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1Laboratory MICS, CentraleSupélec, University of Paris Saclay, Chatenay-Malabry, 92295, France

Abstract

Motivation: Likelihood–free methods, like Approximate Bayesian computation (ABC), have been ex-
tensively used in model–based statistical inference with intractable likelihood functions. When combined
with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter esti-
mation and model selection of mathematical models of complex biological systems. A crucial step in the
ABC–SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter
vectors through a sequence of intermediate distributions using Markov kernels.
Results: In this paper we employ Dirichlet process mixtures (DPMs) to design optimal transition ker-
nels and we present an ABC–SMC algorithm with DPM kernels. We illustrate the use of the proposed
methodology using real data for the canonical Wnt signalling pathway. A multi–compartment model of
the pathway is developed and it is compared to an existing model. The results indicate that DPMs are
more efficient in the exploration of the parameter space and can significantly improve ABC–SMC perfor-
mance. In comparison to alternative sampling schemes that are commonly used, the proposed approach
can bring potential benefits in the estimation of complex multimodal distributions. The method is used
to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that
the multi–compartment model fits better the experimental data.
Availability: Python scripts for the Dirichlet Process Gaussian Muixture model and the Gibbs sampler
are available at https://sites.google.com/site/kkoutroumpas/software.
Contact: konstantinos.koutroumpas@ecp.fr

1 Introduction

Mathematical modeling has become an integral part of modern biological research. With the onset
of Systems Biology, mathematical models have been widely used to formally describe complex biological
systems. Models enable the use of mathematical analysis and computer simulations not only to understand
but also to predict and recently even control the behavior of biochemical processes (Milias-Argeitis et al.,
2011; Uhlendorf et al., 2012). A challenging task during model building is the estimation of its parameters
from experimental data. The equations describing the dynamics of a system depend on several parameters.
For instance, chemical reactions are described by rate parameters, which capture how quickly a protein is
synthesized or degraded or how fast a protein moves from one location to another in the cell. While some
parameters can be measured using biochemical studies, chemical–kinetic models also include a substantial
number of rate parameters that must be inferred from experimental data.

Parameter estimation approaches can be classified into two categories: frequentist and Bayesian. In
the frequentist approach a point, or interval, estimation of model parameters is provided by maximizing
the likelihood function

L(θθθ) = p(Do|θθθ),

naturally defined as the probability that the observed data Do have been generated by parameters θθθ.
Bayesian methods, on the other hand, have been proven a powerful alternative to frequentist methods,

one in which parameters are treated as random variables with distributions attached to them (i.e. posterior
distributions p(θθθ|Do)). The overall goal in this case is to estimate the parameters’ posterior distribution
based on: 1) prior beliefs/knowledge on the unknown parameters, in form of the prior distribution p(θθθ),
and 2) knowledge coming from the experimental data, in form of the likelihood function L(θ).
By relying on probability distributions, Bayesian methods do not require large sample approximations to
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provide one with interval estimates but rather allow one to use prior beliefs on the unknown parameters,
as expressed through the prior distribution p(θθθ). In other words, in a Bayesian context, the prior beliefs
are updated by the observed data Do via the likelihood function p(Do|θθθ), and the posterior distribution
is determined up to a normalized constant as follows

p(θθθ|Do) ∝ p(θθθ)p(Do|θθθ).

In several cases the calculation of the likelihood function L(θθθ) is difficult or even impossible, precluding
the use of conventional likelihood–based inferential techniques. However, simulating from the likelihood is
generally straightforward, even if obtaining a reliable numerical/functional representation of the model is
not possible. In such settings, likelihood-free computation or approximate Bayesian computation (ABC)
(Tavaré et al., 1997; Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007) can be employed.
ABC methods circumvent the explicit evaluation of the likelihood using a simulation–based approximation.
The original ABC algorithm jointly simulates

θθθ′ ∼ p(θθθ) and Ds ∼ p(Ds|θθθ′)

and accept θθθ′ if and only if the simulated dataset Ds is close to the observed dataset.
The simple ABC scheme suffers from the same shortcamings as other rejection samplers: most of the

samples are drawn from regions of parameter space, which cannot give rise to simulation outputs that
resemple data. Therefore a number of computational schemes have been proposed to enhance the efficiency
of ABC algorithms. ABC coupled to SMC samplers (Toni et al., 2009) aim to sample sequentially from a
sequence of distributions, which increasingly resemble the target posterior. The successive distributions
are constructed by sampling parameters from the previous samples, and perturbing them according to
a transition kernel (Del Moral et al., 2006). The choice of the transition kernel has a significant impact
on how accurate the approximate posterior is (Filippi et al., 2013). In most cases a random–walk kernel
is used to locally perturb a sample (Givens and Raftery, 1996; Filippi et al., 2013). However, the choice
of the transition kernel in an ABC context remains an open question, since the kernel influence is not
formally understood and can be problem–dependent.

Here we revisit the problem of optimal transition kernel design using infinite mixture models. Finite
mixture models have been previously used as importance densities in Adaptive Importance Sampling
approaches (Cappé et al., 2008; Wraith et al., 2009; Cornuet et al., 2012), with however a difficulty in
choosing the proper number of elementary distributions in the mixture. We thus propose the use of
infinite mixture models as successive important sampling distributions in the SMC framework, which will
prove to bring very appealing results as detailed below. We formally describe how infinite mixture models
and more precisely Dirichlet Process Mixtures (DPM) can be integrated in the ABC–SMC algorithm.
We show that the ABC–SMC with DPM kernels is significantly more efficient in approximating complex,
multimodal distributions and we illustrate its use in a model of the Wnt signalling pathway using real
experimental data. Given the wide use of the ABC–SMC algorithm in parameter estimation and model
selection and the improved performance of the proposed variant, we expect that it will significantly impact
future modeling efforts in Systems biology.

The remainder of the paper is organized as follows. A short description of the ABC and ABC–SMC
algorithms is provided in Section 2, followed by a description of the Dirichlet process Gaussian mixture
model. We then present how DPGMM can be used as a transition kernel in the ABC–SMC framework.
In Section 3 some biological background on the Wnt signalling pathway, the biological process we are
interested in, is given accompanied by a mathematical model describing the main chemical reactions in
the pathway. The methodology is applied both to a toy example and the Wnt pathway model in Section 4.
Finally, some concluding remarks and future extensions are discussed in Section 5.

2 Methods

2.1 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) methods (Tavaré et al., 1997; Pritchard et al., 1999; Beaumont
et al., 2002) replace the calculation of the likelihood with direct sampling from the posterior p(θθθ|D) ∝
p(D|θθθ)p(θθθ) through simulation. Given the prior distribution p(θθθ) on the parameter space, a candidate
parameter vector θθθ∗ is sampled from p(θθθ) and a simulated data set Ds is generated from the likelihood
function p(D|θθθ∗). The parameter vector is accepted if the simulated data set is close to the observed
data set Do according to a distance function d (d(Do, Ds) ≤ ε). The distance function detrermines
the discrepancy between the two datasets and ε is a tolerance value. If the data are too intricate or
complicated it is common to replace a comparison of the observed and simulated data by a comparison of
suitable summary statistics. An ABC rejection algorithm was used in Pritchard et al. (1999) for a model
of the variation in human Y chromosome and its basic scheme follows Algorithm 1.
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Input: Prior distribution p(θθθ), observed data set Do, likelihood function p(D|θθθ), number of
accepted particles N , tolerance ε

for i = 1→ N do
Sample θθθ∗ from p(θθθ).
Simulate a data set Ds ∼ p(D|θθθ).
while d(Do, Ds) > ε do

Sample θθθ∗ from p(θθθ).
Simulate a data set Ds ∼ p(D|θθθ).

end
Set θθθi = θθθ∗

end

Algorithm 1: ABC rejection algorithm

The output of the ABC rejection algorithm is a sample of parameter vectors from the distribution
p(θθθ|d(Do, Ds) ≤ ε). In the case that ε is sufficiently small, the distribution p(θθθ|d(Do, Ds) ≤ ε) is considered
a good approximation of the posterior distribution p(θθθ|Do). The acceptance rate of the ABC rejection
algorithm depends on the proposal distribution p(θθθ) and it can become very low for a diffuse prior.
Marjoram et al. (2003) proposed an ABC method based on Markov Chain Monte Carlo (ABC–MCMC)
to overcome the low acceptance rate problem. Although the algorithm is guaranteed to converge to the
approximate posterior distribution p(θθθ|d(Do, Ds) ≤ ε) while substantially improving the acceptance rate
over the ABC rejection algorithm (Marjoram et al., 2003), the samples in the generated Markov Chain
are highly correlated and the chain may stuck in areas of low probability for long periods of time (Sisson
et al., 2007).

2.2 Sequential Monte Carlo for ABC

Algorithms combining ABC and Sequential Monte Carlo sampling have been proposed (Sisson et al., 2007;
Toni et al., 2009) to avoid some of the disadvantages of the ABC–MCMC methods. To improve acceptance
rates due to the mismatch between the proposal and the target distribution, sequential sampling methods
(Del Moral et al., 2006) define a sequence of intermediate distributions p1, . . . , pT that evolve gradually
from a proposal distribution to the target distribution. The intermediate distributions are approximated
by a set of random samples, the so–called particles. Starting with a distribution p1 that is easy to ap-
proximate using the prior p, a number of particles, {θ1θ1θ1, . . . , θNθNθN}, are sampled from the prior and targeting
p1. The particles are then moved using a Markov kernel. It corresponds to sampling from an importance
sampling distribution and the new particles are thus weighted with importance sampling weights (Toni
et al., 2009), taking into account how well a particle conforms to the next target distribution and the
importance sampling distribution used to generate the samples. In the ABC framework the intermediate
distributions are constructed by considering different tolerance values, i.e. pi = p(θθθ|d(Do, Ds) ≤ εi) where
ε1 > ε2 > . . . > εT ≥ 0. In this study an ABC–SMC algorithm (Toni et al., 2009) based on sequential
importance sampling (Del Moral et al., 2006) is used and its scheme for a deterministic system is shown
in Algorithm 2.

Apart from the increased efficiency in comparison to the ABC rejection algorithm, ABC–SMC does not
stuck in low probability regions and the particles are not correlated, which is the case with ABC–MCMC
(Sisson et al., 2007). Moreover, given that a population of particles is used, the method is more efficient
when complex posteriors are considered (Sisson et al., 2007). However, the performance of the algorithm
clearly depends on the selected tolerance sequence. Fast decreasing tolerances can result in low acceptance
rates and poor performance, while if they decrease slowly the algorithm becomes computationally intensive
(Del Moral et al., 2012). For the optimal selection of the tolerance sequence, Del Moral et al. (2012)
proposed an adaptive ABC–SMC algorithm. The kernels Kj that are used to draw new particles starting
from the previous ones also affect ABC–SMC efficiency. Being easy to implement, local random–walk
moves (Gaussian or uniform) are usually employed (Sisson et al., 2007; Toni et al., 2009). The parameters
of the kernels are determined by some statistics on the previous sample population. Such approaches
can be problematic especially in the case of complex multimodal posteriors (Filippi et al., 2013). Filippi
et al. (2013) have derived optimality criteria based on the Kullback–Leibler divergence between a target
distribution and its estimate. They have also showed that for complicated posterior distributions, locally
adapted kernels that are designed taking into account the K–nearest neighbors for each particle tend to
show the best performance. The main drawback of this approach is that the number K has to be fixed a
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Input: Prior distribution p(θθθ), an observed data set Do, a likelihood function p(D|θθθ), num-
ber of accepted particles N , a tolerance schedule ε1 > . . . > εT ≥ 0

for j = 1→ T do
if j == 1 then

for i = 1→ N do
Sample θθθ∗ from p(θθθ).
Simulate a data set Ds ∼ p(D|θ∗θ∗θ∗).
while d(Do, Ds) > εj do

Sample θθθ∗ from p(θθθ).
Simulate a data set Ds ∼ p(D|θ∗θ∗θ∗).

end

Set θθθji = θθθ∗;

wji = 1

end
Normalize the weights wij

else
for i = 1→ N do

Sample θ∗θ∗θ∗ from
∑N

i=1w
j−1
i K(θθθ|θθθj−1i ).;

Simulate a data set Ds ∼ p(D|θ∗θ∗θ∗).
while d(Do, Ds) > εj do

Sample θ∗θ∗θ∗ from
∑N

i=1w
j−1
i K(θθθ|θθθj−1i ).;

Simulate a data set Ds ∼ p(D|θ∗θ∗θ∗).
end

Set θθθji = θθθ∗;

wji ∝
p(θθθji )∑N

i=1 w
j−1
i K(θθθji |θθθ

j−1
i )

.

end

Normalize the weights wji .

end

end

Algorithm 2: ABC–SMC algorithm
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priori and its value affects the exploration of the parameter space (Filippi et al., 2013). For this reason,
we propose to use a Dirichlet Process Gaussian Mixture Model to generate the proposal distributions at
each iteration of the SMC-ABC scheme.

2.3 Dirichlet Process Gaussian Mixture Model

Gaussian mixtures (GM) are a class of parametric mixture models that are used for density estimation
(McLachlan and Peel, 2004). Cappé et al. (2008), Wraith et al. (2009) and Cornuet et al. (2012) have
proposed the use of GM’s as importance densities in Adaptive Importance Sampling approaches. As with
the K–nearest neighbors approach in (Filippi et al., 2013), the number of components has to be pre–
selected and in most approaches model selection is used to select the optimal number of components. A
workaround to this problem is the use of a non–parametric Infinite Mixture model that assumes that the
data come from a mixture of an infinite number of distributions. In the following we consider the Dirichlet
Process Mixture (DPM) model (Antoniak, 1974) and more precisely the Dirichlet Process Gaussian Mix-
ture model (DPGMM) which has been extensively used for density estimation and data clustering (Müller
et al., 1996; Rasmussen, 1999; Escobar, 1994; MacEachern, 1994; Escobar and West, 1995). Starting with
a finite GM, we can obtain a DPGMM by taking the limit as the number of components goes to infinity.

A GM with K components can be written as:

p(xxx| (π1,µµµ1,Σ1) , . . . , (πK ,µµµK ,ΣK)) =

K∑
c=1

πcN (µµµc,Σc) (1)

where πc, µµµc and Σc are respectively the mixing proportion, the mean vector and the covariance matrix
for component c respectively. If we assume a Dirichlet prior on the mixing proportions and a prior
distribution H on the mean and the covariance, the model can be written:

xxxi|zi, (µ1,Σ1) , . . . (µK ,ΣK) ∼ N (µµµzi ,Σzi)

zi|π1, . . . , πK ∼ Cat(π1, . . . , πK)

π1, . . . , πK |α ∼ Dir(α/K, . . . , α/K)

(µµµi,Σi) ∼ H (2)

where zi is the indicator variable and corresponds to the component to which the observation xi belongs.
Given a set of observations {x1, x2, . . . , xN} the probability of an observation to belong to one of the K
components is (Görür and Rasmussen, 2010):

p(zl = j|zzz\l, α) =
C\l,j + α/K

N − 1 + α
(3)

where C\l,k =
∑
i=1,...,Ni 6=l δk(zi) is the number of observations except l that belong to component j. Tak-

ing the limit as K goes to infinity the probability that an observation belongs to a non–empty component
(i.e components with C\l,j > 0) is:

p(zl = j|zzz\l, α) =
C\l,j

N − 1 + α
(4)

and the probability to belong to one of the infinitely many empty components is:

p(zl 6= zk ∀ k 6= l|zzz\l, α) =
α

N − 1 + α
. (5)

Probabilities (4-5) are the same with the probabilities in a Chinese restaurant process that is used to
define a Dirichlet process. Hence, the infinite limit of a GMM (2) is a DPGMM (Görür and Rasmussen,
2010) which can be compactly written:

xxxi| (µµµi,Σi) ∼ N (µµµi,Σi)

(µµµi,Σi) ∼ G

G ∼ DP(H,α). (6)

where DP(H,α) is the Dirichlet process with concentration α and base distribution H.
The base distribution H is the mean of the DP, which means that the DP draws distributions “around”

H as a normal distribution draws real numbers around its mean. A strong property of DP is that the
distributions drawn are almost surely discrete even if the base distribution is continuous. The concen-
tration parameter α specifies how strong the discretization is. For an α close to 0, the distributions are
concentrated on a single value, while as α goes to ∞ the realizations are close to H. The component
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parameters are then sampled from the distribution drawn from the DP. Both the choice of the base dis-
tribution and the value of the concentration parameter are important for the performance of the model.
While the concentration parameter can sometimes be inferred from the data, it is harder to decide on
the base distribution. In most cases the base distribution is chosen so as to facilitate the inference of the
DPGMM model.

2.4 DPGMM estimation

DPM models are usually inferred using a MCMC algorithm (Neal, 2000). Most methods are based on
Gibbs sampling, where variables (parameters, hyperparameters and indicator variables) are updated in
turn by sampling from their posteriors conditional on the other variables. In the case that the base
distribution is the conjugate prior of the probability distribution of the observations generated from a
component, Gaussian in our case, a collapsed Gibbs sampler (MacEachern, 1994; Sudderth, 2006) is more
efficient than explicitly sampling parameters. In this case, the state of the Markov chain constructed
from this sampler consists of the indicator variables only that are updated by iteratively reassigning each
observation to a new component based on the assignments of the remaining observations. Consider a
set of observations xxx = {x1, x2, . . . , xN} from a GM (1) with unknown number of components K. The
probability of an observation l to belong to a component j is:

p(zl = j|zzz\l,xxx, α, κ, θ, ν,∆) = p(zl = j|zzz\l, α) (7)

p(xl|zl = j, zzz\l,xxx\l, κ, θ, ν,∆)

where p(zl = j|zzz\l, α) is given by (4) or (5) and p(xl|zl = j, zzz\l,xxx\l, κ, θ, ν,∆) can be seen as the likelihood
of xl to have been generated from the same Gaussian with the observations that already belong to the
component j. The latter can be approximated by a Gaussian with mean and covariance computed by the
observations belonging to the component j (Sudderth, 2006). The Gibbs sampler starts by assigning all
observations to a single component, and iteratively reassigns each observation to a new component based
on the assignments of the remaining observations according to (7).

In the case of DPGMM a natural selection for H is the Normal–Inverse–Wishart distribution, which
is the conjugate prior of normal distribution. The covariance matrix Σ is drawn from an inverse–Wishart
distribution:

W−1(Σ|ν,∆) ∝ |Σ|(−
ν+d+1

2 ) exp

{
−1

2
tr(ν∆Σ−1)

}
(8)

where ∆ is the covariance parameter, ν the degrees of freedom and d the dimension. Conditioned on Σ
the mean µµµ is drawn from a Normal distribution

N (θ,Σ/κ). (9)

A detailed description of the collapsed Gibbs sampler that was used for this study can be found in
Section 2.5.3, Algorithm 2.3 in Sudderth (2006). For the concentration parameter α an inverse gamma
prior was used as proposed in (Rasmussen, 1999).

2.5 ABC–SMC using DPGMM kernels

In the ABC–SMC framework, DPGMM can be used to fit a mixture on the samples of each population
and new samples can be drawn from the identified Gaussian components. More precisely, assume that
Θj−1Θj−1Θj−1 = {θj−1

kθ
j−1
kθ
j−1
k }Nk=1 are the samples accepted during iteration j − 1 of the ABC–SMC algorithm, W j−1W j−1W j−1 =

{wj−1
k }Nk=1 the corresponding weights, and zj−1zj−1zj−1 = {zj−1

k }Nk=1 the indicator variables estimated using the
previously described Gibbs sampler. Samples for the next iteration (lines 16 and 19 in Algorithm 2) can
be directly drawn from:

Kj−1∑
c=1

π̂cN (µµµj−1
c ,Σj−1

c ) (10)

where Kj−1 is the number of non–empty components of the DPGMM and

π̂c =
∑

k∈Cj−1
c

wj−1
k (11)

the sum of the importance weights of the particles Cj−1
c = {k = 1, . . . , N |zj−1

k = c} that belong to the
component.
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It is important to note that the sampling weights are also considered in the calculation of the param-
eters of each component, i.e. the mean and the covariance. The mean of a component c is given by the
weighted mean:

µj−1
cµ
j−1
cµ
j−1
c =

∑
k∈Cj−1

c

wj−1
k θt−1

kθ
t−1
kθ
t−1
k (12)

and the covariance matrix by the weighted covariance matrix:

Σj−1
c =

V j−1
c(

V j−1
c

)2

− Vj−1
c

(13)

∑
k∈Cj−1

c

[
wj−1
k

(
θj−1
kθ
j−1
kθ
j−1
k −µj−1

cµ
j−1
cµ
j−1
c

)T (
θj−1
kθ
j−1
kθ
j−1
k −µj−1

cµ
j−1
cµ
j−1
c

)]

where V j−1
c and Vj−1

c are the sum of the weights and the sum of the squares of the weights.

V j−1
c =

∑
k∈Cj−1

c

wj−1
k (14)

Vj−1
c =

∑
k∈Cj−1

c

(
wj−1
k

)2

(15)

3 The Wnt pathway

Wnt pathways are a family of intracellular signalling transduction pathways known for playing a key role
in cell’s development (e.g. cell proliferation, stem cell maintenance, differentiation, cardiac development).
They are the subject of intensive studies both in relation to cancer development as well as to embryonic
development pathologies (Fleiss et al., 2015). Two families of Wnt pathways have been, so far, charac-
terized according to their dependency on the multifunctional β-catenin protein (Kühl and Rao, 2010).
Canonical Wnt pathways (Wnt/β-catenin) regulate gene transcription via β-catenin mediated transduc-
tion of Wnt signal, whereas non-canonical Wnt pathways, like Wnt/Ca2+ (De, 2011), are involved in the
regulation of a cell’s physical characteristics, i.e. the cell shape, and its functioning. All Wnt pathways
share the same activation mechanism: the signal is triggered through the binding of a Wnt protein to
a receptor (of the Frizzled family) on the cell’s membrane, and propagated inside the cell through the
cytoplasmic dishevelled (Dsh) proteins. In this paper we consider a model of the canonical Wnt pathway.

Wnt/β-catenin signalling (basics). Signal transduction along the Wnt/β-catenin pathway is
initiated when extracellular Wnt proteins bind to receptors of the Frizzled family and to coreceptors
such as the lipoprotein receptor–related protein (LRP5/6). It triggers a cascade of events that involve
a number of actors both in the cytoplasm and in the nucleus of the cell. The core species known to be
involved in the pathway include (Table 1): the Dishvelled (Dsh) protein, the β-catenin protein, the Axin
protein, the adenomatous polyposis coli (APC), the glycogen synthase kinase 3 (GSK-3β), the multimeric
protein complex APC/GSK3β/Axin (given by complexation of APC, Axin and GSK-3β) also called the
destruction complex (DC), and at nucleic level, the T–Cell factor (TCF) and the lymphocyte enhancing
factor (LEF) which yield gene expression.

In the absence of extracellular Wnt molecules, β–catenin is destructed by the degradation complex,
which forms around the activated form of Axin (AxinP), in the cytosol. When Wnt binds to LRP at the
membrane, the assembly of the destruction complex is inhibited, leading to an accumulation of β–catenin
in the cytosol. Consecutively, β–catenin is relocated to the nucleus where it activates the transcription of
genes including the gene encoding for Axin protein.

Models of canonincal Wnt pathway. Many computational models of the Wnt/β-catenin path-
way have been proposed (Mazemondet et al., 2012; MacLean et al., 2016; Jensen et al., 2010; Schmitz
et al., 2013; Lee et al., 2003; Tan et al., 2014). They may be distinguished with respect to the biological
features they capture, for example whether they consider the compartmentalization of the cell, or the
granularity with which molecular activities are represented (MacLean et al., 2016). Some of the models
(Tan et al., 2014; Schmitz et al., 2013; Mazemondet et al., 2012) account for the cytoplasm/nucleus re-
location of some of the species. In Tan et al. (2014) the dynamics of β-catenin compartmental diffusion
have been investigated through a double-compartment ODEs model of Wnt-pathway which has been vali-
dated through time series measurements on Humans Epithelial Kidney (HEK293T) cells. In Jensen et al.
(2010) and Mazemondet et al. (2012) the negative feedback loop formed through the regulation of Axin
expression by nuclear β–catenin is modeled explicitly. In Jensen et al. (2010) the Wnt induced oscillatory
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Species
Acronym var. ID description

M
on

om
er

s

Dsha x1 active dishevelled
Dshi x2 inactive dishevelled

GSK3 x5 glycocen synthase kinase
APC x7 adenomatous polyposis coli
β-cat∗ x10 phosporylated beta catenin
β-cat x11 beta catenin
Axin x12 axin protein
TCF x13 T-Cell factor

P
o
ly

m
er

s

APC∗/Axin∗/GSK3 x3 complex
APC/Axin/GSK3 x4 complex

APC/Axin x6 complex
APC∗/Axin∗/GSK3/β-cat x8 complex
APC∗/Axin∗/GSK3/β-cat∗ x9 complex

TCF/β-cat x14 complex
APC/β-cat x15 complex

Table 1: Core species of Lee Wnt/β-catenin pathway model

dynamics of a β-catenin/Axin negative feedback loop have been unraveled in ODEs models of somato-
genesis. Most of the existing Wnt pathway models are based on the seminal work by Lee et al. (2003),
who proposed an ODE, mono–compartment, core model of canonical Wnt pathway, validated through
in-vitro measurement on the eggs of the Xenopus frog. Because of the amount of wet-lab experimental
data, to date, the Lee model represents the most accurate/complete effort in Wnt pathway modelling.
In the context of this paper, we also focus on the Lee model and present some numerical experiments
(Section 4) performed on it. We proceed below with a detailed description of the Lee model.

3.1 The Lee model.

The model consists of 6 core species (Dsh, Axin, β-catenin, TCF, APC and GSK3) and their basic inter-
actions, (i.e. synthesis, degradation, phosphorylation, reversible complexations). The overall dynamics
of the model are described by 15 mass action kinetics ordinary differential equations (16–29). In the
Lee et al. (2003) model, the existence of intracellular compartments (i.e. cytosol, nucleus) is abstracted
away, hence all species are assumed to be contained in a single cellular compartment. Furthermore, the
Wnt signal is not explicitly represented, rather it is assimilated to the state of the dishevelled (Dsh)
protein (active Dsh corresponding to the presence of Wnt signal on the membrane receptors, inactive Dsh
corresponding to its absence).

In absence of Wnt signal (Dshi), the DC (Axin∗/APC∗/GSK3) is free to form through a multi-
step reaction, consisting of: first the reversible dimerization of Axin with APC (APC/Axin, binding
at rate proportional to α8, unbinding at rate proportional to α9), then the reversible formation of the
Axin/APC/GSK3 trimer (binding at rate α6, unbinding at rate proportional to α7, if Dsh is inactive,
or to α5 if Dsh is active), followed by the reversible phosphorylation of Axin and APC parts of the
Axin/APC/GSK3 trimer to obtain the actual DC (Axin∗/APC∗/GSK3). The DC can then reversibly se-
quester free β-catenin molecules (sequestration at rate proportional to α10, liberation at rate proportional
to α11). β-catenin sequestration by the DC eventually leads to β-catenin degradation (at rate proportional
to α14) through an intermediate, irreversible, phosphorylation step (phosporylation at rate proportional
to α12). Notice that the decomplexation of the unphospohorylated form of DC (i.e. the Axin/APC/GSK3
complex) is regulated by the active form of Dsh (i.e. Dsha): in presence of Dsha the decomplexation of
Axin/APC/GSK3 is enhanced by a rate which is proportional to the level of Wnt signal (i.e. the amount
of Dsha) as well as to the constant rate α5. The model also accounts for constant production and degra-
dation of both β-catenin (produced at constant rate α15, degraded at rate proportional to α16) and Axin
(produced at constant rate α17, degraded at rate proportional to α18). Activation/inactivation of Dsh
(corresponding to the binding/unbinding of Wnt molecules to the cell’s membrane) are assumed to occur
at rate proportional to α1, respectively α2.
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R1 : Dshi
α1−⇀↽−
α2

Dsha

R2 : APC∗/Axin∗/GSK3
α4−⇀↽−
α3

APC/Axin/GSK3

R3 : APC/Axin + GSK3
α6−−−−−−−−−⇀↽−−−−−−−−−

α5[Dsha]+α7

APC/Axin/GSK3

R4 : APC + Axin
α8−⇀↽−
α9

APC/Axin

R5 : APC∗/Axin∗/GSK3 + β-cat
α12−−⇀↽−−
α11

APC∗/Axin∗/GSK3/β-cat

R6 : APC∗/Axin∗/GSK3/β-cat
α12⇀ APC∗/Axin∗/GSK3/β-cat∗

R7 : APC∗/Axin∗/GSK3/β-cat∗
α13⇀ APC/Axin/GSK3/+ β-cat∗

R8 : β-cat∗
α14⇀ ∅

R9 : ∅ α15⇀ β-cat

R10 : β-cat
α16⇀ ∅

R11 : ∅ α17⇀ Axin

R12 : Axin
α18⇀ ∅

R13 : β-cat + TCF
α19−−⇀↽−−
α20

β-cat/TCF

Figure 1: Chemical reactions in the Lee et al. (2003) model.

3.2 A compartmentalized Lee model

An important feature of the Lee et al. (2003) model to study the role of the Wnt pathway in diseases is
that it focuses on the assembly of the DC from its constituent parts. While available experimental data
are not adequate to fully characterize the dynamics of DC assembly, modelling these reactions enables
the prediction of system’s behavior under mutations. On the other hand, the most important lack of
the model is that it does not distinguish between the nucleus and cytoplasm. Mazemondet et al. (2012)
developed a model based on the Lee et al. (2003) model that distinguishes the two compartments and
also includes the β–catenin/Axin feedback loop. However, the specific model simplifies the DC assembly
procedure. Here, we combine the two models.

The new model consists of all the chemical reactions in the Lee et al. (2003) model except for R13

(Fig. 1) which is replaced by the reaction

R′13 : β-catn + TCF
α19−−⇀↽−−
α20

β-catn/TCF

where β-catn corresponds to the β–cateninin molecules localized in the nucleus. The model is completed
with one reaction for the β–cateninin transportation

R′14 : β-cat
α23−−⇀↽−−
α24

β-catn

and one for the regulation of the expression of Axin by the β-catn/TCF complex

R′15 : β-catn/TCF
α25⇀ β-catn/TCF +Axin.

The differential equations for Axin and β–catenin become

dx11

dt
= −α10x11x3 + α11x8 + α15 − α16x11 − α21x11x7

+α22x15 − α23x11 + α24x16 (30)

dx12

dt
= −α8x7x12 + α9x6 + α25x16 − α18x12 (31)

where x16 denotes the concentration of β–catenin in the nucleus governed by the following differential
equation:

dx16

dt
= −α19 ∗ x16 ∗ x13 + α20 ∗ x14 + α23x11

−α24x16 (32)
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dx1
dt

= −α1x1 + α2x2 (16)

dx2
dt

= α1x1 − α2x2 (17)

dx3
dt

= α3x4 − α4x3 − α10x11x3 + α11x8 + α13x9 (18)

dx4
dt

= −α5x2x4 − α3x4 + α4x3 + α6x5x6 − α7x4 (19)

dx5
dt

= α5x2x4 − α6x5x6 + α7x4 (20)

dx6
dt

= α5x2x4 − α6x5x6 + α7x4 + α8x7x12 − α9x6 (21)

dx8
dt

= α10x11x3 − α11x8 − α12x8 (22)

dx9
dt

= α12x8 − α13x9 (23)

dx10
dt

= α13x9 − α14x10 (24)

dx11
dt

= −α10x11x3 + α11x8 + α15 − α16x11 − α19x11x13 + α20x14 − α21x11x7 + α22x15 (25)

dx12
dt

= −α8x7x12 + α9x6 + α17 − α18x12 (26)

dx13
dt

= −α19x11x13 + α20x14 − α21x11x7 + α22x15 (27)

dx14
dt

= α19x11x13 − α20x14 (28)

dx15
dt

= α21x11x7 − α22x15 (29)

Figure 2: Differential equations in the Lee et al. (2003) model.

4 Results

An implementation of the ABC–SMC method (Algorithm 2) is available in the Python package ABC–
SysBio (Liepe et al., 2010). Several kernels are already available in the ABC–SysBio. We used the
component–wise Gaussian (cwG), the multivariate Gaussian (mvG) and the K–neighbors multivariate
Gaussian (KmvG) for comparison. Assume a set of parameter vectors ΘΘΘ = (θ1θ1θ1, . . . , θNθNθN ) with weights
www = (w1, . . . , wN ), where each parameter vector has d components θiθiθi = (θi1, . . . , θ

i
d).

In the cwG kernel each component θj of the parameter vector is perturbed independently according
to a Gaussian distribution with mean θj and variance:

σ2
j =

∑N
i=1 w

i(θij − µj)2

V − (V/V )
(33)

where V =
∑N
i=1 w

i and V =
∑N
i=1 w

i2 are the sum of the weights and the sum of the squares of the

weights respectively and µj =
∑N
i=1 w

(i)θij is the weighted mean for the specific component.
In the mvG kernel, the correlations between the components of the parameter vector are taken into

account. A particle θjθjθj is perturbed using a multivariate normal distribution with mean θjθjθj and covariance
matrix:

Σ =
V

V 2 − V
=

N∑
i=1

wi(θiθiθi −µµµ)T (θiθiθi −µµµ) (34)

where µµµ =
∑N
i=1 w

iθiθiθi is the weighted mean.
The KmvG kernel, starts by selecting for each particle θjθjθj the K–nearest neighbors. Then a multivariate

normal distribution with mean θjθjθj and covariance matrix computed by (34) but taking into account the
K–nearest neighbors only, is used to draw a new particle. In ABC-SysBio, K is set by default to a quarter
of the number of particles, and this value was used in the following studies.
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Further to the above described packages, featured by the ABC-SysBio framework, we have developed a
Python package for the DPGMM and the Gibbs sampler described in Section 2. Regarding the DPGMM
inference several iterations may be needed for the sampler to converge. In order to increase the overall
computational efficiency, a reduced number of iterations (50) was pre–selected. At each iteration, the
Bayesian information criterion (BIC) was used to evaluate how well the data fit to the proposed model.
The cluster assignment with the lowest BIC was used to define the transition kernels in the ABC–SMC.
For the ABC–SMC, we used 1000 particles and an Euclidean distance measure to compare simulated and
experimental data. While different tolerance sequences may be optimal for each kernel, we used the same
tolerance sequence for all of them as we wanted to compare their efficiency under the same conditions.

4.1 Toy example

In order to highlight the advantages of the DPGMM kernel, we initially apply ABC–SMC to a toy example
with known posterior. We assume that the data are produced by the likelihood function:

p(D|θθθ) = N
(

[θ2
1 θ

2
2],

[
0.5 0
0 0.5

])
(35)

and that Do = [1 1] is observed. The posterior density is then

p(θ1, θ2|Ds) = φ

(
[1 1]

∣∣∣∣[θ2
1 θ

2
2

]
,

[
0.5 0
0 0.5

])
(36)

where φ(·|µµµ,Σ) is the two dimensional normal density with mean µ and covariance matrix Σ. As it is
shown in Figure 3A, there are 4 modes in the posterior distribution around the points [1 1], [1 −1], [−1 1]
and [−1 − 1].

Using ABC–SMC and a uniform prior distribution on the space [−10 10]×[−10 10] we tried to estimate
the posterior distribution. As it is shown in Figures 3C–F, the posteriors predicted by all 4 kernels are
close to the true posterior. However, there is a significant difference in the efficiency of each kernel. When
the cwG and mvG kernels are used many more particles have to be generated in order to accept 1000
particles from the next intermediate distribution in comparison to the locally concentrated KmvG and
DPGMM kernels. The acceptance rates of the latter are in some cases over two times higher than the
former ones. This is expected as the parameters of cwG and mvG kernels are derived from all the particles
in the previous population and thus more and more of the generated particles fall into the area surrounded
by the 4 modes. Moreover, the performance of the two kernels is almost identical, which is normal given
that there is no correlation between the two parameters, due to the diagonal covariance matrix. From
the other two kernels, DPGMM consistently provides better acceptance rates than KmvG. Especially in
the last 5 populations, in which the acceptance rate is low for all kernels, 50 − 70% more particles have
to be generated with the KmvG than with the DPGMM kernel.

4.2 Parameter estimation for the Wnt pathway

The Lee–model (Section 3.1) consists of 22 parameters. While several of them have been measured through
experiments on the Xenopus frog (Lee et al., 2003), we expect their values to be different for measurements
performed on Human cells (Tan et al., 2014). Nevertheless, given the scarce experimental data available,
we fixed all parameters to constant values that have been used in previous studies (MacLean et al., 2016)
except for three: the binding rate between β–catenin and the destruction complex (α11), the β–catenin
degradation rate (α16), and the binding rate of β–catenin and TCF (α19). Uniform priors with ranges
[0 100], [0 1], [0 1.5] were used for each parameter respectively. We also aimed at estimating the initial
concentration of β–catenin. For the remaining species we used the initial concentrations reported in (Tan
et al., 2012). For β–catenin, x11, we used a uniform prior with range [0.5 200]. A similar approach
was used for the extended Lee model (Section 3.2). For the new parameters introduced due to the new
reactions, the parameter values reported in (Mazemondet et al., 2012) were used. As with the Lee model
all parameters were fixed except for: the binding rate between β–catenin and the destruction complex
(α11), the β–catenin degradation rate (α16), and the β–catenin trasportation rate α23. For the first two
the same uniforms as before were used, while for α23 we used a uniform prior with range [0 10]. Given that
two pools of β–catenin are considered in the extended model, we estimated the initial concentrations of
both cytosolic and nuclear β–catenin, x11 and x16. The simulated data were compared to the experimental
data from (Tan et al., 2014). In Tan et al. (2014) the β–catenin concentration in the cytosol and the
nucleus was measured at four time points (0, 60, 120, and 240 minutes) with and without Wnt. Here
we consider the total β–catenin concentration after pathway activation. For the Lee model simulated
data correspond to the concentration x11, while for the extended model we used the total β–catenin
concentration, i.e. x11 + x16.
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Figure 3: Parameter estimation results for the toy example. (A) True posterior distribution
for the likelihood function in (35). (B) Acceptance rates (fraction of generated particles that
are accepted) for the cwG purple), the mvG (cyan), the KmvG (green) and the DPGMM (red)
kernels for each population. (C–F) Intermediate distributions for different tolerance values,
starting with a high tolerance (red) to a low tolerance (purple) approximated using cwG (C),
mvG (D), KmvG (E) and DPGMM (F) kernels.

Being mostly interested on the results than comparing the different kernels, we did not pre–define
a tolerance sequence, but we used an adaptive approach to estimate the next tolerance ε based on the
particles accepted at the current population. More precisely, after having accepted N particles for which
the distance between simulated and experimental data is lower than the current tolerance εi, we select
the next tolerance εi+1 to be equal to the higher distance of the αN best particles, where 0 < α < 1. This
means that the αN particles from the current population will also be in the next population. A value of
α close to 1 guarantees that the intermediate target distributions do not differ significantly. We set the
α equal to 0.75 and the lowest tolerance εT = 0.15. Based on the results from the toy example we used
the DPGMM and the K–nearest neighbors kernels to ensure that the results will be the same for the two
kernels.

The posterior distributions, as approximated using the DPGMM kernel, are shown in Figures 4 and
5 for the model parameters and the concentrations respectively. Similar results were obtained using the
K–nearest neighbors kernel. For the β–catenin–DC binding rate (α11) the results are different for the
two models. For the Lee et al. (2003) model it spans the prior range, while for the compartmentalized
model it takes values over the higher half of its prior range. The β–catenin degradation rate (a16) values
are concentrated towards the lower half for both models but the range for the Lee model is much wider.
Finally, the values of the third parameter, the binding rate of β–catenin and TCF (α19), span the prior
range, while the β–catenin trasportation rate α23 is concentrated around the upper limit of the prior
range. It is clear from the results that some parameters affect more the results than others, for which
their values do not signifficantly alter the results (i.e. the parameters whose values span the whole
prior range). In summary for both models there exist sets of parameters for which model predictions
match the experimental data well even if the remaining parameters have been fixed most probably to
unrealistic values. This is not unreasonable if we consider the complexity of the models with respect to
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Figure 4: Marginal posterior distributions for the Lee et al. (2003) model parameters (A–C) and
the compartmentalized model (D–F) approximated using ABC–SMC with DPGMM transition
kernels.

the data (MacLean et al., 2016). The results for the initial concentrations, on the other side, provide
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Figure 5: Marginal posterior distributions for the initial concentrations of (A) the cytosolic β–
catenin (x11) in the Lee et al. (2003) model, and (B) the cytosolic and (C) nuclear β–catenin in
the compartmentalized model approximated using ABC–SMC with DPGMM transition kernels.

much more information than the parameter estimations. An interesting observation is that the initial
β–catenin concentration for the Lee model has to be very low (the posterior is concentrated around 1,
Fig. 5A) for the model predictions to be close to the experimental data. The posterior distributions for
the compartmentalized model are significantly more spread. The concentration of the cytosolic β–catenin
ranges from 0 to 50 nM, with a small peak around 20–25 nM, while the one for the β–catenin in the nucleus
varies between 70 and 130 nM with a peak around 120 nM. These numbers are in accordance with the
initial concentrations (25 nM in the cytosol and 147 nM in the nucleus) that have been exerimentally
measured in HEK293T cells (Tan et al., 2012).

Regarding the performance of the two kernels, the proposed DPGMM kernel provides either better or
similar acceptance rates with the KmvG kernel (Fig 6A). However, the running times of the ABC–SMC
algorithm (Fig. 6B) with the KmvG kernel are better than DPGMM. The reason is that the implemented
Gibbs sampler is computationally expensive. However, it is important to note that the computational
cost of simulating the data was extremely low for the model we consider here. One simulation of the
ODE model lasted around 0.042 seconds. Stiffer or stochatic models usually require considerably more
time. Projections of the running times of the ABC–SMC algorithm with acceptance rates equal to the
ones observed using DPGMM and KmvG kernels and assuming simulations lasting 1 sec and 5 secs are
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generated particles that are accepted) using the KmvG (red) and the DPGMM (black) kernels
(B) Computational times for the two kernels (solid lines). Projection of the computational times
assuming a simulation time of 1 sec (dashed lines) and 5 secs (dotted lines).

shown in Figure 6B (dashed and dotted lines respectively).

5 Conclusions

We presented a likelihood-free methodology to learn the parameters of mathematical models of complex
biological systems. The proposed approach is based on Dirichlet process mixtures (DPMs) that have
been previously used in density estimation. We used the DPMs in a ABC–SMC framework to efficiently
explore the parameter space. It was shown that the proposed approach can bring potential benefits
compared to commonly used alternatives improving the efficiency of SMC mathods in targeting complex,
multimodal distributions. Apart from the improved performance, another advantage of DPMs is that
they are user friendly as, due to their non–parametric nature, they do not require a predefined number
of Gaussian components. The advantages of the method were highlighted using both a toy example and
a real biological system, the Wnt signalling pathway.

While the proposed methodology was used with ABC–SMC its applicability is not limited to the
specific framework. It can be easily extended to several bayesian inference algorithms, like MCMC, to
design proposal distributions. Similarly, it could be used for other problems like model selection. In the
ABC–SysBio package an ABC–SMC algorithm for model selection is available. Thus, the use of DPMs
for model selection is straight forward. An interesting extension of the present work is the development of
an ABC–SMC algorithm to estimate model parameters using single–cell experimental data. We envisage
that the increased efficiency of DPMs in estimating multimodal distributions will be beneficial in studying
cell–to–cell variability and infering multidimensional parameter distributions describing a population of
cells that may be grouped according to their environmental conditions.

A drawback with DPM kernels is that they may become computationally expensive. The implemented
Gibbs sampler requires a significant amount of time to infer the DPGMM. However, it is important to
note that the computational cost of simulating biological systems may also be high. Thus, the increase
in the acceptance rate may be beneficial when the computational cost to simulate complex data is not
negligible. Apart from Gibbs sampling, several alternative inference approaches for DPMs are available
(Blei et al., 2006; Wang and Dunson, 2011) and it would worth investigating their efficiency.
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Lee, E., Salic, A., Krüger, R., Heinrich, R., and Kirschner, M. W. (2003). The roles of apc and axin derived from experimental and

theoretical analysis of the wnt pathway. PLoS Biology, 1(5), 745–756.

Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., and Stumpf, M. P. (2010). ABC–SysBio–approximate Bayesian

computation in Python with GPU support. Bioinformatics, 26(14), 1797–1799.

MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics-

Simulation and Computation, 23(3), 727–741.

MacLean, A., Harrington, H., Stumpf, M., and Byrne, H. (2016). Mathematical and statistical techniques for systems medicine:

The wnt signaling pathway as a case study. Methods Mol Biol, 1386, 405–439.
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