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We determine the exact value of the η-constant and the multiwise Davenport constants for finite abelian groups of rank three having the form G ≃ C 2 ⊕ Cn 2 ⊕ Cn 3 with 2 | n 2 | n 3 . Moreover, we determine the Erdős-Ginzburg-Ziv constant of these groups under the assumption that n 2 /2 has Property D or n 2 = n 3 .

Introduction

A well-known direct zero-sum problem is to determine the Davenport constant of finite abelian groups. For such a group (G, +, 0), this constant, denoted by D(G), is defined as the smallest non-negative integer t such that every sequence of t elements from G contains a non-empty subsequence whose terms sum to 0.

A closely related problem is to determine the Erdős-Ginzburg-Ziv constant, denoted by s(G), which is defined in the same way except that one requires the existence of a subsequence whose sum is 0 and whose length is equal to the exponent of the group. A variant of this constant is η(G), where one seeks a non-empty subsequence with sum 0 whose length is at most the exponent of the group.

The investigation of these zero-sum constants has been a topic of active research for more than fifty years. We refer to [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups: a survey[END_REF][START_REF]Geroldinger Additive group theory and non-unique factorizations[END_REF][START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF][START_REF]Grynkiewicz Structural Additive Theory[END_REF] for detailed expositions. Some results are also recalled in the next section. The exact values of these three constants are known for every finite abelian group of rank at most two, and only for fairly special types of groups of higher rank. Even for groups of rank three, that is, G ≃ C n1 ⊕ C n2 ⊕ C n3 with 1 < n 1 | n 2 | n 3 , the problem of determining these constants is wide open. For example, when n 1 = 2, the Davenport constant is known, but the exact values of the other two constants defined above is not.

In the present paper, we obtain these values for the η-constant and, assuming a now well-supported conjecture, for the Erdős-Ginzburg-Ziv constant as well. Our results confirm Gao's conjecture (Conjecture 2.2) for this type of groups, and generalize previous results obtained in the case n 1 = n 2 = 2 (see [START_REF] Fan | On the Erdős-Ginzburg-Ziv constant of groups of the form C r 2 ⊕ Cn[END_REF]Theorem 1.2(1)] and [START_REF] Fan | Remarks on tiny zero-sum sequences[END_REF]Theorem 1.3]). Moreover, they show that recent results of Luo [START_REF] Luo | Short zero-sum sequences over abelian p-groups of large exponent[END_REF] are essentially optimal. In addition, we determine the multiwise Davenport constants for this type of groups (see the subsequent section for the definition). For a more detailed overview of our results and how they relate to the existing literature on the subject, we refer to Section 3.

Preliminaries

We recall some notation and results; for more detailed information we refer again to [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups: a survey[END_REF][START_REF]Geroldinger Additive group theory and non-unique factorizations[END_REF][START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF][START_REF]Grynkiewicz Structural Additive Theory[END_REF]. All intervals in this paper are intervals of integers, specifically [a, b] = {z ∈ Z : a ≤ z ≤ b}.

Let G be a finite abelian group, written additively. For each g in G, we denote by ord(g) its order in G. For a subset A ⊆ G we denote by A the subgroup it generates; we say that A is a generating set if A = G. We say that elements g 1 , . . . , g k are independent if k i=1 a i g i = 0, with integers a i , implies that a i g i = 0 for each i; we say that a set is independent when its elements are independent.

By exp(G) we denote the exponent of G, that is the least common multiple of the orders of elements of G. By r(G) we denote the rank of G, that is the minimum cardinality of a generating subset of G. For n a positive integer we denote by C n a cyclic group of order n.

For a finite abelian group G there exist uniquely determined integers 1

< n 1 | • • • | n r such that G ≃ C n1 ⊕ • • • ⊕ C nr .
For |G| > 1 we have r(G) = r and exp(G) = n r ; the rank of a group of cardinality 1 is 0 and its exponent is 1.

By a sequence over G we mean an element of the free abelian monoid over G. In other words, this is a finite sequence of ℓ elements from G, where repetitions are allowed and the order of elements is disregarded. We use multiplicative notation for sequences. We denote its neutral element, that is the sequence of length zero, simply by 1. Let

S = g 1 • • • g ℓ = g∈G g vg(S)
be a sequence over G, where, for all g ∈ G, v g (S) is a non-negative integer called the multiplicity of g in S. Moreover ℓ is the length of S.

A sequence T over G is said to be a subsequence of S if it is a divisor of S in the free abelian monoid over G, that is if v g (T ) ≤ v g (S) for all g ∈ G; in this case we write T | S. For a subsequence T of S we set ST -1 = g∈G g (vg (S)-vg (T )) , that is, it is the subsequence of S such that T (ST -1 ) = S.

For subsequences T 1 , . . . , T k of S we say that they are disjoint subsequences if the greatest common divisor of the sequences S 1 , . . . , S k in the free abelian monoid.

T 1 • • • T k is also a subsequence of S.
To avoid confusion we stress that it is not necessary for disjoint subsequences to have a trivial greatest common divisor.

We call the set supp(S) = {g ∈ G | v g (S) > 0} the support of S, and σ(S) = ℓ i=1 g i = g∈G v g (S)g the sum of S. In addition, we say that

s ∈ G is a subsum of S if s = i∈I g i for some ∅ I ⊆ [1, ℓ].
If 0 is not a subsum of S, we say that S is a zero-sumfree sequence. If σ(S) = 0, then S is said to be a zero-sum sequence. If, moreover, one has σ(T ) = 0 for all proper and non-empty subsequences T | S, then S is called a minimal zero-sum sequence.

We set Σ(S) = {σ(T ) : 1 = T | S}.

For every integer k, we also set

Σ k (S) = {σ(T ) : T | S, |T | = k} as well as Σ ≤k (S) = k i=1 Σ i (S) = {σ(T ) : 1 = T | S, |T | ≤ k}.
We now recall in more detail the definitions and results alluded to in the introduction.

By D(G) we denote the smallest non-negative integer t such that every sequence S over G of length |S| ≥ t contains a non-empty zero-sum subsequence. This number D(G) is called the Davenport constant of the group G. More generally, given an integer k ≥ 1, we denote by D k (G) the smallest non-negative integer t such that every sequence S over G of length |S| ≥ t contains at least k non-empty disjoint zero-sum subsequences.

Note that, by definition, D 1 (G) = D(G) for every finite abelian group G. It is known that for every finite abelian group the sequence (D k (G)) k≥1 is eventually an arithmetic progression. More precisely, one has the following result (see [START_REF] Freeze | Remarks on a generalization of the Davenport constant[END_REF]Lemma 5.1]).

Theorem 2.1. Let G be a finite abelian group. There exist D 0 (G) ∈ N and an integer k 0 ≥ 1 such that

D k (G) = D 0 (G) + k exp(G), for each k ≥ k 0 .
Let k D (G) denote the smallest possible value of k 0 in the above theorem.

By η(G) we denote the smallest non-negative integer t such that every sequence S over G of length |S| ≥ t contains a non-empty zero-sum subsequence S ′ | S of length |S ′ | ≤ exp(G). Such a subsequence is called a short zero-sum subsequence.

By s(G) we denote the smallest non-negative integer t such that every sequence S over G of length |S| ≥ t contains a zero-sum subsequence S ′ | S of length

|S ′ | = exp(G). The number s(G) is called the Erdős-Ginzburg-Ziv constant of the group G.
It is not hard to see that s(G) ≥ η(G) + exp(G) -1 holds for each finite abelian group G. It was conjectured by Gao that in fact equality always holds (see [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups: a survey[END_REF]Conjecture 6.5]).

Conjecture 2.2 (Gao). For every finite abelian group G, one has

s(G) = η(G) + exp(G) -1.
We now recall the values of η(G) and s(G) as well as the ones of the multiwise Davenport constants for groups of rank at most two, see [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]Theorem 5.8.3] and [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]Theorem 6.1.5]. We parametrize these groups as C m ⊕ C mn with m, n ≥ 1 integers rather than C n1 ⊕ C n2 with integers n 1 | n 2 since later on this will be more convenient. In addition, for every integer k ≥ 1,

D k (C m ⊕ C mn ) = m + k(mn) -1.
In particular, choosing m = 1, we have η(C n ) = n and s(C n ) = 2n -1 as well as

D k (C n ) = kn for all k ≥ 1.
Theorem 2.3 shows that Conjecture 2.2 is true for all finite abelian groups of rank at most two.

In the case of groups of rank at most two even the structure of extremal examples is well-understood. For cyclic groups in fact more is known, see, e.g., [START_REF] Savchev | Long zero-free sequences in finite cyclic groups[END_REF][START_REF] Savchev | Long n-zero-free sequences in finite cyclic groups[END_REF], yet we only recall what is needed in this paper.

A sequence S over C n of length n -1 = η(C n ) -1 has no short zero-sum subsequence (and thus no non-empty zero-sum subsequence) if and only if S = b n-1 for some generating element b of C n . A sequence S over C n of length 2n -2 = s(C n ) -1 has no zero-sum subsequence of length n if and only if S = c n-1 (c + b) n-1 for some c ∈ C n and some generating element b of C n .

For the η-constant one has the following result. It was obtained in [START_REF] Schmid | Restricted inverse zero-sum problems in groups of rank 2[END_REF]; a result of Reiher [START_REF] Reiher | A proof of the theorem according to which every prime number possesses property B[END_REF] was crucial in the proof. For the Erdős-Ginzburg-Ziv constant a similar result is expected to hold true, yet it is so far only known conditionally or in special cases.

A positive integer m is said to have Property D if every sequence S over C 2 m of length |S| = s(C 2 m ) -1 = 4m -4 and containing no zero-sum subsequence of length m has the form S = T m-1 for some sequence T over C 2 m . We include the trivial case m = 1 in our definition as it simplifies the statement of certain results. This property was introduced by Gao who made the following conjecture [8, Conjecture 2].

Conjecture 2.5 (Gao). Every positive integer has Property D.

For the time being, Property D has been proved to be multiplicative [START_REF] Gao | Two zero-sum problems and multiple properties[END_REF]Theorem 1.4] in the sense that whenever m, n have this property, then so does mn. Also, Property D is known to hold for p ∈ {2, 3, 5, 7}, hence for any m of the form m = 2 α 3 β 5 γ 7 δ , where α, β, γ, δ ≥ 0 are non-negative integers (see [START_REF] Gao | Two zero-sum problems and multiple properties[END_REF]Theorem 1.5] and [START_REF] Sury | s conjecture on zero-sum sequences[END_REF]Theorem 3.1]).

Whenever an integer m satisfies Property D, the sequences over H ≃ C m ⊕ C mn of length s(H) -1 and not containing any zero-sum subsequence of length exp(H) can be fully characterized for every integer n ≥ 1 (see [ 

S = c tm-1 (b 1 + c) (n+1-t)m-1 (b 2 + c) sm-1 (-xb 1 + b 2 + c) (n+1-s)m-1 where c ∈ H, {b 1 , b 2 } is a generating set of H with ord(b 2 ) = mn, s, t ∈ [1, n], x ∈ [1, m] with gcd(x, m) = 1 and either (1) {b 1 , b 2 } is an independent generating set of H, or (2) s = t = n and x = 1.
For definiteness we briefly recap some properties of the generating sets in the above result. Since {b 1 , b 2 } is a generating set of H and ord(b 2 ) = mn, the equalities

|H| = | b 1 + b 2 | = | b 1 || b 2 | | b 1 ∩ b 2 | imply that ord(b 1 ) = md where d = | b 1 ∩ b 2 | is a positive divisor of n.
More precisely, we have

mb 1 = b 1 ∩ b 2 = m n d b 2 .
In particular, every element h ∈ H can be written

h = a 1 b 1 +a 2 b 2 with a 1 ∈ [0, m-1] and a 2 ∈ [0, mn -1]. In addition, it is easily seen that {b 1 , b 2 } is an independent generating set of H if and only if b 1 ∩ b 2 = {0}, that is to say if and only if d = 1. Finally, whenever d > 1, there is a unique integer ℓ ∈ [1, d -1] relatively prime to d such that mb 1 = ℓm(n/d)b 2 .
We end by recalling the result on the Davenport constant for groups of the form C 2 ⊕ C 2m ⊕ C 2mn , which we mentioned in the introduction and that we need in the proof of our result on the multiwise Davenport constants.

Theorem 2.7. Let m, n ≥ 1 be two integers. Then

D(C 2 ⊕ C 2m ⊕ C 2mn ) = 2m + 2mn.
The proof of the above result involved two parts. First, the claim was established conditionally on a result on the structure of the set of subsums of zero-sumfree sequences of maximal length over a group of rank two; this motivated the definition of the ν-invariant (see, e.g., [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups: a survey[END_REF]Definition 2.1]). Then, this property was established. The first part dates back to the very beginning of investigations of the Davenport constant (see [START_REF] Van Emde | A combinatorial problem on finite abelian groups II[END_REF]). The second part was only completed much later when Property B (and thus Property C) was established by Reiher [START_REF] Reiher | A proof of the theorem according to which every prime number possesses property B[END_REF] (see in particular Section 11). For further context, see for instance [START_REF] Gao | On Davenport's constant of finite abelian groups with rank three[END_REF] or [20, Section 4.1].

New results

As mentioned in the introduction we investigate zero-sum constants for groups of rank three of the form

C 2 ⊕ C n2 ⊕ C n3 where 2 | n 2 | n 3 .
For ease of notation we will use a different parametrization, namely

C 2 ⊕ C 2m ⊕ C 2mn with m, n ≥ 1.
We determine η(C 2 ⊕C 2m ⊕C 2mn ) for all m, n ≥ 1, and s (C 2 ⊕ C 2m ⊕ C 2mn ) under the condition that n = 1 or m has Property D. We recall that the constants were known for m = 1, see [START_REF] Fan | On the Erdős-Ginzburg-Ziv constant of groups of the form C r 2 ⊕ Cn[END_REF]Theorem 1.2(1)] and [START_REF] Fan | Remarks on tiny zero-sum sequences[END_REF]Theorem 1.3]; in this case even the inverse problem is solved [START_REF] Girard | Inverse zero-sum problems for certain groups of rank three[END_REF]. Moreover, we determine

D k (C 2 ⊕ C 2m ⊕ C 2mn )
for all k, m, n ≥ 1; as recalled the case k = 1 and the case m = n = 1 were known.

We will see that there is a quite significant difference between the two cases n = 1 and n = 1.

Our approach to determining η(C 2 ⊕C 2m ⊕C 2mn ) is similar to the one used for the Davenport constant, which we recalled above. In particular, the property of the set of restricted subsums established in Lemma 4.3 resembles the property underlying the definition of the ν-invariant. The subsequent result on s (C 2 ⊕ C 2m ⊕ C 2mn ) is obtained by establishing Gao's conjecture for this group using a generalization of a well-known technique (see Lemma 4.4). The proof of the result for

D k (C 2 ⊕ C 2m ⊕ C 2mn ) also uses the result on η (C 2 ⊕ C 2m ⊕ C 2mn ). Theorem 3.1. Let m ≥ 1 and n ≥ 2 be two integers. Then η(C 2 ⊕ C 2m ⊕ C 2m ) = 6m + 2 and η(C 2 ⊕ C 2m ⊕ C 2mn ) = 4m + 2mn. When G ≃ C 2 ⊕ C 2m ⊕ C 2m and m is a power of 2, G is a finite abelian 2-group such that D(G) = 2 exp(G) and 2D(G) -exp(G) < η(G),
thus showing that a recent result of Luo [START_REF] Luo | Short zero-sum sequences over abelian p-groups of large exponent[END_REF]Theorem 1.6] is optimal in the sense that for 2D(G)exp(G) = η(G) to hold, the condition D(G) ≤ 2 exp(G) -1 in the statement of the theorem cannot be replaced by D(G) ≤ 2 exp(G). Theorem 3.2. Let m ≥ 1 and n ≥ 2 be two integers. Then

s(C 2 ⊕ C 2m ⊕ C 2m ) = 8m + 1.

Moreover, if m has Property D, then

s(C 2 ⊕ C 2m ⊕ C 2mn ) = 4m + 4mn -1.
In combination, the two results imply that Gao's Conjecture 2.2 holds true for these types of groups.

Corollary 3.3. Let m, n ≥ 1 be two integers. If n = 1 or m has Property D, then Conjecture 2.2 holds true for C 2 ⊕ C 2m ⊕ C 2mn .
We end this section with our result on the multiwise Davenport constants.

Theorem 3.4. Let G ≃ C 2 ⊕ C 2m ⊕ C 2mn , where m, n ≥ 1 are integers. If n ≥ 2, then D 0 (G) = 2m and k D (G) = 1. If n = 1, then D 0 (G) = 2m + 1 and k D (G) = 2.
Note that the case n = 1 extends to all m ≥ 1 a result of Delorme, Ordaz and Quiroz [START_REF] Delorme | Some remarks on Davenport constant[END_REF]Lemma 3.7] [START_REF] Freeze | Remarks on a generalization of the Davenport constant[END_REF]Remark 5.3.2] is nearly optimal in the sense that for k D (G) = 1 to hold, the condition η(G) ≤ D(G) + exp(G) stated in this remark cannot be replaced by a much weaker inequality.

stating that D 0 (C 3 2 ) = 3 and k D (C 3 2 ) = 2. When G ≃ C 2 ⊕ C 2m ⊕ C 2m , where m ≥ 1, we have D(G) = D(C 2 ⊕ C 2m ) + (2m -1) and η(G) > D(G) + 2m, however k D (G) ≥ 2, thus showing that

Auxiliary results

In this section we establish several auxiliary results. In some cases, we prove results which are slightly more general than what is needed for our immediate purpose, but we mostly focus on the needs of the present paper.

Our first lemma shows that extremal sequences with respect to the Erdős-Ginzburg-Ziv constant for groups of rank at most two are stable in the sense that changing a unique element cannot yield another extremal sequence. It could be interesting to consider this problem for more general groups, and to determine for specifc groups the exact number of elements one has to change to get another extremal example. 

If | gcd(S 1 , S 2 )| ≥ s(H) -2, then S 1 = S 2 .
Proof. Let T = gcd(S 1 , S 2 ). By assumption, we have

S 1 = g 1 T and S 2 = g 2 T with g 1 , g 2 ∈ G.
First, assume that m ≥ 3. We know by Theorem 2.6 that v g (S i ) ≡ m -1 (mod m) for each g ∈ supp(S i ). It thus follows that v g1 (T ) ≡ m -2 (mod m). Since this is non-zero it follows that g 1 ∈ supp(S 2 ), and thus

v g1 (S 2 ) ≡ m -1 (mod m). Yet, v g1 (S 2 ) = v g1 (g 2 ) + v g1 (T ). Since v g1 (T ) ≡ m -2 (mod m) we must have v g1 (g 2 ) = 0, that is, g 1 = g 2 .
This proves the claim in the case m ≥ 3. Now, assume that m = 2. By Theorem 2.6, every sequence S over H containing no zero-sum subsequence of length 2n can be decomposed as

S = c 2t-1 (b 1 + c) 2(n+1-t)-1 (b 2 + c) 2s-1 (-b 1 + b 2 + c) 2(n+1-s)-1 ,
where c ∈ H, {b 1 , b 2 } is a generating set of H with ord(b 2 ) = 2n and s, t ∈ [1, n], such that either {b 1 , b 2 } is an independent generating set of H or s = t = n. In particular, one has

σ c 2t-1 (b 1 + c) 2(n+1-t)-1 = -(2t -1)b 1 , and 
σ (b 2 + c) 2s-1 (-b 1 + b 2 + c) 2(n+1-s)-1 = (2s -1)b 1 .
Therefore, either {b 1 , b 2 } is an independent generating set of H, in which case ord(b 1 ) = 2 (see the comments after Theorem 2.6 in Section 2) so that

σ(S) = b 1 -b 1 = 0, or s = t = n, in which case σ(S) = b 1 -b 1 = 0 also. It thus follows in both cases that g 1 + σ(T ) = σ(S 1 ) = 0 = σ(S 2 ) = g 2 + σ(T ), which yields g 1 = g 2 indeed.
Finally, let us consider the case m = 1. Then, we know by the results recalled before Theorem 2.4 that v g (S i ) ≡ n -1 (mod n) for each g ∈ supp(S i ). For n ≥ 3 we can argue as in the case m ≥ 3. For n ≤ 2, that is for C 1 and C 2 , the claim is trivial as there is only one sequence of length s(H) -1 not containing any zero-sum subsequence of length exp(H).

The analogous result for the η-constant holds true as well; we record it for its own sake. Proof. For m ≥ 3, the same argument as in Lemma 4.1 works. For m = 2, let S 1 , S 2 be two sequences over H of length η(H) -1 not containing any short zerosum subsequence and such that | gcd(S 1 , S 2 )| ≥ η(H) -2. Since S ′ 1 = S 1 0 exp(H)-1 and S ′ 2 = S 2 0 exp(H)-1 are two sequences over H of length s(H) -1 not containing any zero-sum subsequence of length exp(H) and such that | gcd(S 1 , S 2 )| ≥ s(H)-2, Lemma 4.1 applies and yields S ′ 1 = S ′ 2 , that is to say S 1 = S 2 . Finally, for m = 1 and n ≥ 3 the claim follows from the fact that a sequence over H of length η(H) -1 not containing any short zero-sum subsequence is of the form h n-1 for some generating element of h ∈ H (recall the results before Theorem 2.4). The case m = 1 and n ≤ 2 is trivial.

Next we obtain results on the set of restricted subsums of sequences that are extremal examples with respect to the η-constant and the Erdős-Ginzburg-Ziv constant. The result we obtain is reminiscent of the condition in the definition of the ν-invariant (see, e.g., [START_REF] Gao | On Davenport's constant of finite abelian groups with rank three[END_REF]). Proof. We first deal with the main case m ≥ 2.

(1). Let S be a sequence over H of length |S| = η(H) -1 not containing any short zero-sum subsequence. By Theorem 2.4 we know that

S = b m-1 1 b sm-1 2 (-xb 1 + b 2 ) (n+1-s)m-1 where {b 1 , b 2 } is a generating set of H with ord(b 2 ) = mn, s ∈ [1, n], x ∈ [1, m] with gcd(x, m) = 1 and either {b 1 , b 2 } is an independent generating set of H, or s = n and x = 1. Let d ∈ [1, n] such that ord(b 1 ) = md and, whenever d > 1, let ℓ ∈ [1, d -1]
relatively prime to d such that mb 1 = ℓm(n/d)b 2 ; as recalled after Theorem 2.6 this is always possible.

We now distinguish the following three cases.

Case 1. d = 1, that is to say {b 1 , b 2 } is an independent generating set of H. In particular, mb 1 = 0. Let h = a 1 b 1 + a 2 b 2 with a 1 ∈ [0, m -1] and a 2 ∈ [0, mn -1]. If a 1 = 0, then h / ∈ Σ ≤mn-2 (S) only if a 2 = 0 or a 2 = mn -1, that is to say only if h = 0 or h = -b 2 .
If a 1 = 0 and a 2 ≤ m -1, we observe that h ∈ Σ a1+a2 (S) and a 1 + a 2 ≤ 2m -2 ≤ mn -2. Now, assume that a 1 = 0 and a 2 ≥ m. Let v ∈ [1, m -1] be the unique integer such that a 1 ≡ -vx (mod m). In particular, one has v ≤ m -1 < a 2 so that 1 ≤ a 2v ≤ mn -2 < mn -1 = ms -1 + m(ns). Therefore, there exists q ∈ [0, ns] such that 0 ≤ a 2vqm ≤ ms -1. Such an integer q readily satisfies 1

≤ v + qm ≤ m -1 + m(n -s) = (n + 1 -s)m -1. As a consequence, S ′ = (-xb 1 + b 2 ) v+qm b a2-v-qm 2 is a subsequence of S of length |S ′ | = a 2 such that σ(S ′ ) = -vxb 1 + vb 2 -vb 2 -qx(mb 1 ) + qmb 2 -qmb 2 + a 2 b 2 = a 1 b 1 + a 2 b 2 = h, so that h ∈ Σ ≤a2 (S) and the claim follows with k ′ = b 2 and K = b 1 . Case 2. 1 < d < n, or d = n and ℓ ≥ 2. Let h = a 1 b 1 + a 2 b 2 with a 1 ∈ [0, m -1] and a 2 ∈ [0, mn -1]. If a 1 = 0 then h / ∈ Σ ≤mn-2 (S) only if a 2 = 0 or a 2 = mn -1, that is to say only if h = 0 or h = -b 2 . Now, assume that a 1 = 0. Then, either a 1 + a 2 ≤ mn -2 in which case h ∈ Σ ≤mn-2 (S) or a 2 ≥ mn -1 -a 1 ≥ mn -1 -(m -1) = m(n -1) so that 2mn -1 -m ≥ mn -1 + mn d -1 d ≥ a 2 + ℓm n d ≥ m(n -1) + 2m = mn + m. Therefore, setting a ′ 2 = a 2 + ℓm(n/d) -mn, we have a ′ 2 ∈ [m, mn -2] and since m -a 1 ∈ [1, m -1] we obtain that S ′ = (-b 1 + b 2 ) m-a1 b a ′ 2 -(m-a1) 2 is a subsequence of S of length |S ′ | = a ′ 2 ≤ mn -2 verifying σ(S ′ ) = a 1 b 1 -mb 1 + a ′ 2 b 2 = a 1 b 1 -mb 1 + ℓm n d b 2 + a 2 b 2 = h,
so that h ∈ Σ ≤mn-2 (S) and the claim follows with k ′ = b 2 and K = {0}.

Case 3. d = n and ℓ = 1. In this case, (2). Suppose that m has Property D. Let S be a sequence over H of length |S| = s(H) -1 not containing any zero-sum subsequence of length exp(H). By Theorem 2.6 we know that

mb 1 = mb 2 . Let h = a 1 b 1 + a 2 b 2 with a 1 ∈ [0, m -1] and a 2 ∈ [0, mn -1]. If a 1 = 0 then h / ∈ Σ ≤mn-2 (S) only if a 2 = 0 or a 2 = mn -1, that is to say only if h = 0 or h = -b 2 . Now, assume that a 1 = 0. Then, either a 1 + a 2 ≤ mn -2 in which case h ∈ Σ ≤mn-2 (S) or a 1 + a 2 = mn -1 or a 1 + a 2 ≥ mn so that 2mn -2 ≥ mn -1 + m -1 ≥ a 1 + a 2 ≥ mn. Therefore, setting a ′ 2 = a 1 + a 2 -mn, we have a ′ 2 ∈ [0, mn -2] and since m -a 1 ∈ [1, m -1] we obtain that S ′ = (-b 1 + b 2 ) m-a1 b a ′ 2 2 is a subsequence of S of length |S ′ | = m-a 1 +a ′ 2 = m+a 2 -mn ≤ m+mn-1-mn ≤ m -1 verifying σ(S ′ ) = a 1 b 1 -mb 1 + mb 2 -a 1 b 2 + a 1 b 2 + a 2 b 2 = h, so that h ∈ Σ ≤mn-2 (S)
S = c tm-1 (b 1 + c) (n+1-t)m-1 (b 2 + c) sm-1 (-xb 1 + b 2 + c) (n+1-s)m-1 where c ∈ H, {b 1 , b 2 } is a generating set of H with ord(b 2 ) = mn, s, t ∈ [1, n],
x ∈ [1, m] with gcd(x, m) = 1 and either {b 1 , b 2 } is an independent generating set of H, or s = t = n and x = 1.

Since Σ mn-2 (-c+S) = 2c+Σ mn-2 (S), we can assume without loss of generality that c = 0. We now distinguish the following two cases.

Case 1. If {b 1 , b 2 } is an independent generating set of H, we see that S = 0 tm-1 b (n-t)m 1
T , where T is a sequence of length η(H)-1 that has no short zero-sum subsequence. By point [START_REF] Delorme | Some remarks on Davenport constant[END_REF], it follows that then Σ ≤mn-2 (T ) ⊇ H \ ((-k ′ + K) ∪ {0}) for a proper subgroup K and some k ′ / ∈ K. Therefore, it suffices to assert that {0} ∪ Σ ≤mn-2 (T ) ⊆ Σ mn-2 (0 tm-1 b (n-t)m 1 T ). Indeed, note that for each subsequence T ′ | T of length at most mn -2 = mt -1 + m(nt) -1, and any integer

t ′ ∈ [0, n -t] such that mn -2 ≥ |T ′ | + mt ′ ≥ m(n -t) -1, we obtain 0 ≤ mn -2 -|T ′ | -mt ′ ≤ mt -1
so that, since mb 1 = 0 in this case, the sequence 0 mn-2-|T ′ |-mt ′ b mt ′ 1 T ′ is a subsequence of S of length mn -2 with the same sum. The fact that we get 0 in addition to Σ ≤mn-2 (T ) is due to the fact that T ′ can be chosen to be the empty sequence.

Case 2. If s = t = n and x = 1, we see that S = 0 mn-1 T , where T is a sequence of length η(H) -1 that has no short zero-sum subsequence. By point [START_REF] Delorme | Some remarks on Davenport constant[END_REF], it follows that then Σ ≤mn-2 (T ) ⊇ H \ ((-k ′ + K) ∪ {0}) for a proper subgroup K and some k ′ / ∈ K. We assert that {0} ∪ Σ ≤mn-2 (T ) ⊆ Σ mn-2 (0 mn-1 T ), then the claim is proved. As above, it suffices to note that for each subsequence T ′ of T , the sequence 0 mn-2-|T ′ | T ′ is a subsequence of S of length mn -2 with the same sum. The fact that we get 0 in addition to Σ ≤mn-2 (T ) is due to the fact that T ′ can be chosen to be the empty sequence.

To finish the argument we consider the case m = 1. For assertion (1), we have a sequence S over H of length |S| = η(H) -1 = n -1 not containing any short zero-sum subsequence. By the results recalled before Theorem 2.4 we know that S = b n-1 for some generating element b of H. It follows that Σ ≤n-2 (S) = {b, 2b, . . . , (n -2)b}. Thus the claim is established with K = {0}. For assertion (2), we have a sequence S over H of length |S| = s(H) -1 = 2n -2 not containing any zero-sum subsequence of length n. By the results recalled above we know that S = c n-1 (c + b) n-1 for some generating element b of H. Without loss of generality we can assume that c = 0. It follows that Σ n-2 (S) = {0, b, 2b, . . . , (n -2)b}. Thus the claim is established with K = {0}.

The following lemma slightly develops a well-known technique useful to establish Conjecture 2.2; see, e.g., [START_REF] Gao | On zero-sum subsequences of restricted size II[END_REF]Proposition 2.7] or [START_REF] Sury | s conjecture on zero-sum sequences[END_REF]Proposition 2.3'] for earlier versions. We do not need the second part in this paper, but include it as it might be useful elsewhere. We note that the condition in the lemma is trivial for exp(G) ≤ 4. (2) Let S be a sequence over G of length (η(G) -1) + exp(G) -1 that does not contain any zero-sum subsequence of length exp(G). Let C | S be a subsequence such that there exists some h ∈ G with jh ∈ Σ j (C) for each j ≤ |C|. If |C| ≥ ⌊(exp(G)-1)/2⌋, then -h+ S has a subsequence of length η(G) -1 without any short zero-sum subsequence.

Proof. Without loss of generality suppose that h = 0.

( 

Proofs of the main results

In this section we prove our Theorems 3.1, 3.2 and 3.4. The proofs of the latter two will rely on the first.

Proof of Theorem 3.1. We start by discussing the lower bounds.

If n = 1, then [2, Proposition 3.1(3)] yields η(C 2 ⊕ C 2m ⊕ C 2m ) ≥ 2 + (2 2 -1)(2m -1 + 2 -1) = 6m + 2, and if n ≥ 2, then [2, Lemma 3.2] gives η(C 2 ⊕ C 2m ⊕ C 2mn ) ≥ 2(D(C 2 ⊕ C 2m ) -1) + 2mn = 4m + 2mn.
We can now turn to the upper bounds. Let H be a subgroup of G isomorphic to C m ⊕ C mn such that G/H is isomorphic to C 3 2 . We apply the inductive method with

H ֒→ G π → G/H. First, suppose n = 1, that is, let G = C 2 ⊕ C 2m ⊕ C 2m . By [12, Proposition 5.7.11] and since η(C 3 2 ) = 8 and η(C 2 m ) = 3m -2, it follows that η(G) ≤ (η(H) -1) exp(G/H) + η(G/H) = (3m -3)2 + 8 = 6m + 2.
Second, suppose n ≥ 2. Let S be a sequence over G with |S| = 4m + 2mn. We have to show that S has a short zero-sum subsequence. Note that applying [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]Proposition 5.7.11] yields only an upper bound of 2mn + 4m + 2 and a more refined analysis is needed.

Since 4m + 2mn = 2(2m + mn -4) + η(C 3 2 ), it follows that there exist (2m + mn -3) non-empty and disjoint subsequences of S, say, S 1 • • • S 2m+mn-3 | S, with |S i | ≤ 2 and σ(π(S i )) = 0 for each i. Let T be the subsequence of S such that S 1 • • • S 2m+mn-3 T = S. We note that |T | ≥ 6.

We observe that R = σ(S 1 ) • • • σ(S 2m+mn-3 ) is a sequence over H of length η(H) -1. If R has a non-empty zero-sum subsequence of length at most mn, that is one that is short relative to H, we can complete the argument as follows. We note that if i∈I σ(S i ) = 0 for some ∅ = I ⊆ [1, 2m + mn -3] with at most mn elements, then i∈I S i is a non-empty zero-sum subsequence of S of length at most 2|I| ≤ 2mn. Thus we assume R does not have a short zero-sum subsequence. This means that R fulfills the conditions of Lemma 4.3. Thus, we get that there exist a proper subgroup K of H and some

k ′ ∈ H \ K such that the complement (in H) of Σ ≤mn-2 (R) ∪ {0} is contained in -k ′ + K.
We continue by analyzing the sequence T . First, we note that we may assume that π(T ) does not have a non-empty zero-sum subsequence of length at most 2. Otherwise, let S 0 | T with 1 ≤ |S 0 | ≤ 2 and we consider the sequence σ(S 0 )R over H that has length η(H). Thus it has a short (relative to H) zero-sum subsequence. Using the same argument as above, this yields a short (relative to G) zero-sum subsequence of S.

Second, somewhat in the same vein, we note that for each S 0 | T with 1 ≤ |S 0 | ≤ 4 such that π(S 0 ) a zero-sum sequence we may assume that σ(S 0 ) / ∈ -(Σ ≤mn-2 (R) ∪ {0}). To see this, just observe that otherwise we would get a nonempty zero-sum subsequence of σ(S 0 )R of length at most mn -1, which contains σ(S 0 ). This then establishes the existence of a non-empty zero-sum subsequence of S of length at most |S 0 | + 2(mn -2) ≤ 2mn, that is to say a short zero-sum subsequence of S. Therefore, recalling what we know about Σ ≤mn-2 (R) ∪ {0}, we get a short zero-sum subsequence of S unless σ(S 0 ) ∈ k ′ + K for each S 0 | T with 1 ≤ |S 0 | ≤ 4 and σ(π(S 0 )) = 0.

It remains to show that σ(S 0 ) ∈ k ′ + K for each S 0 | T with 1 ≤ |S 0 | ≤ 4 and σ(π(S 0 )) = 0 is impossible. We know that |T | ≥ 6 and that π(T ) consists of distinct non-zero elements, as otherwise π(T ) would contain a non-empty zero-sum subsequence of length at most 2, which we excluded above. Fixing an appropriate independent generating set {e 1 , e 2 , e 3 } of G/H we may assume that supp(π(T )) contains all non-zero elements except e 1 + e 2 + e 3 . For I ⊆ {1, 2, 3} with two elements, let e I = i∈I e i . We note that π(T ) has at least the following zerosum subsequences of length at most 4: V k = e i e j e {i,j} , V 0 = e {1,2} e {2,3} e {1,3} , and V ′ i = e {i,j} e {i,k} e j e k for {i, j, k} = {1, 2, 3}. Let T i (respectively, T ′ i ) denote the subsequence of T whose image under π is V i (respectively, V ′ i ). We want to show that at least one of these sequences T (′) i has a sum that is not in k ′ + K. Assume to the contrary that the sum of each of these sequences is in k

′ + K. Now, note that V 0 V 1 V 2 V 3 = V ′ 1 V ′ 2 V ′ 3 and thus T 0 T 1 T 2 T 3 = T ′ 1 T ′ 2 T ′ 3 . However, that yields σ(T 0 T 1 T 2 T 3 ) ∈ 4k ′ + K while σ(T ′ 1 T ′ 2 T ′ 3 ) ∈ 3k ′ + K. Since k ′ / ∈ K, this is a contradiction. Thus, σ(S 0 ) ∈ k ′ + K for each S 0 | T with 1 ≤ |S 0 | ≤ 4
and σ(π(S 0 )) = 0 is indeed impossible, and consequently S has a short zero-sum subsequence.

We continue with the proof of our result on the Erdős-Ginzburg-Ziv constant.

Proof of Theorem 3.2. Since s(G) ≥ η(G)+exp(G)-1 for every finite abelian group G (see the remark before Conjecture 2.2), Theorem 3.1 readily yields the desired lower bounds. We now show that these bounds are indeed optimal. Our strategy is to obtain a situation in which we can invoke Lemma 4.4 and then apply Theorem 3.1. As already noted, we can always apply Lemma 4.4 if exp(G) ≤ 4. Thus, we assume that mn > 2.

Let H be a subgroup of

G ≃ C 2 ⊕ C 2m ⊕ C 2mn isomorphic to C m ⊕ C mn such that G/H is isomorphic to C 3 2 .
As before, we apply the inductive method with We observe that R = σ(S 1 ) • • • σ(S 2m+2mn-4 ) is a sequence over H of length s(H) -1. If R has a zero-sum subsequence of length mn we are done, since i∈I σ(S i ) = 0 for some I ⊆ [1, 2m + mn -4] with |I| = mn implies that i∈I S i is a zero-sum subsequence of S of length 2|I| = 2mn. Thus, the assumption that S has no zero-sum subsequence of length 2mn, implies that R does not have a zero-sum subsequence of length mn. Hence R fulfills the conditions of Lemma 4.3.

H ֒→ G π → G/H.
In addition, we note that if π(T ) still has a zero-sum subsequence of length 2, then we also get a zero-sum subsequence of S of length 2mn. Thus, we get that π(T ) has no zero-sum subsequence of length 2.

We continue by establishing an auxiliary fact.

F. If g | T and h | S such that π(g) = π(h), then h = g or S contains a zero-sum subsequence of length exp(G). Assume there are distinct g, h with g | T and h | S such that π(g) = π(h). Since π(T ) does not contain a zero-sum subsequence of length 2, it follows that h ∤ T and thus h | S i for some i, say i

= 1. Then R ′ = σ(gS 1 h -1 )σ(S 2 ) • • • σ(S 2m+2mn-4
) is a sequence over H of length s(H) -1. If this sequence contains a zero-sum subsequence of length mn, then as above S contains a zero-sum subsequence of length 2mn. Thus, we know that it does not contain such a subsequence, and since we have | gcd(R, R ′ )| ≥ s(H) -2, Lemma 4.1 gives that R = R ′ . This means that σ(gS 1 h -1 ) = σ(S 1 ), contradicting the assumption that g, h are distinct. This establishes F.

After these preparations, we proceed to show that the conditions of Lemma 4.4 are satisfied. For r ∈ supp(R), let I r ⊆ [1, 2m + mn -4] denote the set of all i such that σ(S i ) = r and let Q r = i∈Ir S i . If for some i ∈ I r we have that S i does not contain two distinct elements, say S i = h 2 i for some h i ∈ G, then it is not hard to see that jh i ∈ Σ j (Q r ) for every j ∈ [1, |Q r |]; just note that σ(S j ) = r = 2h i for every j ∈ I r .

Let v r = v r (R). We have |Q r | = 2v r . If v r ≥ (n + 1)m/2 -1, then we have |Q r | ≥ mn + m -2 ≥ mn -1 = ⌊(exp(G) -1)/2⌋. Thus, if for such an r there is some i ∈ I r with S i = h 2 i , then by Lemma 4.4 we would get a zero-sum subsequence of S of length exp(G) = 2mn.

Since π(S i ) is a zero-sum sequence of length 2 over G/H ≃ C 3 2 we have π(S i ) = e 2 for some e ∈ G/H. If we have π(S i ) = e 2 for some e | π(T ), then by F we know that S i = h 2 i ; this is because both elements of S i are equal to the one corresponding element in T .

Thus, the only situation in which we cannot establish by F that there is some i

∈ I r with S i = h 2 i is that π(Q r ) = e |Qr | 0
where e 0 is the unique element of G/H not in π(T ).

Let r, r ′ ∈ supp(R) be the two elements with the greatest multiplicity in R. We know that their respective multiplicities v r , v r ′ are at least (n + 1)m/2 -1; and if m = 1 then v r = v r ′ = n -1 (see the results recalled before Theorem 2.4). Suppose π(Q r ) = e 2vr 0 where e 0 is the unique element of G/H not in π(T ), and likewise for r ′ . It suffices to show that there exists some i ∈ I r ∪ I r ′ such that S i = h 2 i for some h i ∈ G.

We proceed to show this is always the case. Since mn > 2, we get that v r , v r ′ ≥ 2. Let i ∈ I r and i ′ ∈ I r ′ . Say S i = s 1 s 2 and S i ′ = s ′ 1 s ′ 2 . Assume for a contradiction that each of these two sequences consists of two distinct elements. We have σ(S i ) = s 1 + s 2 = r as well as σ(S

i ′ ) = s ′ 1 + s ′ 2 = r ′ . We can consider instead of S i = s 1 s 2 and S i ′ = s ′ 1 s ′ 2 , the sequences S ′ i = s 1 s ′ 1 , S ′ i ′ = s 2 s ′ 2 . We set S ′ j = S j for all j / ∈ {i, i ′ }. Then R ′ = σ(S ′ 1 ) • • • σ(S ′ 2m+2mn-4
) is a sequence over H of length s(H) -1 and it has no zero-sum subsequence of length exp(H). Since supp(R) ⊆ supp(R ′ ), the supports are in fact equal. If m = 1, it is immediate by the results recalled before Theorem 2.4 that R = R ′ . If m > 1, then since the multiplicity of each element in R is m -1 (mod m) and the same must be true for R ′ , it follows again that in fact R = R ′ . This means that {σ(S ′ i ), σ(S ′ i ′ )} = {r, r ′ }. Likewise, we can consider instead of S i = s 1 s 2 and S i ′ = s ′ 1 s ′ 2 , the sequences

S ′′ i = s 1 s ′ 2 , S ′′ i ′ = s 2 s ′ 1 .
And we set S ′′ j = S j for all j / ∈ {i, i ′ }. Again, it follows that R = R ′′ . This means that {σ(S ′′ i ), σ(S ′′ i ′ )} = {r, r ′ }. Since σ(S ′ i ) = σ(S ′′ i ), recall that we assumed s ′ 1 = s ′ 2 , we get {σ(S ′ i ), σ(S ′′ i )} = {r, r ′ }. Without loss of generality we can assume σ(S ′ i ) = r. Then, we get σ(S ′′ i ) = r ′ and thus σ(S ′′ i ′ ) = r. Since also σ(S i ) = r, we obtain s 1 + s 2 = s 1 + s ′ 1 = s 2 + s ′ 1 so that s 2 = s ′ 1 and s 1 = s ′ 1 and finally s 1 = s 2 , which is a contradiction.

We end with the proof of our result on the multiwise Davenport constants. 1)] (see also [START_REF] Delorme | Some remarks on Davenport constant[END_REF] and [START_REF]Halter-Koch A generalization of Davenport's constant and its arithmetical applications[END_REF]) yields the desired result. 

D k (C 2 m ) = m + km -1 ≥ 2 = k D (C 3 
2 ). Therefore, we have (the first inequality following from [1, Proposition 2.6], which can be proved using the inductive method) , so that |A i | = 4m-k i -1.

D k (C 2 ⊕ C 2m ⊕ C 2m ) ≤ D D k (H) (G/H) = D D k (C 2 m ) (C 3 

Theorem 2 . 3 .

 23 Let m, n ≥ 1 be two integers. Then η(C m ⊕ C mn ) = 2m + mn -2 and s(C m ⊕ C mn ) = 2m + 2mn -3.

Theorem 2 . 4 . 1 b sm-1 2 (-xb 1 + b 2 )

 241212 Let H ≃ C m ⊕ C mn with integers m ≥ 2 and n ≥ 1. Every sequence S over H of length |S| = η(H) -1 not containing any short zero-sum subsequence has the following form: S = b m-1 (n+1-s)m-1 where {b 1 , b 2 } is a generating set of H with ord(b 2 ) = mn, s ∈ [1, n], x ∈ [1, m] with gcd(x, m) = 1 and either (1) {b 1 , b 2 } is an independent generating set of H, or (2) s = n and x = 1.

Lemma 4 . 1 .

 41 Let H ≃ C m ⊕ C mn , where m, n ≥ 1 are integers and m satisfies Property D. Let S 1 , S 2 be sequences over H of length s(H) -1 not containing any zero-sum subsequence of length exp(H).

Lemma 4 . 2 .

 42 Let H ≃ C m ⊕ C mn where m, n ≥ 1 are integers. Let S 1 , S 2 be sequences over H of length η(H)-1 not containing any short zero-sum subsequence. If | gcd(S 1 , S 2 )| ≥ η(H) -2, then S 1 = S 2 .

Lemma 4 . 3 . 2 ) 1 b m- 1 2(b 1 +

 432111 Let H ≃ C m ⊕ C mn where m, n are positive integers and n ≥ 2. (1) Let S be a sequence over H of length |S| = η(H) -1 not containing any short zero-sum subsequence. Then Σ ≤mn-2 (S) ⊇ H \ ((-k ′ + K) ∪ {0}) for a proper subgroup K and some k ′ / ∈ K. (Suppose that m has Property D. Let S be a sequence over H of length |S| = s(H) -1 not containing any zero-sum subsequence of length exp(H). Then Σ mn-2 (S) ⊇ H \(-k ′ +K) for a proper subgroup K and some k ′ / ∈ K. The condition n ≥ 2 is necessary. Indeed, the claim is not true for groups of the form C 2 m . To see this it suffices to note that for {b 1 , b 2 } an independent generating set and S = b m-1 b 2 ) m-1 the set Σ ≤m-2 (S) contains no element of -b 1 + b 2 and -b 2 + b 1 .

  and the claim follows with k ′ = b 2 and K = b 1b 2 .

Lemma 4 . 4 . 1 )

 441 Let G be a finite abelian group. The following two statements hold. (Let S be a sequence over G of length η(G) + exp(G) -1. Let C | S be a subsequence such that there exists some h ∈ G with jh ∈ Σ j (C) for each j ≤ |C|. If |C| ≥ ⌊(exp(G) -1)/2⌋, then S has a zero-sum subsequence of length exp(G).

  ). Consider SC -1 . Let T | SC -1 be a short zero-sum subsequence (or the empty sequence) of maximal length.If |T | > exp(G)/2, then |C| ≥ exp(G) -|T |. Thus, C has a subsequence C ′ of length exp(G) -|T | with sum 0. Since |T C ′ | = exp(G)and its sum is 0, the argument is complete in this case. Consequently, we can assume that |T | ≤ exp(G)/2. It follows that SC -1 T -1 has no short zero-sum subsequence.To see this it suffices to note that a short zero-sum subsequence T ′ would satisfy|T ′ | ≤ |T | ≤ exp(G)/2and thus T T ′ would also be a short zero-sum subsequence of SC -1 contradicting the maximality of T . If |C| ≥ exp(G) -|T |, then we get a zero-sum subsequence of length exp(G) as above. Thus, |C| + |T | ≤ exp(G) -1 and thus |SC -1 T -1 | ≥ η(G), contradicting the fact that SC -1 T -1 has no short zero-sum subsequence. (2). The proof is similar to the first part. Consider SC -1 . Let T | SC -1 be a short zero-sum subsequence (or the empty sequence) of maximal length. If |T | > exp(G)/2 then, as in (1), C has a subsequence C ′ of length exp(G) -|T | with sum 0, yielding again a zero-sum subsequence of S of length exp(G), which is a contradiction. Consequently, we have |T | ≤ exp(G)/2. It follows that, as in (1), SC -1 T -1 has no short zero-sum subsequence. If |C| ≥ exp(G) -|T |, then we get a contradiction as above. Thus, |C| + |T | ≤ exp(G) -1 and thus |SC -1 T -1 | ≥ η(G) -1, establishing our claim.

For n = 1 ,

 1 by [12, Proposition 5.7.11] and since s(C 3 2 ) = 9 and s(C 2 m ) = 4m -3, it follows that s(G) ≤ (s(H) -1) exp(G/H) + s(G/H) = (4m -4)2 + 9 = 8m + 1. Now, suppose n ≥ 2 and m has Property D. Let S be a sequence over G with |S| = 4m+4mn-1. Assume for a contradiction that S has no zero-sum subsequence of length exp(G) = 2mn. Since 4m + 4mn -1 = 2(2m + 2mn -5) + s(C 3 2 ), it follows that there exist (2m + 2mn -4) disjoint subsequences of S, say, S 1 • • • S 2m+2mn-4 S with |S i | = 2 and σ(π(S i )) = 0 for each i. Let T be the subsequence of S such that S 1 • • • S 2m+2mn-4 T = S. We note that |T | = 7.

Proof of Theorem 3 . 4 .

 34 When n ≥ 2, it follows from Theorems 2.3, 2.7 and 3.1 that D(G) = D(C 2 ⊕ C 2m ) + (2mn -1) and η(G) ≤ D(G) + 2mn, so that [12, Theorem 6.1.5(

Now, assume that n = 1 .

 1 If k = 1, Theorem 2.7 readily gives D 1 (G) = D(G) = 2m + 2mn. If k ≥ 2, let H be a subgroup of G isomorphic to C 2 m such that G/H is isomorphic to C 3 2 . On the one hand, [1, Lemma 3.7] gives D 0 (C 3 2 ) = 3, k D (C32 ) = 2. By Theorem 2.3,

e 1 e 1 2 e 2m-ki 3 2 e 2m-ki 3 , 2 e2m-(ki+1) 3 , 3 , 3 , 3 ,

 11232323333 2 ) = D (m(k+1)-1) (C3 2 ) = D 0 (C3 2 ) + 2(m + km -1) = 3 + 2(m + km -1) = (2m + 1) + k(2m).On the other hand, let {e 1 , e 2 , e 3 } be an independent generating set of G such that ord(e 1 ) = 2 and ord(e 2 ) = ord(e 3 ) = 2m. For k ≥ 2, we consider the sequence S k = (e 2 + e 3 ) 2(k-1)m-1 e 2m-(e 1 + e 2 + e 3 )(e 1 + e 2 )(e 1 + e 3 ).We show that S k does not contain k disjoint non-empty zero-sum subsequences. This yieldsD k (C 2 ⊕ C 2m ⊕ C 2m ) > |S k | = 2m + k(2m).We set T = e 2m-(e 1 + e 2 + e 3 )(e 1 + e 2 )(e 1 + e 3 ) | S k , and U = e 1 (e 1 + e 2 + e 3 )(e 1 + e 2 )(e 1 + e 3 ) | T.Now, suppose we haveA 1 • • • A k | S kwhere A 1 , . . . , A k are k non-empty zero-sum subsequences. Since every non-empty zero-sum sequence is a product of minimal zero-sum subsequences, we can assume that A i is minimal for every i ∈[1, k].For every i ∈ [1, k], we set k i = v e2+e3 (A i ) ∈ [0, 2m] and A ′ i = A i ((e 2 + e 3 ) ki ) -1 | T . If A ′ i does not contain any element of U then A ′ i = e 2m-ki so that |A i | = 4mk i . If A ′i contains at least one of the elements of U then it contains exactly two or four of them. Therefore, we obtain the following seven cases:• A ′ i = e 1 (e 1 + e 2 )e 2m-(ki+1) so that |A i | = 4mk i + 1. • A ′ i = e 1 (e 1 + e 3 )e 2m-ki so that |A i | = 4mk i + 1. • A ′ i = e 1 (e 1 + e 2 + e 3 )e so that |A i | = 4mk i . • A ′ i = (e 1 + e 2 )(e 1 + e 3 )e so that |A i | = 4mk i . • A ′ i = e 1 (e 1 + e 2 + e 3 )(e 1 + e 2 )(e 1 + e 3 )e so that |A i | = 4mk i . • A ′ i = (e 1 + e 2 )(e 1 + e 2 + e 3 )e 2m-(ki+2) 2 e 2m-(ki+1) 3 , so that |A i | = 4m-k i -1. • A ′ i = (e 1 + e 3 )(e 1 + e 2 + e 3 )e 2m-(ki+2) 2 e 2m-(ki+1) 3

  21, Theorem 3.1(2)]). Let H ≃ C m ⊕ C mn , where m ≥ 2 satisfies Property D and n ≥ 1. Every sequence S over H of length |S| = s(H) -1 not containing any zero-sum subsequence of length exp(H) has the following form:

	Theorem 2.6.
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Note that since v e1+e2+e3 (S k ) = 1 and A 1 , . . . , A k are disjoint, there is at most one