non-trivial examples.
To see more precisely what the algorithm does, consider first the following inequal-

ity that one might write to bound the remainder of the exponential series with pen
and paper:

(1.5)

∣∣∣∣∣∣
∑
n>N

ζn

n!

∣∣∣∣∣∣ 6 |ζ|
N

N !

N∑
n=0

N !
(N + n)! |ζ|

n 6 e|ζ| |ζ|
N

N ! .

We are aiming for bounds of a similar shape: like this one, our bounds decompose
into a factor that mainly depends on the analytic behavior of the function of interest
(actually, in our case, of the general solution of the ODE), multiplied by one that
is related to the first few neglected terms of the series. Also like this one, they are
parameterized by the truncation order and the evaluation point; however, we focus
on the evaluation algorithm giving the bound as a function of N and ζ rather than
expressing it as a formula.
Example 1.1. — As a “real-world” example of medium difficulty, consider the

differential equation [Gut09, Kou13]
z3(z − 1)(z + 2)(z + 3)(z + 6)(z + 8)(3z + 4)2P (4)(z)

+ (126z9 + 2304z8 + 15322z7 + 46152z6 + 61416z5 + 15584z4 − 39168z3 − 27648z2)P (3)(z)
+ (486z8 + 7716z7 + 44592z6 + 119388z5 + 151716z4 + 66480z3 − 31488z2 − 32256z)P ′′(z)

+ (540z7 + 7248z6 + 35268z5 + 80808z4 + 91596z3 + 44592z2 + 2688z − 4608)P ′(z)
+ (108z6 + 1176z5 + 4584z4 + 8424z3 + 7584z2 + 3072z)P (z) = 0

for the lattice Green function of the four-dimensional face-centered cubic lattice.
Make the change of unknown function u(z) = P (1/2 + z) (as a Taylor method might
do, cf. Section 2.2), and let u(z) be a solution of the resulting “shifted” equation
corresponding to small rational initial values u(0), . . . , u(4)(0) chosen at random.
Figure 1.1 compares the truncation error after n terms of the Taylor expansion
of u(z) evaluated at ζ = 1/4 (halfway from the singular points closest to the origin,
which are at ±1/2 after the transformation) with the bound on the tail of this
series that our method produces given the last few known coefficients before the
truncation point. As we could hope in view of the above discussion of the “shape” of
our estimates, the overestimation appears to be roughly constant for large n. (Under
mild assumptions, it could actually be shown to be O(log n) in the worst case.) On

TOME 2 (2019)

102 M. MEZZAROBBA

0 20 40 60 80 100 120 140 160 180

terms

10−40

10−20

100

1020

error

Figure 1.1. Bounds computed by our implementation for the problem described
in Example 1.1. The bottom curve (in black in the color version) shows the actual error
|un:(ζ)−u(ζ)| committed as a function of the truncation order n, while the top curve (in blue)
corresponds to the bound given by Algorithm 6.1 with ` = 5. See Section 9 for details.

this example, it would cause us in this case to compute about 10% more terms than
really necessary to reach an accuracy of 10−50.

Internally, what the algorithm actually computes for fixed N is a majorant series
(Definition 3.2 below) of the remainder uN :(z). Given such a series, one readily
deduces bounds on uN :(ζ) for a given ζ, but also on related quantities like remainders
of the derivative u′(z) or higher-order remainders uN ′:(z), N ′ > N . This last feature
means that the method provides both “a priori” and “a posteriori” bounds: the
knowledge of the coefficients u0, . . . , uN−1 (for large enough N) can be used to bound
uN ′:(ζ) for any N ′ > N , and these bounds already tend to zero as N ′ increases, but
taking N closer to N ′ leads to tighter bounds, as illustrated on Figure 8.1.
For the method to be of any interest, the majorant series we are computing need

to be significantly simpler than the series we are to bound. We seek hyperexponential
majorant series, that is, majorant series of the form

∞∑
n=0

ûnz
n = exp

∫ z

0
a(w) dw, a(z) ∈ R(z),

or, equivalently, series that satisfy linear ODEs of the form (1.4) but of order r = 1.
The algorithm to compute these hyperexponential majorant series is based on a

novel combination of two classical ideas:
(1) estimating the error in the solution of linear equations using residuals,
(2) bounding the solutions of ODEs with analytic coefficients by the method of

majorants.
An analogy with an elementary situation might be helpful to see how this works.
Consider the linear system Ax = b, for some invertible matrix A ∈ Cr×r. Suppose
that we have computed an approximation x̃ of the exact solution x and we want to
bound the approximation error ‖x̃ − x‖. Suppose, additionally, that we are given
an M such that ‖A−1‖ 6M . Writing

(1.6) ‖x̃− x‖ = ‖A−1(b̃− b)‖ 6M‖b̃− b‖,

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 103

all we need to conclude is an approximation of the residual b̃− b, which is easy to
obtain. In our setting, the residuals can be computed from a small number of terms
of the coefficient sequence of the series, while the method of majorants provides the
required “bound on the inverse” of the differential operator.
Continuing with the analogy, the more effort we spend computing M , the tighter

we can make the final bound. Nevertheless, even if the inequality ‖A−1‖ 6 M
is loose, as soon as the residual is computed accurately enough, the bound (1.6)
overestimates the actual error by a constant factor only as x̃ tends to x for fixed A.
In the differential case as well, tighter bounds come at a higher cost even for fixed N .
Our algorithm contains additional parameters that can be adjusted to influence the
trade-off between computational cost and accuracy. Thus, the same general algorithm
can be used to obtain simple but sufficient bounds in “easy” cases or, with more
effort, better bounds in “hard” cases where the simpler one are unusable.

1.3. Outline

The rest of this article is organized as follows. Section 2 compares the approach
taken here with existing work and discusses some applications. Section 3 presents
the notation used in the sequel while recalling a few classical results. Section 4
sketches our algorithm and the inequalities on which it relies, under some simplifying
assumptions. The reader only interested in the general idea can stop there. The
following sections are concerned with technical details and proofs related to the
bound computation algorithm. In Section 5, we prove a majorization theorem that
covers expansions at regular singular points, laying the foundation for the detailed
description of our main algorithm in Section 6. We then consider the practical aspects
of computing certain intermediate bounds on sequences defined by rational functions
in Section 7, and the derivation of various kinds of concrete numerical bounds
from the output of the main algorithm in Section 8. Finally, Section 9 describes
experiments that illustrate the quality of these bounds and the effect of the tuning
parameters.

2. Related work

While articles directly comparable to the present one are relatively few, similar
questions appear naturally as sub-problems of various computational tasks. Some-
what arbitrarily, we group previous work by context in two categories: the evaluation
of classical functions, and the numerical solution of ordinary differential equations.

2.1. Differentially finite functions as special functions

An important application of the summation of power series where tail bounds are
needed is the rigorous multiple-precision evaluation of special functions [BZ10]. For
a fixed function, it is usually not too hard to derive good ad hoc bounds [MPF].

TOME 2 (2019)

104 M. MEZZAROBBA

Bounds that cover wider classes of functions become more complicated as the number
of parameters increases, yet adequate tail bounds are available in the literature and
used in practice for common special functions depending on parameters. For example,
Du and Yap [DY05, Section 3] or Johansson [Joh16, Section 4.1] present bounds that
cover general hypergeometric functions.
From this perspective, our goal is to describe an algorithm for bound computations

that applies to the “general differentially finite function” of a complex variable,
viewed as a special function parameterized by the complete coefficient list of the
differential equation (1.4). Van der Hoeven [vdH99, Section 2] [vdH01, Section 2.4]
[vdH03, Section 3.5] already gave several such algorithms, some based, like ours, on
the method of majorants, and mentioned (in a different context) a variant of the
idea of combining majorants with residuals in order to obtain tighter bounds [vdH01,
Section 5.3]. Like the theoretical algorithms read between the lines of existence proofs
mentioned in the Introduction, van der Hoeven’s algorithms lack details and suffer
from overestimation issues that make them unsatisfactory in practice. Our method
can be seen as a refinement of these ideas yielding practical bounds.
The present author already considered related tightness issues in an article with

B. Salvy [MS10] on asymptotically tight bounds on linear recurrence sequences, with
some extensions (including a few of the ideas developed in the present paper) in
the author’s doctoral thesis [Mez11]. While the focus of that article was not on
tails of power series, the remainder bounds on tails of power series that came as
a corollary seemed to perform well in experiments with simple special functions.
Unfortunately, they later proved too pessimistic and costly to compute with more
complicated equations. The setting of the present work is different in that we do
not insist on asymptotic tightness, nor on producing human-readable formulae, and
focus instead on making the bounds easy to evaluate numerically and as tight as
possible for realistic values of the parameters.

2.2. Interval methods for ODEs

Directly summing the series (1.1) to compute u(ζ) only works when ζ lies within
its disk of convergence D. When that is not the case, an option is to evaluate the
function by “numerical analytic continuation”, that is, to first use (1.1) to compute
the Taylor expansion of u at some point ζ1 ∈ D closer to the boundary, then use that
series to compute the expansion of u at a point ζ2, possibly outside of D, and so on
until we reach ζ. Because u satisfies the differential equation (1.4), it is enough at
each step i to compute the first r derivatives of u at ζi+1 using the Taylor expansion
at ζi, and the rest of the expansion follows from the differential equation.
We can also take a slightly different perspective and view the evaluation algorithm

as a numerical ODE solver. Seen from this angle, what we just outlined is the
numerical solution of (1.4) by a Taylor method. Taylor methods are among the
oldest numerical methods for ODEs. While often considered too costly for machine-
precision computations, they remain the methods of choice for high precision and for
interval computations [BRAB11, NJC99]. In addition, they can be made particularly

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 105

efficient in the case of ODEs of the form (1.4) [CC90, Sections 2–3], and the efficient
variants generalize to deal with singular problems [vdH07].
Rigorous Taylor methods (not limited to the linear case) have attracted a lot

of interest from the field of Interval Analysis, starting with Moore’s 1962 PhD
thesis [Moo62, Section 6]. Since a Taylor method reduces the solution of an ODE
to the summation of series expansions of (derivatives of) solutions, the problem of
bounding the remainders occurs naturally. Instructive overviews of the ideas used
in this context can be found in the literature [Rih94, NJC99, NJN07]. A popular
approach is to start with a coarse enclosure of the solution and its first derivatives
over the whole time step, obtained by a fixed-point argument based for instance
on Picard’s iteration. One then deduces an enclosure of the derivative of order N
using the ODE, and a bound for the remainder of order N by Taylor’s formula. If,
instead of values on a grid, one computes a polynomial approximation of the solution
over some domain, it is also possible to apply a fixed-point argument directly to a
neighborhood of this approximation in function space, by evaluating an integral form
of the differential equation in polynomial interval arithmetic (using Taylor models
for instance). The way our algorithm uses residuals bears some conceptual similarity
to this last approach, but our method does not require an explicit polynomial
approximation of the solution as input.
Still in the context of Taylor methods, but closer in spirit to van der Hoeven’s

approach or ours, Warne et al. [WWS+06] develop explicit majorants for solutions
of nonlinear differential equations. Neher [Neh99, Neh01] considers the case of linear
ODEs with analytic coefficients and bounds the coefficients of the local series expan-
sions of the solution by geometric sequences, starting from bounds of the same type
on the coefficients of the equation. In the special case of ordinary points, our method
might be described as a blend of Neher’s approach, simplified by the language of
majorant series, with elements of the “continuous approximation” strategy.

2.3. The regular singular case

To the best of our knowledge, the present work is the first that directly applies
to logarithmic solutions at regular singular points (with an early version of some
of the ideas in the author’s dissertation [Mez11, Section 6.4]). The other methods
mentioned above are limited to series solutions, often at ordinary points only, with
the exception that van der Hoeven [vdH01, Section 3.3.2] sketches an adaptation
to the case of logarithmic solutions of the earliest of his algorithms for plain power
series. The same author [vdH03, Section 5.2] considers majorants for solutions of
linear differential systems at regular singular points, which provides an indirect way
of handling logarithmic solutions.

3. Notation and reminders
3.1. Formal power series

For any commutative ring R, we denote by R[[z]] the ring of formal power series
over R in the variable z, and by R((z)) the ring of formal Laurent series. Given

TOME 2 (2019)

106 M. MEZZAROBBA

f ∈ R((z)), we denote by fn or [zn]f(z) the coefficient of zn in f(z). As in Equa-
tion (1.2), we also write fn:(z) for the remainder ∑i>n fiz

i. More generally, fν is
the coefficient of zν in a generalized series ∑ν∈Λ fνz

ν indexed by Λ ⊂ C. In this
context, Latin letters denote integers, while Greek coefficient indices can be arbitrary
complex numbers. We sometimes identify expressions representing analytic functions
with their series expansions at the origin. Thus, for instance, [zn](1− αz)−1 is the
coefficient of zn in the Taylor expansion of (1− αz)−1 at 0, that is, αn.
We also consider polynomials in log(z) with formal power (or Laurent) series

coefficients. The space R((z))[log z] of such expressions embeds in R[log z]((z)), and
for f ∈ R((z))[log z], the notations fn and fn: refer to the coefficients of f viewed as
an element of R[log z]((z)).

3.2. Differential equations and recurrences

We assume some familiarity with the classical theory of linear differential equa-
tions with analytic coefficients, as described for instance in Henrici’s or Hille’s
books [Hen77, Hil97], and with the basic properties of D-finite formal power se-
ries, for which we refer the reader to Stanley [Sta99, Section 6.4] or Kauers and
Paule [KP11]. In particular, we will freely use the properties summarized below.
We usually write linear differential equations ar(z)y(r)(z) + · · ·+ a0y(z) = q(z) in

operator form, i.e. as L · y = q where L is a linear operator acting on some space
of functions of interest. When the coefficients ak are formal Laurent series, such
an operator can be written as L = P (z,Dz), that is, as a polynomial P (X, Y) ∈
C((X))[Y] evaluated on the operators z : y 7→ (w 7→ wy(w)) that multiplies a
function by the identity function and the standard differentiation operator Dz : y 7→
y′. Note that the operators z and Dz do not commute; one can bring the coefficients
ak(z) “to the right” of Dk

z using the relation Dzz = zDz + 1 deduced from Leibniz’
rule. By abuse of notation, we do not always make the difference between the operator
P (z,Dz) and the polynomial P (X, Y).
Similarly, recurrences bs(n)un+s + · · ·+ b0(n)un = vn with polynomial coefficients

can be written P (n, Sn) · u = v where n : (uk) 7→ (kuk) is the operator that
multiplies a sequence by its index, Sn : (un) 7→ (un+1) is the shift operator, and
P (X, Y) ∈ C[X][Y]. The corresponding commutation rule reads Snn = (n + 1)Sn.
We typically consider bi-infinite sequences (indexed by Z or λ+ Z, λ ∈ C), so that
we also have at our disposal the backward shift operator S−1

n : (un) 7→ (un−1).
In the differential case, when working in a neighborhood of the origin, it proves

convenient to write differential operators in terms of the Euler operator defined by θ =
zDz instead of the standard derivation Dz. Any operator L = ar(z)Dz+ · · ·+a0(z) ∈
C((z))[Dz] can be written L = L(z, θ) with L = ãr(X)Y r + · · ·+ ã0(X) ∈ C((X))[Y].
Conversely, an operator L ∈ C[z][Dz] can be rewritten as an element of C[z][θ] at
the price of multiplying it on the left by a power of z. This change does not affect
the space of solutions of the equation L · y = 0. One can check that the quotient
ar(z)/ã(z) of the leading coefficients with respect to Dz and to θ is a power of z.
“Moving” the coefficients of either form “to the right” of the differentiation operators
leaves the leading coefficient unchanged.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 107

It is classical that the coefficients of a linear ODE with power series coefficients
obey a recurrence relation obtained by “changing θ to n and z−1 to Sn” in the
equation. The precise result is as follows, see Proposition 5.1 below for a sketch of a
proof in a more general setting.

Proposition 3.1. — Let L ∈ C[[X]][Y]. A formal power series y ∈ C[[z]] satisfies
the differential equation L(z, θ) · y = 0 if and only if its coefficient sequence (yn),
extended with zeroes for negative n, satisfies L(S−1

n , n) · (yn)n∈Z = 0.

Note that in general, the recurrence operator L(S−1
n , n) has infinite order, but since

yn vanishes for n < 0, each coefficient of the sequence L(S−1
n , n) · (yn) only involves

a finite number of yn. When L(z, θ) has polynomial coefficients, the corresponding
recurrence has finite order.

3.3. Majorant series

The language of majorant series offers a flexible framework to express bounds on
series solutions of differential equations.

Definition 3.2. — A formal power series f̂ ∈ R+[[z]] is said to be a majorant
series (sometimes a majorizing series) of f ∈ C[[z]], if the coefficients of f and f̂

satisfy |fn| 6 f̂n for all n ∈ N. More generally, we say that f̂ ∈ R+[[z]] is a majorant
series of

f(z) = f0(z) + f1(z) log(z) + · · ·+ fK−1(z) log(z)K−1

(K − 1)! ∈ C[[z]][log z]

if it is a majorant series of f0, . . . , fk. In both cases, we write f(z)� f̂(z).

Series denoted with a hat in this article always have non-negative coefficients, and
f̂ is typically some kind of bound on f , but not necessarily a majorant series in the
sense of the above definition.
The following properties are classical and easy to check (see, e.g., Hille [Hil97, Sec-

tion 2.4]). Note the assumption that f and g are plain power series: while convenient
to state some results, the extension to f ∈ C[[z]][log z] does not share all the nice
properties of majorant series in the usual sense.

Proposition 3.3. — Let f, g ∈ C[[z]], f̂ , ĝ ∈ R+[[z]] be such that f � f̂ and
g � ĝ. The following assertions hold:

(a) f + g � f̂ + ĝ, (b) γf � |γ| f̂ for γ ∈ C, (c) fn: � f̂n: for n ∈ N,

(d) f ′ � f̂ ′, (e)
(∫ z

0
f
)
�
(∫ z

0
f̂
)
, (f) fg � f̂ ĝ.

Additionally, the disk of convergence D̂ of f̂ is contained in that of f , and when
ĝ0 ∈ D̂, we have f(g(z))� f̂(ĝ(z)). In particular, |f(ζ)| is bounded by f̂(|ζ|) for all
ζ ∈ D̂.

TOME 2 (2019)

108 M. MEZZAROBBA

4. A sketch of the method

In this section, we outline how our bounds are obtained, in a simplified setting
and without giving detailed algorithms. Our simplified setting covers all solutions at
ordinary (non-singular) points of the differential equation, where Cauchy’s theorem
applies and all solutions are analytic. The contents of this section may be enough
for the reader only interested in the general idea of the algorithm. Sections 5 to 7
essentially repeat the same algorithm in the general case, while adding more detail
and introducing refinements that help obtain tighter bounds.

4.1. Truncated solutions and residuals

We start with a linear differential equation (1.4), with rational coefficients and
right-hand side. As observed in Section 3.2, such an equation can always be brought
into the form

P (z, θ) · u(z) = [θrpr(z) + · · ·+ θp1(z) + p0(z)] · u(z) = 0, pk ∈ C[z]
without changing its solution space. The unusual choice of writing the coefficients pk
to the right of θk is not essential, but will prove convenient later. We also assume
without loss of generality that the polynomials p0, . . . , pr are globally coprime. Most
importantly, we assume that the leading coefficient pr does not vanish at 0. This
is the case when the origin is an ordinary point of (1.4)(1) , i.e., when none of the
fractions ak(z)/ar(z), 0 6 k < r, has a pole at 0.
Let u(z) be a solution of P (z, θ) · u(z) = 0, and consider the truncation

ũ(z) =
N−1∑
n=0

unz
n

of the series u(z) to some large enough order N > 1. Our goal is to obtain an explicit
majorant series of the remainder u(z)− ũ(z). This remainder satisfies

P (z, θ) · [ũ(z)− u(z)] = P (z, θ) · ũ(z) = q(z),
where q(z), the residual associated to the approximate solution ũ(z), is an explicit,
computable polynomial. Because ũ is a truncation of an exact series solution, the
residual q(z) has “small” support: more precisely, it can be checked to be of the form
q(z) = qNz

N + · · ·+ qN+sz
N+s where s = degz P (z, θ).

4.2. The majorant equation

Setting
(4.1) y(z) = pr(z) (ũ(z)− u(z)),

(1)Assuming pr(0) 6= 0 also allows for a regular singular point at the origin, cf. Section 5.1. However,
we restrict ourselves in this section to power series solutions at regular singular points, leaving out
a number of technicalities related to non-integer exponents and logarithms.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 109

we get an equation with rational function coefficients

(4.2) L(z, θ) · y(z) =
[
θr + · · ·+ θ

p1(z)
pr(z) + p0(z)

pr(z)

]
· y(z) = q(z),

in which we immediately rewrite L(z, θ) as

L(z, θ) =
∞∑
j=0

Qj(θ)zj

by expanding pr(z)−1 in power series and rearranging. Crucially, since pr(0) 6= 0, the
polynomial Q0 has degree r, while the degree of Qj for j > 1 is at most r − 1.
By the correspondence of Proposition 3.1, the coefficient sequence (yn)n∈Z of y(z)

then satisfies

L(S−1
n , n) · (yn)n∈Z = [Q0(n) +Q1(n)S−1

n + · · ·] · (yn)n∈Z = (qn)n∈Z,

that is,

Q0(n)yn = qn −
∞∑
j=1

Qj(n)yn−j, n ∈ Z.

When n is large enough, Q0(n) does not vanish and yn is given recursively by

(4.3) yn = 1
n

 n qn
Q0(n) −

∞∑
j=1

nQj(n)
Q0(n) yn−j

 .
Because of the degree constraints noted above, n qn/Q0(n) and nQj(n)/Q0(n) (for
fixed j) remain bounded as n grows. Assume for a moment that we have at our
disposal bounds q̂n and âj such that∣∣∣∣∣ n qnQ0(n)

∣∣∣∣∣ 6 q̂n <∞, n > n0,(4.4) ∣∣∣∣∣nQj(n)
Q0(n)

∣∣∣∣∣ 6 âj <∞, n > n0, j > 1,(4.5)

with âj = O(αj) for some α as j →∞.
Equation (4.3) then leads to

|yn| 6
1
n

q̂j +
∞∑
j=1

âj |yn−j|

 , n > n0.

Thus, if (ŷn)n∈Z satisfies

(4.6) ŷn = 1
n

q̂n +
∞∑
j=1

âj ŷn−j

 , n > n0,

and

(4.7) |yn| 6 ŷn for all n < n0,

then |yn| is bounded by ŷn for all n.

TOME 2 (2019)

110 M. MEZZAROBBA

Translating (4.6) back to a differential equation, we obtain

(4.8) [θ − â(z)] ŷ(z) = q̂(z) where â(z) =
∞∑
j=1

âjz
j.

Because âj = O(αj), the power series â(z) is convergent. We call the equation (4.8)
a majorant equation associated with (4.2).

4.3. Majorant series for the remainders

The general solution of (4.8) reads

(4.9) ŷ(z) = h(z)
(
c+

∫ z

0

w−1 q̂(w)
h(w) dw

)
, ĥ(z) = exp

(∫ z

0
w−1 â(w) dw

)
for an arbitrary constant c ∈ C. We have just seen that any ŷ(z) of this form such
that (4.7) holds is a majorant series for y(z).
It remains to choose the parameters q̂, â, and c in such a way that (4.4), (4.5),

and (4.7) hold. Recall that, in our context, y(z) = pr(z) (ũ(z) − u(z)) is a power
series of valuation at least N > 1. Provided that N is large enough, we can assume
n0 = N and take c = 0. Equation (4.7) is then automatically satisfied. Since at
most s of the constraints (4.4) are nontrivial, it is not hard to compute explicit
values q̂n fulfilling these constraints. Knowing h(z), we can even choose q̂(z) as a
polynomial multiple(2) of h(z), so that the integral in the expression of ŷ(z) reduces
to an explicit polynomial ĝ(z).
The case of (4.5) is slightly more involved, as, in appearance, it entails an infinite

number of inequalities. However, the polynomials Qj stem from the power series
expansions of the finitely many rational functions pk/pr of (4.2). By bounding the
numerator and denominator of L(z, θ) separately, we can find a single rational
function â(z) that satisfies all these inequalities; moreover, we can arrange that â(z)
has radius of convergence arbitrarily close to that of pr(z)−1.
A similar (but simpler) computation yields a polynomial p̌(z) such that p̌(z)−1 is

a majorant series of pr(z)−1 with the same condition on the radius of convergence.
Putting everything together, we obtain an explicit majorant series û(z) for the
error u(z)− ũ(z), in the form

(4.10) û(z) = ŷ(z)
p̌(z) = ĝ(z)

p̌(z) ĥ(z) = ĝ(z)
p̌(z) exp

(∫ z

0
w−1 â(w) dw

)
.

As noted in Proposition 3.3, we have in particular |u(ζ)− ũ(ζ)| 6 û(|ζ|) for all ζ in
the disk of convergence of û(z).
Observe that, in (4.10), ĝ(z) can be chosen of valuation N , so that û(z) itself

has valuation N . Moreover, its coefficients can be taken of roughly the same order
of magnitude as those of the first neglected terms of the series u(z). The radius of
convergence of â(z) and p̂(z)−1 can be made arbitrarily close to the distance from the

(2)Since the power series h(z) has nonnegative coefficients and starts with h(0) = 1, replacing any
polynomial q̂(z) computed from (4.4) alone by q̂(z)h(z) will do.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 111

origin to the smallest nonzero singularity of the differential equation (1.4) (or even
equal to it, but manipulating this quantity exactly may be costly). In the absence
of apparent singularities, this distance is the local radius of convergence of a generic
solution of the differential equation. Thus, there is reason to hope that û(|ζ|) does
not stray too far from |u(ζ)− ũ(ζ)| as N and ζ vary.

5. Majorant equations: the general case

The key step of the reasoning outlined above is the construction in Section 4.2 of a
“majorant equation” of the inhomogeneous equation (4.2). Our goal is now to extend
this construction to the general case of solutions at regular singular points. To make
them applicable to variants of the algorithms adapted to other situations, the results
are stated in slightly more general form than actually needed in the sequel.

5.1. Regular singular points

Let us start with some reminders on regular singular points. Consider an operator
D = ar(z)Dr

z + · · ·+a1(z)Dz +a0(z), where a0, . . . , ar are analytic functions with no
common zero. Recall that ζ ∈ C is called a singular point of the operator D when
ar(ζ) = 0, and an ordinary point otherwise.
At an ordinary point, by Cauchy’s theorem, the equation D·y = 0 admits r linearly

independent analytic solutions. If ζ is a singular point, analytic solutions defined on
domains with ζ on their boundary are in general not analytic at ζ. Regular singular
points are a class of singular points that share many similarities with ordinary points,
starting with the existence of convergent (generalized) series solutions.
A singular point ζ of D is called regular singular when, for all k, its multiplicity

as a pole of ak/ar is at most r − k. We say that an operator D is regular at a
point ζ (or that ζ is a regular point of D) if ζ is either an ordinary point or a regular
singular point of D. An operator written in the form ãr(z)θr + · · ·+ ã0(z) where at
least one of ã0, . . . , ãr has a nonzero constant coefficient is regular at the origin if
and only if ãr(0) 6= 0. This is equivalent to saying that the univariate polynomial
Q0(θ) = ãr(0)θr + · · · + ã0(0), called the indicial polynomial of the operator, has
degree r.
When ζ ∈ C is a regular point of D, the equation D · y = 0 admits r linearly

independent solutions of the form
(5.1) (z − ζ)λ (f0(z) + f1(z) log(z − ζ) + · · ·+ ft−1(z) log(z − ζ)t−1)
(possibly with different λ and fi), where the fi are analytic at ζ. The possible λ are
exactly the roots of Q0.
Formally at least, it is often convenient to rewrite (5.1) as a single series∑

ν∈λ+N
cν(w)wν ∈ wλC[logw][[w]], w = z − ζ.

We call expressions of this form logarithmic series, and refer to Henrici [Hen86,
Section 9.5] for a rigorous presentation of their algebraic manipulation.

TOME 2 (2019)

112 M. MEZZAROBBA

5.2. Recurrences on the coefficients of solutions

The coefficients of the logarithmic series expansions of solutions of linear ODEs
at regular points are related by systems of recurrence relations whose existence and
explicit description go back to Frobenius [Fro73] and Heffter [Hef94, Chapter VIII].
Here we recall these results in a compact formalism [Mez10, Mez11] close to that of
Poole [Poo36] which makes them appear as direct generalizations of Proposition 3.1.

Proposition 5.1 ([Poo36, Mez10]). — Let y(z), q(z) ∈ zλC[[z]][log z] (with λ ∈
C) be logarithmic series. Write

y(z) =
∑

ν∈λ+Z

∞∑
k=0

yν,kz
ν log(z)k

k! = zλ
∞∑
n=0

K−1∑
k=0

yλ+n,kz
n log(z)k

k! ,

where it is understood that yλ+n,k = 0 for n 6 0 or k > K, and similarly for q(z).
Let L(X, Y) be an element of C[[X]][Y]. The differential equation

L(z, θ) · y(z) = q(z)

holds if and only if the double sequences (yν,k), (qν,k) ∈ C(λ+Z)×N satisfy

(5.2) L(S−1
ν , ν + Sk) · (yν,k)ν,k = (qν,k)ν,k,

where Sν and Sk are the shift operators on C(λ+Z)×N mapping a double sequence
(uν,k) respectively to (uν+1,k) and (uν,k+1).

Proof sketch. — By calculating the action of the operators z and θ on logarithmic
monomials zν log(z)k/k!, one checks that the coefficient sequence of L(z, θ) · y(z) is
L(S−1

ν , ν + Sk) · (yν,k)ν,k. The result follows. �

Observe that, restricted to k > k0 where k0 is the largest index for which the uν,k
and qν,k are not all zero, (5.2) reduces to the univariate recurrence L(S−1

ν , ν)·(yν,k0)ν =
(qν,k0)ν . In particular, if y(z) and q(z) are plain power series (k0 = 0, λ = 0), we get
the formula of Proposition 3.1.
In the general case, we can put the “implicit” equation (5.2) into “solved” form as

follows. Consider again an operator L(z, θ) ∈ C[[z]][θ], and, similar to what we did
in Section 4.2, write

L(z, θ) =
∞∑
j=0

Qj(θ)zj.

Note that Q0 coincides with the indicial polynomial introduced above. Let µ(ν)
denote the multiplicity of a complex number ν as a root of Q0. To simplify the
notation somewhat, we limit ourselves here to right-hand sides of the form Q0(θ)·q(z).

Corollary 5.2. — Assume that y(z), q(z) ∈ zλC[[z]][log z] satisfy L(z, θ) · y =
Q0(θ) · q, and define yν,k and qν,k as in Proposition 5.1. Let κ(n) > 0 be such that
qλ+n,k = 0 for all k > κ(n). Let τ(n) > 0 be such that yλ,k = 0 for k > τ(0), and

(5.3) τ(n) > max
(
κ(n), τ(n− 1) + µ(λ+ n)

)
, n > 1.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 113

Then, the coefficients of y(z) satisfy yλ+n,k = 0 for all k > τ(n), and are given by

(5.4) yλ+n,
µ(λ+n)+k

= qλ+n,
µ(λ+n)+k

−
n∑
j=1

τ(n−j)−1∑
t=0

[X t] Qj(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)yλ+n−j,

k+t

for all n ∈ Z and k ∈ N. (Both sums can be extended to range from the indicated
lower index to infinity.)
Conversely, any solution (yλ+n,k) of (5.4) with yλ+n,k = 0 for k > τ(n) is the

coefficient sequence of a solution of L(z, θ) · y = Q0(θ) · q.

In general, to satisfy (5.3), one can take

(5.5) τ(n) = max
06i6n

κ′(i) +
n∑

j=i+1
µ(λ+ j)

 , κ′(i) =

κ′(0) = τ(0),
κ′(i) = κ(i), i > 1.

Proof. — Consider the equation
L(S−1

ν , ν + Sk) · (yν,k) = Q0(ν + Sk) · (qν,k)
which results from Proposition 5.1. By extracting the sequence term of index ν on
both sides, we get a relation between sequences yν−j = (yν−j,k)k∈N and qν = (qν,k)k∈N
of a single index k:

(5.6) Q0(ν + Sk) · yν = Q0(ν + Sk) · qν −
∞∑
j=1

Qj(ν + Sk) · yν−j.

Let us first prove by induction that for all n, the sequence yν where ν = λ + n

vanishes under the action of Sτ(n)
k . This is the case by assumption for n 6 0. Now

assume that this holds true for all n′ < n. Write Q0(ν + X) = Xµ(ν)Q̃0(X) with
Q0(0) 6= 0. Note that τ(n) > µ(ν) by definition of τ . Applying Sτ(n)−µ(ν)

k to (5.6) and
using the induction hypothesis gives Q̃0(Sk)Sτ(n)

k · (yν − qν) = 0. Since τ(n) > κ(n),
we have Sτ(n)

k · qν = 0, and hence Q̃0(Sk)Sτ(n)
k · yν = 0. But, by assumption, y(z)

belongs to zλC[[z]][log z], so that Sτ(n)
k · yν is zero almost everywhere. As Q0(0) 6= 0,

the term of index k is a linear combination of those of index k′ > k, therefore
S
τ(n)
k · yν = 0.
Now, the polynomial X−µ(ν)Q0(ν +X) ∈ C[X] is invertible in C[X]/〈Xτ(n)−µ(ν)〉.

Let Aν(X) ∈ C[X] denote the canonical representative of its inverse, and write

Aν(X)Q0(ν +X) = Xµ(ν) + Uν(X)Xτ(n).

Considering again (5.6) and applying Aν(Sk), we get

(5.7) (Sµ(ν)
k +Uν(Sk)Sτ(n)

k)·yν = (Sµ(ν)
k +Uν(Sk)Sτ(n)

k)·qν−
∞∑
j=1

Aν(Sk)Qj(ν+Sk)·yν−j.

We have seen that Sτ(n)
k · yν = S

τ(n)
k · qν = 0, so that both terms involving U(Sk)

vanish, and (5.7) reduces to

S
µ(ν)
k · yν = S

µ(ν)
k · qν −

∞∑
j=1

Aν(Sk)Qj(ν + Sk) · yν−j.

TOME 2 (2019)

114 M. MEZZAROBBA

Finally, for j > 1, the sequence Sτ(n−j)
k · yν−j is zero, and Aν(X)Qj(ν +X) coincides

at least to the order τ(n)−µ(ν) > τ(n−j) with the series Xµ(ν)Qj(ν+X)/Q0(ν+X).
Equation (5.4) then follows by extracting the coefficient of index k.
If, conversely, (yλ+n,k) is a solution of (5.4) such that Sτ(n)

k ·yλ+n = 0 for all n, then
it satisfies (5.7), and hence (5.6) because the sequences yν and qν have finitely many
nonzero coefficients and Aν(0) 6= 0. Equation (5.6) is equivalent to L(S−1

ν , ν + Sk) ·
(yν,k) = (qν,k), and to L(z, θ) · y = Q0(θ) · q by Proposition 5.1. �

Remark 5.3. — While the recurrence (5.4) giving the whole sequence yν “at
once” is useful in the context of bound computations, specializing (5.6) without
“inverting” Q0 yields an alternative expression of yν,µ(ν)+k, as a function of the yν−j,
j > 1, and the yν,k′ , k + 1 6 k′ < µ(ν), which can be better adapted to the iterative
computation of the yν,k.
Suppose now that L(z, θ) is regular at 0. Let

E = {(ν, k) : 0 6 k < µ(ν)} ⊂ C× N.
Thus E is a set of cardinality r. As already mentioned, it is well known that the
homogeneous equation L(z, θ) ·y = 0 has an r-dimensional vector space of convergent
solutions spanned by elements of zλC[[z]][log z] for Q0(λ) = 0. Corollary 5.2 suggests
a specific choice of basis, giving rise to a dual notion of “initial values”.
Corollary 5.4. — A solution y(z) of L(z, θ) · y = 0 is uniquely determined by

the vector of generalized initial values (yν,k)(ν,k)∈E.
Proof sketch. — According to Corollary 5.2, the coefficient yν,k of a solution

y ∈ zλC[[z]][log z] is determined by the yν−j,k, j > 1, as soon as k > µ(n). In
contrast, (5.4) imposes no constraint on the yν,k with (ν, k) ∈ E, and it is not
too hard to see that taking yν0,k0 = 1 for a certain (ν0, k0) ∈ E and yν,k = 0 for
(ν, k) ∈ E\{(ν0, k0)} determines a solution (yν,k)ν∈ν0+Z,k∈N such that yν,k = 0 for
k > τ(ν). The collection of the logarithmic series associated to these sequences for
all choices of (ν0, k0) is a basis of the solution space of L(z, θ). �
For each (ν0, k0) ∈ E, Corollary 5.2 applied with λ = ν0, κ ≡ 0 and τ(0) = k0

provides a bound of the form (5.5) on the degree with respect to log(z) of the
coefficients of the corresponding element of this basis. One gets a uniform bound
valid for all coefficients of all solutions y ∈ zλ0C[[z]][log z] by taking λ = λ0 − 1,
κ ≡ 0, τ(0) = 0, and letting n tend to infinity.

5.3. The majorant equation

Equipped with these preliminaries, it is now easy to extend the method of Sec-
tion 4.2 to logarithmic series solutions. The next proposition, in some sense, reduces
the problem of bounding the solutions of arbitrary regular ODEs with polynomial
coefficients to the case of first-order equations.
Aiming for first-order majorant equations means that the solutions are plain power

series without logarithms, and makes it possible to write them down explicitly, while
leaving us with enough freedom to match the analytic behavior of solutions of the

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 115

original equation. A small restriction is that first-order equations cannot capture the
asymptotics of entire series of non-integral order. As further discussed in Section 8.3,
this limitation is usually of little consequence in practice, and it is possible to
circumvent the issue if necessary. The method can also be adapted to other forms of
majorant equations.
We still consider an operator L(z, θ) = ∑

j>0Qj(θ)zj and a solution y(z) of
L(z, θ) · y(z) = Q0(θ) · q(z)

with y, q ∈ zλC[[z]] for a fixed λ ∈ C, and define µ(ν), E, yν,k and qν,k as above.
Proposition 5.5. — Fix â(z), q̂(z) ∈ zR+[[z]], and let ŷ(z) ∈ R[[z]] be a solution

of
(5.8) zŷ′(z) = â(z) ŷ(z) + q̂(z).
Assume, additionally, that the following assertions hold for a certain n0 > 1:

(i) for all j > 1 and all n > n0,

(5.9) n
τ(n)−1∑
t=0

∣∣∣∣∣[X t] Qj(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)

∣∣∣∣∣ 6 âj,

where τ(n) is a non-decreasing sequence such that yλ+n,k = 0 for k > τ(n),
(ii) for all n > n0 and all k > 0,

n |qλ+n,µ(λ+n)+k| 6 q̂n,

(iii) |yλ+n,k| 6 ŷn for 0 6 n < n0 and for all k > 0,
(iv) |yλ+n,k| 6 ŷn for n > n0 and 0 6 k < µ(λ+ n).

We then have the bound
|yλ+n,k| 6 ŷn

for all n, k > 0. In other words, ŷ(z) is a majorant series (in the extended sense)
of z−λy(z).
Note in particular that, when µ(n) is zero, (5.9) can also be written

τ(n)−1∑
t=0

∣∣∣∣nt!f (t)(n)
∣∣∣∣ 6 âj where f(n) = (Qj/Q0)(λ+ n).

When additionally τ(n) = 1, it reduces to |nf(n)| 6 âj.
Proof. — We prove the result by induction on n. The inequality holds for n < n0

by assumption (iii). Fix n > n0 (in particular, n > 0), and assume that |yλ+n′,k| 6 ŷn′

for all n′ < n and k > 0. Denote m = µ(λ+ n). For k < m, the required inequality
is given by assumption (iv). Now consider yλ+n,m+k for some k > 0. By Corollary 5.2
applied to the equation L(z, θ) · y = Q0(θ) · q, we have

yλ+n,
m+k

= qλ+n,
k+t
−
∞∑
j=1

τ(n)−1∑
t=0

[X t] Qj(λ+ n+X)
X−mQ0(λ+ n+X) · yλ+n−j,

k+t
.

It follows that

|yλ+n,
m+k
| 6 |qλ+n,

m+k
|+

∞∑
j=1

τ(n)−1∑
t=0

∣∣∣∣∣[X t] Qj(λ+ n+X)
X−mQ0(λ+ n+X)

∣∣∣∣∣ · |yλ+n−j,
k+t

|,

TOME 2 (2019)

116 M. MEZZAROBBA

and hence, using assumptions (i)–(ii) and the induction hypothesis,

(5.10) |yλ+n,
m+k
| 6 q̂n

n
+
∞∑
j=1

âj
n
ŷn−j.

Extracting the coefficient of zn on both sides of the differential equation (5.8) yields

(5.11) nŷn = q̂n +
∞∑
j=1

ân ŷn−j,

so that (5.10) becomes |yλ+n,m+k| 6 ŷn. This completes the induction step and the
proof. �

The general solution of (5.8) reads

ŷ(z) = ĥ(z)
(
c+

∫ z

0

w−1 q̂(w)
ĥ(w)

dw
)
, ĥ(z) = exp

∫ z

0
w−1 â(w) dw

for an arbitrary constant c. Observe that ĥ(z) has valuation zero, and hence ŷ(z)
either has valuation zero as well (if c 6= 0) or has the same valuation as q̂(z) (if
c = 0).
Conditions (i) and (ii) in Proposition 5.5 ensure that the solutions of (5.8) can

be used to control those of the equation L(z, θ) · y = q. For the proposition to be
applicable, â(z) and q̂(z) should be chosen so that these conditions hold.
Conditions (iii) and (iv) depend on the specific solution y we are interested in. They

express that the bound holds “initially”, and most importantly for the generalized
initial values described in Corollary 5.4 (which are not determined by the “previous
terms” of the series). In particular, condition (iii) becomes trivial if n0 6 val(z−λy(z)),
where val(f) is the valuation of f viewed as an element of C[log z][[z]]. As for
condition (iv), it vanishes as soon as n0 is larger than all the zeros n of Q0(λ+n), or
even than the zeros of Q0(λ+ n) corresponding to nonzero generalized initial values
in y(z).
Of special interest is the situation where both (iii) and (iv) are automatically satis-

fied. This happens in particular when the valuation of z−λy(z) is larger than that of
any h(z) ∈ C((z)) such that zλh(z) satisfies the homogeneous part L(z, θ)·(zλh(z)) =
0 of the differential equation on y (i.e., larger than max({ν − λ : (ν, k) ∈ E} ∩ N)),
and n0 is chosen between these two values.
Even in the general case, assuming â1 > 0, it is always possible to adjust c or

increase selected coefficients of q̂(z) so that (iii) and (iv) hold. Therefore, for any
choice of n0, the other parameters can be selected in such a way that Proposition 5.5
yields a nontrivial bound.

6. The main algorithm

Let us now go back to homogeneous equations with polynomial coefficients, and
specialize the previous results to develop an algorithm that computes bounds on
remainders of logarithmic series solutions in this case. The description of the al-
gorithm is split into two parts. The first part, Algorithm 6.1, does not depend on

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 117

the particular solution or truncation order. Roughly speaking, it aims at satisfying
condition (i) of Proposition 5.5, which yields what one might call a “pseudo-inverse
bound” on the differential operator. The second part, Algorithm 6.11, uses the result
of the first one to bound a specific remainder of a specific solution.

6.1. Setting

For the whole of this section, P (z, θ) ∈ K[z][θ] denotes a differential operator,
assumed to be regular at the origin, over a fixed number field K ⊂ C. We consider a
solution

(6.1) u(z) = zλ
∞∑
n=0

K−1∑
k=0

uλ+n,kz
n log(z)k

k!
of the homogeneous equation P (z, θ) · u(z) = 0, and a truncation

(6.2) ũ(z) = zλ
N−1∑
n=0

K−1∑
k=0

uλ+n,kz
n log(z)k

k!
of the logarithmic series expansion of u.
Our goal is to give an algorithm to bound the error u− ũ, based on Proposition 5.5.

Note that a solution of P (z, θ) can in general be a linear combination of solutions of
the form (6.1) with λ belonging to different cosets in C/Z. We limit ourselves here
to a single λ, and will if necessary bound the remainders corresponding to exponents
in other cosets λ′ + Z separately.
As in Section 4.2, we also set

L(z, θ) = P (z, θ) pr(z)−1 =
∞∑
j=0

Qj(θ)zj and y(z) = pr(z) (ũ(z)− u(z))

where pr(z) is the leading coefficient of P (z, θ). Note that Q0(θ), the indicial poly-
nomial of L(z, θ), is monic, and that the indicial polynomial of P (z, θ) is equal
to pr(0)Q0(θ). Let µ(ν) denote the multiplicity of ν as a root of Q0, and let
E = {(ν, k) : 0 6 k < µ(ν)} as usual.

6.2. “Pseudo-inverse bounds” on differential operators

Algorithm 6.1 below corresponds to the first part of the main bound computation
algorithm.
Compared with the outline in Section 4, and besides supporting regular singular

points, this version of the algorithm provides more freedom in the choice of the ratio-
nal function â(z), via the input parameter `. The method of Section 4 corresponds
to ` = 1. Increasing ` leads to tighter bounds, at the price of increased computation
time. Taking ` ≈ s/2 often gives good results in practice for evaluations far from the
border of the disk of convergence of pr(z)−1 (but see Section 9.4 for more on that).
Except for step 3, the algorithm can be run in interval arithmetic and will return

finite bounds if all operations are performed with sufficient precision. Besides, the

TOME 2 (2019)

118 M. MEZZAROBBA

“exact” data needed at step 3, that is the roots of Q0 in λ+Z and their multiplicities,
will typically be known beforehand by the choice of λ.
Algorithm 6.1. — Bound differential operator

Input: A differential operator P (z, θ) ∈ K[z][θ]. An algebraic number λ. Integers
`, n0 > 0.

Output: A pair (p̌, â) ∈ R[z] × R(z) such that pr(z)−1 � p̌(z)−1 and â(z) satisfies
condition (i) of Proposition 5.5.

1. Compute operators
Q(z, θ) = Q0(θ) + · · ·+Q`−1(θ)z`−1,

U(z, θ) = U0(θ) + · · ·+ Us−1(θ)zs−1

in K[θ][z] such that
P (z, θ) = Q(z, θ)pr(z) + U(z, θ)z`.

(To do so, expand the fractions pi/pr in power series up to the order `
and set [θi]Qj to [zj](pi/pr). Then compute Uj as the coefficient of z`+j in
P (z, θ)−Q(z, θ)pr(z). If working in approximate arithmetic, force the coeffi-
cient of θr in Q0 to the exact value 1 and the coefficients of θr in Q2, . . . , Q`−1,
U0, . . . , Us−1 to 0.)

2. Compute lower bounds 0 < ρi 6 |ζi| on the roots ζ1, ζ2, . . . of pr(z), and a
lower bound c on the absolute value of its leading coefficient. Set

p̌(z) = c
∏
i

(ρi − z)mi

where mi is the multiplicity of the root ζi.
3. Set τ(n) ≡ 1 if 0 is an ordinary point of P (z, θ), and τ(n) = ∑n

k=0 µ(λ+ n),
where µ(ν) is the multiplicity of ν as a root of Q0, otherwise.

4. Denoting

(6.3) F (f, n) = n ·
τ(n)−1∑
t=0

∣∣∣∣∣[X t] f(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)

∣∣∣∣∣ ,
use Algorithm 7.4 and Remark 7.5 to get bounds Q̂1, . . . , Q̂`−1, Û0, . . . , Ûs−1
such that

F (Qj, n) 6 Q̂j, 1 6 j < `,

and F (Uj, n) 6 Ûj, 0 6 j < s,

for all n > n0. Let Q̂(z) = Q̂1z+· · ·+Q̂`−1z
`−1 and Û(z) = Û0+· · ·+Ûs−1z

s−1.
5. Return (p̌, â) where

â(z) = Q̂(z) + z`
Û(z)
p̌(z) .

Remark 6.2. — A simple strategy for step 2 (cf. Grégoire [Gré12]) is to compute
a single tight lower bound ρ on the smallest root of pr by the method based on
Graeffe iterations of Davenport and Mignotte [DM90], and take p̌(z) = c (ρ− z)deg p.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 119

This method is fast and typically yields good bounds in simple cases like standard
special functions. Unsurprisingly, though, it can also lead to large overestimations
for operators with many singularities. At the other extreme, one can call a (rigorous)
numerical root finder to obtain arbitrarily tight bounds. While, on paper, this option
complexifies the algorithm a lot, very good implementations of complex root-finding
exist, so that it works well in practice. It would also likely be feasible to extend the
method of Davenport and Mignotte to get better estimates of larger roots.

Proposition 6.3. — Given an operator P (z, θ) = pr(z)θr + · · · , regular at 0,
Algorithm 6.1 returns a pair consisting of a polynomial p̌ ∈ R[z] such that pr(z)−1 �
p̌(z)−1, and a rational function â(z) with â(0) = 0 that satisfies condition (i) of
Proposition 5.5 for any solution y ∈ zλC[[z]][log z] of P (z, θ) · y = 0.

Proof. — At step 1, the fractions pk/pr can be expanded in power series since pr(0)
is not zero. The operator Q(z, θ) defined by taking [θk]Qj = [zk](pk/pr) for 0 6 j < `
then agrees with P (z, θ)pr(z)−1 up to the order O(z`). In particular, it is monic with
respect to θ, so that [θr]Q0 = 1 and degQj 6 r − 1 for j > 1. For the same reason,
the difference P (z, θ) − Q(z, θ) pr is of the form U(z, θ)z`, with degUj 6 r − 1 for
all j since ` > 1. The operator Q(z, θ) pr has degree (with respect to z) at most
` − 1 + s, and P (z, θ) has degree at most s, hence the degree of their difference is
strictly less than `+ s, and the coefficients we compute correctly represent U(z, θ).
The polynomials Q0, . . . , Q`−1 computed here coincide with those defined before

by the series expansion L(z, θ) = ∑
j Qj(θ)zj. Additionally, the remaining coefficients

of the expansion are related to U(z, θ) by

(6.4)
∞∑
j=0

Q`+j(Y)Xj = U(X, Y) pr(X)−1 = 1
pr(X)

s−1∑
j=0

Uj(Y)Xj.

After step 2, we have for all i
1

z − ζi
= −ζ−1

i

1− ζ−1
i z
� ρ−1

i

1− ρ−1
i z

and hence pr(z)−1 � p̌(z)−1.
By Corollary 5.2, setting τ(n) = ∑n

k=0 µ(λ+ n) at step 3 guarantees that uλ+n,k =
yλ+n,k = 0 for all k > τ(n). When the origin is an ordinary point of P (z, θ), though,
this generic choice only gives τ(n) = r for n > r− 1, but we can take τ(n) = 1 since
all solutions of P (z, θ) · u = 0 lie in C[[z]].
Let us now show that, when the bounds from steps 2 and 4 hold, the coefficients âj

of the rational series

â(z) = Q̂(z) + z`
Û(z)
p̌(z)

satisfy condition (i) of Proposition 5.5, that is, F (Qj, n) 6 âj for all j > 1 and
n > n0. The first `− 1 inequalities of step 4 say that this holds true for the initial
coefficients â1 = Q̂1, . . . , â` = Q̂`. The last s inequalities translate into

(6.5)
s−1∑
j=0

F (Uj, n)zj � Û(z), n > n0.

TOME 2 (2019)

120 M. MEZZAROBBA

According to (6.4), we have for fixed n
∞∑
j=0

Q`+j(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)z

j = 1
pr(z)

s−1∑
j=0

Uj(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)z

j ∈ C(X)[z].

Using the bound pr(z)−1 � p̌(z)−1 from step 2 (and Proposition 3.3), it follows that
∞∑
j=0

∣∣∣∣∣[X t] Q`+j(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)

∣∣∣∣∣ zj � 1
p̌(z)

s−1∑
j=0

∣∣∣∣∣[X t] Uj(λ+ n+X)
X−µ(λ+n)Q0(λ+ n+X)

∣∣∣∣∣ zj
for all t > 0. By summing over 0 6 t < τ(n) and multiplying by n, then applying (6.5),
we get

∞∑
j=0

F (Q`+j, n)zj � 1
p̌(z)

s−1∑
j=0

F (Uj, n)zj � Û(z)
p̌(z) , n > n0,

and hence finally
∞∑
j=0

F (Q`+j, n)zj � â(z), n > n0. �

Remark 6.4. — In our implementation, the code corresponding to Algorithm 6.1
actually does not take n0 as input. Instead, the bounds Q̂j and Ûj of step 4 are
functions of n0, and the algorithm returns an object (called a DiffOpBound) that
can then be evaluated at a given n0 to get the pair (p̌, â). The DiffOpBound objects
serve to share part of the computation when one needs to bound several tails of the
same series—for example, to keep adding terms to the sum until the bound becomes
small enough—or tails of several solutions of the same equation.
Similarly, when Algorithm 6.1 is run on the same operator with increasing values

of `, almost all of the previous computations can be reused from one run to the
next. We use that in the implementation to provide refinable bounds: DiffOpBound
objects start off as relatively coarse and inexpensive bounds, and offer a method to
increase ` if the bounds turn out to be too pessimistic. The switch from the “fast”
strategy for step 2 discussed in Remark 6.2 to the more accurate one works in the
same way.

Remark 6.5. — We also experimented with a variant of Algorithm 6.1 that per-
forms a partial fraction decomposition with respect to z of the operator instead
of splitting it into a truncated series and a rational remainder term, but did not
manage to obtain better bounds using this approach.

It is not hard to compute a majorant series û(z) of u(z) from the output of this
algorithm, as illustrated by the following corollary (not used in the sequel).

Corollary 6.6. — Let (p̌, â) be the output of Algorithm 6.1 called on the input
(L, λ, `, n0). For any solution u(z) of P (z, θ) · u = 0 lying in zλC[[z]][log z], there is a
computable constant c ∈ R such that

u(z)� û(z) = c

p̌(z) exp
∫ z

0
(1 + w−1 â(w)) dw

is a majorant series (in the extended sense of Definition 3.2) of u(z).

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 121

Proof. — Apply Proposition 5.5 with L(z, θ) = P (z, θ)pr(z)−1 and q(z) = 0. By
the previous proposition, Algorithm 6.1 provides a series â(z) satisfying the first
condition. The same is true a fortiori of â(z) + z. In addition, the corresponding
ŷ(z) = exp

∫ z
0 (1+w−1 â(w)) dw has strictly positive coefficients. The second condition

is trivial for homogeneous equations. We choose c large enough that |yλ+n,k| 6 c ŷn
for n < n0 or k < µ(λ+ n), fulfilling the last two constraints. Proposition 5.5 then
implies y(z)� cŷ(z), and hence u(z) = y(z)/pr(z)� û(z). �

The remainders of û(z) are majorants of the corresponding remainders of u(z) and,
when û converges at |ζ|, provide us with a sequence of bounds on the error |u(ζ)−ũ(ζ)|
that tends to zero as the truncation order increases. While the remainders of û(z)
may not admit nice closed-form expressions, it is not hard to extract reasonably good
bounds on their values algorithmically, as discussed in Mezzarobba and Salvy [MS10]
or in Section 8.2 below, thus solving our problem in principle. We can do better,
though, by taking into account the residual associated to u(z).

6.3. Normalized residuals

Like with Corollary 5.2 and Proposition 5.5, instead of working with the residual
P (z, θ) · ũ(z), it is convenient to introduce the normalized residual q(z) defined by

P (z, θ) · ũ(z) = Q0(θ) · q(z)

with the additional condition that qν,k = 0 for (ν, k) ∈ E. That the normalized
residual is well defined follows from the following lemma. When 0 is an ordinary
point and N > r, or more generally when ũ ∈ C[[z]] and Q0(n) 6= 0 for all n > N , the
normalized residual is simply the residual with the coefficient of zn divided by Q0(n),
cf. (4.4).

Lemma 6.7. — Given f ∈ zλC[[z]][log z] of degree at most K with respect to
log(z), the differential equation Q0(θ) · q(z) = f(z) has a unique logarithmic series
solution

q(z) =
∑
ν

∑
k

qν,kz
ν log(z)k

k!
such that qν,k = 0 for all (ν, k) ∈ E. This solution belongs to zλC[[z]][log z], and the
coefficient qν,k is zero for k < µ(n) or k > µ(n) +K.

Proof. — This is a consequence of Proposition 5.1, applied to the operator Q0(θ)
(which has the same associated set E as P (z, θ)) and the right-hand side f(z). More
precisely, the recurrence (5.2) for ν ∈ λ+Z reduces in this case to Q0(ν+Sk)·(qν,k) =
(fν,k), that is,

(6.6) cµ(ν) qν,µ(ν)+k = fν,k −
∑

`>µ(ν)
c` qν,k+`

where
Q0(ν +X) = c0 + c1X + · · ·+ crX

r.

TOME 2 (2019)

122 M. MEZZAROBBA

For all ν, this equation has a (unique) solution (qν,k)k with qν,k = 0 outside of the
interval

(6.7) µ(ν) 6 k < µ(ν) + max{` : fν,` 6= 0} = µ(ν) +K.

The corresponding logarithmic series q(z) ∈ zλC[[z]][log z] satisfies Q0(θ) · q = f .
By Corollary 5.4 applied to the homogeneous equation Q0(θ) · q = 0, it is the only
solution of Q0(θ) · q = f with qν,k = 0 for all (ν, k) ∈ E. �

Now consider the special case of f(z) = P (z, θ) · ũ(z) used to define the normalized
residual.

Lemma 6.8. — The logarithmic series q(z) of Lemma 6.7 corresponding to f(z) =
P (z, θ) · ũ(z) is of the form

(6.8) q(z) =
N+s−1∑
n=N

K∑
k=0

qλ+n,µ(λ+n)+kz
λ+n log(z)k

k! ,

where s = degz P (z, θ) and K is the largest power of log(z) appearing in ũ(z).

Proof. — With the convention that the exponents are ordered by real part, call
z-degree of a logarithmic series the maximum exponent of z that appears, z-valuation
the minimum one, and log-degree the largest power of log(z) involved. The application
of θ to a term czν log(z)k yields a (possibly empty) sum of terms of the same z-degree
and at most the same log-degree. Since Q0(θ) · q = L(z, θ) · ũ, where ũ has z-degree
less than λ+N , the z-degree of Q0(θ) · q is less than λ+N + s. Since we also have
Q0(θ) · q = −L(z, θ) · (u− ũ), where u− ũ is of z-valuation λ+N or more, Q0(θ) · q
has z-valuation at least λ+N . The same bounds apply to q(z) due to (6.6) and the
requirement that qν,k = 0 for (ν, k) ∈ E. By a similar reasoning, the log-degree of
Q0(θ) · q is at most K. By Lemma 6.7, this implies that the qν,k can only be nonzero
for µ(ν) 6 k 6 µ(ν) +K. �

When computing the series expansion of the solution u(z) using the recurrence
from Proposition 3.1 or its generalization (5.4), the state one needs to maintain
from one iteration to the next is a vector (uλ+n−1, . . . , uλ+n−s) where, in general,
each entry may be a polynomial in log(z). The following algorithm details how to
compute the normalized residual at a given iteration from these coefficients only.
For simplicity, we limit ourselves to the generic case where neither the truncation
index nor its next few shifts by integers are roots of the indicial polynomial. Note
that the most expensive part is typically the evaluation at ν + j of the polynomial
coefficients of the recurrence and their derivatives (step 2), but these coefficients can
be recycled from the iterative computation of the uλ,k. Additionally, fast algorithms
dedicated to the evaluation of polynomials at regularly spaced points [Ger04, BS05]
are applicable.
Algorithm 6.9. — Normalized residual

Input: An operator P (z, θ) ∈ K[z][θ] of z-degree s. An algebraic number λ. An
integer N . A finite table of coefficients uj,k indexed by 1 6 j 6 s, k > 0.

Output: A finite table of coefficients qj,k indexed by 0 6 j < s, k > 0.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 123

1. Write P (S−1
n , n) = b0(n) + b1(n)S−1

n + · · · + bs(n)S−sn . Let c = pr(0) where
pr(z) is the leading coefficient of P (z, θ). Let K = maxj max {k : uj,k 6= 0}
(and K = 1 if s = 1).

2. Compute bi,j,k = b
(k)
i (λ+N + j)/k! for 0 6 i 6 j < s, 0 6 k 6 K.

3. For j = 0, . . . , s− 1
3.1. For k = K,K − 1, . . . , 0, compute

vj,k =
s−j∑
j′=1

K−k∑
k′=0

bj+j′,j,k′ uj′,k+k′ ,

qj,k = 1
b0,j,0

(
c vj,k −

K−k∑
k′=1

b0,j,k′ qj,k+k′

)
.

4. Return q.

Proposition 6.10. — In the notation of Algorithm 6.9, let uj,k = uλ+N−j,k
be coefficients as in (6.1) of a solution u(z) of P (z, θ). Assume that the indicial
polynomial Q0 of P (z, θ) does not vanish at any of the points λ+N, . . . , λ+N+s−1.
Then, Algorithm 6.9 returns the coefficients

qj,k = qλ+N+j,k, 0 6 j < s, k > 0,
of the normalized residual (6.8) associated to the truncation ũ(z) of u(z) defined
by (6.2).

Proof. — The algorithm amounts to the computation of the coefficients (vν,k) of
v(z) = P (z, θ) · u(z) by application of P (S−1

n , ν + Sk) to (uν,k), interleaved with the
solution of a triangular linear system that expresses the relation Q(ν + Sk) · (qν,k) =
(vν,k). The table v is filled with vj,k = vλ+N+j,k, using the relation

vν,k =
s∑
i=0

K−k′∑
k′=0

b(k′)(ν)
k! uν−i,k+k′

with ν = λ + N − j, and noting that uν−i,· = 0 when j′ = i − j 6 0. The factor c
accounts for the discrepancy between the monic indicial polynomial Q0 used in the
definition of the normalized residual and the leading coefficient of the recurrence:
they are related by b0(n) = cQ0(n), so that the equation Q(ν + Sk) · (qν,k) = (vν,k)
translates into ∑k′ c−1b0,j,k′ qj,k+k′ = vj,k. �

6.4. Bounds on tails of differentially finite series

In terms of L(z, θ) and y(z), the normalized residual we just defined satisfies
L(z, θ) · y = Q0(θ) · q. Given suitable bounds on the coefficients of L, Proposition 5.5
applies and provides a bound on y(z). If (p̌, â) is the pair computed by Algorithm 6.1,
it follows that the truncation error satisfies

u(z)− ũ(z)� ĥ(z)
p̌(z)

∫ z

0

w−1 q̂(w)
ĥ(w)

dw, ĥ(z) = exp
∫ z

0
w−1 â(w) dw

TOME 2 (2019)

124 M. MEZZAROBBA

where q̂(z) is a power series satisfying condition (ii) of Proposition 5.5. The obvious
choice is to take q̂(z) as a polynomial with the same support as z−λq(z). However,
choosing q̂(z) as a polynomial multiple of ĥ(z) instead makes the integral explicitly
computable. Combined with a parameter choice that render the last two conditions
of Proposition 5.5 trivial (cf. the discussion at the end of Section 5.3), this leads to
the following algorithm.
Algorithm 6.11. — Tail majorant

Input: An operator L ∈ K[z][Dz]. An algebraic number λ. An integer ` > 1. A
truncation order N > 1. The coefficients uλ+N−1, uλ+N−2, . . . ∈ K[log z] of a
solution u(z) of L · u = 0 (the last s coefficients, where s is defined in step 1,
are enough).

Output: A majorant series û(z) of u(z)− ũ(z), where ũ(z) is the order-N truncation
of u(z).

1. Rewrite L in the form P (z, θ) with θ on the left: compute coefficients p0, . . . , pr
in K[z] such that zρL = θrpr(z) + · · ·+ θp1(z) + p0 where ρ ∈ Z is such that
pr(0) 6= 0. Let s = maxk deg pk.

2. Using Algorithm 6.9, compute the normalized residual

q(z) = zλ+N
K−1∑
k=0

f [k](z) log(z)k
k! , f [k] ∈ C[z],

associated to ũ(z).
3. Call Algorithm 6.1 on (P (z, θ), λ, `, n0) with n0 = N to compute a pair (p̌, â).

Let
ĥ(z) = exp

∫ z

0
w−1 â(w) dw.

4. Compute a polynomial f̂(z) = f̂0+f̂1z+· · ·+f̂szs with f̂i > (N+i) maxk |f [k]
i |.

5. Compute the first s+ 1 coefficients of the Taylor expansion of ĥ(z)−1. Deduce
a polynomial g(z) = gNz

N + · · ·+ gN+sz
N+s ∈ R[z] such that∫ z

0
wN−1 f̂(w)

ĥ(w)
dw = g(z) + O(zN+s+1).

Define ĝ(z) = ĝNz
N + · · ·+ ĝN+sz

N+s by ĝn = max(0, gn).
6. Return the symbolic expression

û(z) = ĝ(z)
p̌(z) ĥ(z).

In our implementation, the series ĥ(z) (actually ĥ(z)/p̌(z)) and û(z) are represented
by objects of type “hyperexponential majorant” that encode formal power series of
the form

zδ
F (z)
G(z) exp

(∫ z

0
H(w) dw

)
, δ ∈ N, F,G ∈ R[z], H ∈ R(z),

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 125

where the polynomialG(z) is represented in factored form andH(z) is an unevaluated
sum of rational functions, also with factored denominators. With the algorithm of
this paper, the sum reduces to two terms (a polynomial part related to Q̂(z) in
Algorithm 6.1, and a rational part of denominator pr(z)), but variants like that of
Remark 6.5 can introduce additional terms. This representation makes it easy to
extract numerical bounds from the majorant series, as discussed in Section 8 below.

Proposition 6.12. — Consider the generalized initial values (uν,k)(ν,k)∈E asso-
ciated to u, and assume that N is at least equal to the largest index of a nonzero
initial value, that is,
(6.9) N > max {n ∈ N : ∃ k, (λ+ n, k) ∈ E ∧ uλ+n,k 6= 0} .
Then Algorithm 6.11 returns an expression representing a series û(z) ∈ R+[[z]] such
that

u(z)− ũ(z)� û(z).

Proof. — Step 1 of the algorithm consists in rewriting the equation L · u = 0 into
an equivalent one of a special form. We have seen in Section 3.2 that this can always
be done, and in Section 5.1 that, due to the assumption that 0 is a regular point, the
resulting pr does not vanish at 0. By Lemmas 6.7 and 6.8, the normalized residual q(z)
is well defined and the polynomials f [k] have degree bounded by s. Additionally, the
rational function returned by Algorithm 6.1 satisfies â(0) = 0 (by Proposition 6.3), so
that ĥ(z) is analytic at the origin. Thus, at step 5, the computation of g(z) amounts
to that of a Taylor expansion of â(z) (a rational function with no pole at the origin)
followed by routine operations on truncated formal power series. Therefore, the
algorithm makes sense and runs without error.
To see that the result satisfies the claim, let us check that Proposition 5.5 is

applicable to â(z) and q̂(z) = zĝ′(z) ĥ(z), where ĝ(z) is the polynomial computed
at step 5. By Proposition 6.3, the series â(z) satisfies condition (i). By definition
of g(z), we have

g′(z) ĥ(z) = zN−1 f̂(z) + O(zN+s).
Since f̂(z) has degree s, the first N + s coefficients of g′(z) ĥ(z) are exactly the
coefficients of the polynomial zN−1f̂(z). While these coefficients are non-negative,
this may not be true of the remaining coefficients of g′(z) ĥ(z). However, replacing
g(z) by ĝ(z) yields a product ĝ′(z) ĥ(z) with

max
(
0, [zn]

(
g′(z) ĥ(z)

))
6 [zn]

(
ĝ′(z)ĥ(z)

)
, n > 0.

We thus have
zN−1 f̂(z)� ĝ′(z) ĥ(z),

and hence zN f̂(z) � q̂(z). In combination with the inequalities resulting from
steps 2 and 4, this implies

(N + i) |qλ+N+i,k| 6 f̂i 6 q̂N+i, i, k > 0,
and condition (ii) is satisfied. Because N > n0 and y(z) = pr(z)y(z), we have
yλ+n,k = 0 for all n < n0, hence condition (iii) holds. Similarly, condition (iv) holds
due to the assumption (6.9).

TOME 2 (2019)

126 M. MEZZAROBBA

Therefore, the relation y(z)� ŷ(z) holds for any solution of zŷ′(z) = â(z) ŷ(z) +
q̂(z), and in particular for

ŷ(z) = ĥ(z)
∫ z

0

w−1 q̂(w)
ĥ(w)

dw = ĥ(z) ĝ(z).

It follows that u(z)− ũ(z) = pr(z)−1y(z)� p̌(z) ŷ(z). �

Remark 6.13. — Algorithm 6.11 is but one way to compute remainder bounds
based on Proposition 5.5. It admits many variants that use the additional flexibility
of the framework of the previous section.

(1) If N is replaced by n0 in (6.9), the proof of Proposition 6.12 applies verbatim
to any N > n0 instead of only N = n0. One can thus compute majorants
corresponding to multiple truncation orders without running Algorithm 6.1
again, or even specializing again the majorant sequence of Remark 6.4.

(2) It may also happen that (6.9) fails to hold: typically, if the indicial polyno-
mial Q0 has a root at λ+n1 for some very large n1, one may want to truncate
the series expansion of u(z) at an order N � n1 even if one of the generalized
initial values at λ + n1 is nonzero. One can modify Algorithm 6.11 with a
more general choice of ŷ(z), as discussed at the end of Section 5.3, so as to
cover this case.

(3) There is no need to run the algorithm several times to bound the tails of several
solutions of the same equation (corresponding to the same λ) truncated at
the same order: it is enough to compute each of the corresponding normalized
residuals, and modify step 4 to take them all into account. In particular, using
the fact that derivatives of majorants are majorants of derivatives, bounding
the remainder of a fundamental matrix of the equation at an ordinary point
only requires a single call to Algorithm 6.11.

(4) It would be possible to choose the quantity τ(n) needed at step 4 of Algo-
rithm 6.1 in a slightly tighter way, based on (5.5) and the observed degree of
the normalized residual after step 2 of Algorithm 6.11. One would then recover
the special case of ordinary points hard-coded in Algorithm 6.1. However,
proceeding this way complicates the reuse of computations when n0 varies.

(5) Step 5 of Algorithm 6.11 is optional: taking ĝ(z) =
∫ z

0 w
N−1f̂(w) dw also

yields a valid, if coarser, bound. Indeed, we have f̂(z) � f̂(z) ĥ(z) since
ĥ0 = 1, meaning that we can replace f̂(z) by f̂(z) ĥ(z) without contradict-
ing the inequality from step 4, but then the integral at step 5 reduces to∫ z

0 w
N−1f̂(w) dw.

7. Bounds on rational sequences

The main algorithm presented in the previous section crucially relies on bounds
on quantities of the form supn>n0 |f(n)|, where f(n) is a rational function with
complex coefficients. While it is not hard to come up with such bounds (isolating the
poles and local extrema of f yields optimal bounds), their computation can easily
become costly in practice. This section describes an approach that we found to be a

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 127

good trade-off between speed and quality for an implementation based on interval
arithmetic.

7.1. The generic case

When n is large (larger than any of the poles of the rational function f of interest,
at least), a simple and effective way to bound |f(n)| for n > n0 is to perform an
interval evaluation.
More precisely, if f(n) = p(n)/q(n), write f(x−1) = xδp̄(x)/q̄(x), where p̄, q̄ are

the reciprocal polynomials of p, q, and δ > 0. The evaluation of this expression
on x = [0, 1/n0] in interval arithmetic yields a bound on f(n) valid for all n > n0.
Moreover, this bound converges to the same limit as |f(n)| as n tends to infinity. Note
that the rewriting step is essential, as illustrated by the example of f(n) = (n−1)/n,
whose naive interval evaluation on [10,∞] gives [0,∞], to be compared with [0.9, 1]
after rewriting the expression.
A big advantage of this approach is that it generalizes naturally to the simultaneous

computation of bounds on several derivatives of f(n), as required by step 4 of
Algorithm 6.1. The generalization is formalized as Algorithm 7.1 below. Given f =
p/q ∈ C(n) and T > 1, we denote

(7.1) F [T](f, n) =
T−1∑
t=0

∣∣∣∣∣n [εt]
(
p(n+ ε)
q(n+ ε)

)∣∣∣∣∣
(this is not exactly the same notation as in Algorithm 6.1). This definition already
covers the bounds on rational sequences needed in the main algorithm when n0 is
larger than the roots of the indicial polynomial. Algorithm 7.1 also accepts a param-
eter Z that can make it “ignore” some of the poles of f , and will be useful when we
turn to the remaining (non-generic) cases.
In this algorithm and the next one, boldface letters stand for intervals or polyno-

mials with real or complex interval coefficients. All interval operations are extended
in a natural way to handle intervals containing ∞. An instruction like “compute
g(ε) = ϕ(ε) + O(εT)” means “compute a polynomial g of degree at most T − 1
whose coefficients are interval enclosures of the first T Taylor coefficients of ϕ(ε)”.
The computation reduces to routine operations on truncated power series.
Algorithm 7.1. — Bound rational sequence, generic case

Input: A monic polynomial q ∈ C[n] of degree d, a polynomial p ∈ C[n] of degree
strictly less than d, an integer T > 1, a finite set of “exceptions” Z ⊆ N, a
starting index n0 ∈ N\Z.

Output: A bound M ∈ R+ ∪ {∞} such that F [T](p/q, n) 6 M for all n > n0 with
n 6∈ Z.

1. Set x to an interval containing [0, n−1
0] (if n0 = 0, set x = [0,∞]).

2. Compute i(ε) = (1 + xε)−1 + O(εT) and j(ε) = xi(ε).
3. Compute p̄(ε) = p̄(j(ε)) + O(εT) where p̄(n) = nd−1p(n−1).
4. Compute q̄(ε) = q̄(j(ε)) + O(εT) where q̄(n) = ndq(n−1).

TOME 2 (2019)

128 M. MEZZAROBBA

5. [Optional; alternatively, set γ = 1.] Use Lemma 7.2 below to compute a lower
bound ρ > 0 on |n−dq(n)| valid for all n ∈ N>n0\Z. Let γ be a complex
interval of radius > ρ−1 centered at 0. Multiply q̄(ε) by γ, and replace the
constant coefficient of the result by 1.

6. Compute s(ε) = s0 + s1ε+ · · ·+ sT−1ε
T−1 = (i(ε)/q̄(ε)) p̄(ε) + O(εT), with

the convention that ∞ ∈ s0 if the constant coefficient of q̄ contains zero.
7. Return the right endpoint of the interval γ (|s0|+ |s1|+ · · ·+ |sT−1|).

Before proving that this algorithm works as stated, let us discuss the step marked
as optional. Without this step, the algorithm is a direct generalization of the method
for T = 1 sketched above. It returns an infinite bound as soon as q has a real
root in [n0,∞), and only gives satisfying results when n0 is sufficiently larger than
the largest real root. Note that this may be enough in the context of solutions of
differential equations at ordinary points, since the only denominator that arises is
then n(n − 1) · · · (n − r + 1), where r is the order of the equation. In the general
case, the next lemma offers a simple way to mitigate the issue.

Lemma 7.2. — Let q ∈ C[n] be a monic polynomial of degree d, and let n0 > 1.
Given α ∈ C, denote

π(α) = d|α|2/Re(α)e, bα(n) =


min

(∣∣∣∣∣1− α

π(α)

∣∣∣∣∣ ,
∣∣∣∣∣1− α

π(α)− 1

∣∣∣∣∣
)
, n < π(α),∣∣∣∣1− α

n

∣∣∣∣ , n > π(α).

Then, for all n > n0, we have

|q(n)| > nd
∏
α

|bα(n0)|

where the product is over the multi-set of roots α of q with Reα > 0.

Proof. — Write q(n) = nd
∏
α |1− α/n|. When Reα 6 0, the sequence |1− α/n|

decreases to 1. Otherwise, it first decreases to a minimum (which may be 0 if α is
an integer) and then increases to 1. In the latter case, the minimum is reached for
either n = π(α) or n = π(α)− 1. �

Note that this lower bound can be somewhat expensive to compute compared
to the rest of the algorithm. For this reason, our implementation actually decides
whether to run the optional step based on the accuracy of the interval q̄(0) at the
beginning of step 5.
In practice, there is no need for the check that Reα > 0 to be exact, since false

positives can only decrease the result. Also, rough enclosures of the roots of q are
sufficient: one can add more terms to the minimum in the definition of bα(n) if the
enclosure of α does not uniquely determine π(α). Similarly, given Z ⊂ N, one obtains
a lower bound valid for n > n0 with n 6∈ Z by replacing π(α) by the adjacent integers
when α ∈ Z.

Proposition 7.3. — Algorithm 7.4 returns a quantity M ∈ R+∪{∞} such that
F [T](p/q, n) 6M for all n > n0 with n 6∈ Z. The version that includes the optional

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 129

step returns a finite bound as soon as Z contains all the roots of q in N>n0 (provided
that the working precision for interval operations is large enough).
Proof. — When n0 = 0, the algorithm returns ∞. Assume n0 > 1. Fix n > n0

such that q(n) 6= 0, and let x = n−1. The quantities p̄ and q̄ defined in the algorithm
are polynomials in ε (since d = deg q > deg p) with complex coefficients. Letting

j(ε) = 1
n+ ε

= x

1 + xε
∈ R[[ε]],

they satisfy

n f(n+ ε) = n
p(n+ ε)
q(n+ ε) = n j(ε) p̄(j(ε))

q̄(j(ε)) = 1
1 + xε

p̄(j(ε))
q̄(j(ε)) .

Since q(n) 6= 0, one can compute the first T Taylor coefficients of nf(n+ ε) by evalu-
ating the right-hand side of this expression in C[[ε]] and truncating the intermediate
results to the order T after each operation. Without step 5, this is exactly what
the algorithm does (in interval arithmetic) to compute s(ε). Since the interval x
contains n−1, we have n [εt]f(n+ ε) ∈ st for 0 6 t < T .
Now consider the case where we include step 5. Suppose additionally that n 6∈ Z,

and let c = nd q̄(n−1) = n−dq(n). Note that c 6= 0. After step 5, the modified
polynomial q̄(ε) satisfies

c−1 [εt] q̄(j(ε))
j(ε)d ∈ [εt]q̄(ε), 0 6 t < T.

Indeed, the relation for t = 0 reduces to 1 = 1, while for t > 0, it follows from the
fact that |c| > ρ and hence c−1 ∈ γ. Therefore, we have c n [εt]f(n + ε) ∈ st after
step 6.
In both cases, we conclude that

F [T](p/q, n) =
T−1∑
t=0

n [εt]f(n+ ε) ∈ γ (|s0|+ |s1|+ · · ·+ |sT−1|)

for all n ∈ N>n0\Z such that q(n) 6= 0. If q(n) vanishes for some n ∈ N>n0\Z,
then the algorithm returns infinity (either because the constant coefficient of q̄
contains zero or because γ is unbounded), hence the bound holds for all n ∈ N>n0\Z.
Otherwise, we can take ρ > 0, and the result is finite. �

7.2. The general case

In its general form, Algorithm 6.1 requires bounds for n > n0 on sequences similar
to F [T](f, n), but with a number of summands T that varies with n and a special
handling of poles of the denominator. Both modifications to the formula can be
summed up by introducing as an additional parameter the sequence of multiplicities
of the poles that we wish to treat in a special way. Thus, given a rational function
f = p/q as before and a sequence m(n) with finitely many nonzero terms, let us
define

(7.2) F (n) =
τ(n)−1∑
t=0

∣∣∣∣∣n [εt]
(

p(n+ ε)
ε−m(n)q(n+ ε)

)∣∣∣∣∣ where τ(n) =
n∑
k=0

m(k).

TOME 2 (2019)

130 M. MEZZAROBBA

0 5 10 15 20 25

n0

100

102

104

106

108

1010
ref. value
bound
Mgen (coarse)
Mgen (tight)
Mexn

{S(n)}

Figure 7.1. Bounds and intermediate values computed by Algorithm 7.4. The
algorithm was called with p = (n2 + n + 3)(n − 15)2, q = n(n − 3/2)2(n − 5)2(n − 10),
Z = {0, 5, 10}, and m(0) = 1, m(5) = 2, m(10) = 1. The main bound (solid curve) and the
intermediate values marked with H include the optional step of Algorithm 7.1. The values
of Mgen without the optional step, shown for comparison when finite, are marked with N.

The quantities that we have to bound at step 4 of Algorithm 6.1 are of this form(3) .
The following algorithm computes the associated bounds.
Algorithm 7.4. — Bound rational sequence, general case

Input: Polynomials p and q, a set Z, and an integer n0 ∈ N\Z as in Algorithm 7.1.
A “multiplicity” function m : N→ N with m(n) = 0 for n 6∈ Z.

Output: A boundM ∈ R+∪{∞} such that the function F : N→ R+∪{∞} defined
by (7.2) satisfies F (n) 6M for all n > n0.

1. [Precomputation, independent of n0.]
Set S(∞) = 0. Then, for n ∈ Z, in decreasing order:

1.1. Compute f(ε) = p(n+ε)/(ε−m(n)q(n+ε))+O(ετ(n)). Deduce a bound b1 >
F (n).

1.2. If n + 1 6∈ Z, compute b2 > sup{F [τ(n)](p/q, k) : k > n + 1, k 6∈ Z}
(cf. (7.1)) using Algorithm 7.1, and set b = max(b1, b2). Otherwise, set
b = b1.

1.3. If b is larger than the maximum of the S(k) defined so far, set S(n) = b.
2. Find the smallest n > n0 on which S is defined. Set Mexn = S(n).
3. If n0 ∈ Z, then return Mexn.
4. Compute Mgen > sup{F [τ(n0)](p/q, n) : n > n0, n 6∈ Z} using Algorithm 7.1.
5. Return max(Mexn,Mgen).

(3)There is no harm in also replacing µ(·) by zero in (6.3) when we take τ(n) = 1 because the
origin is an ordinary point: doing so only makes the first few terms of the bound infinite.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 131

Remark 7.5. — Algorithms 7.1 and 7.4 immediately extend to vectors of rational
functions with the same denominator. A large part of the computation can be shared
between the entries.

Proposition 7.6. — Given parameters that define a sequence F (n) of the
form (7.2) and an integer n0, Algorithm 7.4 returns a bound M such that

sup
n>n0

F (n) 6M.

If, for every integer n > n0, the multiplicity of n as a zero of q is at most m(n) (and
the working precision is large enough), then M is finite.

Proof. — First observe that, due to step 5.3, the values S(n) defined at step 1 are
decreasing (in the sense that S(m) < S(n) when both are defined and m > n). We
extend S to a staircase function defined on N ∪ {∞} by setting the undefined S(n)
to the smallest values that make S non-increasing (see Figure 7.1).
Let us prove by induction that

(7.3) n ∈ Z ⇒ (∀ k > n, F (k) 6 S(n)) .

This is true for n > maxZ. Then fix n ∈ Z and assume (7.3) holds for larger indices.
Step 5.1 of the algorithm ensures that S(n) > F (n). For n < k < min(N>n∩Z), we
have F (k) = F [τ(n)](p/q, k), hence S(n) > F (k) by the correction of Algorithm 7.1
(Proposition 7.3). Finally, by the induction hypothesis, we also have S(n) > F (k)
for larger k.
The effect of steps 2 to 5 is to construct a quantity

M >

max(S(n0), supn>n0,n6∈Z F
[τ(n0)](p/q, n)), n0 6∈ Z,

S(n0), n0 ∈ Z.

When n0 ∈ Z, the inequality supn>n0 F (n) 6 M holds by (7.3). When n0 6∈ Z, as
with steps 15.2–15.3, we have M > S(n0) > S(n′0) > S(n) for n > n′0, where
n′0 = min(N>n0 ∩ Z), and M > F [τ(n0)](p/q, n) for n0 6 n < n′0. It follows that
M > F (n) for all n > n0. �

8. Numerical bounds

The algorithms developed at this stage bound the tails of differentially finite
series by hyperexponential majorant series. We have seen that a series û(z) with
u(z) � û(z) encodes bounds |u(j)(ζ)| 6 û(j)(|ζ|) on the values of u and all its
derivatives. Yet, in order to use the majorants in a concrete setting, we still have to
explain how to effectively evaluate the û(j)(|ζ|). Let us first consider the details of this
operation, and then outline two other ways—appropriate for different settings—of
deriving numerical tail bounds from the majorant series.

TOME 2 (2019)

132 M. MEZZAROBBA

8.1. Values

When j is large, it is essential for performance to compute the values of the
derivatives by working with truncated power series (or another similar compact
representation) rather than by naive symbolic differentiation. The process is laid
out in Algorithm 8.1 below, which takes as input a hyperexponential majorant
represented in the form discussed after Algorithm 6.11. Despite the heavy notation,
the algorithm is mostly straightforward, the only subtlety being that we bound
sub-expressions of the form

∫
(f/g) by (

∫
f) /g to avoid computing integrals of

rational functions. As in the previous section, boldface letters stand for intervals or
polynomials with interval coefficients, and “compute ϕ(ε) + O(εm)” means “compute
a Taylor expansion with interval coefficients of ϕ(ε), truncated to the order m, using
power series operations”.
Algorithm 8.1. — Numerical remainder bounds

Input: Parameters δ ∈ N, p̂, q̌, f̂0, ǧ0, . . . , f̂n−1, ǧn−1 ∈ R[z] defining a series

û(z) = zδ
p̂(z)
q̌(z) exp

∫ z

0

n−1∑
i=0

f̂i(w)
ǧi(w) dw

 ∈ R+[[z]].

An evaluation point x > 0. A differentiation order m.
Output: Non-negative reals M0, . . . ,Mm−1.

1. Let z(ε) = x+ ε, where ε is an indeterminate. Initialize J(ε) to 0.
2. For i = 0, . . . , n− 1 :

2.1. Compute the antiderivative Fi(z) =
∫ z

0 f̂i(w) dw.
2.2. Compute Fi(z(ε))/ǧi(z(ε)) + O(εm) and add it to J(ε).

3. Compute S(ε) = z(ε)δp̂(z(ε)) exp(J(ε))/q̌(z(ε)) + O(εm).
4. Return the right bounds of the intervals j![εj]S(ε), 0 6 j < m.

Proposition 8.2. — In Algorithm 8.1, suppose that for all i, the series ûi(z) and
v̌i(z)−1 have non-negative coefficients. Then the valuesMj returned by the algorithm
are bounds for the derivatives of û(z) at x, with 0 6 û(j)(x) 6Mj, 0 6 j < m.

Proof. — Steps 1 to 3 compute the Taylor expansion to the order m at z = x of

zδ
p̂(z)
q̌(z) exp

(
n−1∑
i=0

1
ǧi(z)

∫ z

0
f̂i(w) dw

)
.

An integration by parts shows that∫ z

0

f̂i(w)
ǧi(w) dw = 1

ǧ(z)

∫ z

0
f̂i(w) dw −

∫ z

0

(
1
ǧi

)′
(w1)

∫ w1

0
f̂i(w2) dw2 dw1,

where the left-hand side and both terms on the right-hand side are series with
non-negative coefficients, so that we have∫ z

0

f̂i(w)
ǧi(w) dw � 1

ǧ(z)

∫ z

0
f̂i(w) dw.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 133

It follows that the coefficients of S(ε) are enclosures of upper bounds on the corre-
sponding Taylor coefficients of û(|ζ|+ ε). �

When u(z) is a plain power series and un:(z)� û(z), the above algorithm yields
bounds on |(un:)(j)(ζ)|, that is, on values of the successive derivatives of the tail. This
is what one typically needs in applications, yet, since (ûn:)′(z) = Nûnz

n−1 +(û′)n:(z),
the same quantities also bound the tails of the derivatives.
If u(z) = zλ

∑
k fk(z) log(z)k/k! is a logarithmic series, though, we only get bounds

on derivatives of tails of the components fk(z). To deduce bounds that apply to tails of
the generalized series expansion of u(z) itself, it is usually best to form the expansion
of fk(|ζ|+ ε) with respect to ε and compute (|ζ|+ ε)λ∑k fk(|ζ|+ ε) log(|ζ|+ ε)k/k!
in power series arithmetic, similar to what Algorithm 8.1 does.

8.2. “A priori” bounds

A small drawback of the technique discussed above is that it requires knowing the
last few coefficients un−1, . . . , un−s just before the truncation point in order to bound
the tail un:(ζ) of a series u(z). Thus, the results are in a sense a posteriori bounds,
that cannot be used to decide with certainty where to truncate the series before
even starting the computation of the coefficients. (It is of course possible to “guess”
a plausible truncation order based on asymptotic considerations, or to compute the
required coefficients at low precision before running the full-precision computation.)
If however, given a majorant û(z) of un0: obtained by the previous methods for

some n0, we can get sufficiently tight bounds on the values of the remainders ûn1:(|ζ|)
for n1 > n0, then we have a way of bounding the higher-order remainders un1:(ζ)
without computing all the coefficients up to n1. We now adapt to the setting of
this paper a technique of Mezzarobba and Salvy [MS10] for doing so, based on the
classical saddle point method in asymptotics. The idea is that for suitably chosen ρ,
the bound (8.1) below is relatively tight.

Lemma 8.3. — Let v̂(z) be a power series with non-negative coefficients. Fix real
numbers ρ > x > 0 within the disk of convergence of v̂. For all n ∈ N, the series
expansion at x of the remainder of order n of v̂(z) is bounded as

(8.1) v̂n:(x+ ε)�
(
x

ρ

)n
v̂(ρ(1 + x−1ε)).

In particular, we have v̂n:(x) 6 (x/ρ)nv̂(ρ).

Proof. — Write

v̂n:(xz) =
∞∑
k=0

v̂n+k x
n+k zn+k =

(
x

ρ

)n ∞∑
k=0

v̂n+k x
k ρn zn+k.

Since ρ > x, we have

v̂n:(xz)�
(
x

ρ

)n
v̂n:(ρz)�

(
x

ρ

)n
v̂(ρz).

The result follows by substituting 1 + x−1ε for z. �

TOME 2 (2019)

134 M. MEZZAROBBA

For simplicity, let us focus on series û(z) of the shape returned by Algorithm 6.11,
viz.,

(8.2) û(z) = zn0 v̂(z) = zn0 b̂(z) exp
∫ z

0
w−1 â(w) dw, â, b̂ ∈ C(z),

and assume that â(z) and b̂(z) are not both constant(4) . Additionally, we limit
ourselves in the analysis to the bound (x/ρ)nv̂(ρ) on the value of the remainder,
leaving to the reader the case of derivatives.
Let ρ∗ be the pole of â(z) b̂(z) closest to the origin, with ρ∗ = ∞ if both â(z)

and b̂(z) are polynomials. As â(z) and b̂(z) have non-negative coefficients, ρ∗ is
real (or infinite) and positive. Besides, in our setting, the denominators of â(z) and
b̂(z) divide the polynomial p̌(z) computed by Algorithm 6.1, hence ρ∗ can be taken
arbitrarily close to the modulus of the singularity of the differential equation closest
to the origin. The next lemma shows that, in (8.1), it is possible to choose ρ = ρn
close to ρ∗, so that (x/ρn)n decreases fast, without letting v̂(ρn) grow too large. In
particular, the resulting sequence of bounds tends to zero at least exponentially fast,
with the same exponential rate x/ρ∗ as the coefficients of v̂n in the case ρ∗ <∞.

Lemma 8.4. — Fix x < ρ∗ and c > 0.
• If ρ∗ is finite, let m0 ∈ N be its multiplicity as a pole of â(z) and b̂(z). Let
m = max(1,m0). For n > cm, define ρn = ρ∗(1− cn−1/m).
• If ρ∗ =∞, let d = deg â(z) and ρn = cn1/d.

Then, as n→∞, the following asymptotic bounds hold:
• (x/ρn)nv̂(ρn) = (x/ρ∗)nnO(1) if ρ∗ <∞ and m = 1,
• (x/ρn)nv̂(ρn) = (x/ρ∗)n exp(O(n1−1/m)) if ρ∗ <∞ and m > 2,
• (x/ρn)nv̂(ρn) = n−n/deO(n) if ρ∗ =∞.

Proof. — Assume first that ρ∗ is finite. When ρ tends to ρ∗, we have

∫ ρ

0
w−1â(w) dw =


O((ρ∗ − ρ)−m0+1), m0 > 2,
O(− log(ρ∗ − ρ)), m0 = 1,
O(1), m0 = 0,

and thus, since ρ∗ − ρn = cρ∗n−1/m,

exp
∫ ρn

0
w−1â(w) dw =


exp(O(n1−1/m0)), m0 > 2,
nO(1), m0 = 1,
O(1), m0 = 0.

as n→∞. The analogous estimates when ρ∗ =∞ read∫ ρ

0
w−1â(w) dw = O(ρd) (ρ→∞), exp

∫ ρn

0
w−1â(w) dw = exp O(n) (n→∞).

(4)There is no loss in generality in doing so. Besides, the only case that would lead to majorant
series breaking the assumption is that of differential equations of the form P (θ) · u = 0, whose
solutions are linear combinations of a finite number of generalized monomials.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 135

In both cases, the other factor of v̂(ρn) satisfies b̂(ρn) = nO(1). Finally, the prefactor
(x/ρn)n is bounded as

(x/ρn)n =

(x/ρ∗)n(1− cn−1/m)−n = exp(O(n1−1/m)), ρ∗ <∞,
O(xnn−n/d), ρ∗ =∞.

The result follows by combining these estimates. �

While, asymptotically, these formulas yield tight bounds for any fixed c, the actual
values of (x/ρn)nv̂(ρn) for finite n are quite sensitive to that of ρn, and the bounds
implied by the previous lemma are typically very poor for moderate n. We could,
of course, derive more precise asymptotic estimates of the optimal choice of ρn as a
function of n, but in practice it is best to minimize Fn(ρ) = (x/ρ)nv̂(ρ) numerically,
not necessarily in a rigorous way. Note that, for large n, the function Fn has a unique
local minimum(5) on [0, ρ∗), so that simple numerical methods work well for this
purpose.
To sum up, we can use the following algorithm to compute bounds on ûn:(x) and

its first m derivatives given a series û(z) of the form (8.2): first call Algorithm 8.1
on û(z) and x. If n 6 n0, return its result. Otherwise, define ρ∗ as above, and
search for a value ρ ∈ [x, ρ∗) that minimizes log((x/ρ)nf(ρ)), where f(ρ) is the value
computed by Algorithm 8.1 called with m = 1. Then compute j! [εj]S(ε), 0 6 j < m,
where S(ε) = (x + ε)n0(x/ρ)nv̂(ρ(1 + x−1ε)) + O(εm). Compare with the bounds
computed at the first step, and return the better one. (This last step is not strictly
necessary, since (8.1) reduces to the trivial bound v̂n:(x+ ε)� v̂(x+ ε) when ρ = x,
but it can help if the numerical computation of ρ is inaccurate.)

Proposition 8.5. — If u(z)� û(z) and n > n0, the algorithm outlined above
yields valid bounds on un:(ζ), . . . , (un:)(m−1)(ζ) for all ζ such that |ζ| 6 x. Provided
that the numerical method used to choose ρ is accurate enough, the bound on un:(ζ)
tends to zero at least exponentially fast as n grows.

Figure 8.1 shows the results of a simple implementation of this strategy. While
the sub-exponential overhead promised by Lemma 8.4 can be observed in practice,
at least for the simpler of the equations, we also see that these “a priori” bounds
are much more pessimistic than the “a posteriori” ones in slightly more complicated
cases.

8.3. Remainders of Laplace transforms

Another downside of our framework is that hyperexponential majorant series are
not expressive enough to capture the remainder asymptotics of solutions of arbitrary
differential equations with polynomial coefficients. For example, the Airy function
(5) Indeed, its logarithmic derivative reads F ′n(ρ)/Fn(ρ) = ρ−1(G(ρ)−n) where G(ρ) = ρb̂′(ρ)/b̂(ρ)+
â(ρ). Since the numerator of b̂(z) has non-negative coefficients, G(ρ) is a rational function without
poles on [0, ρ∗), and hence a continuous function with finitely many local extrema. Additionally, it
satisfies G(0) = 0 and G(ρ)→ +∞ as ρ→ ρ∗. Therefore, for large n, the equation G(ρ) = n has
exactly one solution.

TOME 2 (2019)

136 M. MEZZAROBBA

0 25 50 75 100 125 150

10−50

10−40

10−30

10−20

10−10

100

0 100 200 300 400 500

10−150

10−100

10−50

100

Figure 8.1. “A priori” vs. “a posteriori” bounds on the remainders un:(ζ) of a
series u(z), as a function of the truncation order n. Left plot: u(z) = arctan(z) at
ζ = 1/2. Right plot: u(z) and ζ as in Example 1.1. On each plot, the bottommost curve (in
black) is the actual truncation error. The next curve from bottom to top is the “a posteriori”
bound on un:(ζ) given by Algorithm 6.1 with ` = 10 and Algorithm 6.11, based on the
coefficients u0, . . . , un−1 of u(z). It connects the starting points of the remaining curves, which
represent, for several values of n0, the bounds on un:(ζ) for n > n0 computed from the
same majorant series using only the coefficients u0, . . . , un0−1, as described in Section 8.2. See
Section 9 for more information on the implementation.

satisfies Ai(z) = exp(σϕz3/2 + O(log z)) as z → ∞ in a generic direction ϕ, and
[zn] Ai(z) = O(n!−2/3), but the best majorants our method can express are of the
form û(z) = ĝ(z) exp(σz3), ĝ(z) ∈ Q[z], with un of the order of n!−1/3. More generally,
for any rational κ > 0, it is not hard to find an equation whose solutions are entire
functions u(z) of order κ or higher, and hence have tails un:(ζ) bounded by n!−1/κeO(n)

(ζ fixed). In contrast, hyperexponential entire functions are necessarily of integer
order, with tails that decrease like n!1/deO(n) where d ∈ N>0. Besides, even when the
fastest-growing solution of the differential equation we are considering is of integer
order, there is no guarantee that the hyperexponential majorant will respect that
order.
This overestimation is not too much of an issue for the “a posteriori” error bounds

discussed in the main part of this paper because, even if the choice of ĥ(z) in
Section 6.4 is not as tight as it could, the factor derived from the residual has the
“correct” asymptotics with respect to n. For the “a priori” bounds of the previous
subsection this argument does not apply, and they can be far from matching the
actual speed of convergence of the solutions, even in non-degenerate cases.
A possible remedy (essentially a streamlined version of a similar idea proposed by

Mezzarobba and Salvy [MS10], to which we refer for more information) is to re-scale
the solutions of the original equation by a generalized Laplace transform

∞∑
n=0

unz
n 7→

∞∑
n=0

φ(n)unzn, φ(n) = q
p
q
nΓ
(

1 + n

q

)p
This transformation can be performed algorithmically at the level of differential
operators, and it is possible to choose p, q in such a way that the resulting operator
has at least one nonzero finite singular point, while remaining regular at the origin.
One can then compute majorant series of the solutions of the transformed equation,

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 137

and obtain bounds on the remainders of the original solutions by the following variant
of Lemma 8.3. (We have not experimented with this technique.)

Lemma 8.6. — Let û(z) = ∑
n>0 ûnz

n ∈ R+[[z]], and let v̂(z) = ∑
n>0 φ(n)ûnzn

for integers p ∈ Z, q ∈ N>0 chosen so that v̂(z) has a nonzero radius of convergence.
Let ρ > 0 lie within the disk of convergence of v̂(z). Then, for all x and n such that
0 6 x 6 ρ (n+ 1)p/q, we have the bound

ûn:(x) 6 1
φ(n)

(
x

ρ

)n
v̂(ρ).

Proof. — Write

ûn:(x) =
∞∑
k=0

v̂n+k

φ(n+ k)x
n+k = 1

φ(n)

(
x

ρ

)n ∞∑
k=0

φ(n)
φ(n+ k)ρ

nxk.

Since the function t 7→ Γ(t+a)/Γ(t) is non-decreasing for fixed a, and using Gautschi’s
inequality [OLBC10a, Section 5.6.4], we have

Γ(1 + n/q)
Γ(1 + (n+ k)/q) 6

(
Γ(1 + n/q)

Γ(1 + (n+ 1)/q)

)k
6
(

q

n+ 1

)k/q
and hence

φ(n)
φ(n+ k) = q−

p
q
k

(
Γ(1 + n/q)

Γ(1 + (n+ k)/q)

)p
6 (n+ 1)−(p/q)k 6

(
ρ

x

)k
.

The result follows. �

In practice, when applying this lemma, x is given, n must be large enough that
x 6 ρ∗ (n + 1)p/q holds, and ρ is to be chosen as a function of n as in the previous
subsection. For large x, Lemma 8.6 starts being applicable when n ≈ xp/q, which
typically matches the position where the terms of the series u(z) “start converging”
(cf. Section 9.2).

9. Implementation and examples

9.1. Implementation

We have implemented the algorithms of this paper in ore_algebra [KJJ15, Mez16],
a library for working with Ore polynomials in the SageMath (Sage) computer algebra
system. Among the features of Sage and the many external libraries on which it is
based, our code relies in an essential way on Arb [Joh17], which provides all necessary
basic operations on intervals and truncated power series with interval coefficients. The
implementation also makes use of PARI for complex root finding, and of ore_algebra
itself for basic arithmetic with differential and recurrence operators. The operations
on rational numbers and exact polynomials mainly come from GMP/MPIR, Flint
and Singular.
The ore_algebra package is available from https://github.com/mkauers/ore_

algebra/ under the GNU General Public License (version 2 or later). The code

TOME 2 (2019)

https://github.com/mkauers/ore_algebra/
https://github.com/mkauers/ore_algebra/

138 M. MEZZAROBBA

for computing error bounds can be found in the file src/ore_algebra/analytic/
bounds.py of the source tree. We performed the experiments described below using
the git revision dd88e8d5 under Sage 8.2.
Except when otherwise noted, we run the full version of the algorithm described in

this paper, that is, the combination of Algorithms 6.1, 6.11, 7.4, and 8.1, including
their optional steps, and using PARI’s root finder at step 2 of Algorithm 6.1. Nu-
merical coefficients are represented by real or complex intervals almost everywhere,
with a fixed precision of 53 bits.
In examples involving generalized series expansions at singularities, the displayed

truncation error and error bound correspond to the complete logarithmic series,
including the non-analytic factors.

Remark 9.1. — Testing the implementation for correctness is a significant issue,
as the final truncation bounds are likely to be valid even if the code is wrong, due to
overestimation. Without a complete formal proof of the implementation, it is very
hard to be certain that it is fully correct. Nevertheless, the fact that our bounds
are close to optimal in simple cases is of great help in catching bugs. We further
limit the risks of missing issues hidden by overestimations by testing not only the
final bounds, but also various intermediate results. In our experience, plausible but
incorrect changes to the bound computation algorithm tend to be caught by the test
suite.

9.2. Elementary and special functions

Figure 9.1 illustrates the behavior of the algorithm in a variety of “easy” model
cases. We use very simple differential equations satisfied by classical elementary and
special functions and focus on the evaluation of their solutions at low precision.
Each row shows three examples of solutions of the same equation, from top to

bottom
u′(z)− u(z) = 0, (z2 + 1)u′′(z) + 2z u′(z) = 0, u′′(z) + 2z u′(z) = 0,

u′′(z)− z u(z) = 0, 4z2 u′′(z)− (z2 − 8z + 11)u(z) = 0.
For each of these equations, we consider the series expansion at the origin of one or
several solutions (respectively the exponential, the arctangent, the error function, the
Airy functions Ai and Bi, and certain linear combination of Whittaker functions of
parameters κ = 2, µ =

√
3), evaluated at different points ζ of their disk of convergence.

The first four equations are ordinary at the origin. The last one is regular singular,
with irrational exponents 1/2±

√
3. The local expansion of Mκ,µ lies in z1/2−

√
3C[[z]],

and the constant(6) c is chosen so that Wκ,µ − cMκ,µ ∈ z1/2+
√

3 ∈ C[[z]].
We plot the truncation error |un:(ζ)| and the corresponding bound on a logarithmic

scale, as a function of the number of terms n, until they become smaller than 10−10.
All bounds are computed using Algorithm 6.1 with ` = 3. The left column corre-
sponds to evaluations at points ζ where the series u(ζ) converges nicely—halfway

(6)c = π/(sin(απ)Γ(α)Γ(−
√

3− 3/2)) where α = 1 + 2
√

3.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 139

0 5 10

10−9

10−6

10−3

100
exp(1/2)

0 10 20 30

10−9

10−6

10−3

100

103

exp(−5)

0 10 20 30

10−9

10−6

10−3

100

103

exp(5)

0 10 20 30

10−9

10−6

10−3

100
arctan(1/2)

0 20 40 60 80

10−9

10−6

10−3

100

arctan(3/4)

0 100 200 300

10−10

100

1010

arctan(7/8)

0 5 10 15 20 25

10−9

10−6

10−3

100
erf(1)

0 10 20 30 40 50

10−9

10−6

10−3

100

103
erf(2)

0 200 400 600

100

1020

1040

1060

1080

erf(10)

0 5 10 15 20 25

10−9

10−6

10−3

100

Ai(2)

0 20 40 60 80 100

10−10

100

1010

1020
Ai(10)

0 20 40 60 80 100

10−10

100

1010

1020
Bi(10)

0 5 10

10−9

10−6

10−3

100

M2,
√

3(1)

0 10 20 30 40 50

10−10

100

1010

1020

M2,
√

3(20)

0 10 20 30 40 50

10−10

100

1010

1020

W2,
√

3(20) − cM2,
√

3

Figure 9.1. Truncation errors of series expansions of classical functions. The
two curves on each plot are the actual truncation error and the bound, as a function of the
truncation order.

TOME 2 (2019)

140 M. MEZZAROBBA

from the circle of convergence in the case of arctan(z), and at points where the mag-
nitude of the terms of u(ζ) start decreasing early on in the case of entire functions.
For such simple equations, the experiments confirm that the bounds are very tight,
in spite of the very low accuracy target and the moderate value of `.
Though a bit larger, the overestimation remains moderate in the two other columns.

We will come back to the case of arctan(7/8) later. We can observe that when the
terms exhibit a “hump” before the series really starts converging, our bounds tend
to overestimate the true error by a factor comparable to the height of the hump. A
heuristic explanation is that, in the majorant series û(z) = p̌(z)−1ĝ(z)ĥ(z) that we
compute for un:(z), the coefficients of ĝ(z) are roughly of the order of |un|, while ĥ(z)
is not too far from ∑

j>0 |uj| zj. Thus, the value of the majorant series at x = |ζ| > 0
is about ∑j>0 |uj|xj ≈ maxj>0(|uj|xj) times larger than |un:(ζ)| ≈ |un|xn. This
overestimation has a limited impact in applications, because one typically tries to
avoid humps in the coefficients in the first place—for example, in a Taylor method,
by adjusting the step size. Nevertheless, it would be interesting to find a way of
avoiding it.

9.3. “Real-world” examples

Next, we consider a family of larger examples borrowed from an application. Other
families of “interesting” operators, as well as tools to produce plots similar to the
ones in this paper, are available in the ore_algebra source tree.
Figure 9.2 shows remainder bounds for solutions at the origin of the differential

equations for lattice Green functions of face-centered hypercubic lattices discovered
(heuristically or rigorously) by several authors over the last decade [Gut09, Bro09,
Kou13, ZHM15, HKMZ16]. In particular, the case d = 4 corresponds to the operator
of Example 1.1, but without the shift from the neighborhood of 0 to that of 1/2.
The other operators can be found on Ch. Koutschan’s web page(7) ; here we limit
ourselves to collecting some statistics about their size:

dimension d 4 5 6 7 8 9 10 11
order r 4 5 8 11 14 18 22 27
max. coefficient (w.r.t. Dz) degree 10 17 43 68 126 169 300 409
max. polynomial coefficient size (bits) 18 50 143 273 654 959 1907 2888

(Thus, the textual representation of the operator for d = 11 takes about 8 megabytes.)
The value at z = 1 of the lattice Green function gives access to the return probability
of the random walk on the lattice, and, to the best of our knowledge, going through
the differential equation is the only known way of computing that probability to
high precision in good complexity.
All these operators have regular singularities with integer exponents at the origin.

For example, the monic indicial polynomial for d = 9 is n9(n− 1)5(n− 2)3(n− 3).
In each case, we select small initial values at random and evaluate the logarithmic
(7) http://www.koutschan.de/data/fcc1/

ANNALES HENRI LEBESGUE

http://www.koutschan.de/data/fcc1/

Truncation Bounds for Differentially Finite Series 141

0 100 200 300

10−100

10−80

10−60

10−40

10−20

100
d = 4 (� = 5)

0 20 40 60 80 100

10−100

10−80

10−60

10−40

10−20

100
d = 5 (� = 8)

0 20 40 60 80

10−100

10−80

10−60

10−40

10−20

100
d = 6 (� = 20)

0 20 40 60

10−100

10−80

10−60

10−40

10−20

100
d = 7 (� = 32)

0 20 40

10−100

10−80

10−60

10−40

10−20

100

d = 8 (� = 59)

0 10 20 30 40

10−100
10−80
10−60
10−40
10−20

100
1020
1040

d = 9 (� = 79)

0 10 20 30 40 50 60

10−100
10−80
10−60
10−40
10−20

100
1020
1040

d = 10 (� = 143)

0 10 20 30 40 50 60 70

10−100
10−80
10−60
10−40
10−20

100
1020
1040

d = 11 (� = 195)

Figure 9.2. Truncation errors and remainder bounds computed by Algorithm 6.1,
run with the indicated `, for random solutions of annihilating operators of lattice
Green functions of d-dimensional face-centered cubic lattices (see Section 9.3).

series solution characterized by these initial values about halfway from the boundary
of its circle of convergence. We run Algorithm 6.1 with ` = bs/2c+ 2, in accordance
with the heuristic suggested on page 117.
It is especially noticeable here that the left endpoint of the upper curve is located

significantly to the right of that of the other curve, even when no part of the curve
is clipped out of the plot. This is because our implementation can return infinite
bounds, and does so at least until it has passed all initial values.
The fast convergence of the power series as d increases can be explained by the

presence of apparent singularities close to the origin, which leads us to select eval-
uation points much smaller than the actual radius of convergence of the solutions.
Thus, roughly speaking, a rigorous order-adaptive Taylor method using our algo-
rithm would perform many more steps to evaluate the lattice Green function at
z = 1 for d = 9 than for d = 4, but sum fewer terms at each step. Although our
bounds tend to infinity when the magnitude of the evaluation point approaches that

TOME 2 (2019)

142 M. MEZZAROBBA

of the singular point of the equation closest to the origin—apparent or not—, we can
see that in these examples, they adapt nicely to the unexpectedly fast convergence,
thanks to the use of residuals. Having to perform many small steps is nevertheless
sub-optimal, which raises the question of adapting the algorithm to handle apparent
singularities in a way that allows for larger step sizes.
We can also observe that overestimation becomes significant for the larger of these

operators. Further increasing the tuning parameter ` does not seem to help. Other
methods may hence be needed for the really efficient numerical solution of equations
with coefficients of very large degree at comparatively low precision.
It would be hard to draw any conclusion from a detailed analysis of the running

time of our Python implementation. Still, anecdotal data confirms that the bounds of
this paper are usable in practice as part of symbolic-numeric algorithms. For example,
the simple variable-order interval Taylor method implemented in ore_algebra can
compute an enclosure with radius less than 10−60 of the value at z = 1 of the lattice
Green function for d = 4 in less than a second on a modest laptop. The computation
of the remainder bounds accounts for an estimated 5 to 10% of the total running
time. Of course, the solver does not compute a complete tail bound at every iteration,
but starts with a heuristic convergence check, and reuses various intermediate results
when the rigorous check does not succeed on the first try, as discussed in particular
in Remark 6.4.

9.4. Effort-tightness trade-off

Figure 9.3 shows the influence of the tuning parameter ` of Algorithm 6.1 and
its importance for obtaining good bounds in relatively hard cases. We consider the
following examples:

(a) The evaluation of arctan(z) close to its circle of convergence for which ` = 3
did not give satisfactory results on Figure 9.1.

(b) The operator of the previous subsection for d = 6, but taken in the neigh-
borhood of z = 1/2 as in Example 1.1, with initial values u(0) = 1, u′(0) =
· · · = u(7)(0)=0. The closest singular point is at distance about 0.256, and we
evaluate the expansion at z = 9/70 ≈ 0.129.

(c) The operator below, handpicked among examples generated at random (by
first picking elements of Z[z]〈Dz〉 of balanced orders and degrees with small
integer coefficients, and then changing z to 5i + 7 + z, whence the special
distribution of coefficient sizes):

(−9z4 + (−179i− 254)z3 + (−3790i− 1356)z2 + (−22352i+ 6164)z − 31888i+ 38654))D3
z

+ (29iz4 + (815i− 582)z3 + (4208i− 12268)z2 + (−21341i− 71530)z − 127224i− 98798)D2
z

+ ((i+ 1)z4 + (41i+ 7)z3 + (470i− 189)z2 + (1981i− 2407)z + 1555i− 7918)Dz

+ ((−4i+ 1)z4 + (−96i+ 107)z3 + (−256i+ 1865)z2 + (4867i+ 9840)z + 20950i+ 11833).

The evaluation point is a simple rational halfway from the circle of conver-
gence, and we select the initial values at random.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 143

0 100 200 300 400

10−9

10−6

10−3

100

103

arctan(7/8)

� = 1
� = 2
� = 4
� = 8
� = 16
� = 32
� = 64

0 100 200 300 400 500 600

10−90

10−60

10−30

100

1030
sol. u of FCC6 around 1/2, u(9/70)

� = 1
� = 2
� = 4
� = 8

0 40 80 120 160

10−30

10−20

10−10

100

1010

1020
example (c) @ z = 4

� = 1
� = 2
� = 4
� = 8

0 100 200 300 400 500 600

10−30

10−20

10−10

100

1010

1020
example (d) @ z = 39/10

� = 4
� = 8
� = 16

Figure 9.3. Remainder bounds computed by Algorithm 6.1 for various values of
the tuning parameter ` (see Section 9.4). The bottommost curve (in black) is the actual
truncation error, the remaining curves from top to bottom correspond to increasing values of `.

(d) An operator of order 7 and degree 8 of the form

((20i− 1)z8 + · · ·+ 178371756i+ 577700775)D7
z + · · ·

+ ((1− i)z8 + · · · − 42079467i− 23600391)
obtained in a similar way, also evaluated at a point halfway from the circle
of convergence and with random initial values.

We can observe that going from ` = 1 to ` = 2 already brings very significant
improvements, and that larger values of ` are useful for nontrivial examples. Clearly,
the heuristic ` ≈ s/2 suggested earlier is but a crude rule of thumb. An implemen-
tation that adaptively increases ` starting from ` = 2 based on a heuristic measure
of tightness is likely to perform better. These conclusions are consistent with experi-
ments on various other examples. We also see again that operators with a few dozens
of monomials and large (but not huge) coefficients can be challenging in terms of
overestimation, at least at low precision.
A second parameter involved in the trade-off between speed and accuracy is the

optional step of Algorithm 7.1, whose effect already was illustrated on Figure 7.1.
This optional step can bring huge benefits on some inputs but makes no difference
in the most common cases, while being relatively expensive. Hence, it makes sense
to only run it when the previous step does not suffice.
As regards the other algorithmic variants mentioned in this article, only the more

accurate of the options is typically relevant for large operators. In particular, trying

TOME 2 (2019)

144 M. MEZZAROBBA

point ζ 0.95 4.75 9.5
order n 50 100 50 100 50 100

NumGfun 6.2 · 10−30 2.5 · 10−78 5.5 · 105 1.9 · 10−8 1.1 · 1022 2.5 · 1022

vdH2001 2.7 · 10−35 7.5 · 10−82 6.1 · 100 1.3 · 10−11 5.5 · 1023 4.9 · 1023

vdH2003 4.7 · 10−37 3.4 · 10−83 1.1 · 10−1 5.5 · 10−13 4.1 · 1023 4.1 · 1023

ACETAF 3.2 · 10−48 6.2 · 10−77 2.0 · 10−5 1.3 · 10−28 4.2 · 104 1.2 · 103

ore_algebra 8.6 · 10−50 5.2 · 10−101 2.9 · 10−14 1.4 · 10−30 7.2 · 103 2.7 · 102

reference 6.9 · 10−50 4.1 · 10−101 5.0 · 10−15 2.7 · 10−31 3.6 · 100 2.2 · 10−1

Table 9.1. Bounds on the tails |un:(ζ)| of the series defined by (9.1) computed
by various methods (see Section 9.5). All values have been rounded upwards to
two significant digits.

to save time by doing with a single shared lower bound on the singularities, as
suggested in Remark 6.2, only makes sense for very simple operators.

9.5. Comparison with existing software

A systematic comparison with the related methods discussed in Section 2 would
be meaningless, as they were designed for different goals, widely differ in scope, often
(even more than ours) involve tuning parameters with a crucial influence on the
quality of the results, and usually are not implemented. Nevertheless, it makes sense
to check that, in simple cases where several methods apply, our bounds are not worse
than what could be computed by other approaches.
We limit ourselves to a very simple example borrowed from Neher [Neh03, Exam-

ple 3], namely the problem of bounding the remainders of the Taylor expansion of
u(z) = cos(z)/(z2 + 101), solution of
(9.1) ((z2 + 101)D2

z + 4zDz + (z2 + 103)) · u = 0, u(0) = 1/101, u′(0) = 0.
Table 9.1 lists bounds on un:(ζ) for several values of ζ and n computed by the
following methods:
NumGfun: The author’s own Maple package NumGfun [Mez10], whose limitations

prompted the present work. We use the function bound_diffeq_tail() with
no particular options or configuration, and substitute the appropriate ζ and n
in the result.

vdH2001: A method described by van der Hoeven [vdH01, Section 2], here applied
manually with the help of non-rigorous floating-point computations. While
the description leaves out a number of algorithmic details related to the
computation of bounds on rational functions, the optimal choice of parameters
(λ = 101−1/2, M0 = 103/101, M1 = 0) is unambiguous here thanks to the
special shape of our example. Like the “a priori” bounds of Section 8.2 and for
similar reasons, this method is highly sensitive to the choice of the remaining
parameter µ, which we select by numerical optimization to minimize the
bound. The six test cases of Table 9.1 respectively use µ = 0.139, µ = 0.121,
µ = 0.139, µ = 0.121, µ = 0.105, and µ = 0.105.

ANNALES HENRI LEBESGUE

Truncation Bounds for Differentially Finite Series 145

vdH2003: A related method also suggested by van der Hoeven [vdH03, Section 3.5],
no longer involving µ. Again, it is possible for our particular example to choose
optimal parameter values α = 101−1/2, M = 103/101, C = 1/101. We assume
that the remainder of the majorant series obtained as output can be bounded
as tightly as needed.

ACETAF: We also list bounds obtained by Neher [Neh03] using version 2.71 of
ACETAF [EN03]. ACETAF is mainly designed for computing bounds on the
coefficients and remainders of series coefficients of linear analytic ODEs before
applying the method of majorants. Therefore, unlike the other techniques we
are comparing, it does not start from the equation (9.1) but from the closed-
form expression of u(z). Both the quality of the bounds it returns and the
running time vary widely depending on the values of several tuning parameters.
We only list the best of the three bounds reported in Neher’s article for each
instance.

ore_algebra: Finally, we run the implementation in ore_algebra of our algorithm,
with ` = 2, using the simplified method of Remark 6.2 for bounding the
denominator.

Only ACETAF approaches the accuracy of the bounds of the present paper in some
cases. In addition, the alternative methods considered here tend to degrade rapidly,
in quality, running time, or both, as the size of the operator increases, so that the
gap would likely be wider for realistic problems.

BIBLIOGRAPHY

[BRAB11] Roberto Barrio, Marcos Rodríguez, Alberto Abad, and Fernando Blesa, Breaking the
limits: The Taylor series method, Appl. Math. Comput. 217 (2011), no. 20, 7940–7954.
↑104

[Bro09] David Broadhurst, Bessel moments, random walks and Calabi–Yau equations, https:
//www.researchgate.net/publication/267204045, 2009. ↑140

[BS05] Alin Bostan and Éric Schost, Polynomial evaluation and interpolation on special sets
of points, J. Complexity 21 (2005), no. 4, 420–446. ↑122

[BZ10] Richard P. Brent and Paul Zimmermann, Modern computer arithmetic, Cambridge
Monographs on Applied and Computational Mathematics, vol. 18, Cambridge Univer-
sity Press, 2010. ↑103

[Cau42] Augustin Cauchy, Mémoire sur l’emploi du nouveau calcul, appelé calcul des lim-
ites, dans l’intégration d’un système d’équations différentielles, Comptes-rendus de
l’Académie des Sciences 15 (1842), 14, Reproduced in [Cau92, Section 169, p. 5-17].
↑100

[Cau92] , Œuvres complètes d’Augustin Cauchy, Ière série, vol. VII, Gauthier-Villars,
1892. ↑145

[CC90] David V. Chudnovsky and Gregory V. Chudnovsky, Computer algebra in the service
of mathematical physics and number theory, Computers in Mathematics (Stanford
University, 1986), Lecture Notes in Pure and Applied Mathematics, vol. 125, Dekker,
1990, pp. 109–232. ↑101, 105

[DM90] James H. Davenport and Maurice Mignotte, On finding the largest root of a polynomial,
RAIRO, Modélisation Math. Anal. Numér. 24 (1990), no. 6, 693–696. ↑118

TOME 2 (2019)

https://www.researchgate.net/publication/267204045
https://www.researchgate.net/publication/267204045

146 M. MEZZAROBBA

[DY05] Zilin Du and Chee Yap, Uniform complexity of approximating hypergeometric functions
with absolute error, Proceedings of the 7th Asian Symposium on Computer Mathematics
(ASCM 2005), 2005, pp. 246–249. ↑104

[EN03] Ingo Eble and Markus Neher, ACETAF: A software package for computing validated
bounds for Taylor coefficients of analytic functions, ACM Trans. Math. Softw. 29
(2003), no. 3, 263–286. ↑145

[Fro73] Ferdinand Georg Frobenius, über die Integration der linearen Differentialgleichungen
durch Reihen, J. Reine Angew. Math. 76 (1873), 214–235. ↑112

[Ger04] Jürgen Gerhard, Modular algorithms in symbolic summation and symbolic integration,
Lecture Notes in Computer Science, vol. 3218, Springer, 2004. ↑122

[Gré12] Thomas Grégoire, Certified polynomial approximations for D-finite functions, rapport
de stage, École normale supérieure de Lyon, 2012. ↑118

[Gut09] Anthony J. Guttmann, Lattice Green functions and Calabi–Yau differential equations,
J. Phys. A, Math. Theor. 42 (2009), no. 23, Art. ID 232001, 6 pages. ↑101, 140

[Hef94] Lothar Heffter, Einleitung in die Theorie der linearen Differentialgleichungen, Teubner,
1894. ↑112

[Hen77] Peter Henrici, Applied and computational complex analysis. Vol. 2: Special functions,
integral transforms, asymptotics, continued fractions, Pure and Applied Mathematics,
John Wiley & Sons, 1977. ↑106

[Hen86] , Applied and computational complex analysis. Vol. 3: Discrete Fourier analy-
sis, Cauchy integrals, construction of conformal maps, univalent functions, Pure and
Applied Mathematics, John Wiley & Sons, 1986. ↑100, 111

[Hil97] Einar Hille, Ordinary differential equations in the complex domain, Dover, 1997,
Unabridged and unaltered republication of the 1976 edition. ↑100, 106, 107

[HKMZ16] Saoud Hassani, Christoph Koutschan, Jean-Marie Maillard, and Nadjah Zenine, Lattice
Green functions: the d-dimensional face-centered cubic lattice, d = 8, 9, 10, 11, 12, J.
Phys. A, Math. Theor. 49 (2016), no. 16, Art. ID 164003, 30 pages. ↑140

[Joh16] Fredrik Johansson, Computing hypergeometric functions rigorously, https://arxiv.
org/abs/1606.06977, 2016. ↑104

[Joh17] , Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE
Trans. Comput. 66 (2017), no. 8, 1281–1292. ↑137

[KJJ15] Manuel Kauers, Maximilian Jaroschek, and Fredrik Johansson, Ore polynomials in Sage,
Computer algebra and polynomials. Applications of algebra and number theory (Jaime
Gutierrez, Josef Schicho, and Martin Weimann, eds.), Lecture Notes in Computer
Science, vol. 8642, Springer, 2015, pp. 105–125. ↑137

[Kou13] Christoph Koutschan, Lattice Green functions of the higher-dimensional face-centered
cubic lattices, J. Phys. A, Math. Theor. 46 (2013), no. 12, Art. ID 125005, 14 pages.
↑101, 140

[KP11] Manuel Kauers and Peter Paule, The concrete tetrahedron. Symbolic sums, recurrence
equations, generating functions, asymptotic estimates, Texts and Monographs in Sym-
bolic Computation, Springer, 2011. ↑106

[Mez10] Marc Mezzarobba, NumGfun: a package for numerical and analytic computation with
D-finite functions, ISSAC’10: Proceedings of the 2010 international symposium on
symbolic and algebraic computation, Association for Computing Machinery, 2010,
pp. 139–146. ↑112, 144

[Mez11] , Autour de l’évaluation numérique des fonctions D-finies, Ph.D. the-
sis, École polytechnique (France), 2011, http://tel.archives-ouvertes.fr/
pastel-00663017/. ↑104, 105, 112

ANNALES HENRI LEBESGUE

https://arxiv.org/abs/1606.06977
https://arxiv.org/abs/1606.06977
http://tel.archives-ouvertes.fr/pastel-00663017/
http://tel.archives-ouvertes.fr/pastel-00663017/

Truncation Bounds for Differentially Finite Series 147

[Mez16] , Rigorous multiple-precision evaluation of D-finite functions in SageMath,
https://arxiv.org/abs/1607.01967, Extended abstract of a talk at the 5th Inter-
national Congress on Mathematical Software, 2016. ↑137

[Moo62] Ramon E. Moore, Interval arithmetic and automatic error analysis in digital comput-
ing, Ph.D. thesis, Stanford University, 1962, Published as Applied Mathematics and
Statistics Laboratories Technical Report No. 25, http://interval.louisiana.edu/
moores_early_papers/disert.pdf. ↑105

[MPF] MPFR Team, The MPFR library: algorithms and proofs, 2001–, https://www.mpfr.
org/, available in the MPFR source tree. ↑103

[MS10] Marc Mezzarobba and Bruno Salvy, Effective bounds for P-recursive sequences, J. Symb.
Comput. 45 (2010), no. 10, 1075–1096. ↑104, 121, 133, 136

[Neh99] Markus Neher, An enclosure method for the solution of linear ODEs with polynomial
coefficients, Numer. Funct. Anal. Optim. 20 (1999), 779–803. ↑105

[Neh01] , Geometric series bounds for the local errors of Taylor methods for linear n-th
order ODEs, Symbolic algebraic methods and verification methods, Springer, 2001,
pp. 183–193. ↑105

[Neh03] , Improved validated bounds for Taylor coefficients and for Taylor remainder
series, J. Comput. Appl. Math. 152 (2003), 393–404. ↑144, 145

[NJC99] Nedialko S. Nedialkov, Kenneth R. Jackson, and George F. Corliss, Validated solutions
of initial value problems for ordinary differential equations, Appl. Math. Comput. 105
(1999), no. 1, 21–68. ↑104, 105

[NJN07] Markus Neher, Kenneth R. Jackson, and Nedialko S. Nedialkov, On Taylor model based
integration of ODEs, SIAM J. Numer. Anal. 45 (2007), no. 1, 236–262. ↑105

[OLBC10a] Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, Digital
Library of Mathematical Functions, 2010, http://dlmf.nist.gov/, Companion to the
NIST Handbook of Mathematical Functions [OLBC10b]. ↑137

[OLBC10b] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.),
NIST Handbook of Mathematical Functions, Cambridge University Press, 2010. ↑147

[Poo36] E. G. C. Poole, Introduction to the theory of linear differential equations, Clarendon
Press, 1936. ↑112

[Rih94] Robert Rihm, Interval methods for initial value problems in ODEs, Topics in validated
computations. Proceedings of the IMACS-GAMM international workshop (University
of Oldenburg, 1993), Studies in Computational Mathematics, vol. 5, Elsevier, 1994,
pp. 173–207. ↑105

[Sta99] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced
Mathematics, vol. 62, Cambridge University Press, 1999. ↑106

[vdH99] Joris van der Hoeven, Fast evaluation of holonomic functions, Theor. Comput. Sci.
210 (1999), no. 1, 199–216. ↑104

[vdH01] , Fast evaluation of holonomic functions near and in regular singularities, J.
Symb. Comput. 31 (2001), no. 6, 717–743. ↑104, 105, 144

[vdH03] , Majorants for formal power series, 2003, http://www.texmacs.org/joris/
maj/maj-abs.html. ↑104, 105, 145

[vdH07] , Efficient accelero-summation of holonomic functions, J. Symb. Comput. 42
(2007), no. 4, 389–428. ↑105

[WWS+06] Paul G. Warne, D. A. P. Warne, James S. Sochacki, G. Edgar Parker, and David C.
Carothers, Explicit a-priori error bounds and adaptive error control for approximation
of nonlinear initial value differential systems, Comput. Math. Appl. 52 (2006), no. 12,
1695–1710. ↑105

TOME 2 (2019)

https://arxiv.org/abs/1607.01967
http://interval.louisiana.edu/moores_early_papers/disert.pdf
http://interval.louisiana.edu/moores_early_papers/disert.pdf
https://www.mpfr.org/
https://www.mpfr.org/
http://dlmf.nist.gov/
http://www.texmacs.org/joris/maj/maj-abs.html
http://www.texmacs.org/joris/maj/maj-abs.html

148 M. MEZZAROBBA

[ZHM15] Nadjah Zenine, Saoud Hassani, and Jean-Marie Maillard, Lattice Green functions: the
seven-dimensional face-centred cubic lattice, J. Phys. A, Math. Theor. 48 (2015), no. 3,
Art. ID 035205, 19 pages. ↑140

Manuscript received on 18th June 2018,
revised on 23rd October 2018,
accepted on 4th December 2018.

Recommended by Editor X. Caruso
Published under license CC BY 4.0

Marc MEZZAROBBA
Sorbonne Université, CNRS
Laboratoire d’informatique de Paris 6, LIP6
F-75005 Paris (France)
marc.mezzarobba@lip6.fr
marc@mezzarobba.net

ANNALES HENRI LEBESGUE

https://creativecommons.org/licenses/by/4.0/
mailto:marc.mezzarobba@lip6.fr
mailto:marc@mezzarobba.net

	1. Introduction
	1.1. Context
	1.2. Contribution
	1.3. Outline

	2. Related work
	2.1. Differentially finite functions as special functions
	2.2. Interval methods for ODEs
	2.3. The regular singular case

	3. Notation and reminders
	3.1. Formal power series
	3.2. Differential equations and recurrences
	3.3. Majorant series

	4. A sketch of the method
	4.1. Truncated solutions and residuals
	4.2. The majorant equation
	4.3. Majorant series for the remainders

	5. Majorant equations: the general case
	5.1. Regular singular points
	5.2. Recurrences on the coefficients of solutions
	5.3. The majorant equation

	6. The main algorithm
	6.1. Setting
	6.2. ``Pseudo-inverse bounds'' on differential operators
	6.3. Normalized residuals
	6.4. Bounds on tails of differentially finite series

	7. Bounds on rational sequences
	7.1. The generic case
	7.2. The general case

	8. Numerical bounds
	8.1. Values
	8.2. ``A priori'' bounds
	8.3. Remainders of Laplace transforms

	9. Implementation and examples
	9.1. Implementation
	9.2. Elementary and special functions
	9.3. ``Real-world'' examples
	9.4. Effort-tightness trade-off
	9.5. Comparison with existing software

	Bibliography

