
HAL Id: hal-01817483
https://hal.science/hal-01817483v1

Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling tools for detecting DoS attacks in WSNs
Paolo Ballarini, Lynda Mokdad, Quentin Monnet

To cite this version:
Paolo Ballarini, Lynda Mokdad, Quentin Monnet. Modeling tools for detecting DoS attacks in WSNs.
Security and communication networks, 2013, 6 (4), pp.420-436. �10.1002/sec�. �hal-01817483�

https://hal.science/hal-01817483v1
https://hal.archives-ouvertes.fr


SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 0000; 00:1–17

DOI: 10.1002/sec

RESEARCH ARTICLE

Modeling tools for detecting DoS attacks in WSNs
Paolo Ballarini1, Lynda Mokdad2∗and Quentin Monnet2

1Laboratoire MAS, École Centrale de Paris
2Laboratoire LACL, Université Paris-Est, Créteil

ABSTRACT

Detecting Denial of Service (DoS) attacks and reducing the energy consumption are two important and frequent
requirements in Wireless Sensor Networks (WSNs). In this paper, we propose an energy-preserving solution to detect
compromised nodes in hierarchically clustered WSNs. DoS detection is based on using dedicated inspector nodes (cNodes)
whose role is to analyze the traffic inside a cluster and to send warnings to the cluster-head whenever an abnormal
behavior (i.e. high packets throughput) is detected. With previously introduced DoS detection schema cNodes are statically
displaced in strategic positions within the network topology. This guarantees a good detection coverage but leads to quickly
draining cNodes battery. In this paper we propose a dynamic cNodes displacement schema according to which cNodes
are periodically elected among ordinary nodes of each atomic cluster. Such a solution results in a better energy balance
while maintaining good detection coverage. We analyze the tradeoffs between static and dynamic solutions by means of
two complementary approaches: through simulation with the NS2 simulation platform and by means of statistical model
checking with the Hybrid Automata Stochastic Logic.
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INTRODUCTION

Detecting phenomena such as forest fires or seismic
activities implies to keep watch over wide areas. Wireless
Sensor Networks (WSNs) are often used so as to achieve
this watch. The sensors that make up those WSNs
are devices able to perform measurements on their
surrounding environment, and to send the collected data
to a Base Station (BS). Due to their small size, the
sensors have very limited resources: memory, computing
capability as well as available energy must be spent with
care [GA09][BY10][BF12].

Other uses of WSNs include activities such as
preventing chemical, biological or nuclear threats in an
area, or collecting data on a military field [LB09] [CS11].
In such sensitive domains, the deployment of a WSN
brings out strong requirements in terms of security. Various
works deal with ways of preventing unauthorized access
to data, or with the necessary precautions to guarantee
data authenticity and integrity inside the network [MS11]
[BBBP12] [BB12][YB10]. But confidentiality as well as

authentication are of poor use if the network is not even
able to deliver its data correctly.
Denial of Service in WSNs. Denial of Service (DoS)
attacks indeed aim at reducing, or even annihilating
the network ability to achieve its ordinary tasks,
or try to prevent a legitimate agent from using a
service [HS05][DFHV10] [FH11]. Because of the limited
resources of their nodes, WSNs tend to be rather
vulnerable to DoS attacks. For instance, a compromised
sensor node can be used in order to send corrupted data at
a high rate, either to twist the results or to drain the node’s
energy faster.

The problem we deal with in this paper is the
development and analysis of detection mechanisms which
are efficient both in terms of detection (i.e. they guarantee
a high rate of detection of flooding nodes) and in terms of
energy (i.e. they guarantee a balanced energy consumption
throughout the network).
Clustered WSNs. One way to save some battery power
during communications may reside in the choice of the
network architecture and of the protocol used to route the
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data from a sensor to the BS [ATB05]. In a hierarchical
WSN, the network is divided into several clusters. The
partition is done according to a clustering algorithm such
as LEACH [HW00] [OX09], HEEDS [YF04], or one
based on ultra-metric properties [FL11]. In each cluster,
a single common node is elected to be a Cluster Head
(CH), responsible for directly collecting data from the
other nodes in the cluster. Once enough data has been
gathered, the CHs proceed to data aggregation [YL11].
Then they forward their results to the BS. CHs are the
only nodes to communicate with the BS, either directly,
through a long-range radio transmission, or by multi-
hopping through other CHs. So as to preserve the nodes’
energy as long as possible, the network reclustering is
repeated periodically, with different nodes being elected
as CHs. Note that clustering is not limited to a “single-
level” partition. We can also subdivide a cluster into several
“sub-clusters”. The CHs from those “sub-clusters” would
then send their aggregated data to the CHs of their parent
clusters.
DoS detection: from static to dynamic guarding
policies. In a hierarchically organised WSN, a control node
(cNode in the remainder) is a node which is chosen to
analyze the traffic directed to the CH of the cluster it
belongs to, and potentially detect any abnormal behavior.
Therefore cNodes provide us with an efficient way to
detect DoS attacks occurring in the network. Note that
cNodes are only meant to detect DoS attacks, thus they do
not perform any sensing, nor do they send any data (apart
from attack detection alarms). cNodes-based detection
was first presented in [LC08], but the authors do not
mention any periodical (cNodes) re-election scheme. One
can suppose that the renewal of the election occurs each
time the clustering algorithm is repeated. In [GM12],
we proposed a dynamic approach: cNodes are re-elected
periodically (any node in a cluster may be chosen, except
the CH) with the election period selected to be shorter
than that between two network clusterings. Intuitively such
dynamic approach (in comparison to that of [LC08]), leads
to a more uniform energy consumption while preserving a
good detection ability.
Our contribution. In this paper we address the problem
of validating the above conjecture by means of modeling
techniques. More specifically our contribution regards the
following aspects:

i. we present a characterization of Markov chains
models for representing DoS detection mechanisms
and detail relevant steady-state measures analytically
(i.e. we give the expression for the probability of
detection of attacks in the Markov chain model);

ii. we present a number of numerical results obtained
by simulation of DoS detection on WSN models
by means of the network simulator NS2 [NS2]. In
particular we simulate models of grid topology WSN
including DoS (static and dynamic) detection policies;

iii. we present formal models of the DoS detection
mechanisms expressed in terms of Generalized
Stochastic Petri Nets (GSPN). In combination to
GSPN models we also present a number of
performance and dependability properties formally
expressed in terms of the the Hybrid Automata
Stochastic Logic (HASL) [BDDHP11].

The structure of the paper is as follows: in Section 1 we
give an overview of DoS attack detection for cluster-based
WSNs. In Section 2 we detail the networking solution
we want to model including LEACH clustering algorithm
which we refer to. In Section 3 we describe the structure of
Markov chain models for modelling an attacked network.
In Section 4 we present simulation experiments obtained
with the NS2 platform. In Section 5 we present the
application of statistical model checking performance
analysis to Petri Nets models of attacked WSNs. Finally
we give some final remarks in the Conclusion.

1. RELATED WORKS

To deal with DoS attacks in wireless sensor networks,
many research studies have been conducted.

In [LC08], the authors propose a system detection based
on static election of a set of special nodes called “guarding
nodes” which analyze the network traffic. When detecting
abnormal traffic from a given node, “guarding nodes”
identify it as a compromised node and they inform the
cluster head of it. In this study, the authors show the
benefit of their method by presenting numerical analysis
of detection rate but they don’t consider the energy of the
elected node which dies very quickly.

Back in 2001, most works focused on making WSNs
feasible and useful. But some people already involved
themselves into security. For instance, Perrig et al.
proposed SPINS (Security Protocols for Sensor Networks)
in [AP01] to provide networks with two symmetric key-
based security building blocks. The first block, called
SNEP (Secure Network Encryption Protocol), provides
data confidentiality, two-party data authentication and data
freshness. The second block, called µTESLA (“micro”
version of the Timed, Efficient, Streaming, Loss-tolerant
Authentication Protocol) assumes authenticated broadcast
using one-way key chains constructed with secure hash
functions. No mechanism was put forward to detect DoS
attacks.

A sensor network may be recursively and periodically
reclustered with an algorithm such as LEACH, as
in our proposal. The resulting hierarchically clustered
network often presents a good ability for distributing
the energy consumption among the sensor nodes. But
security concerns (other than DoS) also apply to those
networks. In [LO07], Oliveira et al. propose to add
security mechanisms via a revised version of LEACH
protocol. SecLEACH uses random key pre-distribution
as well as µTESLA (authenticated broadcast) so as to
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protect communications. But the authors do not mention
any mechanism to fight DoS attacks.

Elements from game theory have been used in several
studies to detect DoS attacks in WSNs. In [MM09], Mohi
et al. propose another another way to secure the LEACH
protocol against selfish behaviors. With S-LEACH, the
BS uses a global Intrusion Detection System (IDS) while
LEACH CHs implement local IDSs. The interactions
between nodes are modeled as a Bayesian game, that
is, a game in which at least one player (here, the BS)
has incomplete information about the other player(s) (in
this case: whether the sensors have been compromised or
not). Each node has a “reputation” score. Selfish nodes
can cooperate (so as to avoid detection) or drop packets.
The authors show that this game has two Bayesian Nash
equilibriums which provide a way to detect selfish nodes,
or to force them to cooperate to avoid detection.

The best way to detect for sure a DoS attack in a WSN
is simply to run a detection mechanism on each single
sensor. Of course, this solution is not feasible in a network
with constraints. Instead of fitting out each sensor with
such mechanism, Islam et al. propose in [HI09] to resort
to heuristics in order to set a few nodes equipped with
detection systems at critical spots in the network topology.
This optimized placement enables distributed detection
of DoS attacks as well as reducing costs and processing
overheads, since the number of required detectors is
minimized. But those few selected nodes are likely to run
out of battery power much faster than normal nodes.

Sensors authentication and DoS detection in clustered
networks may be assumed by a single architecture. In
[MH07], Hsieh et al. present SecCBSN, an adaptive se-
curity design intended to Secure Cluster-Based Commu-
nication in Sensor Networks. Each node is equipped with
a system that includes three modules. One is involved in
the cluster head election, and responsible for remembering
the decision which were made. Another module provides
ciphered communication and secure authentication pro-
tocols between sensors. It uses the TESLA certificate to
enable deployed sensors to authenticate new incoming
nodes. It allows the creation of secure channels as well
as broadcast authentication between neighboring sensors.
The last security module is responsible for the detection of
compromised nodes. When a node is suspected to harm the
network, alarm protocols are used to warn the base station.
The use of trust value evaluation then enables the setting
and the propagation of black and white lists of sensors.

Some works examine the possibility to detect the
compromising of nodes as soon as an opponent physically
withdraw them from the network. In the method that
Ho develops in [JH10], each node keeps watching on
the presence of its neighbors. The Sequential Probability
Radio Test (SPRT) is used to determinate a dynamic time
threshold. When a node appears to be missing for a period
longer that this threshold, it is considered to be dead or
captured by an attacker. If this node is later redeployed
in the network, it will immediately be considered as

compromised without having a chance to be harmful.
Nothing is done, however, if an attacker manages to
compromise the node without extracting the sensor from
its environment.

In [SM10], Misra et al. propose a revised version of
the OLSR protocol. This routing protocol called DLSR
aims at detecting distributed denial of service (DDoS)
attacks and at dropping malicious requests before they
can saturate a server’s capacity to answer. To that end,
the authors introduce two alert thresholds regarding this
server’s service capacity. They also introduce the use
of Learning Automata (LAs), automatic systems whose
choice of next action depends on the result of its previous
action. There is no indication in their work about the
overhead or the energy load resulting from the use of the
DLSR protocol.

Son et al. propose in [JS10] a novel broadcast
authentication mechanism to cope with DoS attacks
in sensor networks. This scheme uses an asymmetric
distribution of keys between sensor nodes and the BS, and
uses the Bloom filter as an authenticator, which efficiently
compresses multiple authentication information. In this
model, the BS or sink shares symmetric keys with each
sensor node, and proves its knowledge of the information
through multiple MAC values in its flooding messages.
When the sink floods the network with control messages
it constructs a Bloom filter as an authenticator for the
message. When a sensor node receives a flooded control
message, it generates their Bloom filter with its keys and
in the same way the sink verifies message authentication.

Li and Batten expose in [LB09] their method to detect
and to recover from Path-based DoS (PDoS) attacks in
wireless sensor networks. They consider WSNs whose
aim is to collect data and to store it into small databases.
PDoS attacks may prevent legitimate communication,
lead the sensors to battery exhaustion and corrupt the
gathered data. So the authors introduce the use of Mobile
Agents (MAs), which use hash function values, node
IDs and traffic table to analyze the traffic and identify
compromised sensors. Thus the MAs are able to detect
PDoS attacks with ease and efficiency, and to reply to
the attack by proceeding to a recovery process. There are
three distinct recovery processes available, depending on
the percentage of compromised nodes in the network. Note
that the authors use the assumption that MAs can not be
compromised.

2. DETECTION OF DOS ATTACKS

2.1. Wireless Sensor Networks

We focus on the problem of detecting denial of service
(DoS) attacks in a WSN. We recall that a WSN consists
of a finite set of sensors plus a fixed base station
(BS). Traffic in a WSN (mainly) flows from sensor
nodes towards the BS. Furthermore since WSN nodes
have inherently little energy, memory and computing
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capabilities, energy efficiency is paramount when it comes
with mechanisms/protocols for WSN management. Also
communications between sensors and the BS rely on
wireless protocols. In the following we assume that the
nodes’ mobility is limited or null.

Our goal is to set an efficient method to detect
compromised nodes which may try to corrupt data, or to
saturate the network’s capacity, by sending more data than
it should. In this case, efficiency can be measured in two
respects:

• the detection rate of the compromised node(s);
• the network’s lifetime, as we want to spend as little

energy as possible.

In order to achieve these goals we focus on the following
techniques: hierarchical network clustering, and dynamical
election of control nodes responsible for monitoring the
traffic.

2.2. Hierarchical clustering

The class of WSNs we consider is that of hierarchically
cluster-based networks. The set of sensors has been
partitioned into several subsets called “clusters”. Those
clusters are themselves split into “sub-clusters”. For a
better clarity, we will call 1-clusters the sets resulting from
the first clustering of the global set, and k-clusters the
subset issued from the splitting of any (k−1)-cluster. The
successive clusterings are carried out with the use of any
existing clustering algorithm, such as LEACH [HW00]
[OX09], HEEDS [YF04], algorithms based on ultra-metric
properties [YL11], etc. Each cluster contains a single
cluster head (CH), designated among the normal nodes.
The CH is responsible for collecting data from the other
nodes of the subset. To follow up our naming conventions,
we will call k-CHs the CHs belonging to the k-clusters. The
k-CHs send the data they gathered to their (k−1)-CH, the
“0-CH” being the base station. In that way, the k-CHs are
the only nodes to emit send packets towards the (k− 1)-
CHs. Normal nodes’ transmissions do not have to reach
the base station directly, which would often consume much
more energy than communicating with a neighbor node.

LEACH functioning
LEACH is probably one of the easiest algorithm to

apply to recluster the network. It is a dynamical clustering
and routing algorithm. We use it for our simulations using
NS2. It splits a set of nodes into several subsets, each
containing a cluster head. This CH is the only node to
assume the cost-expensive transmissions to the BS.

Here is the LEACH detailed processing. Let P be the
average percentage of clusters we want to get from our
network at an instant t. LEACH is composed of cycles
made of 1

P rounds. Each round r is organized as follows:

1. Each node i computes the threshold T (i):

T (i) =


P

1−P ·
(
r mod 1

P

) if i has not been CH yet

0 if i has already been CH

Each node chooses a pseudo-random number 0 ≤
xi ≤ 1. If xi ≤ T (i) then i designates itself as a CH
for the current round. T (i) is computed in such a
way that every node becomes CH once in every
cycle of 1

P rounds: we have T (i) = 1 when r =
1
P −1.

2. The self-designed CH inform the other nodes by
broadcasting a message with the same transmitting
power, using carrier sense multiple access (CSMA)
MAC.

3. The other nodes choose to join the cluster
associated to the CH whose signal they receive with
most power. They message back the CH to inform
it (with the CSMA MAC protocol again).

4. CHs compile a “transmission order” (time division
multiple access, TDMA) for the nodes which joined
their clusters. They inform each node at what time
it is expected to send data to its CH.

5. CHs keeps listening for the results. Normal sensors
get measures from their environment and send their
data. When it is not their turn to send, they stay in
sleep mode to save energy. Collisions between the
transmissions of the nodes from different clusters
are limited thanks to the use of code division
multiple access (CDMA) protocol.

6. CHs aggregate, and possibly compress the gathered
data and send it to the BS in a single transmission.
This transmission may be direct, or multi-hopped if
relayed by other CHs.

7. Steps 5) and 6) are repeated until the round ends.

It is possible to extend LEACH by adding the remaining
energy of the nodes as a supplementary parameter for the
computation of the T (i) threshold [MH02].

Note that each node decides whether to self-designate
itself as a CH or not. Its decision does not take into account
the behavior of surrounding nodes. For this reason, we
can possibly have, for a given round, a number of CHs
very different from the selected percentage P. Also, all
the elected CHs may be located in the same region of the
network, leaving “uncovered” areas. In that case, one can
only hope that the spatial repartition will be better during
the next round.

k-LEACH
Once the LEACH algorithm has been applied to

determine a first set of clusters, nothing prevents us to
apply it again on each cluster. This is the way we got
our k-clusters: we applied k times the LEACH algorithm
recursively. We call those recursive iterations the k-LEACH
algorithm. In practice, we had k equal to 2, for the
following reasons:

• so as to save more energy than what we would do
with 1-LEACH;

4 Security Comm. Networks 0000; 00:1–17 c© 0000 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



P. Ballarini, L. Mokdad, Q. Monnet Modeling tools for detecting DoS attacks in WSNs

• so as to have a finer clustering of the network, in
order to elect control nodes in each of the 2-clusters,
to maximized the cover area and the probability to
detect compromised nodes.

Other algorithms
Other possible clustering algorithms include HEED

[YF04], which is designed to save more energy than
standard LEACH, and could lead to a better spatial
repartition of the CHs inside the network. But in our
network, all the sensors have the same initial available
energy, and every one of them is able to directly reach the
BS if need be. Under those assumptions, LEACH may not
consume more energy than HEED protocol, and remains
easier to use.

2.3. Attacks detection through cNodes

Along with normal nodes and cluster heads, a third type of
node is present in the lower k-clusters of the hierarchy.

Figure 1. Cluster-based sensor network with cNodes

The cNodes — for control nodes — were introduced
in [LC08] to analyze the network traffic and to detect any
abnormal behavior from other nodes in the cluster. We
refer the reader to [LC08] for a detailed description of
the cNodes based detection mechanism. In brief, cNodes
analyze the input traffic for the 2-CH of their 2-cluster, and
watch out for abnormal traffic flows. Detection takes place
whenever a cNode observes that at least one amongst the
sensor nodes under its controlled perimeter sends data at
a rate that is not within “regular behavior” thresholds. In
that case the cNode sends a warning message to the CH.
Once the CH has received warnings from a sufficiently
large number of distinct cNodes (note that in order to
prevent a compromised cNode to declare legitimate nodes
as compromised the detection protocol requires that the

CH receives warnings by a minimum number of distinct
cNodes before actually recognising the signalling as an
actual anomaly), it starts ignoring the packets coming
from the detected compromised sensor. cNodes may also
monitor output traffic of the CHs and warn the BS if they
come to detect a compromised CH.

cNodes are periodically elected among normal sensors.
The guarding functionality of cNodes may lead to an
energy consumption higher than that of “normal” (i.e.
sensing) nodes. In order to maximize the repartition of
the energy load, we propose a scheme by which a new
set of cNodes is periodically established with an election
period shorter than the length of a LEACH round (that
is, the period between two consecutive CH elections). We
propose three possible methods for the election process:
self-election as for the CHs, election processed by the CHs
and election processed by the BS.

Distributed self-election
A first possibility to elect the cNodes is to reuse

the distributed self-designation algorithm defined for the
election of the CHs. With this method, each non-CH node
chooses a pseudo-random number comprised between 0
and 1. If this number is lower than the average percentage
of cNodes in the network that was fixed by the user, then
the node designates itself as a cNode. Otherwise, it remains
a normal sensor.

This method has two drawbacks. Firstly, each node
has to compute a pseudo-random number, which may not
be necessary with other methods. Secondly, each node
chooses to designate (or not) itself, without taking into
account at any moment the behavior of its neighbors. As a
result, the election is proceed with no consideration for the
clustering that has been realized in the network. Indeed it
is unlikely that the set of elected cNodes will be uniformly
distributed among the 2-clusters that were formed, and it is
even possible to end up with some 2-clusters containing
no cNodes (thus being completely unprotected against
attacks).

A possible workaround for this second drawback could
be a two-steps election: in a first round nodes self-
designate (or not) themselves. Then they signal their
state to the 2-CHs they are associated to. In the second
round, the 2-CHs may decide to designate some additional
cNodes if the current number of elected nodes in the cluster
is below a minimal percentage.

CH-centralized election
A second possibility is to get the cNodes elected by the

2-CHs. In this way, each 2-CH elects the required number
of cNodes (i.e. corresponding to user specifications). For
example, if the 2-cluster contains 100 nodes and the
desired percentage of cNodes in the network is 10 %,
the 2-CH will compute 10 pseudo-random numbers and
associate them with node IDs corresponding with sensors
of its 2-cluster. This solution is computationally less
demanding as only the 2-CHs have to run a pseudo-random
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number generation algorithm. However it has yet another
drawback: if a CH gets compromised, it won’t be able
to elect any cNode in its cluster thus leaving the cluster
open to attacks. As, with the LEACH protocol, every
sensor node becomes, sooner or later, a CH, the problem
may occur for any compromised node hence propagating,
potentially, throughout the network. Note that, nothing
prevents a compromised sensor to declare itself as a CH
node to the others at any round of the LEACH algorithm.

This method is the one that we have implement in
our NS2 simulation whose simulation outcomes will be
discussed in Section 4.

BS-centralized election
A third method consists in a centralized approach where

the BS performs cNodes election. With this method CHs
send the list of nodes that compose their clusters to
the base station and the BS returns the list of elected
cNodes. Observe that, opposite to sensor nodes, the
BS has no limitation in memory, computing capacity
nor energy. Thus the clear advantage of BS-centralized
election is that all costly operations (i.e pseudo-random
numbers calculation) can be re-iterated in a (virtually)
unconstrained environment (i.e. the BS) This technique is
explained in detail in [GM12].

From a robustness point of view not the method is
not completely safe either. In fact if a compromised node
was to declare itself as a CH, its escape method to avoid
detection would consist in declaring its cluster as empty
(i.e. by sending an empty list instead of the actual sensors
in its cluster to the BS). In this case, the BS would not elect
any cNode in its cluster hence the compromised CH would
not be detected. To avoid such situation the BS should react
differently in case it receives an indication of empty cluster
from some nodes. Specifically, in this case, the BS would
have to consider that nodes not detected as or by CHs might
not simply be dead, thus still consider them as eligible
cNodes. The main drawback of this method is that the
distributed nature of election (together with its advantages)
is completely lost.

3. MODELLING USING MARKOV
CHAINS

Continuous Time Markov Chains (CTMC) are a class
of discrete state stochastic process suitable to model
discrete-event systems that enjoy the so-called memory
less property (Markov property): i.e. systems such that the
future evolution depends exclusively on the current state
(and not on the history that lead into it). It is well known
that in order to fulfill the Markov property delay of events
must be Exponentially distributed.

In this section we describe how to structure Continuous
Time Markov chains (CTMC) models for modelling of
a WSN subject to DoS attacks and equipped with DoS
detection functionalities. To illustrate the CTMC modeling

approach we focus on a specific (sub)class of WSN
corresponding to the following points:

• the network consists of a single cluster containing
one CH, N sensing nodes and K cNodes

• (exactly) one amongst the N sensing nodes is a
compromised node.

• sensing node i (1≤ i≤N) generate traffic according
to a Poisson process with rate λi

• the compromised node c generates traffic according
to a Poisson process with rate λc >> λ1

• each cNodes periodically performs a detection
check with period distributed Exponentially with
rate µ . On detection of abnormal traffic a cNode
reports the anomaly to the CH

• the network topology corresponds to a connected
graph: each node node can reach any other node in
the cluster

The dynamics of WSN systems agreeing with the
above characterization can straightforwardly be modelled
in terms of a K·(N +1)-dimensional CTMC. States of such
a CTMC consist of K-tuples x=(x1,x2, . . . ,xK) of macro-
states xk = (xk1 ,xk2 , . . . ,xkN ,xkd ) encoding the number of
overheard packets by cNode k. More precisely component
xk j (1 ≤ j ≤ N) of macro-state xk is a counter storing
the total number of packets sent by node j and overheard
by cNode k, whereas component xkd is a boolean-valued
variable which is set to 1 on detection, by cNode k, of
abnormal traffic. We also consider a threshold function
f : NN → {0,1} which is used (by cNodes) to decide
whether traffic rate have exceeded the “normal” threshold.
The arguments of f are an (N)-tuples (n1, . . .nN), where
ni∈N is the number of overheard packets originating from
node i.

We illustrate the transition equations for such a CTMC.
For simplicity we illustrate only equations regarding
transitions for a generic macro-state xk: the equations for
transitions of a generic (global) state x = (x1,x2, . . . ,xK)
can be straightforwardly obtained by combination of those
for the macro-states. In the following xkc denotes the
counter of received packets from the compromised node.

xk → Normal transmission

→ (xk1 , . . . ,xki +1, . . . ,xkc , . . . ,xkN ,0) with rate λi 6=λc

→ Transmission by compromised node

→ (xk1 , . . . ,xki , . . . ,xkc +1, . . . ,xkN ,0) with rate λc

→ Check and Detection of abnormal traffic

→ (0, . . . ,0, . . . ,0, . . . ,0,1)

with rate µ×1 f (xk)≥threshold

→ Check and No-Detection of abnormal traffic

→ (0, . . . ,0, . . . ,0, . . . ,0,0)

with rate µ×1 f (xk)<threshold
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We assume that in the initial state all counters xki as
well as the boolean flag xkd are set to zero. The above
equations can be described as follows. When cNode k is
in state xk a “Normal transmission” from node i (1 ≤
i ≤ N, i 6= c) takes place at rate λi leading to a state
such that the corresponding counter xki is incremented by
one, leaving all remaining counters unchanged. Similarly
a “Transmission by the compromised node” c happens
with rate λc leading to a state such that the corresponding
counter xkc is incremented by one. Finally checking for
abnormal traffic conditions happens at rate µ and whenever
the controlling function f detects that in (macro) state xk
the number of overheard packets from any node is above
the considered threshold ( f (xk)≥ threshold), the detection
flag xkd is raised (i.e. alarm is sent to the CH), and counters
xk j are all resets (so that at the next check they are update
with “fresh” traffic data). On the other hand if traffic has
not been abnormal over the last Exp(µ) duration ( f (xk) <
threshold) counters xk j are reset while the detection flag is
left equal to zero.

The detection probability for cNode k (DPk) can be
computed in terms of the steady-state distribution of the
above described CTMC in the following manner:

DPk =
∞

∑
xk1 ,...,xkN

π(xk1 , . . . ,xkN ,xkd = 1)

where π(xk1 ,xk2 , . . . ,xkN ,xkd ) denotes the steady-state
probability at (macro)state xk =(xk1 ,xk2 , . . . ,xkN ,xkd ) of the
CTMC.
Discussion. The above described CTMC modeling
approach relies on the assumption that the period with
which detection checking is performed is an Exponentially
distributed random variable. Indeed such an assumption
may introduce a rather significant approximation as in
reality detection checking happens at interval of fixed
length, or even “continuously”. Therefore stochastic
modeling of DoS attacks detection requires to exit
the Markovian sphere and to consider non-markovian
stochastic processes. (more specifically periodic detection
checking can more accurately be modeled by means
Deterministic Distributions). We discuss non-Markovian
modeling of DoS detection mechanisms in Section 5.

4. NUMERICAL RESULTS

A possible alternative to stochastic modeling is to develop
executable implementations of the WSNs of interest by
means of existing simulative framework, such as, for
example, the NS-2 Network Simulator [NS2]. In this
section, we present a selction of numerical results obtained
by simulation of NS-2 models of WSN systems equipped
with DoS detection mechanisms. The experiments we
present are referred to one cluster consisting of a (10×10)
regular grid topology with the following characteristics
(see Figure 2):

• grid is a square of size a;

• cluster head is placed at the centre of the grid (i.e.
red node in Figure 2;

• the grid contains 100 (sensing) nodes displaced
regularly;

• each node can communicate directly with the
cluster head (i.e. the transmission power is such
that all nodes — for example: the nodes in green
in Figure 2 — can reach a circle of radius a

√
2/2.

In this way all nodes, included corner’s, can reach
the CH). No power adjustment is done by the nodes
for transmission.

In such network cNodes (represented in green in
Figure 2) are elected periodically either using the static
approach or using the dynamic election mechanism
described in previous sections. We have designed our
experiments focusing on two performance measures:
the rate of detection of attacks and the overall energy
consumption. Table I reports about the (range of)
parameters considered in our simulation experiments.
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Figure 2. A 10x10 regular-grid cluster of size a

4.1. Detection rate

In order to evaluate the considered performance measure
that is attack detection rate, we have considered the
parameters given in table I. We have assumed that the
traffic generation follows a Poisson distribution with rate
λ which varies as the average transmission of an attacking
node exceeds the average transmission of a normal node.
In the experiments we have considered a cluster with 100
nodes.

Figure 3 represents the detection rate for different
numbers of cNode groups and for groups of different
sizes. The same node is considered compromised in all
the graphs. Notice that for 10 cNodes, the group 2 did
not detect any attack. With 15 cNodes, in average 3 nodes
detect an attack in each group. We also note that when we
increase the number of cNodes (20 and 25), the behavior
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Simulation time 100–3,600 s
Rate 10–800 kbits/s
Packet size 500–800 bytes
Nodes number 100 (+ cluster head)
cNodes number 0–30
Compromised nodes number 1–10
Nodes queue size 50

Table I. Simulation parameters

remains similar which suggests that we do not need to use
more nodes than 15 nodes in each group.
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Figure 3.Detection versus Group.

Above λ = 4 packets/s, the dynamic method detects
more attacks than the static one. To enhance this difference,
we give other results in figure 4 below for an average of 10
compromised nodes.
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Figure 4.Detection versus Lambda.

In Figure 4, we notice that as the average transmission
of attacking nodes increases, our dynamic solution detects
more attacks than the static solution.

Number of sensor nodes 100
Simulation time 500 seconds
Reception consumption 0.394 W
Emission consumption 0.660 W

Table II. Simulation parameters

4.2. Consumed energy

All the simulations which were run to produce the results
presented in this section used the parameters given in table
II.

The Figure 5 shows the average energy consumption
for all nodes (except for the cluster head and the flooding
compromised node, which consume much more than usual
nodes, and act in the same way for both methods) at the
end of the simulation, for various percentages of elected
cNodes. The number of cNodes goes from 0 (no detection)
to 30 % (nearly one third of the nodes).

Note that the “normal nodes” (non-cNodes sensors) do
not receive messages from their neighbors, as they are
“sleeping” between their sending time slots (see LEACH
detailed functioning).
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Figure 5. Average energy consumption.

The average consumption is the same for static and
dynamic method: both method use the same quantity of
normal and cNode sensors.

The Figure 6 depicts the standard deviation for the
energy consumption at the end of the simulation. Once
again, the cluster head and the compromised node are not
taken into account.

One can observe that the standard deviation is much
higher for the static solution: only the initial (and not
re-elected) cNodes have a significant consumption over
the simulation time, while the consumption is distributed
among all the periodically-elected nodes in the dynamic
solution.

For the Figure 7, we have supposed that the nodes have
an initial energy of 4 J. This is a small value, but 500
seconds is a small duration for a sensor lifetime. According
to Wikipedia values and to what we have computed, a
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Figure 6. Energy consumption standard deviation.

lithium battery (CR1225) can offer something like 540 J,
and a LR06 battery would provide something like 15,390 J.
Note that the compromised node was given an extra initial
energy (we did not want it to stop flooding the network
during the simulation). However, we set the initial energy
to 4 J, and we notice for the first node’s death for several
percentages of cNodes.
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Figure 7. First death in the network.

As the cNodes are re-elected and the consumption is
distributed for the dynamic method, the first node to run
out of battery power logically dies later (up to 5 times later
with few cNodes) than in the static method.

4.3. Nodes’ death and DoS detection

The duration of this new simulation was extended to one
hour (3,600 seconds). 10 % of the sensors are elected as
cNodes. The initial energy power was set to 10 J. So the
considered parameters are given in table IV.

The Figure 8 shows the evolution of the number of alive
nodes in time.

As for the previous section, the non-cNodes sensors
barely consume any energy regarding to cNodes’
consumption (cNodes consume each time they analyze a
message coming from one of their neighbor; other sensors

Number of sensor nodes 100
cNodes percentage 10 %
Simulation time 3,600 seconds
Reception consumption 0.394 W
Emission consumption 0.660 W
Initial energy amount 10 J

Table III. Simulation parameters

Table IV. .
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Figure 8. Nodes remained alive

don’t). In the static method, elected cNodes consume their
battery power, and die (at about t = 150 seconds). That
is why the ten first sensors die quickly, whereas the other
nodes last much longer (we expect them to live for 5
hours). For the static method, the cNodes are re-elected,
so the first node to die lives longer than for the previous
method. It is a node that was elected several times, but
not necessarily each time. Only two nodes have run out
of energy at t = 700 seconds for the dynamic method. But
at this point, the amount of alive nodes decreases quickly,
and there is only one node left at the end of the first hour
of simulation. Note that this was not reported on the above
curve.

It is obvious that the nodes die much faster in the
dynamic method, given that cNodes, the only nodes whose
consumption is significant, are re-elected, whereas there
are no more consuming cNodes in the network for the
static method after the ten first nodes are dead. Hence it
is interesting to consider how many nodes do effectively
detect the attack as the time passes by. This is what is
shown on the Figure 9. The average number of cNodes
which detected the attack (out of 10 cNodes) is presented
for each 60 second-long period.

After the fourth minute, every cNode is dead for the
static method, and the compromised node is no more
detected. With the dynamic method, a raw average of 6.5
out of 10 cNodes detect the compromised nodes during
each 10 second-long period corresponding to the dynamic
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Figure 9.DoS detection.

election. The flooding sensor is still detected by more than
one node after half an hour.

In the following, we present a modeling approach of
DoS detection using of Generalized Stochastic Petri Nets
(GSPN) and we give some numerical results.

5. NON-MARKOVIAN MODELING
AND VERIFICATION OF DOS

In previous sections we have pointed out that using Markov
chains to model DoS detection mechanisms may inherently
imply a significant approximation. To obtain more accurate
models of DoS detection it is necessary to resort to a
more general class of stochastic processes, namely the so-
called Discrete Event Stochastic Processes (DESP, also
often referred to as Generalized Semi-Markov Processes
or GSMP). The main characteristics of DESP is that
they allow for representing generally distributed durations,
rather than, as with CTMC, being limited to Exponentially
distributed events.

In this section we present a modeling approach
of DoS detection in terms of Generalized Stochastic
Petri Nets (GSPN) [AMBCDF95], a class of Petri
Nets suitable for modeling stochastic processes. By
definition the GSPN formalism is a high-level language
for representing CMTCs. However herein we refer to
its straightforward extension where timed-transitions can
model generally distributed durations. Such extended
GSPN (eGSPN in the following) becomes a high-level
language for representing DESPs. Furthermore eGSPN
is also the formal modeling language supported by
the COSMOS [BDDHP11] statistical model checker,
a tool which allows for verification of (sophisticated)
performance measures in terms of the Hybrid Automata
Stochastic Logic (HASL) [BDDHP11]

In the following we provide a succinct description
of both the GSPN modeling formalism and the HASL
verification approach, before describing their application
to the DoS attack detection case.

5.1. Generalized Stochastic Petri Nets

A GSPN model is a bi-partite graph consisting of two
classes of nodes, places and transitions (Figure 10). Places
(represented by circles) may contain tokens (representing
the state of the modeled system) while transitions
(represented by bars) indicate the events the occurrence
of which determine how tokens “flow” within the net
(thus encoding the model dynamics). The state of a
GSPN consists of a marking indicating the distribution
of tokens throughout the places (i.e. how many tokens
each place contains). Roughly speaking a transition is
enabled whenever all of its input places contains a number
of tokens greater than or equal to the multiplicity of
the corresponding input arc (e.g. transition T1 in left-
hand part of Figure 10 is enabled, while T2 is not).
An enabled transition may fire consuming tokens (in a
number indicated by the multiplicity of the corresponding
input arcs) from all of its input places and producing
tokens (in a number indicated by the multiplicity of the
corresponding output arcs) in all of its output places.
Such informally described rule is known as the Petri
Net firing rule. GSPN transitions can be either timed
(denoted by empty bars) or immediate (denoted by filled-
in bars, e.g. transition T2 in left hand side of Figure 10).
Generally speaking transitions are characterized by: (1) a
distribution which randomly determines the delay before
firing it; (2) a priority which deterministically selects
among the transitions scheduled the soonest, the one
to be fired; (3) a weight, that is used in the random
choice between transitions scheduled the soonest with
the same highest priority. With the GSPN formalism
the delay of timed transitions is assumed exponentially
distributed, whereas with eGSPN it can be given by
any distribution with non-negative support. Thus whether
a GSPN timed-transition is characterized simply by its
weight t ≡w (w∈ R+ indicating an Exp(w) distributed
delay), a eGSPN timed-transition is characterized by a
triple: t ≡ (Dist-t,Dist-p,w), where Dist-t indicates the
type of distribution (e.g. Unif, Deterministic, LogNormal,
etc.), dist-p indicates the parameters of the distribution (e.g
[α,β ]) and w ∈ R+ is used to probabilistically choose
between transitions occurring with equal delay∗

P1

P2

T1 T2
Exp(λ)

T1

P1

P2

T2
Det(t)

3

P3

Figure 10. Simple examples of eGSPN: timed-transitions,
immediate transition and inhibitors arcs

∗a possible condition in case of non-continuous delay distribution
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In the following we describe how eGSPN models
can be derived for modeling WSN scenario with DoS
mechanisms. More specifically in our eGSPN models we
will use only two types of timed transitions, namely:
Exponentially distributed timed transitions (denoted by
empty-bars, e.g. T1 in left-hand side of Figure 10) and
Deterministically distributed timed-transitions (denoted by
blue-filled-in bars, e.g. T1 in right-hand side of Figure 10).
In our Petri Nets models we will also extensively
exploit inhibitor arcs, an additional element of the GSPN
formalism. An inhibitor arc is denoted by an edge with an
empty-circle in place of an arrow at its outgoing end (e.g.
the arc connecting place P1 to transition T2 in the right
hand side of Figure 10). In presence of inhibitor arcs the
semantics of GSPN firing rule is slightly modified, thus:
a transition is enabled whenever all of its input places
contains a number of tokens greater than or equal to the
multiplicity of the corresponding input arc and strictly
smaller than the multiplicity of the corresponding inhibitor
arcs (e.g. transition T2 in right-hand part of Figure 10
is also enabled, because P1 contains less than 3 tokens).
Having summarized the basics of the syntax and semantics
of the eGSPN formalism we now describe how it can be
applied to formally represent WSN systems featuring DoS
mechanisms.

5.2. Modeling DoS attacks with eGSPN

We describe the eGSPN models we have developed
for modeling DoS attacks in a grid-like network. For
simplicity we illustrate an example referred to a 9x9 grid
topology. The proposed modeling approach can easily be
extended to larger networks.

In a WSN with DoS detection mechanisms the
functionality of sensing nodes is different from that of
cNodes. Here we describe GSPN models for representing:
i) sensing nodes, ii) statically elected cNodes and iii)
dynamically eligible cNodes.

5.2.1. GSPN model of sensing nodes
Sensing nodes functionality is trivially simple: they

simply keep sending sensed data packets at a pace which
(following Section 3) we assume, being Exponentially
distributed with rate λi. This can be modeled by a simple

sensing Node

�i

TX

InBu↵i1

InBu↵ij

Figure 12. GSPN model of a sensing node

GSPN that consists of a single exponentially distributed
timed-transition (labeled TX) with no input places (i.e.
always enabled) and with as many outgoing arcs leading
to the input buffer of the neighboring nodes (represented

by dashed places labelled InBuffi j in Figure 12). Note that
transition TX in Figure 12 has no input places, which
means (according to the Petri Net firing rule) that it is
always (i.e. perpetually) enabled. Note also that TX is
an exponentially distributed timed transition with rate λi,
which complies with the assumption that each sensor
node performs a sensing operation every δs time with
δs ∼ Exp(λi). To summarize: the sensing functionality of
a specific node in WSN is modeled by a single timed-
transition provided with as many outgoing arcs as the
number of neighbors of that node. The complete sensing
functionality of a WSN can be modeled by combining
several such GSPN modules.

5.2.2. GSPN model of cNodes
A cNode functionality, on the other hand, is entirely

devoted to monitoring of traffic of the portion of WSN he
is guarding on. From a modeling point of view a distinction
must be made between the case of statically elected cNodes
(as in [LC08]) and that of dynamically eligible cNodes (as
in [GM12]). In fact with dynamic cNodes election each
node in the network can be elected as cNode, therefore
each node can switch between a sensing-only functionality
and a controlling functionality. On the other hand static
cNodes will be control-only nodes.

GSPN models for both static and dynamic cNodes
are depicted in Figure 11(a), respectively Figure 11(b).
A cNode detects an attack whenever the overheard
traffic throughput (i.e. number of overheard packets per
observation period) exceeds a given threshold ρattack.
Place “InBuff” (Figure 11(a)) represents the input buffer of
a node, where packets received/overheard from neighbors
nodes are placed. The “InBuff” place receives tokens
(corresponding to overheard packets) through input arcs
originating from neighbors sensing-node modules (i.e. the
input arcs of place "InBuff" are the output arcs of the
timed-transition representing the corresponding sensing
activity of each neighbor node).

To model the traffic monitoring functionality of cNodes
we employ two mutually exclusive, deterministically
distributed timed-transitions labelled “checkYES” and
“checkNO” in Figure 11(a) and Figure 11(b). They
correspond to the periodic verification performed by the
cNode to check whether the frequency of incoming traffic
has been abnormal (over the last period). At the end of
each (fixed) interval [0,∆] either: transition “checkYES”
is enabled, if at least k packets have been received (i.e.
place “InBuff” contains at least k tokens); or transition
“checkNO” is enabled, if less than k packets have been
received (i.e. place “InBuff” contains less than k tokens);
in the first case (i.e. “checkYES” enabled) a token is added
in the output place “det” representing the occurrence of
an DoS detection, otherwise (i.e. “checkNO” enabled) no
tokens is added to place “det”. After firing of either the
“checkYES” or the “checkNO” transition the emptying of
the input-buffer starts by adding a token in place “empty”.
This enables either immediate transition “e-on” (which
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(a) GSPN model for a statically elected cNode
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(b) GSPN model for a dynamically eligible cNode

Figure 11. GSPN components representing cNodes behaviour in a WSN with DoS detection mechanisms
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Figure 13. GSPN model of a 9x9 grid-topology with 1 (fixed)
compromised node and 2 static cNodes

iteratively fires until the input buffer is empty), or “e-end”
which represents the end of the emptying cycle. Note that
buffer emptying does not consume time, and it is needed in
order to correctly measure the frequency of traffic at each
successive sampling interval [0,∆].

The GSPN model for the dynamic cNodes (Fig-
ure 11(b)) is a simple extension of that for static cNodes
obtained by adding an auxiliary place “cNodes” and an
auxiliary exponentially distributed timed-transition “TX”.
This is needed because with dynamically elected cNodes,
each node in the network may periodically switch from
sensing-only to controlling-only functionality, hence the
corresponding GSPN model must represent both aspects.
If the auxiliary place “cNode” contains a token then the
“controlling” functionality (i.e. the left part of the GSPN)
is switched-on, and in that case the GSPN of Figure 11(b)
behaves exactly as that of Figure 11(a). Conversely if
place cNode is empty then the “sensing” functionality is
switched-on (i.e. transition “TX” is enabled due to the

inhibitor arc between place “cNode” and transition “TX”)
while the “controlling” part of the net is disabled (i.e. in
this case the net of Figure 11(b) behaves exactly as that of
Figure 12).

The above described GSPN models for sensing-nodes,
static cNodes and dynamic cNodes can be used as basic
building blocks to compose models of specific WSN
topologies. In the following we provide examples of GSPN
for 9x9 WSN grid-topology equipped with DoS detection
functionalities.

5.2.3. GSPN model of DoS detection with static
cNodes

Figure 13 illustrates a complete GSPN model for a 9x9
grid topology representing an example of DoS detection
with static election of cNodes (as in [LC08]). In particular
in this example we consider the presence of 2 cNodes (i.e.
node 3 and 4) and 1 compromised node (i.e. node 1). Note
that for simplicity the “emptying buffer" part in the GSPN
modules of the cNodes (i.e. node 3 and 4) is depicted as a
box (i.e. the content of that box corresponds to the subnet
responsible for emptying the "inBuff" place as depicted in
Figure 11(a) and Figure 11(b)).

This model can be used to study the performances of
DoS detection with static cNodes in many respect, such as:
measuring the expected number of detected attacks within
a certain time bound, or also e.g. assessing the average
energy consumption of cNodes. In the next section we
describe how to build GSPN models of WSNs with DoS
detection and dynamic election of cNodes. The resulting
GSPN is more complex than that for statically elected
cNodes, as it must include an extra module, namely a
GSPN module for periodically electing the cNodes.

5.2.4. GSPN model of DoS detection with
dynamic cNodes

Figure 14 illustrates the GSPN model of a 9x9 grid
topology for the case of DoS detection with dynamic
election of cNodes (as in [GM12]). For simplicity
Figure 14 consists of two parts: the actual network
topology part (Figure 14(a)) and the cNodes random
election mechanism (Figure 14(b)). The network model
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(Figure 14(a)) is obtained by composition of node’s GSPN
component in the same fashion as for the model of the
WSN for DoS detection with static cNodes, only that
now all nodes must be reconfigurable as either sensors
or controllers (thus the basic GSPN components used to
build the network topology are those of Figure 11(b)).
The cNodes election component (Figure 14(b)), on the
other hand, consists of a single place, n mutually-exclusive
deterministically distributed timed-transitions (blue-filled)
and n mutually-exclusive immediate transitions (black-
filled) (with n =

(8
2
)

= 28, as we assume that, at each
round, 2 cNodes are elected out of 8 possible candidates,
thus, for simplicity we rule out the compromised node
from the eligible ones). The deterministically distributed
timed-transitions (blue-filled) of Figure 14(b) correspond
to all possible different pairs of “cNode” places. At the
end of each selection period only (exactly) one such timed-
transition will be enabled and will fire retrieving, in this
way, the tokens from the current pairs of active cNodes and
inserting one token in the only (central) place of the net
in Figure 14(b). At this point all 28 immediate transitions
will become enabled and a random choice will take place
resulting in the selection of only (exactly) one of them. The
selected transition will fire and by doing so will insert one
token into each “cNode” place of the corresponding pair of
cNodes to which it is connected, activating, in this way, the
controlling functionality of the newly elected cNodes.

5.3. HASL verification of DoS detection models

One of the main motivation for developing GSPN
models of discrete-event systems is that a fairly large
and well established family of formal methods can be
applied to analyze them. Recently a new formalism
called Hybrid Automaton Stochastic Logic (HASL) has
been introduced which provides a unified framework
both for model checking and for performance and
dependability evaluation of DESP models expressed in
GSPN terms. In essence, given a GSPN model, we can
express sophisticated performance measures in terms of
an HASL formula and apply a statistical model checking
functionalities to (automatically) assess them. In the
following we informally summarize the basics about
the HASL verification approach, referring the reader to
[BDDHP11] for formal details.

5.3.1. HASL model checking
Model checking [CGP99] is a formal verification

procedure by which given a (discrete-state) model M
and a property formally expressed in terms of a
temporal logic formula φ , an algorithm automatically
decides whether φ holds in M (denoted M |= φ ). In
the case of stochastic models (i.e. stochastic model
checking [KNP07a]) formulae are associated with a
measure of probability and verifying M |= φ corresponds
to assess the probability of φ with respect to the stochastic
model M. HASL model checking extends this very simple
concept in the sense that an HASL formula can evaluate

to any real number (thus it can represents a measure of
probability as well as other performance measures). To
do so HASL uses Linear Hybrid Automata (LHA) as
machineries to encode the dynamics (i.e. the execution
paths, or trajectories) of interest of the considered GSPN
model. An LHA, simply speaking, is a generalization of
Timed Automaton where clock-variables are replaced by
real-valued data-variables. In practice a formula of HASL
consists of two parts:

• an LHA used as a selector of relevant of timed
execution of the considered DESP (path selection is
achieved by synchronization of a generated DESP
trajectory with the LHA).

• an expression Z built on top of data variables of the
LHA according to the syntax given in (1) and which
represent the measure to be assessed.

Z ::= E(Y ) | Z +Z | Z×Z

Y ::= c | Y +Y | Y ×Y | Y/Y | last(y) | min(y)

| max(y) | int(y) | avg(y)

y ::= c | x | y+ y | y× y | y/y

(1)

The informal meaning of an HASL expressions Z (1)
is as follows: x is a data-variable of the LHA automaton
associated to the expression. y is an (arithmetic) expression
of data-variables. Y is a path random variable, i.e. a
variable which is evaluated against a synchronization path,
a path resulting by the synchronization of a trajectory of
the DESP with the LHA associated to the formula. The
basic operators (i.e. last(y),min(y),max(y), int)y),avg(y))
on top of which a path variablr Y is built have intuitive
meanings. In particular: last(y) indicates the last value
of expression y along an accepted synchronized path;
min(y)/max(y) indicates the minimum (maximum) of y
along a path; int(y) the integral of y along a path; avg(y)
the average of y along a path.

The HASL statistical model checking procedure works
as follow:

• it takes a GSPN model and an HASL formula
• it iteratively generate trajectories of GSPN model

state-space and synchronize them with the LHA
• the trajectories that have been “accepted” by the

LHA are considered in the estimation of the
measure of interest, the others are dropped.

5.4. HASL formulae for DoS models

Having seen the nature of HASL verification we provide
here few examples of HASL formulae (i.e. LHA +
expression) which can be used to assess performance
measures of the DoS (GSPN) models presented in the
previous section. Such formulae may be readily assessed
through the COSMOS model checker and the results can
be used to compare different DoS detection mechanisms.

The LHA we present are based on the following data-
variables:
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ẋt :1
ẋdi

:0

true, {chkY ESi}, xdi
:=xdi

+1

true, {TXi}, xTXi
:=xTXi

+1

ẋTXi
:0

ẋbfi
:M(bfi)

xt ==T, {ALL}, ∅

Figure 15. An LHA for assessing relevant measures of DoS
GSPN models

• xt : global time
• xdi : num. of attacks detected by cNode i (1≤ i≤N)
• xT Xi : num. of data transmitted by node i (1≤ i≤N)
• xb fi : flow of packets in buffer of node i (1≤ i≤ N)

The LHA in Figure 15 is a template automaton that
can be used for calculating different measures of a node
(either a sensing or a cNode) of a WSN model. It refers
to GSPN models (Figure 13, Figure 14). It consists
of 2 locations and refers to the 4 data-variables above
described. In the initial-location (l1) the rate of change (i.e.
the first derivative) of data-variables is indicated (inside
the circle). The global time variable xt is incremented
with rate ẋt = 1 following the linear flow of time.
Counter variables xdi and xT Xi (used to count occurrences
of events) are unchanged in location l1 (i.e. their rates
are zero). Finally variable xb fi is incremented with rate
proportional to the number of tokens in the input buffer
of cNode i (i.e. ẋb fi = M(b fi)); this data-variable can be
used to measure the average length of overheard packets
by cNode i, and thus to measure the average energy
consumption of a cNode. The two self-loops transitions
on location l1 are used to increment the the counter
variables xdi and xT Xi on occurrence of the associated
events in the GSPN model. For example transition

l1
true,{chkY ESi},xdi:=xdi +1−−−−−−−−−−−−−−−→ l1 indicate on occurrence of the

GSPN transition labeled chkY ESi (i.e. detection of an
attack by cNode i) the variable xdi is incremented by 1.

Transition l1
xt==T,{ALL}, /0−−−−−−−−−→ l2 from l1 to the accepting

location l2 indicates when the synchronization stop and the
processed path is accepted. Precisely this happens as soon
as xt ==T , where T ∈ R denotes a time-bound, that is: as
soon as the observed trajectories is such that the simulation
time is T . In this case, no matter which GSPN transition is
occurring (i.e. synchronization set is {ALL}) the transition
from l1 to l2 will fire and the path generation will stop by
accepting the path. In oder words the LHA in Figure 15
trivially accepts all paths of time duration T . The value
of the 4 data variables collected during synchronization
of the LHA with the GSPN model will be then used for
estimating relevant Z expressions.

In the following we describe few examples of Z
expressions that can be used in association to the LHA in

Figure 15 to evaluate relevant measures of the DoS GSPN
models.

• Z1 ≡ E(Last(xdi)): the expected num. of detected
attacks by cNode i after T time units

• Z2 ≡ E(Last(xdi + x(d
′
i))): the sum of attacks

detected by cNode i and i′′ after T time units
• Z3 ≡ E(Last(xT Xi)): the expected value of packets

transmitted by node i after T time units
• Z4 ≡ E(Avg(xb fi)): the expected cumulative flow of

packets received by node i within T time units

6. CONCLUSION

Detection of DoS attacks is a fundamental aspect of
WSN management. In this paper we have considered a
class of DoS detection mechanisms designed to operate
on clustered WSNs. The detection methods we have
considered are based on deployment of special control
nodes in the sensing field: i.e. specific nodes which
are responsible for monitoring the throughput of traffic
of specific parts of the sensing field and signaling the
presence of suspected attacked nodes in case anomalies
are detected. Control nodes election is a crucial aspect
of DoS mechanisms. In the literature two basic election
approaches have been proposed: a static election and a
dynamic (random) election.

In this paper we presented different modeling ap-
proaches for obtaining models of WSNs with DoS func-
tionalities. First we have described how Markov chains
model should be structured for modeling DoS attack and
detection, pointing out that because of the nature of DoS
detection, Markovian models may inherently come with
some significant approximation. We have then presented
numerical results obtained with virtual WSN implemen-
tation by means of the NS-2 network simulator. The out-
come of such simulative experiments confirm the intuition
that cNodes dynamic allocation guarantees a more uni-
form energy consumption (throughout the network) while
preserving a good detection capability. Finally we have
presented formal non-Markovian models of DoS detection
in terms of Generalized Stochastic Petri Nets, a high level
formalism for generic Discrete Event Stochastic Process.
We have illustrated how model of WSNs with DoS can be
built “incrementally” by combination of small GSPN mod-
ules of single (sensing/controlling) nodes up to obtaining a
model of the desired network. We have also stressed how
the GSPN formalism is naturally well suited for modeling
of the dynamic random cNodes election policy. Finally
we have briefly presented how expressive performance
measures of the DoS GSPN models can be formally ex-
pressed and assessed by means of the recently introduced
Hybrid Automata Stochastic Logic. Future developments
of this work include the execution of actual verification
experiments on the presented GSPN models by means of
the COSMOS statistical model checker, as well as the
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extension of the proposed modeling approaches to consider
more complex network (different topologies and scales).
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