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Abstract
Speaker localization is a hard task, especially in adverse envi-
ronmental conditions involving reverberation and noise. In this
work we introduce the new task of localizing the speaker who
uttered a given keyword, e.g., the wake-up word of a distant-
microphone voice command system, in the presence of overlap-
ping speech. We employ a convolutional neural network based
localization system and investigate multiple identifiers as addi-
tional inputs to the system in order to characterize this speaker.
We conduct experiments using ground truth identifiers which
are obtained assuming the availability of clean speech and also
in realistic conditions where the identifiers are computed from
the corrupted speech. We find that the identifier consisting of
the ground truth time-frequency mask corresponding to the tar-
get speaker provides the best localization performance and we
propose methods to estimate such a mask in adverse reverberant
and noisy conditions using the considered keyword.
Index Terms: Speaker localization, wake-up word, convolu-
tional neural network, reverberation, overlapping speech.

1. Introduction
Speaker localization is the task of estimating the direction of ar-
rival (DOA) of speech uttered by a speaker [1]. This is useful
for various applications such as speech enhancement and sepa-
ration [2–7] or robotic sensing [8]. DOA estimation is usually
done in the short time Fourier transform (STFT) domain [9].
For two-channel data, a simple approach is to compute the time
difference of arrival (TDOA) in each time-frequency bin and
to find the peak of the resulting TDOA histogram [10]. Tech-
niques such as generalized cross-correlation with phase trans-
form (GCC-PHAT) [11] and multiple signal classification (MU-
SIC) [12] estimate the DOA by finding the peak of a so-called
angular spectrum instead [13–16]. These techniques assume
that each time-frequency bin is dominated by the direct compo-
nent of a single source. Their performance degrades in adverse
environmental conditions involving reverberation or noise.

To improve the robustness of DOA estimation, deep neu-
ral networks (DNNs) have been proposed to learn a mapping
between signal features and a discretized DOA space [17–21].
Various features such as phasemaps [17, 18] and GCC-PHAT
[21] have been used as inputs. In [22], the cosines and sines
of the frequency-wise phase differences between microphones,
termed as cosine-sine interchannel phase difference (CSIPD)
features, have been shown to perform as well as phasemaps for
DOA estimation, despite their lower dimensionality. We hence
use the latter features in this work.

In the presence of multiple speakers, localization becomes
harder due to the nonlinear nature of phase mixing. Neverthe-
less, due to the approximate disjointness of speech signals in
the time-frequency plane [23], most time-frequency bins are
dominated by a single speaker. This property has motivated

clustering-based localization algorithms, which iteratively iden-
tify the time-frequency bins dominated by each speaker and
reestimate the corresponding DOAs [24–26]. It has also re-
cently been exploited to design training data for multi-speaker
DNN-based localization [18, 19].

In the following, we propose to identify the DOA of a sin-
gle speaker in a multi-speaker distant-microphone voice com-
mand scenario by exploiting knowledge of the wake-up word.
The wake-up word can be identical for all speakers, but only
a single speaker (henceforth referred to as the target) can utter
it at a given time. The wake-up word is phonetically aligned
with the speech signal using an automatic speech recognition
(ASR) system. The phonetic alignments are then used to obtain
information (henceforth referred to as target identifier) about
the target speaker which is used as input together with CSIPD
features in order to estimate the target DOA. This work con-
trasts with earlier works on multi-speaker localization which
aimed to estimate the DOAs of all speakers. Identifying the tar-
get would then require additional post-processing which can be
error-prone. Though identifying the direction of all the speakers
has its own utility, identifying the DOA of the target is useful
in applications such as speech recognition in the presence of
overlapping speech, where the recognition can be restricted to
speech produced by the target. To the best of our knowledge,
this problem has not been studied in the literature before.

In the following, we assess the utility of various spectrum-
based or mask-based target identifiers. Spectrum-based identi-
fiers include the clean, early reverberated, and fully reverberated
magnitude spectrum of the target speech, and the “phoneme
spectrum” [27] which is the average clean spectrum correspond-
ing to the spoken phoneme. Mask-based identifiers measure the
proportion of sound magnitude attributed to the target signal in
each time-frequency bin. We evaluate the localization perfor-
mance in real scenarios where the identifiers are estimated from
the corrupted speech given the spoken keyword.

Notations are introduced in Section 2 and the proposed tar-
get identifiers in Section 3. The experimental setup is described
in Section 4 and the results are reported in Section 5. We con-
clude in Section 6.

2. Problem description
The problem setup is shown in Fig. 1. Two microphones are
placed inside a room. A target and an interfering speaker are
placed at azimuth angles θt and θi with respect to the micro-
phone axis, respectively. Denoting by t the target speech signal
and by i the interfering speech signal, the signal received at the
c-th microphone is:

sc = tRc + iRc + ηc (1)

where tRc = rtc ? t and iRc = ric ? i are the reverberated target
and interfering signals received at the c-th microphone. Here,



Figure 1: Problem setup.

rtc and ric are the room impulse responses (RIR) of the target
and the interference at the cth microphone, ηc is the noise, and
? denotes the convolution operator. The goal is to estimate θt
using sc and the keyword spoken by the target.

To achieve this goal, we use a convolutional neural network
(CNN) to estimate θt given features extracted from sc as inputs.
Specifically, we use the CSIPD features [22]

CSIPD[ω, n] = [cos(∆φ[ω, n]) , sin(∆φ[ω, n])] (2)

for all time frames n and frequency bins ω, where

∆φ[ω, n] = ∠S1[ω, n]− ∠S2[ω, n]. (3)

Here S1 and S2 are the STFT coefficients of the signals received
at the microphones and ∠ denotes the phase of a complex num-
ber. The size of the input feature vector in each time frame is
twice the number of STFT bins. Similar to [22], we quantize
the output DOA space into 181 classes.

3. Target identifiers
In this section we describe a set of target identifiers which can
be used as additional inputs to the CNN in order to help it fo-
cus on the target. These identifiers can broadly be categorized
into spectrum-based or mask-based identifiers. Spectrum-based
identifiers are estimates of the magnitude spectrum of the tar-
get signal, while mask-based identifiers are soft time-frequency
masks. We explain the extraction of these identifiers in an ideal
situation where the target signal is known and in real scenarios
where the identifiers are extracted from the corrupted speech sc.

3.1. Spectrum-based identifiers

The magnitude spectrum |T | of the uncorrupted target signal t
is not corrupted by either interference or noise. This makes it
an ideal target identifier which we refer to as the clean spec-
trum identifier. Extracting this identifier from the mixture sc is
hard, however. The reverberated spectrum |TR| is easier to es-
timate in practice. We refer to this spectrum as the reverberated
spectrum identifier. The reverberated speech tRc is corrupted by
late reverberation which is known to have a detrimental effect
on single-speaker DOA estimation [17, 22]. Therefore, we also
consider the spectrum |TE | of the signal containing only the di-
rect component and the early reflections of the target signal as
an identifier and call it the early spectrum identifier. The latter
signal is computed by convolving speech with the the first τE
samples of the RIRs:

tEc = rtc[0 : τE ] ? t. (4)

The spectra are averaged over all microphones. For instance,

|TE | = 1

C

∑
c

|TEc | (5)

with |TEc | the magnitude spectrum of tEc .
Another quantity of interest, which relies on the keyword

spoken by the target speaker rather than the target signal itself,
is the average clean spectrum corresponding to that keyword.
This quantity was introduced in [27] in the context of speech en-
hancement. To obtain it, a first ASR system is trained on a large
clean speech corpus and used to obtain phonetic alignments for
the training data and to compute the average spectrum for ev-
ery phonetic class in that data. A second ASR system is trained
(possibly on a distinct, reverberated or noisy corpus) and used
to obtain a phonetic alignment for the mixture signal sc for the
known keyword. The average spectrum corresponding to the
phonetic class in each time frame is then retrieved and called
the phoneme spectrum identifier.

3.2. Mask-based identifiers

As an alternative to the above spectrum-based identifiers, mask-
based identifiers represent the ratio of the magnitude spectrum
of the target divided by the sum of the magnitude spectrum of
the target and that of other sounds. This ensures that the result-
ing mask always lies between 0 and 1. For instance, the early
mask identifier is computed as follows:

δc = sc − tEc (6)

|∆| = 1

C

∑
c

|∆c| (7)

ME =
|TE |

|TE |+ |∆| (8)

where |∆c| is the magnitude STFT of δc. The clean mask iden-
tifier and reverberated mask identifier can be obtained in a sim-
ilar way by replacing the early target spectrum (|TE |) with the
clean spectrum (|T |) or the reverberated spectrum (|TR|), re-
spectively.

3.3. Appending vs. multiplication

The target identifiers are appended to the CSIPD features and
used as inputs to the CNN both for training and testing. The net-
work will learn to correlate the target identifier time-frequency
bins with the CSIPD features while estimating the DOA. In
the particular case of the target mask identifiers, this relation-
ship can be directly imposed on the features by multiplying
the CSIPD features with the mask in every time-frequency bin,
thereby freeing the network from explicitly learning such a re-
lationship. This would not be possible in the case of phasemap
features.

3.4. Estimating the identifiers using the target keyword

A schematic representation of the target identifier estimation
process in realistic scenarios, without access to the target clean
speech, is shown in Fig. 2. The ASR system uses the speech
signal along with the known keyword to compute the phoneme
level alignment. The sequence of phoneme spectra correspond-
ing to this alignment is retrieved from a precomputed list of
phoneme spectra. These spectra are concatenated with the mag-
nitude spectra of all channels of the corrupted speech signal in
order to form a sequence of feature vectors. The shape of each



Figure 2: Block diagram describing the computation of target
identifiers and DOA estimation.

feature vector is (C + 1)×D with D the number of frequency
bins. A CNN then learns a mapping between the input features
and the target identifier in each time frame. All spectrum-based
identifiers (except for the phoneme spectrum identifier which
does not need any further estimation) and mask-based identi-
fiers are obtained using this technique.

The CNN used to estimate the identifier consists of four
convolutional layers followed by a fully connected layer of di-
mension 512, leading to an output layer of dimension D. The
first, second, third and fourth convolutional layers contain 64,
32, 16, and 8 feature maps, respectively, each with filter shape
3×1. Max pooling of shape 2×1, batch normalization [28] and
dropout [29] are used in all convolutional layers. Note that the
CNN operates on a single frame (no convolution over the time
axis). Rectified linear unit (ReLU) nonlinearities are used in all
hidden layers. For spectrum-based identifiers, a linear layer is
used at the output. For mask-based identifiers, a sigmoid non-
linearity is used at the output instead. All networks were trained
using Adam [30] using the mean squared error (MSE) as the
cost function. The network is trained for 100 epochs with a
minibatch size of 512. The model corresponding to the epoch
with the smallest MSE score in the development set is retained.

4. Experimental setup
In this section we detail our experimental setup.

4.1. Creating RIRs

All experiments in this paper were conducted using two micro-
phones (C = 2). A shoebox model based on the image source
method was used to simulate RIRs via RIR-Generator [31]. For
every configuration, a room with random dimensions varying
from 3 m to 9 m was chosen. The reverberation time was
picked randomly in the range of [0.3, 1] s. Two microphones
were placed inside the room at a distance of 10 cm. This was
done by randomly positioning the first microphone inside the
room and then positioning the second microphone by select-
ing a random point on a sphere of radius 10 cm with the first
microphone as the center. The positions of the microphones
were ensured to be at least 50 cm from any wall. In order to
position the target or the interference at a given angle, a point
was randomly chosen on the surface of the circular cone whose
axis is the microphone axis, whose center is the midpoint of the
microphone line, and whose angle is the desired target or inter-
ference DOA. The DOA space was quantized into 1◦ classes.
The possible DOA range is therefore [0, 180]◦, implying 181
classes. A minimum separation of 5◦ between the target and
the interference was ensured. For every possible pair of target
and interference DOAs, 50, 1, and 2 such room configurations
were generated for training, development, and test, respectively.
This resulted in 1,557,600, 31,152, and 62,304 different con-
figurations for training, development, and test, respectively. For

every configuration, the distance between the target or interfer-
ing speaker and the microphones was randomly chosen in the
range of [0.5, 5.5] m. In many cases, the interfering speaker is
closer to the microphones than the target. The resulting frame-
wise direct-to-reverberant ratio (DRR) values are in the range of
[−40,+12] dB for the test set with an average of −6 dB. This
can be considered as a challenging, realistic scenario.

4.2. Signal generation and feature extraction

Speech utterances for simulating target and interference speech
were picked from the Librispeech [32] dataset. They were di-
vided into training, development, and test sets with no overlap.
Two different speech signals were convolved with the simu-
lated RIRs of a single room to obtain the target and interference
speech components of the mixture sc. These components were
combined at a random signal-to-interference-ratio (SIR) in the
range of [0,+10] dB. Speech-shaped noise (SSN) [33–35] was
added to this mixture at a random signal-to-noise-ratio (SNR)
in the range of [0,+15] dB for the training set and [0,+30] dB
for the development set. The SSN signals were created by fil-
tering white noise with a filter whose frequency response was
computed by averaging the magnitude spectra of 3,000 STFT
frames (different for every mixture). Excerpts of real ambi-
ent noise from the voiceHome corpus [36] were included in the
test set instead of SSN. These stationary diffuse noises were
recorded using a microphone pair with 10 cm spacing in three
different apartments in a similar fashion as in [37]. Nonover-
lapping time frames with 100 ms duration containing unique
but nonidentical phonemes for target and interference were ex-
tracted to compute the features. Phoneme-level alignments ob-
tained from the underlying clean speech signal were used to de-
termine the presence and duration of a particular phoneme. The
alignments were delayed to account for the delay due to sound
propagation from the target speaker to the microphone pair. For
every time frame, a sine window was applied and a 1,600 point
Fourier transform was computed. The resulting CSIPD features
had an overall dimension of 2D = 1,602. Only a single time
frame was kept for every training and development utterance
in order to maximize the diversity of the training and develop-
ment sets. For every test utterance, a sequence of N = 15 time
frames was kept instead: this corresponds to a signal duration
of 1.5 s which is a typical duration for a wake-up word.

To obtain the clean spectrum identifier, the clean target sig-
nal t was scaled by the direct component of the RIR. The early
spectrum identifier was obtained by convolving the target signal
with the first τE = 50 ms of the RIR. Finally, the reverberated
spectrum identifier was obtained by convolving the target signal
with the non-truncated RIR. The phoneme spectra were com-
puted from the clean Librispeech training set. The mask-based
identifiers were computed using the same spectra. All spectra
are of dimension D = 801.

4.3. ASR system, network architecture, and DOA pooling

Phoneme-level alignments were obtained via an HMM-GMM
based system trained on clean speech using speaker-adapted
Mel-frequency cepstral coefficients (MFCC) [38]. This system
was applied to the clean training, development, and test data in
all our experiments.

The CNN architecture used to estimate the DOA is similar
to the one used to estimate the target identifier (see Section 3.4).
Four convolutional layers of size 64, 32, 16, and 8 followed by
a fully connected hidden layer with ReLU units are used. They
are connected to a softmax output layer with 181 classes. Max



Figure 3: Gross error rate (%) and mean absolute error (◦) of DOA estimation. The bar chart is divided into four zones separated
by orange lines, which show respectively the results obtained by GCC-PHAT, CNN using CSPID features alone, CNN using CSIPD
features with various ground truth target identifiers, and CNN using CSIPD features with various estimated target identifiers.
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pooling, batch normalization, and dropout are used in all con-
volutional layers. Cross-entropy is used along with the Adam
optimizer [30] to train the network. The input dimension is ei-
ther 3 × 801 × 1 when the target identifier is appended to the
CSIPD features or 2× 801× 1 when the identifier is multiplied
by the CSIPD features or there is no identifier.

The CNN operates on a single frame (no convolution over
time). It outputs a posterior DOA distribution denoted as
p(θ[n]) in each time frame n. The target DOA for the whole ut-
terance is then found as θ̂ = arg maxθ maxn∈{1,...,N} p(θ[n]).
This form of max pooling worked better than averaging individ-
ual DOA estimates across all frames.

5. Results and discussion
Two different metrics are used to evaluate the estimation per-
formance on the test set, namely, the gross error rate which
measures the percentage of utterances whose estimated DOA is
above an error threshold (set to 5◦) and the mean absolute error
which is the average absolute DOA estimation error in degrees
over all utterances.

The results obtained using the proposed CNN and its com-
parison with GCC-PHAT are shown in Fig. 3. GCC-PHAT re-
sults in a gross error rate of 50.6% and a mean absolute error
of 27.8◦. The CNN applied to CSIPD features with no target
identifier yields a gross error rate of 58.6% which is worse than
GCC-PHAT. As expected, this shows that localizing a single-
speaker in a multi-speaker scenario without exploiting specific
information about the target speaker is infeasible.

Using the clean, early, and reverberated spectrum identifiers
as additional inputs to the CNN reduces the gross error rates
down to 17.9%, 14.9%, and 15.8%, respectively. This indicates
that these identifiers encode target information. The phoneme
spectrum identifier results in a gross error rate of 29.4%, that is
a 99% relative improvement over using CSIPD features alone.
This shows that the phoneme information obtained by aligning
the keyword can be directly used to identify the target.

The ground truth mask-based identifiers result in the best
localization performance. The lowest gross error rates of 5.6%
and 6.5% are observed by multiplying and appending the clean
mask with CSIPD features, respectively. The low mean absolute
error of 1.9◦ shows the relevance of the clean mask as a target
identifier. Slightly larger gross error rates of 11.9% and 12.0%
are obtained by multiplying the CSIPD features with the early
and reverberated masks, respectively. Multiplying the mask

generally gives better performance than appending the mask.
This may be because the identifier information is directly en-
coded in the input features while the network is forced to learn
how to exploit this additional information when the mask is ap-
pended.

Due to the fact that mask-based identifiers outperform
spectrum-based identifiers in the ground truth setting, we only
estimated mask-based identifiers in the real setting using the
approach in Section 3.4. The best gross error rate of 26.5%
is obtained by estimating the early mask target identifier from
the corrupted speech and appending it with the CSIPD features.
This is better than the performance obtained using the phoneme
spectrum identifier, which indicates that additional information
was learned during the mask estimation process.

6. Conclusions
In this work, we proposed a method to localize a single speaker
in a multi-speaker environment using additional identifier in-
formation. We investigated multiple such identifiers based on
speech spectra or masks and explained how to estimate them
using the phonetic information extracted from the keyword spo-
ken by the target speaker. The best localization performance in
a realistic scenario was obtained by concatenating CSIPD fea-
tures with a mask representing the proportion of direct sound
and early reflections from the target speaker. Although this re-
sulted in improved localization performance, the performance
remains significantly lower when compared to the ground truth
mask. Future work will deal with methods aiming to estimate a
better mask in an end-to-end fashion with the goal of improving
the localization performance. We will also consider full-fledged
CNNs involving convolution over time and assess the impact
of estimating phoneme-level alignments from corrupted speech
rather than clean speech.
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