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Abstract

We propose a novel approach for quantitative shape variability analysis in reti-

nal optical coherence tomography images using the functional shape (fshape)

framework. The fshape framework uses surface geometry together with func-

tional measures, such as retinal layer thickness defined on the layer surface, for

registration across anatomical shapes. This is used to generate a population

mean template of the geometry-function measures from each individual. Shape

variability across multiple retinas can be measured by the geometrical deforma-

tion and functional residual between the template and each of the observations.

To demonstrate the clinical relevance and application of the framework, we

generated atlases of the inner layer surface and layer thickness of the Retinal

Nerve Fiber Layer (RNFL) of glaucomatous and normal subjects, visualizing

detailed spatial pattern of RNFL loss in glaucoma. Additionally, a regularized

linear discriminant analysis classifier was used to automatically classify glau-

coma, glaucoma-suspect, and control cases based on RNFL fshape metrics.
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1. Introduction

In the past two decades, optical coherence tomography (OCT) has been

widely adopted in ophthalmology for noninvasive, in-vivo, micrometer-resolution

imaging of the anterior and posterior segments of the eye, bringing new insights

in optic diseases along with more informed clinical decision making. Since the5

seminal paper in 1991 (Huang et al., 1991), significant progresses in OCT imag-

ing have made possible highly detailed 3D images. Fully utilizing the infor-

mation in such volumetric data, especially in large population studies, requires

robust, quantitative measures of variability in the images. The conventional

approach is to define an anatomical parameter, measure it in each image, and10

compare the values. Examples of OCT image parameters include optic cup

and disk measurements and thickness of retinal layers (Medeiros et al., 2005;

González-Garćıa et al., 2009). However, the spatial and anatomical correspon-

dence across measurements from multiple images is often limited. This can be

due to ambiguity in the parameter definition, such as in the optic cup-to-disc15

ratio, where the boundaries of the cup and disc often do not correspond to a

single anatomical structure (Chauhan and Burgoyne, 2013; Young et al., 2014).

Poor intra- and inter-subject correspondence can be also due to a lack of clear

spatial references, as in the case of retinal layer thickness maps.

In the latter case, comparing or computing a group average from multiple20

OCT images requires artificially defined regional correspondence. This often

relies on gross measures of orientation and distance from an anatomical land-

mark. In the common sectoral retinal layer thickness analysis of OCT scans,

sectors are delimited by superior, inferior, temporal, and nasal orientations, and

distance from the foveal pit or optic disc. Such an approach uses limited infor-25

mation, and leaves questions such as how comparable measurements from two

eye would be if one eye’s optic disc was larger or more elliptical than the other.

Averaging over a region may mitigate some of the variability due to unknown
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mismatch, but comes at the cost of spatial sensitivity of the measurement.

One way to address the issue is to define parameters that are more anatom-30

ically consistent. Several groups (Strouthidis et al., 2009; Chauhan and Bur-

goyne, 2013; Young et al., 2014), suggested Bruch’s Membrane Opening (BMO)

based parameters as more reliable structural measurements than the cup-to-disk

ratio. Peripapillary sector shapes were adjusted to better align to individual

BMO dimensions (Lee et al., 2014), and foveal-BMO axis has been shown to35

be a better reference for angular orientation than image frame in its anatomi-

cal and physiological justification and measurement repeatability (Chauhan and

Burgoyne, 2013; He et al., 2014).

Registration of OCT images fundamentally addresses the correspondence

issue; however, most of its application has been in averaging multiple images40

for noise reduction and motion correction (Jørgensen et al., 2007; Young et al.,

2011), or rigid alignment of time-course images (Niemeijer et al., 2009). Three

previous studies have specifically examined nonrigid registration of OCT data

from multiple subjects in the context of shape variability analysis. In Gibson

et al. (Gibson et al., 2010), segmented optic cups were registered to a single45

template optic cup, first by rigid and nonrigid intensity-based volumetric regis-

tration followed by spherical mapping and demons algorithm (Yeo et al., 2010).

In Chen et al. (Chen et al., 2014), registration of macular OCT scans used

rigid alignment of foveae, affine registration of A-scans to match the inner and

outer retinal boundaries, and smooth deformation of A-scans using radial ba-50

sis functions for refined alignment of the retinal layers. Lee et al. (Lee et al.,

2015) extended upon (Gibson et al., 2010) and represented segmented retinal

surfaces utilizing the framework of mathematical currents. Two surfaces were

brought into proximity by minimizing a functional of reproducing kernel Hilbert

space (RKHS) norm-based energy and a dissimilarity term. This was followed55

by spherical demons registration to establish point-to-point correspondence. In

above works, target subjects were registered to one subject as the template,

which leaves the problem of the bias in template choice.

In this report, we propose to exploit a novel approach to analyzing variability
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in retinal OCT images using the functional shape or fshape framework. Fshapes60

and some of its abstract mathematical properties were introduced in (Charlier

et al., 2015). The fshape framework considers a geometrical surface, such as

a retinal layer surface, and functions defined on the surface, such as retinal

layer thickness, together as a single object. The “distance”, i.e. the shape

difference between two retinas is measured by both geometry and one or more65

physiological or morphological signals defined on the geometrical surface. This

is a conceptual departure from previous works in which the goal is to first

establish anatomical correspondence between two eyes and then to compare the

functional values at resultant corresponding locations, and the first work on

atlas-based morphological analysis of the retina. There are several advantages70

to the fshape approach. First, the mathematical abstraction allows variability

analysis, or comparison, beyond the frame of the anatomy; given any one or

more surfaces and functional values, the fshape framework can measure the

inter-subject or inter-time points difference. This allows for combination of any

number of features - for example, Inner Limiting Membrane (ILM) geometry and75

total retinal thickness, Bruch’s membrane (BM) geometry with RNFL thickness,

or ILM and BM surface geometry - and to investigate individually and jointly

which features are more or less significant in differentiating between a disease

and control group. The core of the fshape framework is generation of a mean

template of multiple fshapes. An initial template or hypertemplate is taken80

as a simple model of a prototype fshape. This template is evolved through

an optimization process that simultaneously minimizes i) geometric-functional

distance from the current template to the observations, and ii) dissimilarity

between the transformed mean template and the observations. This approach

eliminates the need to choose one of the existing data as a template, mitigating85

the issue of template selection and bias. In addition, the fshape framework

registration does not rely on specific anatomical or image features based on

prior knowledge. Given decent quality segmentation and measurements, the

generality and versatility of the algorithm allows it to be applied broadly and

robustly.90
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The fshape framework combines a distance of fshape transformations within

the fshape bundle of a template and dissimilarity measures between arbitrary

fshapes based on an extension of varifold spaces and norms. By optimization

of these metrics, a mean atlas can be created, and serve as the reference to all

fshapes from the dataset. In addition, the algorithm simultaneously provides95

the variations in shape and signal of this template to each observation. These

outputs then constitute the basis of inter-subject analysis and group classifica-

tion through a wide choice of possible statistical analysis tools.

This paper proposes a very first set of applications of the fshape method-

ology to the OCT dataset while extending the scope of the framework to sta-100

tistical learning and classification. Namely, after a short application-oriented

presentation of fshapes, we propose a formal Bayesian derivation of the tem-

plate estimation problem studied in (Charlier et al., 2015) and augment the

current approach with a statistical analysis module for the estimated geometric

and functional features. To demonstrate the clinical relevance and application105

of the algorithm, we generated a mean atlas and performed automated clas-

sification of glaucoma eyes and healthy control eyes based on both geometry

and thickness of posterior RNFL surface and RNFL thickness. We also present

group averages and t-test of the RNFL thickness over the mean surface between

the healthy and glaucomatous groups to emphasize how the fshape approach can110

reveal morphological and functional patterns in cross-sectional or longitudinal

data.

2. Methods

2.1. Image acquisition and processing

The OCT images in this study were acquired at the Eye Care Centre at115

Vancouver General Hospital in Vancouver, British Columbia, Canada, using a

custom prototype swept-source OCT machine developed at Simon Fraser Uni-

versity (SFU) with a 1060-nm wavelength light source. Three-dimensional vol-

umetric images centered at optic nerve head were acquired over a 5-8 mm2
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Figure 1: (a) 3D visualization of the ONH scan, (b) segmentation of ILM (magenta), posterior

RNFL boundary (blue), BM (green), and posterior choroidal boundary (cyan) of a smoothed

volume, (c) a posterior RNFL boundary surface color mapped with RNFL thickness.

region with 2.8 mm in depth. The image resolution was approximately 6 µm120

in the axial direction and 12-21 µm in the lateral direction, depending on the

subject eye’s axial length. Each volume consisted of 1024 x 400 x 400 voxels,

with 1024 voxels in axial direction. The images were corrected for axial motion

using cross-correlation of adjacent frames. A bounded variation regularization

method was used to reduce the effect of speckles and enhance retinal boundaries125

for segmentation and visualization. Retinal layers were segmented automatically

in 3D using a graph-cut based surface segmentation algorithm implemented in

MATLAB (Li et al., 2006; Garvin et al., 2008; Lee et al., 2013). In this study

four boundaries were segmented for two layers: RNFL and choroid. Left (OS)

eyes were flipped so that all eyes were in the right (OD) eye orientation. Layer130

thickness was measured at each point of the layer’s posterior surface as the clos-

est distance to the anterior surface. In addition to the automated segmentation,

BMO in each eye was segmented manually, and a best-fit ellipse was generated

by Principal Component Analysis (PCA). The BMO ellipse was used to crop

the surfaces near the BMO where the layers terminate. Fig. 1 shows an example135

optic nerve head (ONH) scan, segmentation, and the resulting posterior RNFL

surface with RNFL thickness mapped on the surface.

2.2. Atlas estimation

The central goal of the fshape framework is to recover the inter-subject vari-

ability both in the geometry of the retina surfaces as well as in their signals (i.e140

the thickness maps). Following the standard process in computational anatomy
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(Joshi et al., 2004; Ma et al., 2010; Zhang et al., 2013), the primary step is to es-

timate an atlas from the population, which serves as a template object with the

variation of the subjects in the population. The obvious difficulty in this situa-

tion is that both geometrical supports and functional maps on the supports vary145

concurrently. The notion of functional shape or fshape (Charlier et al., 2015) has

the crucial advantage of treating both geometry and function together while pro-

viding important flexibility for the atlas generation and registration algorithms.

The following sections give a compact and application-oriented exposition of the

theoretical presentation presented in (Charlier et al., 2015) and emphasizes the150

Bayesian interpretation of atlas estimation in the fshapes context.

2.2.1. Background: fshapes and fshape spaces

In the fshape framework, a geometrical structure and its associated scalar

field are considered as a single object and processed jointly. Thus, in general,

an fshape consists of a pair (X, f) where X is the geometrical support, i.e a155

surface in the 3D ambient space, and f is a function defined on this surface; in

our particular application, the pair of a retinal layer surface and a retinal layer

thickness mapped on the surface.

Transformation of an fshape (X, f) can be modeled by combining a defor-

mation φ of the geometrical support and a signal change ζ. In the simplest

setting considered in (Charlier et al., 2015), φ is a diffeomorphism of R3 and ζ a

residual function on X. The combination (φ, ζ) then ’acts’ on the fshape (X, f)

as

(φ, ζ) · (X, f) = (φ(X), (f + ζ) ◦ φ−1) (1)

meaning that the surface is transported by deformation φ while signal is modified

by adding the residual ζ and then mapped onto the deformed surface φ(X).160

Quantifying such transformations is done first by introducing a model of

deformation group, our reference model in this paper is the widely studied Large

Diffeomorphic Metric Mapping (LDDMM) framework of (Beg et al., 2005), in

which diffeomorphisms are constructed as the flow of time-dependent velocity

fields v ∈ L2([0, 1], V ) with V a reproducing kernel Hilbert space (RKHS) of
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smooth velocity fields of R3. On the other hand, we shall consider L2 signals

on surfaces, i.e f, ζ ∈ L2(X) with the corresponding surface 2−norm on the

shape X. With φ = φv1 the flow of v up to time t = 1, the energy of the fshape

transformation (φ, ζ) of (X, f) considered in Charlier et al. (2015) is given by:

EX(v, ζ)2 =
1

2γ2V

∫ 1

0

‖vt‖2V dt+
1

2γ2f
‖ζ‖2L2(X) (2)

where σV , σf are weighting parameters between the geometric and functional

energies.

The energy in (2) gives a way to measure a notion of distance between

two fshapes but only in the situation where these can be exactly mapped on

each other in the transformation model introduced above. In practice, this165

is unrealistic or not desirable since datasets present inter-subject variability

caused by noisy irregularity in the shape and signals, variations that are not well

represented by the smooth geometric-functional transformations of the previous

section.

In registration problems, it is thus common to introduce additional dissimi-170

larity (or data fidelity) terms to the deformation cost, which may be interpreted

equivalently as a noise model on the observations as we shall see in the next sec-

tion. In the situation of functional shapes, unlike usual images, the absence of

any explicit correspondence between their geometrical supports does not enable

direct comparison of their signals.175

A possibility to overcome this issue was examined thoroughly in (Charon and

Trouvé, 2013; Charlier et al., 2015) and consisted in extending previous works

on curves and surfaces (Glaunès et al., 2004; Charon and Trouvé, 2013). In the

fvarifold framework that we very briefly sum up, an fshape (X, f) is represented

as a distribution on the product space R3 × P (R3) × R, with P (R3) being the180

projective space of all lines in R3. This distribution, written µ(X,f) is formally

a sum of Diracs involving the position of the shape points x ∈ X, the attached

(unoriented) direction of the normal vector ←→n (x) ∈ P (R3) and signal function

f(x).

These distributions are compared via metrics derived from tensor product of
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positive kernels of the form kg⊗kn⊗kf on R3×P (R3)×R. The induced Hilbert

(pseudo-)metric between any two fshapes (X, f) and (Y, g) writes explicitly:

〈µ(X,f),µ(Y,g)〉W∗ =∫∫
X×Y

kg(x, y)kn(←→nX(x),←→nY (y))kf (f(x), g(y))dσ(x)dσ(y)
(3)

where dσ denotes the surface area measures of X and Y respectively. Then185

A
.
= ‖µ(X,f)−µ(Y,g)‖2W∗ = 〈µ(X,f)−µ(Y,g), µ(X,f)−µ(Y,g)〉W∗ can be taken as a

suitable dissimilarity term between (X, f) and (Y, g) since it enforces proximity

in the respective geometries and signal functions concurrently.

2.2.2. Heuristics of atlas estimation

Let us now consider a population of N observations (Xi, f i)i=1,...,N where

the Xi’s are the retinal surfaces and f i the corresponding thickness maps. We

introduce a forward generative model in the line of (Durrleman et al., 2008) for

which observations are noisy geometric-functional transformations of a common

unknown template fshape (X, f) plus additional noise terms:

(Xi, f i) = (φi, ζi) · (X, f) + εi, for all i = 1, . . . , N. (4)

Above, φi is the flow of a vector field vi ∈ L2([0, 1], V ) and (vi, ζi) are regarded190

as hidden latent variables of the transformations from template to subjects, εi’s

are noise variables.

Considering i.i.d. variables εi, we may define a noise model on fshapes based

on fvarifold metrics:

p(εi) = p
(
(Xi, f i)|(X, f, vi, ζi)

)
∝ e
−
‖µ

(φi,ζi)·(X,f)−µ(Xi,fi)‖
2
W∗

2γ2
W

which is a Gaussian model with respect to the metric ‖.‖W∗ . Note that this is

only formal for the infinite dimensional space of fvarifolds but can be given a

rigorous sense if restricted to a predefined discrete grid, similarly to (Gori et al.,195

2013).

As for the latent variables (vi, ζi), we take the following prior deriving from

the energy (2):

p((vi, ζi)|(X, f)) ∝ e−EX(vi,ζi)2
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which is essentially assuming independent (formal) Gaussian distribution on v

and ζ in their respective metric spaces.

Finally, we also model the template (X, f) as a random variable itself. In-

spired from the hypertemplate model for shape atlases of (Ma et al., 2010), we

represent (X, f) as a transformation of a given hypertemplate fshape (X0, f0),

i.e (X, f) = (φ0, ζ0) · (X0, ζ0) for a deformation φ0 and a residual ζ0 ∈ L2(X0).

As previously, the prior on the template is:

p((v0, ζ0)) ∝ e−EX0
(v0,ζ0)2 .

With an hypertemplate (X0, f0) fixed by the user, estimating the tem-

plate then amounts to computing the maximum a posteriori (MAP) estimate

of (v0, ζ0) knowing the observations (Xi, f i). With Bayes rules this leads to

minimizing:

−
N∑
i=1

log

(∫
p(Xi, f i|v0, ζ0, vi, ζi)p(vi, ζi)

)
− log

(
p(v0, ζ0)

)
.

The first term involves the integral with respect to the probability distribu-

tion of the latent variables (vi, ζi). As there is no closed form expression of

this integral, we use the standard Fast Approximation with Modes and replace

it by maxvi,ζi p(X
i, f i|v0, ζ0, vi, ζi)p(vi, ζi) leading eventually to the following

variational problem:

(
v0∗, ζ

0
∗ , (φ

i
∗)i, (ζ

i
∗)i)
)

= arginf
v0,ζ0,(vi,ζi)i

1

2γ2V

∫ 1

0

‖v0t ‖2V dt+
1

2γ2f
‖ζ0‖2L2(X0)

+

N∑
i=1

(
1

2γ2V

∫ 1

0

‖vit‖2V dt+
1

2γ2f
‖ζi‖2L2(X0) +

1

2γ2W
‖µ(φi,ζi)·(X,f) − µ(Xi,fi)‖2W∗

)
(5)

where we remind that for i = 0, . . . , N deformations φi are the flows of the vi

and X = φ0(X0).200

The previous paragraphs underline the Bayesian interpretation behind varia-

tional problem (5), for which the existence of solutions under certain conditions

was addressed in (Charlier et al., 2015). Note that the variances γ2V , γ
2
f , γ

2
W act
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as weighting coefficients between the different terms. In the rest of the paper,

we will consider these as parameters of the algorithm. However, we wish to205

point out that with a proper discretization of the previous probability densities,

this could be improved by also estimating the optimal variances, extending ap-

proaches developed for images in Zhang et al. (2013) and surfaces in Ma et al.

(2010); Gori et al. (2013).

2.2.3. Discrete fshapes210

In the discrete setting, a functional surface is a textured mesh given as a

P × 3 matrix x of coordinates of the P vertices xk in R3, a P × 1 column vector

f of the P values fk
.
= f(xk) ∈ R of the signal at the vertices and a T × 3

connectivity matrix C (a triangulation for simplicity). The L2 norm of f on

the surface is here approximated with P0 finite elements

‖f‖2L2(X) ≈
T∑
`=1

f
2

` |T`| (6)

where for the `th triangle, |T`| is the area of the triangle and f ` is the average

of the three signal values at its vertices.

Optimal deformation fields minimize the metric
∫ 1

0
‖vt‖2V dt for given final

time conditions and are therefore geodesics in the context of diffeomorphism

groups. It has been shown (Beg et al., 2005; Arguillere et al., 2015) that such

geodesic flows are governed by Hamiltonian equations. In the present case of

discrete set of particles, geodesics are parametrized by initial momenta p =

(pk) ∈ RP×3 attached to every vertex xk and the following shooting equations: ẋk(t) = vt(xk(t)) =
∑P
l=1KV (xl(t), xk(t))pl(t)

ṗk(t) = −
∑P
l=1 pk(t) · pl(t)∂1KV (xl(t), xk(t))

(7)

given the initial conditions x(0) = x and p(0) = p and where KV is the 3 × 3

matrix-valued kernel function associated to the RKHS V .

We thus parametrize geometric-functional transformations of the discrete

fshape (x,f ,C) by the momenta vectors p and a residual discrete signal ζ :

(φ, ζ) · (x,f) =
(
(xk(1))1≤k≤P , (fk + ζk)1≤k≤P

)
. (8)
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As for the fvarifold-norm fidelity term of (3), we use a similar discrete ap-

proximation where each face triangle T` is approximated by a single Dirac with

position x` the vertices’ barycenter, f ` the mean signal value, and ←→n` the unit

unoriented normal vector to the triangle. With two discrete fshapes (x,f ,C1)

and (y, g,C2),

〈µ(x,f), µ(y,g)〉W∗ =

T1∑
k=1

T2∑
`=1

|Tx
k ||T

y
` |kg(xk, y`)kn(←→nk x,←→n` y)kf (fk, g`) . (9)

2.2.4. Numerical scheme for atlas estimation215

With the above discrete model and a given discrete hypertemplate (x0,f0,C0)

the atlas estimation problem of (5) reduces to the minimization of the function:

J(p0, ζ0, (pi)i, (ζ
i)i)

.
=

1

2γ2V
(p0)TKV (x0,x0)p0 +

1

2γ2f
‖ζ0‖2L2

+

N∑
i=1

( 1

2γ2V
(pi)∗KV (x,x)pi +

1

2γ2f
‖ζi‖2L2 +

1

2γ2W
‖µ

(x̃i,f̃
i
)
− µ(xi,f i)‖2W∗

)
(10)

where ‖·‖L2 is given by (6) and the deformed fshapes (x,f)
.
= (φ0, ζ0) ·(x0,f0),

(x̃i, f̃
i
)
.
= (φi, ζi) · (x,f) are obtained by the shooting equations (7). We will

write (p0∗, ζ
0
∗, (p

i
∗)i, (ζ

i
∗)i) for a minimizer of J . The overall principle is illus-

trated by Figure 2.

This is now a finite yet very high-dimensional optimization problem since220

each variable is roughly of dimension P , the number of hypertemplate vertices

(which is typically of the order of P ≈ 5000 in the simulations of this paper)

and it is also non-convex. We thus implement a Polak-Ribiere conjugate gradi-

ent descent where all variables are simultaneously updated at each step. The

algorithm is also coupled with basic line search for each variable to increase the225

speed of convergence. The gradients with respect to signal variables ζ0 and

(ζi) are easily computable from the expression in (6) and (9). Gradients with

respect to initial momenta variables p0, (pi) are computed based on forward-

backward shooting procedure as in usual geometric registration, using Euler
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Figure 2: Illustration of the fshape atlas estimation procedure. the estimated mean template

(x∗,f∗) is a deformation of an initial hypertemplate (x0,f0). The hypertemplate transformed

to each target belongs to the orbit F of the hypertemplate for example (x̃3
∗, f̃

3
∗) = (φ3∗, ζ

3
∗) ·

(x∗,f∗) ∈ F

midpoint scheme for the time-discretization of Hamiltonian and adjoint Hamil-230

tonian systems. We refer to Charlier et al. (2015) for the detailed expressions.

The computational burden of the algorithm concentrates in repeated compu-

tations of sums of kernels and kernel derivatives in the shooting equations and

evaluation of the functional, these specific parts are implemented in CUDA to

achieve competitive speed and precision.235

Apart from the construction of a discrete fshape hypertemplate, the rest of

the estimation is fully automatic but depends on a few parameters including the

weighting coefficients γV , γf , γW between the different energy terms, but also

the parameters associated to the kernels that define the metrics on velocity fields

and on fvarifolds. In the applications of this paper, we use isotropic Gaussian240

kernels for kg and kf in (3), which are determined by two variance parameters

σg and σf . Heuristically, σg and σf measure the sensitivity scale of the fidelity

term respectively in the spatial and signal domain. While too big values would

typically result in a very imprecise overlap of fshapes, too small values on the
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other hand could either induce over-fitting or result in no evolution at all in the245

case where fshapes are initially too far apart relative to these scales. We address

this issue by completing the approach of Charlier et al. (2015) with a coarse-

to-fine multiscale scheme that allows for successively decreasing σg and σf in

the minimization. A last important parameter is the scale of the vector kernel

defining the space of velocity fields V . Instead of using a single Gaussian kernel,250

we also allow for multiscale deformations by incorporating sums of Gaussians

with different scales, as proposed in Bruveris et al. (2012).

2.3. Variability Analysis and Classification

Augmenting the current fshape framework with a classification module is a

natural extension with several merits. On experimental data with confirmed255

diagnosis, automated classification can demonstrate the mean template-based

variability of retinas has indeed anatomical and clinical relevance. Furthermore,

a classification module can determine whether a particular anatomical feature,

thickness or topology of a layer, is significantly correlated with a disease. This

can lead to better understanding of the structural manifestation of the disease260

in terms of cause or effect and directly assist in clinical decision making.

The previous section demonstrated how, given a set of observations, in our

case retinal surfaces, the fshape approach can generate an estimated mean atlas

of the dataset. Such a group average retina in itself is useful for purposes such

as qualitative group comparisons. To quantify more accurately group differ-265

ences and perform statistical classification, it is necessary to rely on the latent

variables (φi, ζi) that characterize deviations in shape and thickness from the

template for each subject. These are automatically estimated in the previous

framework and, as we saw, are optimal or ’geodesic’ transformation paths for

the energy of (2) which can serve as metrics for inter-eye variability.270

Statistical analysis on shape spaces typically exploits the linearization on

diffeomorphism groups given by the initial velocity fields (or momenta) and

extract main shape variance components via dimensionality-reduction methods

like PCA (Vaillant et al., 2004). We easily extend that principle to fshapes by ap-
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pying PCA to the initial momenta (pi∗)i and functional residuals (ζi∗)i of Section275

2.2.4. However, for classification tasks, PCA directions need not be discrimina-

tive with regard to the differences across populations (e.g controls vs glaucoma

in our case). Supervised methods such as a Linear Discriminant Analysis (LDA)

classifier (Hastie et al., 2009) are generally more adequate for pathology detec-

tion (Durrleman et al., 2014). The method we propose in the present work is280

a variation of LDA tuned to the specific structure of variables issued by fshape

atlases, which deals with a relatively low number of high-dimensional samples in

particular Hilbert spaces. The general setting is described below and the results

of the classification experiments using this method are presented in section 3.3.

2.4. Regularized LDA on Hilbert space valued dataset285

LDA is a classic linear classification method that may be viewed as a weighted

principal component analysis (see chapter 4 of (Hastie et al., 2009) for an intro-

duction). We discuss hereafter the general case in which data points x1, · · · , xN
belong to a separable Hilbert space H of a possibly infinite dimension. In the

context of fshapes and the applications of this paper (cf section 3.3), the xi’s290

are either functional residuals for which H = L2(X) the space of L2 functions

on the template (or the discrete equivalent with the metric given by (6)), and

initial momenta in which case H = V ∗.

2.4.1. Within- and between-class scatter operators

We assume that the N observations at hand are divided into K classes295

C1, · · · , Ck such that {1, · · · , N} =
⋃K
k=1 Ck. The mean of the k-th class is

x̄k = 1
Nk

∑
i∈Ck xi where Nk = Card(Ck). Let us define the within-class scatter

operator Sw : H → H

Sw(·) =
1

N

K∑
k=1

∑
i∈Ck

〈xi − x̄k, ·〉H (xi − x̄k)
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and the between-class scatter operator Sb : H → H

Sb(·) =
1

N

K∑
k=1

Nk〈x̄k − x̄, ·〉H (x̄k − x̄) .

In the case where H is of finite dimension, the matrix associated to the operator

Sw (or Sb) is the standard within-class (or between-class) scatter matrix.300

2.4.2. Finite dimensional representation

We denote H0 = Span (xi, . . . , xN ) ⊂ H and q = dim(H0). In our frame-

work, H is high (or infinite) dimensional, and, in practice, q equals to N .

We then denote fH0 : H0 → H0 the restriction to H0 of any linear mapping

f : H → H such that f(H0) ⊂ H0. In particular, we may consider the restric-305

tions Sw,H0
and Sb,H0

of the scatter operators Sw and Sb, respectively.

Let us now choose an arbitrary isometric linear mapping L : H0 → Rq in

order to get a finite representation of the data

x̃i = Lxi ∈ Rq.

By definition we have ‖x̃i‖Rq = ‖xi‖H . From now on, we will work with this

new representation of the data and we may consider their corresponding scatter

operators S̃w, S̃b : Rq → Rq defined as,

S̃w = LSw,H0L
† and S̃b = LSb,H0L

†,

where L† : Rq → H0 is given by 〈L†a, x〉H = 〈a, Lx〉Rq for any x ∈ H0 and

a ∈ Rq.

When the xi’s form a basis of H0, an effective way to build an isometric

mapping L is to introduce the mapping γ(x) = (〈x, xi〉H)Ni=1 for any x ∈ H0310

and the Gram matrix G = [〈xi, xj〉H ]
N
i,j=1 ∈ RN×N . It is then easy to check

that the linear mapping Lx = G−1/2γ(x) is isometric.

2.4.3. Discriminant axes in the finite dimensional space

In our framework, the within-class scatter operator S̃w may not be invertible

in general. We consider the following regularization of the within-class scatter
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operator

S̃εw = S̃w + εIdRq , (11)

where IdRq is the identity matrix and ε > 0 is a regularization parameter which

has to be calibrated by the user as described below.315

The discriminant spaces of the LDA are given by the eigendecomposition of

Ãε = (S̃εw)−1S̃b.

The number of non-vanishing eigenvalues is limited by the rank of S̃b which is

less than K − 1. In general, we have the K − 1 corresponding unit eigenvectors

ũ1, . . . , ũK−1 ∈ Rq that will be used to derive the discriminant axes in H.

2.4.4. Classification with regularized LDA

The rationale behind the isometric dimension reduction is that the unit

vectors

u` = L†ũ` ∈ H0, ` = 1, . . . ,K − 1

are the eigenvectors corresponding to the non-vanishing eigenvalues of AεH0
=320

(Sw,H0
+ εIdH0

)−1Sb,H0
, as in (Friedman, 1989). This classic trick avoids nu-

merical issues as the matrix inversion is performed in the small dimensional

space Rq.

Then, given a new observation y ∈ H we use directly the discriminant axes

u1, . . . , uK−1 to define a classification rule. For instance, when K = 2 (a two-325

class classifier) we have u1 ∝ (Sεw)−1(x̄1 − x̄2) where the ∝ symbol means

“collinear to”. The discriminant rule is then a threshold on y → 〈u1, y − x̄〉H .

2.4.5. Calibration of the regularization parameter

The regularization parameter ε > 0 can be optimized with a leave-p-out

cross-validation (CV) procedure. Note that we do not need to compute the330

Gram matrix G appearing in the definition of the isometric mapping L at each

stage of the CV. This is very helpful since the operation may be costly depending

on the magnitude of N . Instead, the N × N “full” Gram matrix Gf with all

the observations is computed once, and the (N − p) × (N − p) Gram matrices
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G are obtained by deleting the p rows and columns of Gf corresponding to the335

p left-out observations.

3. Experimental Results

Peripapillary OCT images from 53 eyes with confirmed diagnosis from 10

controls, 10 bilateral glaucoma patients, and 7 unilateral glaucoma patients

were included in the experiment. Written consent forms were obtained from all340

participants and ethics review was approved by the Office of Research Ethics at

Simon Fraser University (SFU) and the Research Ethics Board of the University

of British Columbia (UBC). In addition to OCT imaging, all participants were

subject to a battery of standard tests, including dilated stereoscopic examination

of the optic nerve, stereo disc photography analysis and visual field abnormality345

check, to ensure there was no other pathology present. The acquired images were

smoothed, segmented, and measured for retinal layer thickness as described in

Section 2.1.

3.1. Mean template generation

The mean templates of retinal nerve fiber layer (RNFL) posterior surfaces350

and associated RNFL thickness maps were generated with the atlas estimation

algorithm described above. The surfaces were rigidly registered prior to the

mean template generation, as shown in in Fig. 3 (a). The physical dimensions

of the images vary as the imaging field of view changes depending on the axial

length of the eye. We also used a multiscale approach for the different parame-355

ters: the deformation kernel is a mixture of Gaussian of scales 2.4, 1.2, 0.6 and

0.3 mm while the algorithm is run successively with three sets of scale parame-

ters σg = 0.8, 0.4, 0.2 and σf = 0.3, 0.2, 0.1mm for the fidelity term as described

in Section 2.2.4.

Fig. 3 (b), (c), and (d) respectively show the mean templates generated from360

all eyes (N = 53), bilaterally normal eyes (N = 20), and glaucomatous eyes

(N = 26). Qualitatively, the normal mean template in Fig. 3 (c) displays the
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Figure 3: (a) Aligned RNFL surfaces with RNFL thickness mapping, (b) mean template of all

RNFLs, (c) mean template of normal RNFLs only, and (d) mean template of glaucomatous

RNFLs only. Note the low estimated RNFL thickness of the mean glaucomatous template as

compared to that of the mean normal template. (e)-(g) show sectoral thickness averages of

all RNFLs, normal RNFLs, and glaucomatous RNFLs, respectively. The sectors in (e)-(g) are

not in the physical space as the mean templates in (b)-(d), and plotted for visualization with

each sector value given by the average RNFL thickness in the corresponding sector across the

eyes in the group.

characteristic hourglass pattern in RNFL thickness, whereas the glaucomatous

mean template in Fig. 3 (d) shows much thinner RNFL thickness overall, with

superior peripapillary RNFL slightly more preserved compared to the inferior365

region.

Fig. 3 (e), (f), and (g) show typical sectoral averaging of the RNFL thick-

ness in all eyes, bilaterally normal eyes, and glaucomatous eyes groups. The

sectorization process is described in detail in (Lee et al., 2014). Briefly, sectors

are drawn in each image by the distance from the BMO (boundaries here are370

at 0.25, 0.5, 1.0, 1.25 mm from the BMO) and angular sections of superior,

inferior, nasal, temporal, and in-between regions determined by the relative po-

sition from the reference line extending horizontally from the BMO centroid to

the right frame border of the image. Unlike the fshape metrics, sectoral average

thickness is measured in the sectors that are defined individually in each eye,375

and a group average is given by averaging the values in the corresponding sec-
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Figure 4: Observed RNFLs (top row) and their reconstructions from a common mean template

(bottom row). Note that the reconstruction agrees with the pattern of the original RNFL

thickness with an overall smooth and noise-reduced profile.

tors across the eyes in the group. Fig. 3 shows general similarity between the

fshape mean templates in (b) - (d) and sectoral averages in (e) - (g). We note,

however, the sectoral visualization in (e) - (g) is based on an artificial model

and does not live in the physical space as the figures in (a) - (d), as the actual380

sector dimension in each RNFL is different depending on the BMO dimension

and possible cropping of the outer sectors at the image boundaries. Even in

the relatively crude sectoral averaging, RNFL thickness is distinctly thicker in

the bilateral normal group (f) than in the glaucomatous group (g). However,

more detailed features such as the hourglass pattern in RNFL thickness, clearly385

visualized in Fig. 3 (b) and (c), are lost.

Fig. 4 shows the observed RNFL surfaces (top row) and their approxima-

tions (bottom row) from the common mean template of 53 RNFLS in Fig. 3

(b). As described by equation (8), the ith approximation is a deformed ver-

sion of the template, such that x̃i∗
.
= φi∗(x∗), f̃

i
∗
.
= (f∗ + ζi∗) ◦ (φi∗)

−1. The390

salient shape features are reproduced, in particular the RNFL thickness pat-

tern and the BMO location and size. The level of detail in approximation can

be tuned by user specified parameters including the kernel sizes for geometric
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Figure 5: Left: Voxel-wise t-test significance map of retinal nerve fiber layer (RNFL) thickness

between normal (N = 26) and glaucomatous (N = 27) eyes. The number of vertices is 5355,

and the red region indicates Bonferroni corrected p < 0.05/5355 i. e. p < 9.34× 10−6. Right:

The log of the p-value presented on the entire surface.

deformation and dissimilarity metric, and runtime parameters in the gradient

descent optimization. Although sharper reconstructions can be achieved by ad-395

justing the parameter γW , we note that this will not necessarily induce a better

discriminative power due to the risk of over-fitting.

3.2. T-test and z-score map between healthy and glaucomatous RNFL thickness

residuals

The mean templates of the normal (c) and glaucomatous (d) RNFLs in400

Fig. 3 qualitatively show the difference between the two groups. In order to

identify the spatial locations of the thickness difference, a vertex-wise t-test was

performed using the functional (thickness) residual ζi, the vertex-wise thickness

offset between the template and its approximation of the ith observation. The

t-test compared the residuals of 26 normal RNFLs and 27 glaucoma RNFLs at405

each vertex on the mean template of all RNFLs in Fig. 3 (b).

The result is shown in Fig. 5. On the left, the voxels with p-values less

than 0.05 are marked in red and indicate the regions with statistically signifi-

cant RNFL thickness difference between the normal and glaucomatous RNFLs.

Most of the peripapillary region shows significance, except at the image bound-410

aries, where the fshape correspondence may be less reliable due to the different

imaging field of view size, and in the region immediately temporal to BMO.
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Figure 6: Pointwise Z-score map of retinal nerve fiber layer (RNFL) fshape residuals for age-

matched (59.6±6.7) healthy eyes and glaucomatous eyes in early, moderate, and severe stages

of the disease, with visual field mean deviation - a measure of glaucomatous vision loss.

More interesting pattern is shown in the right image, which displays the log of

the p-value. Cooler colors indicate smaller p-values and greater statistical signif-

icance across the multiple RNFLs. The figure shows that glaucomatous thinning415

occurs most distinctly in the inferior-temporal region of the RNFL, which agrees

with previous studies (Morrison and Pollack, 2011; Kanamori et al., 2003) that

the inferior peripapillary region is the most distinguishing between normal and

glaucomatous eyes, especially in the early stage of the disease. Unlike the previ-

ous studies, however, our analysis shows full spatial detail without averaging in420

sectors, and reveals a clear pattern of statistical significance that resembles the

characteristic thickness pattern of a healthy RNFL. The result suggests that

the most significant amount of glaucomatous thinning, or the earliest of the

thinning, may occur along the RNFL ridges where the RNFL is naturally the

thickest.425

Fig. 6 plots the pointwise Z-score map of ζ for age-matched (59.6 ± 6.7)

healthy eyes and glaucomatous eyes in early, moderate, and severe stages of the

disease. Visual field mean deviation (VFMD), a measure of glaucomatous vision

loss, is also plotted for each eye. The z-score was computed at each point of the

mean template by subtracting the mean ζ of the healthy samples and dividing430
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by the standard deviation ζ of the healthy samples as a normalized measure.

The map shows distinctions between the healthy and early glaucoma groups, and

between the early glaucoma and moderate to sever glaucoma groups, along with

the individual variability in the relationship between the degrees of RNFL loss

and vision loss among the glaucomatous eyes. It is noteworthy that even within435

the group diagnosed as healthy, the eyes with lower VFMD show generally low

ζ values.

3.3. Classification

With the methods detailed in Section 2.3, classification experiments were

performed using the LDA classifier on the momenta pi, the vertex-wise geomet-440

ric deformation of the template to the ith observation, and functional residuals

ζi, the vertex-wise thickness offset between the template and the approximation

of the ith retina. The classification experiments are presented as a demonstra-

tion of the discriminative power of the fshape metrics and how it captures the

anatomical variability in RNFLs.445

For each experiment, the LDA classifier was trained by leave-one-out cross-

validation, with the best-performing regularization parameter ε (see section

2.4.5) selected by a nested leave-one-out procedure from values between 0.001

to 1.

3.3.1. Healthy vs. Glaucoma450

Age-matched (59.6 ± 6.7) normal (N = 10) and glaucomatous (N = 18)

RNFLs were classified with the result in Table 1. The result indicates that the

fshape metrics of the peripapillary RNFL posterior surface and RNFL thickness

can predict the clinical diagnosis of glaucoma with high accuracy, and confirms

the connection between vision loss that bases glaucoma diagnosis, and charac-455

teristic morphological changes in the RNFL.

3.3.2. Healthy vs. Suspect

Glaucoma is generally bilateral, affecting both eyes of the patient, and of-

ten asymmetric, such that the affected fellow eyes exhibit different degrees of
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severity. In unilateral primary glaucoma in which only one eye is diagnosed460

with glaucoma, the healthy fellow eye is at a greater risk of developing glau-

coma in the future than healthy eyes of bilaterally normal subjects (Kass et al.,

1976; Susanna et al., 1978). Based on this, we labeled 7 healthy fellow eyes

from unilateral glaucoma cases as suspect, and attempted to detect these from

healthy eyes of bilaterally nonglaucomatous subjects. The classification result465

of the bilaterally healthy eyes (N = 19, mean age: 43.4±14.8) and suspect eyes

(N = 7, mean age: 57.1± 12.4) are shown in Table 1.

That the suspect eyes are distinguished from the bilaterally healthy eyes

is noteworthy, considering that the suspect eyes are pre-diagnosis and without

functional loss or other conventional clinical features of glaucoma. As expected,470

the classification rates are lower than those between confirmed glaucomatous

eyes and bilaterally healthy eyes in the previous experiment, but still relatively

high. The result suggests the fshape metrics may capture some morphological

changes in the RNFL that precedes vision loss in glaucoma.

Accu. (%) Sens. (%) Spec. (%)

Healthy vs. Glaucoma 92.9 94.4 90.0

Healthy vs. Suspect 88.5 71.4 94.7

Table 1: Accuracies, sensitivities, and specificities of the classification of healthy, glaucoma-

tous, and suspect RNFLs based on the fshape metrics of RNFL posterior surface geometry

and RNFL thickness. Both Healthy vs. Glaucoma and Healthy vs. Suspect show high classi-

fication success rates.

In LDA classification, an intuitive way to understand the result is to visualize475

the classifier, or the direction that yields the maximum between-class variance.

The classifier for the Healthy vs. Glaucoma dataset is visualized in Fig. 7 on

the mean template RNFL, in functional residual (RNFL thickness), and x, y,

and z coordinates of initial momenta representing the template deformation.

The relative magnitude can be interpreted as the degree of contribution to the480

classification, and it can be seen that RNFL thickness was a more decisive
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factor in the classification of healthy and glaucomatous eyes than posterior

RNFL surface geometry. The map in Fig. 7 A, which is the spatial pattern

of classification contribution of RNFL thickness residual, is similar to the left

image of Fig. 5, which is the statistical significance map of the group difference485

between the two classes. This confirms that the classification was the most

influenced by the regions where there are the most significant difference between

the healthy and glaucomatous eyes.

Figure 7: LDA classifier for Healthy vs. Glaucoma data in A) functional residual, B) initial

momenta in x-direction, C) initial momenta in y-direction, and D) initial momenta in z-

direction.

3.3.3. Classification with RNFL thickness sectoral averages

The above classifications for Healthy vs. Glaucoma and Healthy vs. Suspect490

were repeated with the same eyes with the RNFL thickness sectoral averages

as described in Section 3.1. In this case, correspondence is assumed between

the corresponding sectors across the subjects. Comparing the results in Table

2 with that in Table 1 of the fshape metrics, the classifier performance is signif-

icantly reduced. The higher classification success rate between the healthy and495
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glaucomatous groups than between the healthy and suspect groups is consistent

with the fshape metrics result in 1 and can be attributed to the large RNFL

thickness difference between the two groups, visualized in the sectoral group

averages in Fig. 3. The thinning in the glaucomatous RNFLs is distinguish-

able even after sectoral averaging. However, any difference between healthy500

and suspect RNFLs is likely more subtle, as the eyes in the suspect groups are

nonglaucomatous with normal visual function and without clinically observable

structural degradation. Such fine distinctions may be smoothed out by the

sectoral averaging. The result of this experiment, along with the results pre-

sented above, suggests that spatially more detailed comparison and analysis are505

possible with the fshape metrics than the conventional sectorization approach.

Finer sectorization for more localized comparison will be limited by decreasing

confidence in the correspondence between the same sectors from different eyes.

Accu. (%) Sens. (%) Spec. (%)

Healthy vs. Glaucoma 66.7 64.7 70.0

Healthy vs. Suspect 59.2 57.1 60.0

Table 2: Accuracies, sensitivities, and specificities of the classification of healthy, glaucoma-

tous, and suspect RNFLs based on RNFL thickness sectoral averages. In comparison with the

results in Table 1 with RNFL fshape metrics, the classification performance is lower.

3.3.4. RNFL thickness vs. RNFL surface geometry

In order to compare the discriminating power of RNFL thickness against510

RNFL posterior surface geometry, and to confirm what was shown in Fig. 7,

we repeated the Healthy vs. Glaucomatous classification with RNFL functional

residual (RNFL thickness) and initial momenta (RNFL posterior surface ge-

ometry) separately. The result is summarized in Table 3. As expected from

Fig. 7, the classification result with RNFL thickness only is comparable to that515

with both RNFL thickness and geometry, and superior to the result with RNFL

geometry only.
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Accu. (%) Sens. (%) Spec. (%)

Functional residual 92.9 94.4 90.0

Geometrical momenta 67.9 66.6 70.0

Table 3: Accuracies, sensitivities, and specificities of the classification of healthy and glauco-

matous RNFLs by RNFL thickness only (functional residual, top row) and RNFL posterior

surface geometry only (geometrical momenta, bottom row) (BMO-based rigid pre-registration)

Prior to the fshape template generation, the RNFL surfaces were rigidly reg-

istered by the BMO centroids. The fshape geometrical deformation then con-

tains information for both RNFL surface topology, and the distance between520

RNFL and BMO. The experiment was repeated with rigid pre-registration by

aligning the central opening of the RNFL surface instead of the BMO centroid,

and the result is summarized in Table 4. The functional-based classification is

comparable; however, the geometry-based classification is worse in that most of

the glaucoma cases are misclassified. This suggests that the factors that deter-525

mine the distance between the RNFL and BMO, such as the optic canal skew

or post-RNFL retinal thickness, may be affected by glaucomatous structural

change, more so than RNFL posterior surface topology alone.

Accu. (%) Sens. (%) Spec. (%)

Functional residual 96.4 94.4 100.0

Geometrical momenta 53.6 33.3 90.0

Table 4: Accuracies, sensitivities, and specificities of the classification of healthy and glauco-

matous RNFLs by RNFL thickness only (functional residual, top row) and RNFL posterior

surface geometry only (geometrical momenta, bottom row) (RNFL opening-based rigid pre-

registration)

3.3.5. Comparison with standard surface registration

To illustrate the influence of functions on the estimated deformation and530

residuals, we performed a simple matching experiment between two surfaces,
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by a standard surface LDDMM (Lee et al., 2015) and by the fshape approach.

In the former, the residuals were retrieved by closest point projection from the

target to the mapped surface. As shown in second column of Figure 8, the

ssLDDMM algorithm returns a geometric map close to identity between the535

given source and target, whereas the fshapes returns a geometric map further

from the identity indicating that it was driven by the function signal for cre-

ating overlap. This has a direct impact on the error remaining after mapping

as well (as shown in the third column). The geometry-based transformation of

source signal to target derived from ssLDDMM shows high values of remaining540

error after mapping - the error profile shows the presence of two unregistered

function signals as the transformed source function is subtracted from the tar-

get signal. In comparison, by incorporating the function signal in the fshapes

registration, the function profiles of the source and target are matched leading

to a lower error profile obtained by fshape approach. A typical effect on the545

atlas estimation is shown in Figure 9 in which mean templates and group dif-

ference significance maps for the older normals and older glaucoma groups are

compared. The mean function estimated using fshapes is sharper and retains

more high frequency features of the population since the functions are aligned,

whereas the ssLDDMM mean is more blurry and retains less of the function pro-550

files since the geometry-only registration does not incorporate the alignment of

functional signals. An important point to note is that the geometry-only-based

ssLDDMM benefits from the pre-alignment that occurs in the imaging system

by using the chin and forehead restraint providing a vertical orientation of the

head for retinal imaging. This normalizes the pose for the superior-inferior555

crescent shaped nerve fiber thickness profile as it is consistently located across

individuals albeit the individual variability is still present. Hence, before ssLD-

DMM was utilized here, the pose of the source and target were already a-priori

aligned, which aligns the function signal and benefits ssLDDMM. Without this

benefit, if the original pose were to be arbitrary, and absent surface geometry560

features for registration, as is the case here, the ssLDDMM will return close to

identity warps. These warps which would align the geometry but fail to align
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Figure 8: The first column shows a source RNFL thickness function and a target RNFL

thickness function. Top row shows results with standard-surface LDDMM (ssLDDMM) and

bottom row shows results using the fshape algorithm. The ssLDDMM algorithm returns

a geometric map close to identity to map the given source and target, and the remainder

after transforming the functions from this map show considerable residue that this mapping

is unable to register. The bottom row show the same experiments with fshapes, where the

residue left after mapping the source to the target function is smaller and more diffuse since

the overall functions have been matched.

the function signal on the geometry as this aspect is not taken into account in

ssLDDMM registration. Hence, the competing state-of-art of ssLDDMM will

fail as compared to the fshape approach.565

4. Discussion and future work

We presented a novel application of the fshape framework for variability

analysis of shape and associated signals in retinal optical coherence tomogra-

phy (OCT) images, comparing healthy, glaucomatous, and suspect peripapillary
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Figure 9: Top row shows results with standard-surface LDDMM (ssLDDMM) and bottom row

shows results using the fshape algorithm. The first column is the group average of healthy

individuals, the second is group average of individuals with Glaucoma and the third column

shows t-statistic from group difference using these two methods. Note that the ssLDDMM

results are more blurry due to mis-registration of the functional signal, and the group differ-

ences are missing the superior part of the crescent shape of pathological changes as well as

overall being more diffuse and less strong everywhere.

retinal nerve fiber layers (RNFL). The fshape framework generated mean tem-570

plate RNFL surfaces and thickness maps and fshape metrics for each RNFL.

Compared to the conventional sectoral measures, fshape metrics capture the

variability in the anatomy and anatomically oriented signals jointly, and can be

used to identify features that are important in distinguishing pathological cases

from healthy cohort. There is potential for broad application of the framework575

in both longitudinal and cross-sectional studies of retinal OCT images.

In retinal OCT imaging, factors such as varying field-of-view sizes and the

position of the retina within the image frame can contribute to the geometrical
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variability in the data. In order to remove such artefacts, the RNFL surfaces in

our experiments were pre-aligned but indirectly by aligning the BMOs instead580

of the surfaces themselves. This resulted in the relative positions of the RNFL

surfaces containing the extra information of the RNFL-BMO distance, which

reflects the optic canal skew and total retinal thickness. Directly aligning the

RNFL surfaces with each other worsened the geometry-based classification, as

described in 3.3.4. This showed that in our data the gross features such as585

the optic cup skew or total retinal thickness were indicative of glaucoma, and

demonstrated the utility of fshape-based analysis in testing the significance of

a specific shape feature.

RNFL within 0.25 mm from BMO was excluded, because the layer boundary

in the region is often ambiguous. The input surfaces were then concentric with590

respect to BMO and centrally overlapping, but the outer edges were mismatched

due to the varying image sizes. Whereas BMO is an anatomical structure, the

image boundary is artificial and depends on the subject’s axial length. We were

wary that the estimated momenta at the boundary region would be affected by

this mismatch. This could also have confounded the classification as the metrics595

at the boundary region have less spatial correspondence across eyes. However,

the regions near the outer boundary also made the least contribution to the

classification, as it can be seen in Fig. 5 and 7. One way to possibly mitigate

the boundary effect is to crop the images, for example, to the largest commonly

overlapping region. This however can waste a significant amount of data, and600

the cropping must be done in a way that does not introduce additional bias.

Choosing a good initial template is important in the computation and quality

of the final mean template. The initial template must be topologically equiv-

alent to the observations. An implicit assumption is that the observations are

topologically similar. Retinal layer surfaces in OCT images can be modeled rel-605

atively simply, as a planar surface in the macular region, and as a planar surface

with a hole in the center in the peripapillary region. The initial template can

incorporate the general dimensions of the observations. A future work would

address the question of the sensitivity of the method to the choice of the initial
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template. This will be an important issue with more complex structures than610

retinal surfaces, like lamina cribrosa.

Future work will include creation of population normative atlases and statis-

tics using larger cohorts, and a comprehensive investigation of the optic nerve

and macular morphology in a larger data using the fshape and classification

modules. The goal is to better detect and understand the shape changes or615

differences correlated with diseases such as glaucoma. In this report only RNFL

was examined, but any other retinal layers can be similarly analyzed, in any

combination of layers, surface topology, and signal types. Shape and signal

from multiple eyes will be made comparable by a common atlas, and signifi-

cance of a metric, region, or anatomical structure can be tested by statistical620

analysis including the classification modules above. In this work the mean tem-

plate generation and classification process yielded convincing results despite of

the mismatch between the RNFL sizes and relative BMO locations. Another

direction of future research is to apply the fshape framework to structures like

lamina cribrosa, which is not only more topologically complex but also much625

less consistently visible across eyes than retinal layers. The combined frame-

work may be used to extract common shape information from multiple lamina

cribrosa images with varying and limited visibility. Lastly, it will be of value

and interest to comparatively investigate different classification methods and

optimization techniques for the retinal fshape metrics.630
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