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DIRECT ZERO-SUM PROBLEMS FOR CERTAIN GROUPS OF

RANK THREE

BENJAMIN GIRARD AND WOLFGANG A. SCHMID

Abstract. We determine the exact value of the η-constant and the multiwise
Davenport constants for finite abelian groups of rank three having the form
G ≃ C2 ⊕ Cn2

⊕ Cn3
with 2 | n2 | n3. Moreover, we determine the Erdős–

Ginzburg–Ziv constant of these groups under the assumption that n2/2 has
Property D or n2 = n3.

1. Introduction

A well-known direct zero-sum problem is to determine the Davenport constant
of finite abelian groups. For such a group (G,+, 0), this constant, denoted by D(G),
is defined as the smallest positive integer t such that every sequence of t elements
from G contains a non-empty subsequence whose terms sum to 0.

A closely related problem is to determine the Erdős–Ginzburg–Ziv constant,
denoted by s(G), which is defined in the same way except that one requires the
existence of a subsequence whose sum is 0 and whose length is equal to the exponent
of the group. A variant of this constant is η(G), where one seeks a non-empty
subsequence with sum 0 whose length is at most the exponent of the group.

The investigation of these zero-sum constants has been a topic of active research
for more than fifty years. We refer to [10, 11, 12, 14] for detailed expositions.
Some results are also recalled in the next section. The exact values of these three
constants are known for every finite abelian group of rank at most two, and only
for fairly special types of groups of higher rank. Even for groups of rank three,
that is, G ≃ Cn1

⊕ Cn2
⊕ Cn3

with 1 < n1 | n2 | n3, the problem of determining
these constants is wide open. For example, when n1 = 2, the Davenport constant
is known, but the exact values of the other two constants defined above is not.

In the present paper, we obtain these values for the η-constant and, assuming
a now well-supported conjecture, for the Erdős–Ginzburg–Ziv constant as well.
Our results confirm Gao’s conjecture (Conjecture 2.2) for this type of groups, and
generalize previous results obtained in the case n1 = n2 = 2 (see [5, Theorem
1.2(1)] and [4, Theorem 1.3]). Moreover, they show that recent results of Luo
[16] are essentially optimal. In addition, we determine the multiwise Davenport
constants for this type of groups (see the subsequent section for the definition). For
a more detailed overview of our results and how they relate to the existing literature
on the subject, we refer to Section 3.
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2. Preliminaries

We recall some notation and results; for more detailed information we refer again
to [10, 11, 12, 14]. All intervals in this paper are intervals of integers, specifically
[a, b] = {z ∈ Z : a ≤ z ≤ b}.

Let G be a finite abelian group, written additively. For each g in G, we denote
by ord(g) its order in G. For a subset A ⊂ G we denote by 〈A〉 the subgroup it
generates; we say that A is a generating set if 〈A〉 = G. We say that elements

g1, . . . , gk are independent if
∑k

i=1 aigi = 0, with integers ai, implies that aigi = 0
for each i; we say that a set is independent when its elements are independent.

By exp(G) we denote the exponent of G, that is the least common multiple of
the orders of elements of G. By r(G) we denote the rank of G, that is the minimum
cardinality of a generating subset of G. For n a positive integer we denote by Cn

the cyclic group of order n.
For a finite abelian group G there exist uniquely determined integers 1 < n1 |

· · · | nr such that G ≃ Cn1
⊕ · · · ⊕ Cnr

. For |G| > 1 we have r(G) = r and
exp(G) = nr; the rank of a group of cardinality 1 is 0 and its exponent is 1.

By a sequence over G we mean an element of the free abelian monoid over G.
In other words, this is a finite sequence of ℓ elements from G, where repetitions are
allowed and the order of elements is disregarded. We use multiplicative notation
for sequences. We denote its neutral element, that is the sequence of length zero,
simply by 1. Let

S = g1 · · · gℓ =
∏

g∈G

gvg(S)

be a sequence over G, where, for all g ∈ G, vg(S) is a non-negative integer called
the multiplicity of g in S. Moreover ℓ is the length of S.

A sequence T over G is said to be a subsequence of S if it is a divisor of S in the
free abelian monoid over G, that is if vg(T ) ≤ vg(S) for all g ∈ G; in this case we

write T | S. For a subsequence T of S we set ST−1 =
∏

g∈G g(vg(S)−vg(T )), that is,

it is the subsequence of S such that T (ST−1) = S.
For subsequences T1, . . . , Tk of S we say that they are disjoint subsequences if

T1 . . . Tk is also a subsequence of S. Moreover, for sequences S1, . . . , Sk over G we
denote by

gcd(S1, . . . , Sk) =
∏

g∈G

gmin{vg(Si) : 1≤i≤k}

the greatest common divisor of the sequences S1, . . . , Sk in the free abelian monoid.
To avoid confusion we stress that it is not necessary for disjoint subsequences to
have a trivial greatest common divisor.

We call the set supp(S) = {g ∈ G | vg(S) > 0} the support of S, and σ(S) =
∑ℓ

i=1 gi =
∑

g∈G vg(S)g the sum of S. In addition, we say that s ∈ G is a subsum

of S if

s =
∑

i∈I

gi for some ∅  I ⊆ [1, ℓ].

If 0 is not a subsum of S, we say that S is a zero-sumfree sequence. If σ(S) = 0,
then S is said to be a zero-sum sequence. If, moreover, one has σ(T ) 6= 0 for all
proper and non-empty subsequences T | S, then S is called a minimal zero-sum

sequence.
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We set

Σ(S) = {σ(T ) : 1 6= T | S}.

For every integer k, we also set

Σk(S) = {σ(T ) : T | S, |T | = k}

as well as

Σ≤k(S) =
k
⋃

i=1

Σi(S) = {σ(T ) : 1 6= T | S, |T | ≤ k}.

We now recall in more detail the definitions and results alluded to in the intro-
duction.

By D(G) we denote the smallest positive integer t such that every sequence S
over G of length |S| ≥ t contains a non-empty zero-sum subsequence. This number
D(G) is called the Davenport constant of the group G. More generally, given an
integer k ≥ 1, we denote by Dk(G) the smallest positive integer t such that every
sequence S over G of length |S| ≥ t contains at least k non-empty disjoint zero-sum
subsequences.

Note that, by definition, D1(G) = D(G) for every finite abelian group G. It is
known that for every finite abelian group the sequence (Dk(G))k≥1 is eventually an
arithmetic progression. More precisely, one has the following result (see [6, Lemma
5.1]).

Theorem 2.1. Let G be a finite abelian group. There exist D0(G) ∈ N and an

integer k0 ≥ 1 such that

Dk(G) = D0(G) + k exp(G), for each k ≥ k0.

Let kD(G) denote the smallest possible value of k0 in the above theorem.

By η(G) we denote the smallest positiver integer t such that every sequence S
over G of length |S| ≥ t contains a non-empty zero-sum subsequence S′ | S of
length |S′| ≤ exp(G). Such a subsequence is called a short zero-sum subsequence.

By s(G) we denote the smallest positive integer t such that every sequence S over
G of length |S| ≥ t contains a zero-sum subsequence S′ | S of length |S′| = exp(G).
The number s(G) is called the Erdős–Ginzburg–Ziv constant of the group G.

It is not hard to see that s(G) ≥ η(G) + exp(G)− 1 holds for each finite abelian
group G. It was conjectured by Gao that in fact equality holds (see [10, Conjecture
6.5]).

Conjecture 2.2 (Gao). For every finite abelian group G, one has

s(G) = η(G) + exp(G) − 1.

We now recall the values of η(G) and s(G) as well as the ones of the multiwise
Davenport constants for groups of rank at most two, see [12, Theorem 5.8.3] and
[12, Theorem 6.1.5]. We parametrize these groups as Cm ⊕ Cmn with m,n ≥ 1
integers rather than Cn1

⊕Cn2
with integers n1 | n2 since later on this will be more

convenient.

Theorem 2.3. Let m,n ≥ 1 be two integers. Then

η(Cm ⊕ Cmn) = 2m+mn− 2 and s(Cm ⊕ Cmn) = 2m+ 2mn− 3.
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In addition, for every integer k ≥ 1,

Dk(Cm ⊕ Cmn) = m+ k(mn)− 1.

In particular, choosing m = 1, we have η(Cn) = n and s(Cn) = 2n − 1 as well as

Dk(Cn) = kn for all k ≥ 1.

Theorem 2.3 shows that Conjecture 2.2 is true for all finite abelian groups of
rank at most two.

In the case of groups of rank at most two even the structure of extremal examples
is well-understood. For cyclic groups in fact more is known, see, e.g., [18], yet we
only recall what is needed in this paper.

A sequence S over Cn of length n − 1 = η(Cn) − 1 has no short zero-sum
subsequence (and thus no non-empty zero-sum subsequence) if and only if S = bn−1

for some generating element b of Cn. A sequence S over Cn of length 2n − 2 =
s(Cn)−1 has no zero-sum subsequence of length n if and only if S = cn−1(c+b)n−1

for some c ∈ Cn and some generating element b of Cn.
For the η-constant one has the following result. It was obtained in [19]; a result

of Reiher [17] was crucial in the proof.

Theorem 2.4. Let H ≃ Cm⊕Cmn with integers m ≥ 2 and n ≥ 1. Every sequence

S over H of length |S| = η(H)− 1 not containing any short zero-sum subsequence

has the following form:

S = bm−1
1 bsm−1

2 (−xb1 + b2)
(n+1−s)m−1

where {b1, b2} is a generating set of H with ord(b2) = mn, s ∈ [1, n], x ∈ [1,m]
with gcd(x,m) = 1 and either

(1) {b1, b2} is an independent generating set of H, or

(2) s = n and x = 1.

For the Erdős–Ginzburg–Ziv constant a similar result is expected to hold true,
yet it is so far only known conditionally or in special cases.

A positive integer m is said to have Property D if every sequence S over C2
m of

length |S| = s(C2
m)−1 = 4m−4 and containing no zero-sum subsequence of length

exp(G) = m has the form S = Tm−1 for some sequence T over C2
m. We include

the trivial case m = 1 in our definition as it simplifies the statement of certain
results. This property was introduced by Gao who made the following conjecture
[8, Conjecture 2].

Conjecture 2.5 (Gao). Every positive integer has Property D.

For the time being, Property D has been proved to be multiplicative [8, Theorem
1.4] in the sense that whenever m,n have this property, then so does mn. Also,
Property D is known to hold for p ∈ {2, 3, 5, 7}, hence for any m of the form
m = 2α3β5γ7δ, where α, β, γ, δ ≥ 0 are non-negative integers (see [8, Theorem 1.5]
and [21, Theorem 3.1]).

Whenever an integer m satisfies Property D, the sequences over H ≃ Cm ⊕Cmn

of length s(H)− 1 and not containing any zero-sum subsequence of length exp(H)
can be fully characterized for every integer n ≥ 1 (see [19, Theorem 3.1(2)]).
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Theorem 2.6. Let H ≃ Cm ⊕ Cmn, where m ≥ 2 satisfies Property D and n ≥ 1.
Every sequence S over H of length |S| = s(H) − 1 not containing any zero-sum

subsequence of length exp(H) has the following form:

S = ctm−1(b1 + c)(n+1−t)m−1(b2 + c)sm−1 (−xb1 + b2 + c)
(n+1−s)m−1

where c ∈ H, {b1, b2} is a generating set of H with ord(b2) = mn, s, t ∈ [1, n],
x ∈ [1,m] with gcd(x,m) = 1 and either

(1) {b1, b2} is an independent generating set of H, or

(2) s = t = n and x = 1.

For definiteness we briefly recap some properties of the generating sets in the
result above. Since {b1, b2} is a generating set ofH and ord(b2) = mn, the equalities

|H | = | 〈b1〉+ 〈b2〉 | =
| 〈b1〉 || 〈b2〉 |

| 〈b1〉 ∩ 〈b2〉 |

imply that ord(b1) = md where d = | 〈b1〉 ∩ 〈b2〉 | is a positive divisor of n. More
precisely, we have

〈mb1〉 = 〈b1〉 ∩ 〈b2〉 =
〈

m
n

d
b2

〉

.

In particular, every element h ∈ H can be written h = a1b1+a2b2 with a1 ∈ [0,m−1]
and a2 ∈ [0,mn− 1]. In addition, it is easily seen that {b1, b2} is an independent
generating set of H if and only if 〈b1〉 ∩ 〈b2〉 = {0}, that is to say if and only if
d = 1. Finally, whenever d > 1, there is a unique integer ℓ ∈ [1, d − 1] relatively
prime to d such that mb1 = ℓm(n/d)b2.

We end by recalling the result on the Davenport constant for groups of the form
C2⊕C2m⊕C2mn, which we mentioned in the introduction and that we need in the
proof of our result on the multiwise Davenport constant.

Theorem 2.7. Let m,n ≥ 1 be two integers. Then

D(C2 ⊕ C2m ⊕ C2mn) = 2m+ 2mn.

The proof of the above result involved two parts. First, the claim was established
conditionally on a result on the structure of the set of subsums of zero-sum free se-
quences of maximal length over a group of rank two; this motivated the definition of
the ν-invariant (see, e.g., [10, Definition 2.1]). Then, this property was established.
The first part dates back to the very beginning of investigations of the Davenport
constant (see [3]). The second part was only completed much later when Property
B (and thus Property C) was established by Reiher [17] (see in particular Section
11). For further context, see for instance [7] or [20, Section 4.1].

3. New results

As mentioned in the introduction we investigate zero-sum constants for groups
of rank three of the form C2 ⊕Cn2

⊕Cn3
where 2 | n2 | n3. For ease of notation we

will use a different parametrization, namely C2 ⊕ C2m ⊕ C2mn with m,n ≥ 1.
We determine η(C2⊕C2m⊕C2mn) for all m,n ≥ 1, and s (C2 ⊕ C2m ⊕ C2mn) un-

der the condition that n = 1 orm has Property D. We recall that the constants were
known for m = 1, see [5, Theorem 1.2(1)] and [4, Theorem 1.3]; in this case even
the inverse problem is solved [13]. Moreover, we determine Dk (C2 ⊕ C2m ⊕ C2mn)
for all k,m, n ≥ 1; as recalled the case k = 1 and the case m = n = 1 were known.
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We will see that there is a quite significant difference between the two cases n = 1
and n 6= 1.

Our approach to determining η(C2 ⊕C2m ⊕C2mn) is similar to the one used the
Davenport constant, which we recalled above. In particular, the property of the set
of restricted subsums established in Lemma 4.3 resembles the property underlying
the definition of the ν-invariant. The subsequent result on s (C2 ⊕ C2m ⊕ C2mn)
is obtained by establishing Gao’s conjecture for this group using a generaliza-
tion of a well-known technique (see Lemma 4.4). The proof of the result for
Dk (C2 ⊕ C2m ⊕ C2mn) also uses the result on η (C2 ⊕ C2m ⊕ C2mn).

Theorem 3.1. Let m ≥ 1 and n ≥ 2 be two integers. Then

η(C2 ⊕ C2m ⊕ C2m) = 6m+ 2

and

η(C2 ⊕ C2m ⊕ C2mn) = 4m+ 2mn.

When G ≃ C2 ⊕C2m ⊕C2m and m is a power of 2, G is a finite abelian 2-group
such that

D(G) = 2 exp(G) and 2D(G)− exp(G) < η(G),

thus showing that [16, Theorem 1.6] is optimal in the sense that for 2D(G) −
exp(G) = η(G) to hold, the condition D(G) ≤ 2 exp(G)− 1 in the statement of the
theorem cannot be replaced by D(G) ≤ 2 exp(G).

Theorem 3.2. Let m ≥ 1 and n ≥ 2 be two integers. Then

s(C2 ⊕ C2m ⊕ C2m) = 8m+ 1.

Moreover, if m has Property D, then

s(C2 ⊕ C2m ⊕ C2mn) = 4m+ 4mn− 1.

In combination the two results imply that Gao’s conjecture holds true for these
types of groups.

Corollary 3.3. Let m,n ≥ 1 be two integers. Then Conjecture 2.2 holds true for

C2 ⊕ C2m ⊕ C2m. Moreover, if m has Property D, then Conjecture 2.2 holds true

for C2 ⊕ C2m ⊕ C2mn.

We end this section with our result on the multiwise Davenport constants.

Theorem 3.4. Let G ≃ C2 ⊕C2m ⊕C2mn, where m,n ≥ 1 are integers. If n ≥ 2,
then D0(G) = 2m and kD(G) = 1. If n = 1, then D0(G) = 2m+ 1 and kD(G) = 2.

Note that the case n = 1 extends to all m ≥ 1 the result [1, Lemma 3.7] stating
that D0(C

3
2 ) = 3 and kD(C

3
2 ) = 2.

When G ≃ C2 ⊕ C2m ⊕ C2m, where m ≥ 1, we have

D(G) = D(C2 ⊕ C2m) + (2m− 1) and η(G) > D(G) + 2m,

however kD(G) ≥ 2, thus showing that [6, Remark 5.3.2] is nearly optimal in the
sense that for kD(G) = 1 to hold, the condition η(G) ≤ D(G) + exp(G) stated in
this remark cannot be replaced by a much weaker inequality.
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4. Auxiliary results

In this section we establish several auxiliary results. In some cases, we prove
results which are slightly more general than what is needed for our immediate
applications, but we mostly focus on the needs of this paper.

Our first lemma shows that extremal sequences with respect to the Erdős–
Ginzburg–Ziv constant for groups of rank at most two are stable in the sense that
changing a unique element cannot yield another extremal sequence. It could be
interesting to consider this problem for more general groups, and to determine
for specifc groups the exact number of elements one has to change to get another
extremal example.

Lemma 4.1. Let H ≃ Cm ⊕ Cmn, where m,n ≥ 1 are integers and m satisfies

Property D. Let S1, S2 be sequences over H of length s(H) − 1 not containing any

zero-sum subsequence of length exp(H). If | gcd(S1, S2)| ≥ s(H)− 2, then S1 = S2.

Proof. Let T = gcd(S1, S2). By assumption, we have S1 = g1T and S2 = g2T with
g1, g2 ∈ G.

First, assume that m ≥ 3. We know by Theorem 2.6 that vg(Si) ≡ m − 1
(mod m) for each g ∈ supp(Si). It thus follows that vg1(T ) ≡ m − 2 (mod m).
Since this is non-zero it follows that g1 ∈ supp(S2), and thus vg1(S2) ≡ m − 1
(mod m). Yet, vg1(S2) = vg1 (g2)+ vg1(T ). Since vg1(T ) ≡ m−2 (mod m) we must
have vg1(g2) 6= 0, that is, g1 = g2. This proves the claim in the case m ≥ 3.

Now, assume that m = 2. By Theorem 2.6, every sequence S over H containing
no zero-sum subsequence of length 2n can be decomposed as

S = c2t−1(b1 + c)2(n+1−t)−1(b2 + c)2s−1 (−b1 + b2 + c)
2(n+1−s)−1

,

where c ∈ H , {b1, b2} is a generating set of H with ord(b2) = 2n and s, t ∈ [1, n],
such that either {b1, b2} is an independent generating set of H or s = t = n. In
particular, one has

σ
(

c2t−1(b1 + c)2(n+1−t)−1
)

= −(2t− 1)b1,

and

σ
(

(b2 + c)2s−1 (−b1 + b2 + c)
2(n+1−s)−1

)

= (2s− 1)b1.

Therefore, either {b1, b2} is an independent generating set of H , in which case
ord(b1) = 2 (see the remarks at the end of Section 2) so that σ(S) = b1 − b1 = 0,
or s = t = n, in which case σ(S) = b1 − b1 = 0 also. It thus follows in both cases
that g1 + σ(T ) = σ(S1) = 0 = σ(S2) = g2 + σ(T ), which yields g1 = g2 indeed.

Finally, let us consider the case m = 1. Then, we know by the results recalled
before Theorem 2.4 that vg(Si) ≡ n− 1 (mod n) for each g ∈ supp(Si). For n ≥ 3
we can argue as in the case m ≥ 3. For n ≤ 2, that is for C1 and C2, the claim is
trivial as there is only one sequence of length s(H)− 1 not containing any zero-sum
subsequence of length exp(H). �

The analogous result for the η-constant holds true as well; we record it for its
own sake.

Lemma 4.2. Let H ≃ Cm ⊕ Cmn where m,n ≥ 1 are integers. Let S1, S2 be

sequences over H of length η(H)− 1 not containing a short zero-sum subsequence.

If | gcd(S1, S2)| ≥ η(H)− 2, then S1 = S2.
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Proof. For m ≥ 3, the same argument as in Lemma 4.1 works. For m = 2, we
assume for a contradiction that there are two distinct sequences S1, S2 of length
η(H)−1 not containing a short zero-sum subsequence with | gcd(S1, S2)| ≥ η(H)−
2. Then S′

1 = S10
exp(H)−1 and S′

2 = S20
exp(H)−1 are two distinct sequences of

length s(H) − 1 not containing a zero-sum subsequence of length exp(H) with
| gcd(S1, S2)| ≥ s(H) − 2, contradicting Lemma 4.1. Finally, for m = 1 and n ≥ 3
the claim follows from the fact that a sequence over H of length η(H) − 1 not
containing a short zero-sum subsequence is of the form hn−1 for some generating
element of h ∈ H (recall the results before Theorem 2.4). The case m = 1 and
n ≤ 2 is trivial. �

Next we obtain results on the set of restricted subsums of sequences that are
extremal examples with respect to the η-constant and the Erdős–Ginzburg–Ziv
constant. The result we obtain is reminiscent of the condition in the definition of
the ν-invariant (see, e.g., [7]).

Lemma 4.3. Let H ≃ Cm ⊕ Cmn where m,n are positive integers and n ≥ 2.

(1) Let S be a sequence over H of length |S| = η(H) − 1 not containing any

short zero-sum subsequence. Then Σ≤mn−2(S) ⊇ H \ ((−k′+K)∪{0}) for
a proper subgroup K and some k′ /∈ K.

(2) Suppose that m has Property D. Let S be a sequence over H of length

|S| = s(H)− 1 not containing any zero-sum subsequence of length exp(H).
Then Σmn−2(S) ⊇ H\(−k′+K) for a proper subgroup K and some k′ /∈ K.

The condition n ≥ 2 is necessary. Indeed, the claim is not true for groups of the
form C2

m. To see this it suffices to note that for {b1, b2} an independent generating
set and S = bm−1

1 bm−1
2 (b1 + b2)

m−1 the set Σ≤m−2(S) contains no element of
−b1 + 〈b2〉 and −b2 + 〈b1〉.

Proof. We first deal with the main case m ≥ 2.

(1). Let S be a sequence over H of length |S| = η(H) − 1 not containing any
short zero-sum subsequence. By Theorem 2.4 we know that

S = bm−1
1 bsm−1

2 (−xb1 + b2)
(n+1−s)m−1

where {b1, b2} is a generating set of H with ord(b2) = mn, s ∈ [1, n], x ∈ [1,m]
with gcd(x,m) = 1 and either {b1, b2} is an independent generating set of H , or
s = n and x = 1.

Let d ∈ [1, n] such that ord(b1) = md; as recalled after Theorem 2.6 this always
exists.

We now distinguish the following three cases.

Case 1. d = 1, that is to say {b1, b2} is an independent generating set of H . In
particular, mb1 = 0. Let h = a1b1 + a2b2 with a1 ∈ [0,m− 1] and a2 ∈ [0,mn− 1].
If a1 = 0 then h /∈ Σ≤mn−2(S) only if a2 = 0 or a2 = mn − 1, that is to say
only if h = 0 or h = −b2. If a2 ≤ m − 1, we observe that h ∈ Σa1+a2

(S) and
a1 + a2 ≤ 2m − 2 ≤ mn − 2. Now, assume that a1 6= 0 and a2 ≥ m. Let
v ∈ [1,m − 1] be the unique integer such that a1 ≡ −vx (mod m). In particular,
one has v ≤ m−1 < a2 so that 1 ≤ a2−v ≤ mn−2 < mn−1 = ms−1+m(n−s).
Therefore, there exists q ∈ [0, n− s] such that 0 ≤ a2 − v − qm ≤ ms− 1. Such an
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integer q readily satisfies 1 ≤ v+ qm ≤ m− 1+m(n− s) = (n+1− s)m− 1. As a
consequence,

S′ = (−xb1 + b2)
v+qmba2−v−qm

2

is a subsequence of S of length |S′| = a2 such that

σ(S′) = −vxb1 + vb2 − vb2 − qx(mb1) + qmb2 − qmb2 + a2b2 = a1b1 + a2b2 = h,

so that h ∈ Σ≤a2
(S) and the claim follows with k′ = b2 and K = 〈b1〉.

Case 2. 1 < d < n, or d = n and ℓ ≥ 2. Let h = a1b1 + a2b2 with a1 ∈ [0,m− 1]
and a2 ∈ [0,mn− 1]. If a1 = 0 then h /∈ Σ≤mn−2(S) only if a2 = 0 or a2 = mn− 1,
that is to say only if h = 0 or h = −b2. Now, assume that a1 6= 0. Then,
either a1 + a2 ≤ mn − 2 in which case h ∈ Σ≤mn−2(S) or a2 ≥ mn − 1 − a1 ≥
mn− 1− (m− 1) = m(n− 1) so that

2mn− 1−m ≥ mn− 1 +mn
d− 1

d
≥ a2 + ℓm

n

d
≥ m(n− 1) + 2m = mn+m.

Therefore, setting a′2 = a2 + ℓm(n/d) − mn, we have a′2 ∈ [m,mn − 2] and since
m− a1 ∈ [1,m− 1] we obtain that

S′ = (−b1 + b2)
m−a1b

a′

2
−(m−a1)

2

is a subsequence of S of length |S′| = a′2 ≤ mn− 2 verifying

σ(S′) = a1b1 −mb1 + a′2b2 = a1b1 −mb1 + ℓm
n

d
b2 + a2b2 = h,

so that h ∈ Σ≤mn−2(S) and the claim follows with k′ = b2 and K = {0}.

Case 3. d = n and ℓ = 1. In this case, mb1 = mb2. Let h = a1b1 + a2b2 with
a1 ∈ [0,m− 1] and a2 ∈ [0,mn− 1]. If a1 = 0 then h /∈ Σ≤mn−2(S) only if a2 = 0
or a2 = mn− 1, that is to say only if h = 0 or h = −b2. Now, assume that a1 6= 0.
Then, either a1 + a2 ≤ mn− 2 in which case h ∈ Σ≤mn−2(S) or a1 + a2 = mn− 1
or a1 + a2 ≥ mn so that

2mn− 2 ≥ mn− 1 +m− 1 ≥ a1 + a2 ≥ mn

Therefore, setting a′2 = a1 + a2 −mn, we have a′2 ∈ [0,mn− 2] and since m− a1 ∈
[1,m− 1] we obtain that

S′ = (−b1 + b2)
m−a1b

a′

2

2

is a subsequence of S of length |S′| = m−a1+a′2 = m+a2−mn ≤ m+mn−1−mn ≤
m− 1 verifying

σ(S′) = a1b1 −mb1 +mb2 − a1b2 + a1b2 + a2b2 = h,

so that h ∈ Σ≤mn−2(S) and the claim follows with k′ = b2 and K = 〈b1 − b2〉.

(2). Suppose that m has Property D. Let S be a sequence over H of length
|S| = s(H) − 1 not containing any zero-sum subsequence of length exp(H). By
Theorem 2.6 we know that

S = ctm−1(b1 + c)(n+1−t)m−1bsm−1
2 (−xb1 + b2)

(n+1−s)m−1

where c ∈ H , {b1, b2} is a generating set of H with ord(b2) = mn, s, t ∈ [1, n],
x ∈ [1,m] with gcd(x,m) = 1 and either {b1, b2} is an independent generating set
of H , or s = t = n and x = 1.
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Since Σmn−2(−c+S) = 2c+Σmn−2(S), we can assume without loss of generality
that c = 0. We now distinguish the following two cases.

Case 1. If {b1, b2} is an independent generating set of H , we see that S =

0tm−1b
(n−t)m
1 T , where T is a sequence of length η(H)−1 that has no short zero-sum

subsequence. By Lemma 4.3, it follows that then Σ≤mn−2(T ) ⊇ H\((−k′+K)∪{0})
for a proper subgroup K and some k′ /∈ K. Therefore, it suffices to assert that

{0} ∪ Σ≤mn−2(T ) ⊆ Σmn−2(0
tm−1b

(n−t)m
1 T ). Indeed, note that for each subse-

quence T ′ | T of length at most mn− 2 = mt− 1 +m(n− t)− 1, and any integer
t′ ∈ [0, n− t] such that

mn− 2 ≥ |T ′|+mt′ ≥ m(n− t)− 1,

we obtain
0 ≤ mn− 2− |T ′| −mt′ ≤ mt− 1

so that, since mb1 = 0 in this case, the sequence 0mn−2−|T ′|−mt′bmt′

1 T ′ is a subse-
quence of S of length mn−2 with the same sum. The fact that we get 0 in addition
to Σ≤mn−2(T ) is due to the fact that T ′ can be chosen to be the empty sequence.

Case 2. If s = t = n and x = 1, we see that S = 0mn−1T , where T is a sequence
of length η(H) − 1 that has no short zero-sum subsequence. By Lemma 4.3, it
follows that then Σ≤mn−2(T ) ⊇ H \ ((−k′ + K) ∪ {0}) for a proper subgroup K
and some k′ /∈ K. We assert that {0} ∪ Σ≤mn−2(T ) ⊆ Σmn−2(0

mn−1T ), then the
claim is proved. As above, it suffices to note that for each subsequence T ′ of T , the
sequence 0mn−2−|T ′|T ′ is a subsequence of S of length mn− 2 with the same sum.
he fact that we get 0 in addition to Σ≤mn−2(T ) is due to the fact that T ′ can be
chosen to be the empty sequence.

To finish the argument we consider the case m = 1. For assertion (1), we
have a sequence S over H of length |S| = η(H) − 1 = n − 1 not containing any
short zero-sum subsequence. By the results recalled before Theorem 2.4 we know
that S = bn−1 for some generating element b of H . It follows that Σ≤n−2(S) =
{b, 2b, . . . , (n − 2)b}. Thus the claim is established with K = {0}. For assertion
(2), we have a sequence S over H of length |S| = s(H)− 1 = 2n− 2 not containing
any zero-sum subsequence of length n. By the results recalled above we know that
S = cn−1(c+ b)n−1 for some generating element b of H . Without loss of generality
we can assume that c = 0. It follows that Σ=n−2(S) = {0, b, 2b, . . . , (n−2)b}. Thus
the claim is established with K = {0}. �

The following lemma slightly develops a well-known technique useful to establish
Conjecture 2.2; see, e.g., [9, Proposition 2.7] or [4, Theorem 1.3] for earlier versions.
We do not need the second part in this paper, but include it as it might be useful
elsewhere. We note that the condition in the lemma is trivial for exp(G) ≤ 4.

Lemma 4.4. Let G be a finite abelian group. The following two statements hold.

(1) Let S be a sequence over G of length η(G) + exp(G) − 1. Let C | S be a

subsequence such that there exists some h ∈ G with jh ∈ Σj(C) for each

j ≤ |C|. If |C| ≥ ⌊(exp(G) − 1)/2⌋, then S has a zero-sum subsequence of

length exp(G).
(2) Let S be a sequence over G of length (η(G) − 1) + exp(G) − 1 that does

not contain any zero-sum subsequence of length exp(G). Let C | S be a

subsequence such that there exists some h ∈ G with jh ∈ Σj(C) for each
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j ≤ |C|. If |C| ≥ ⌊(exp(G)−1)/2⌋, then −h+S has a subsequence of length

η(G) − 1 without any short zero-sum subsequence.

Proof. Without loss of generality suppose h = 0.

(1). Consider SC−1. Let T | SC−1 be a short zero-sum subsequence (or the empty
sequence) of maximal length. If |T | > exp(G)/2, then |C| ≥ exp(G)− |T |. Thus, C
has a subsequence C′ of length exp(G)−|T | with sum 0. Since |TC′| = exp(G) and
its sum is 0, the argument is complete in this case. Consequently, we can assume
that |T | ≤ exp(G)/2. It follows that SC−1T−1 has no short zero-sum subsequence.
To see this it suffices to note that a short zero-sum subsequence T ′ would satisfy
|T ′| ≤ |T | ≤ exp(G) and thus TT ′ would also be a short zero-sum subsequence of
SC−1 contradicting the maximality of T . If |C| ≥ exp(G) − |T |, then we get a
zero-sum subsequence of length exp(G) as above. Thus, |C| + |T | ≤ exp(G) − 1
and thus |SC−1T−1| ≥ η(G), contradicting the fact that SC−1T−1 has no short
zero-sum subsequence.

(2). The proof is similar to the first part. Consider SC−1. Let T | SC−1 be a
short zero-sum subsequence (or the empty sequence) of maximal length. If |T | >
exp(G)/2, then as above C has a subsequence C′ of length exp(G) − |T | with
sum 0, yielding again a zero-sum subsequence of S of length exp(G), which is a
contradiction. Consequently, we have |T | ≤ exp(G)/2. It follows as above that
SC−1T−1 has no short zero-sum subsequence. If |C| ≥ exp(G) − |T |, then we get
a contradiction as above. Thus, |C| + |T | ≤ exp(G) − 1 and thus |SC−1T−1| ≥
η(G)− 1, establishing our claim. �

5. Proofs of the main results

In this section we prove our Theorems 3.1, 3.2 and 3.4. The proofs of the latter
two will rely on the first.

Proof of Theorem 3.1. We start by discussing the lower bounds. If n = 1, then [2,
Proposition 3.1(3)] yields

η(C2 ⊕ C2m ⊕ C2m) ≥ 2 + (22 − 1)(2m− 1 + 2− 1) = 6m+ 2,

and if n ≥ 2, then [2, Lemma 3.2] gives

η(C2 ⊕ C2m ⊕ C2mn) ≥ 2(D(C2 ⊕ C2m)− 1) + 2mn = 4m+ 2mn.

We can now turn to the upper bounds. Let H be a subgroup of G isomorphic
to Cm ⊕Cmn such that G/H is isomorphic to C3

2 . We apply the inductive method
with

H →֒ G
π
→ G/H.

First, suppose n = 1, that is, let G = C2 ⊕ C2m ⊕ C2m. By [12, Proposition
5.7.11] and as η(C3

2 ) = 8 and η(C2
m) = 3m− 2, it follows that

η(G) ≤ (η(H)− 1) exp(G/H) + η(G/H) = (3m− 3)2 + 8 = 6m+ 2.

Second, suppose n ≥ 2. Let S be a sequence over G with |S| = 4m+ 2mn. We
have to show that S has a short zero-sum subsequence. Note that applying [12,
Proposition 5.7.11] yields only an upper bound of 2mn+4m+2 and a more refined
analysis is needed.

Since 4m + 2mn = 2(2m +mn − 4) + η(C3
2 ), it follows that there exist (2m +

mn− 3) non-empty and disjoint subsequences of S, say, S1 . . . S2m+mn−3 | S, with
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|Si| ≤ 2 and σ(π(Si)) = 0 for each i. Let T be the subsequence of S such that
S1 . . . S2m+mn−3T = S. We note that |T | ≥ 6.

We observe that R = σ(S1) . . . σ(S2m+mn−3) is a sequence over H of length
η(H)− 1. If R has a zero-sum subsequence of length at most mn, that is one that
is short relative to H , we can complete the argument as follows. We note that if
∑

i∈I σ(Si) = 0 for some ∅ 6= I ⊆ [1, 2m+mn− 3] with at most mn elements, then
∏

i∈I Si is a non-empty zero-sum subsequence of S of length at most 2|I| ≤ 2mn.
Thus we assume R does not have a short zero-sum subsequence. This means that R
fulfills the conditions of Lemma 4.3. Thus, we get that there exist a proper subgroup
K of H and some k′ ∈ H \K such that the complement (in H) of Σ≤mn−2(R)∪{0}
is contained in −k′ +K.

We continue by analyzing the sequence T . First, we note that we may assume
that π(T ) does not have a non-empty zero-sum subsequence of length at most 2.
Otherwise, let S0 | T with 1 ≤ |S0| ≤ 2 and we consider the sequence σ(S0)R over
H that has length η(H). Thus it has a short (relative to H) zero-sum subsequence.
Using the same argument as above, this yields a short (relative to G) zero-sum
subsequence of S.

Second, somewhat in the same vein, we note that for each S0 | T with 1 ≤
|S0| ≤ 4 such that π(S0) is a zero-sum sequence we may assume that σ(S0) /∈
−(Σ≤mn−2(R)∪ {0}). To see this, just observe that otherwise we would get a non-
empty zero-sum subsequence of σ(S0)R of length at most mn− 1, which contains
σ(S0). This then establishes the existence of a zero-sum subsequence of S of length
at most |S0|+ 2(mn− 2) ≤ 2mn, that is, it is short. Therefore, recalling what we
know about Σ≤mn−2(R) ∪ {0}, we get a short zero-sum subsequence of S unless
σ(S0) ∈ k′ +K for each S0 | T with 1 ≤ |S0| ≤ 4 and σ(π(S0)) = 0.

It remains to show that σ(S0) ∈ k′ + K for each S0 | T with 1 ≤ |S0| ≤ 4
and σ(π(S0)) = 0 is impossible. We know that |T | ≥ 6 and that π(T ) consists of
distinct non-zero elements, as otherwise we would get a zero-sum subsequence of
length at most 2, which we excluded above. Fixing an appropriate independent
generating set {e1, e2, e3} of G/H we may assume that supp(π(T )) contains all
non-zero elements except e1 + e2 + e3. For I ⊆ {1, 2, 3} with two elements, let
eI =

∑

i∈I ei. We note that π(T ) has at least the following zero-sum subsequences of
length at most 4: Vk = eieje{i,j}, V0 = e{1,2}e{2,3}e{1,3}, and V ′

i = e{i,j}e{i,k}ejek

for {i, j, k} = {1, 2, 3}. Let T
(′)
i denote the subsequence of T whose image under π

is V
(′)
i . We want to show that at least one of these sequences T

(′)
i has a sum that

is not in k′ +K. Assume to the contrary that the sum of each of these sequences
is in k′ + K. Now, note that V0V1V2V3 = V ′

1V
′
2V

′
3 and thus T0T1T2T3 = T ′

1T
′
2T

′
3.

However, that yields σ(T0T1T2T3) ∈ 4k′ + K while σ(T ′
1T

′
2T

′
3) ∈ 3k′ + K. Since

k′ /∈ K, this is a contradiction, since k′ /∈ K. Thus, σ(S0) ∈ k′ +K for each S0 | T
with 1 ≤ |S0| ≤ 4 and σ(π(S0)) = 0 is indeed impossible, and consequently S has
a short zero-sum subsequence. �

We continue with the proof of our result on the Erdős–Ginzbirg–Ziv constant.

Proof of Theorem 3.2. Since s(G) ≥ η(G)+exp(G)−1 for every finite abelian group
G (see the remark before Conjecture 2.2), Theorem 3.1 readily yields the desired
lower bounds. We now show that these bounds are indeed optimal. Our strategy is
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to obtain a situation in which we can invoke Lemma 4.4 and then apply Theorem
3.1. As already noted, we can always apply Lemma 4.4 if exp(G) ≤ 4. Thus, we
assume mn > 2.

Let H be a subgroup of G ≃ C2 ⊕ C2m ⊕ C2mn isomorphic to Cm ⊕ Cmn such
that G/H is isomorphic to C3

2 . As before, we apply the inductive method with

H →֒ G
π
→ G/H.

For n = 1, by [12, Proposition 5.7.11] and since s(C3
2 ) = 9 and s(C2

m) = 4m− 3,
it follows that

s(G) ≤ (s(H)− 1) exp(G/H) + s(G/H) = (4m− 4)2 + 9 = 8m+ 1.

Now, suppose n ≥ 2 and m has Property D. Let S be a sequence over G with
|S| = 4m+4mn−1. Assume for a contradiction that S has no zero-sum subsequence
of length exp(G) = 2mn.

Since 4m + 4mn − 1 = 2(2m + 2mn − 5) + s(C3
2 ), it follows that there ex-

ist (2m + 2mn − 4) disjoint subsequences of S, say, S1 . . . S2m+2mn−4 | S with
|Si| = 2 and σ(π(Si)) = 0 for each i. Let T be the subsequence of S such that
S1 . . . S2m+2mn−4T = S. We note that |T | = 7.

We observe that R = σ(S1) . . . σ(S2m+2mn−4) is a sequence over H of length
s(H) − 1. If R has a zero-sum subsequence of length mn we are done, since
∑

i∈I σ(Si) = 0 for some I ⊆ [1, 2m+mn− 4] with |I| = mn implies that
∏

i∈I Si

is a zero-sum subsequence of S of length 2|I| = 2mn. Thus, the assumption that
S has no zero-sum subsequence of length 2mn, implies that R does not have a
zero-sum subsequence of length mn. Hence R fulfills the conditions of Lemma 4.3.

In addition, we note that if π(T ) still has a zero-sum subsequence of length 2,
then we also get a zero-sum subsequence of S of length 2mn. Thus, we get that
π(T ) has no zero-sum subsequence of length 2.

We continue by establishing an auxiliary fact.

F. If g | T and h | S such that π(g) = π(h), then h = g or S contains a
zero-sum subsequence of length exp(G).

Assume there are distinct g, h with g | T and h | S such that π(g) = π(h). Since
π(T ) does not contain a zero-sum subsequence of length 2, it follows that h ∤ T and
thus h | Si for some i, say i = 1. Then R′ = σ(gS1h

−1)σ(S2) . . . σ(S2m+2mn−4)
is a sequence over H of length s(H) − 1. If this sequence contains a zero-sum
subsequence of length mn, then as above S contains a zero-sum subsequence of
length 2mn. Thus, we know that it does not contain such a subsequence, and
since we have | gcd(R,R′)| ≥ s(H)− 2, Lemma 4.1 gives that R = R′. This means
that σ(gS1h

−1) = σ(S1), contradicting the assumption that g, h are distinct. This
establishes (F).

After these preparations, we proceed to show that the conditions of Lemma 4.4
are satisfied. For r ∈ supp(R), let Ir ⊂ [1, 2m+mn− 4] denote the set of all i such
that σ(Si) = r and let Qr =

∏

i∈Ir
Si. If for some i ∈ Ir we have that Si does not

contain two distinct elements, say Si = h2
i for some hi ∈ G, then it is not hard to

see that jhi ∈ Σj(Qr) for every j ∈ [1, |Qr|]; just note that σ(Sj) = r = 2hi for
every j ∈ Ir .
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Let vr = vr(R). We have |Qr| = 2vr. If vr ≥ (n + 1)m/2 − 1, then we have
|Qr| ≥ mn = exp(G)/2. Thus, if for such an r there is some i ∈ Ir with Si = h2

i ,
then by Lemma 4.4 we would get a zero-sum subsequence of S.

Since π(Si) is a zero-sum sequence of length 2 overG/H ≃ C3
2 we have π(Si) = e2

for some e ∈ G/H . If we have π(Si) = e2 for some e | π(T ), then by F we know
that Si = h2

i ; this is because both elements of Si are equal to the one corresponding
element in T .

Thus, the only situation in which we cannot establish by F that there is some

i ∈ Ir with Si = h2
i is that π(Qr) = e

|Qr |
0 where e0 is the unique element of G/H

not in π(T ).

Let r, r′ ∈ supp(R) be the two elements with the greatest multiplicity. We know
that their respective multiplicities vr, vr′ are at least (n+ 1)m/2− 1; and if m = 1
then vr = vr′ = n − 1 (see the results recalled before Theorem 2.4). Suppose
π(Qr) = e2vr0 where e0 is the unique element of G/H not in π(T ), and likewise for
r′. It suffices to show that there exists some i ∈ Ir ∪ Ir′ such that Si = h2

i for some
hi ∈ G.

We proceed to show this is always the case. Sincemn > 2, we get that vr, vr′ ≥ 2.
Let i ∈ Ir and i′ ∈ Ir′ . Say Si = s1s2 and Si′ = s′1s

′
2. Assume for a contradiction

that each of these two sequences consists of two distinct elements. We have σ(Si) =
s1 + s2 = r as well as σ(Si′) = s′1 + s′2 = r′.

We can consider instead of Si = s1s2 and Si′ = s′1s
′
2, the sequences S′

i = s1s
′
1,

S′
i′ = s2s

′
2. We set S′

j = Sj for all j /∈ {i, i′}. Then R′ = σ(S′
1) . . . σ(S

′
2m+2mn−4)

is a sequence over H of length s(H) − 1 and it has no zero-sum subsequence of
length exp(H). Since supp(R) ⊆ supp(R′), the supports are in fact equal. If
m = 1, it is immediate by the resumts recalled before Theorem 2.4 that R = R′. If
m > 1, then since the multiplicity of each element in R is m− 1 (mod m) and the
same must be true for R′, it follows again that in fact R = R′. This means that
{σ(S′

i), σ(S
′
i′ )} = {r, r′}.

Likewise, we can consider instead of Si = s1s2 and Si′ = s′1s
′
2, the sequences

S′′
i = s1s

′
2, S

′′
i′ = s2s

′
1. And we set S′′

j = Sj for all j /∈ {i, i′}. Again, it follows that
R = R′′. This means that {σ(S′′

i ), σ(S
′′
i′ )} = {r, r′}.

Since σ(S′
i) 6= σ(S′′

i ), recall that we assumed s′1 6= s′2, we get {σ(S′
i), σ(S

′′
i )} =

{r, r′}. Without loss of generality we can assume σ(S′
i) = r. Then, we get σ(S′′

i ) =
r′ and thus σ(S′′

i′) = r. Since also σ(Si) = r, we get a contradiction. As s1 + s2 =
s1 + s′1 = s2 + s′1 implies that s2 = s′1 and s1 = s′1 and finally s1 = s2, which is a
contradiction. �

We end with the proof of our result on the multiwise Davenport constant.

Proof of Theorem 3.4. When n ≥ 2, it follows from Theorems 2.7, 2.3 and 3.1 that

D(G) = D(C2 ⊕ C2m) + (2mn− 1) and η(G) ≤ D(G) + 2mn,

so that [12, Theorem 6.1.5(1)] (see also [15] and [1]) yields the desired result.

Now, assume that n = 1. If k = 1, Theorem 2.7 readily gives

D1(G) = D(G) = 2m+ 2mn.
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If k ≥ 2, let H be a subgroup of G isomorphic to C2
m such that G/H is isomorphic

to C3
2 . On the one hand, [1, Lemma 3.7] gives D0(C

3
2 ) = 3, kD(C

3
2 ) = 2. By

Theorem 2.3,

Dk(C
2
m) = m+ km− 1 ≥ 2 = kD(C

3
2 ).

Therefore, we have (the first inequality by [1, Proposition 2.6], which is can be
proved using the inductive method)

Dk(C2 ⊕ C2m ⊕ C2m) ≤ DDk(H)(G/H)

= DDk(C2
m)(C

3
2 )

= D(m(k+1)−1)(C
3
2 )

= D0(C
3
2 ) + 2(m+ km− 1)

= 3 + 2(m+ km− 1)

= (2m+ 1) + k(2m).

On the other hand, let {e1, e2, e3} be an independent generating set of G such that
ord(e1) = 2 and ord(e2) = ord(e3) = 2m. For k ≥ 2, we consider the sequence

Sk = (e2 + e3)
2(k−1)m−1e2m−1

2 e
2(m−1)
3 e1(e1 + e2 + e3)(e1 + e2)(e1 + e3).

We show that Sk does not contain k disjoint non-empty zero-sum subsequences.
This yields Dk(C2 ⊕ C2m ⊕ C2m) > |Sk| = 2m+ k(2m). We set

T = e2m−1
2 e

2(m−1)
3 e1(e1 + e2 + e3)(e1 + e2)(e1 + e3) | Sk,

and

U = e1(e1 + e2 + e3)(e1 + e2)(e1 + e3) | T.

Now, suppose we have A1 . . . Ak | Sk where A1, . . . , Ak are k zero-sum subse-
quences. Since every non-empty zero-sum sequence is a product of minimal zero-
sum subsequences, we can assume that Ai is minimal for every i ∈ [1, k].

For every i ∈ [1, k], we set ki = ve2+e3(Ai) ∈ [0, 2m] and A′
i = Ai((e2+e3)

ki)−1 |

T . If A′
i does not contain any element of U then A′

i = e2m−ki

2 e2m−ki

3 so that
|Ai| = 4m − ki. If A′

i contains at least one of the elements of U then it contains
exactly two or four of them. Therefore, we obtain the following seven cases.

• A′
i = e1(e1 + e2)e

2m−(ki+1)
2 e2m−ki

3 , so that |Ai| = 4m− ki + 1

• A′
i = e1(e1 + e3)e

2m−ki

2 e
2m−(ki+1)
3 , so that |Ai| = 4m− ki + 1

• A′
i = e1(e1 + e2 + e3)e

2m−(ki+1)
2 e

2m−(ki+1)
3 , so that |Ai| = 4m− ki

• A′
i = (e1 + e2)(e1 + e3)e

2m−(ki+1)
2 e

2m−(ki+1)
3 , so that |Ai| = 4m− ki

• A′
i = e1(e1 + e2 + e3)(e1 + e2)(e1 + e3)e

2m−(ki+2)
2 e

2m−(ki+2)
3 , so that |Ai| =

4m− ki.

• A′
i = (e1+e2)(e1+e2+e3)e

2m−(ki+2)
2 e

2m−(ki+1)
3 , so that |Ai| = 4m−ki−1

• A′
i = (e1+e3)(e1+e2+e3)e

2m−(ki+2)
2 e

2m−(ki+1)
3 , so that |Ai| = 4m−ki−1
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Note that since ve1+e2+e3(Sk) = 1 and A1, . . . , Ak are disjoint, there is at most
one i ∈ [1, k] such that |Ai| = 4m− ki − 1. This yields

k
∑

i=1

|Ai| ≥
k

∑

i=1

(4m− ki)− 1

= 2k(2m)−
k

∑

i=1

ki − 1

≥ 2k(2m)− ve2+e3(Sk)− 1

= 2k(2m)− (2(k − 1)m− 1)− 1

= 2m+ k(2m)

= |Sk|.

Therefore, we obtain A1 . . . Ak = Sk. Yet, then 0 = σ(A1 . . . Ak) = σ(Sk) = −e3, a
contradiction. �
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