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Abstract. Density dependent Markov chains (DDMCs) describe the in-
teraction of groups of identical objects. In case of large numbers of ob-
jects a DDMC can be approximated efficiently by means of either a set
of ordinary differential equations (ODEs) or by a set of stochastic differ-
ential equations (SDEs). While with the ODE approximation the chain
stochasticity is not maintained, the SDE approximation, also known as
the diffusion approximation, can capture specific stochastic phenomena
(e.g., bi-modality) and has also better convergence characteristics. In this
paper we introduce a method for assessing temporal properties, specified
in terms of a timed automaton, of a DDMC through a jump diffusion
approximation. The added value is in terms of runtime: the costly simu-
lation of a very large DDMC model can be replaced through much faster
simulation of the corresponding jump diffusion model. We show the effi-
cacy of the framework through the analysis of a biological oscillator.

Keywords: diffusion approximation, stochastic differential equations with jumps,
statistical model checking

1 Introduction

Context. Advances in modelling lead to increasingly complex models of con-
current systems whose analysis, consequently, has become a critical issue. In
particular the analysis of quantitative aspects of these systems by means of
stochastic models (e.g., Markov chains) may be impaired by the combinatorial
explosion of their state space. To cope with this problem several approaches have
been proposed in the literature including, e.g., decomposition and aggregation,
bounding techniques, compact representations of the state space. However, when
the model accounts for large groups of individuals (e.g., Internet users, molecule
populations) these techniques may turn out to be insufficient, meaning that
discrete event simulation (DES) is the most practical option for analysing the
system’s performance. Indeed, DES based approaches do not require the explicit



storage of the state space, but instead exploit a set of sample executions (i.e.,
traces) in order to devise arbitrarily accurate (statistical) estimates of relevant
indicators of a model’s behaviour.

Fluid approximations. In the case of large interacting populations, an alterna-
tive to simulation is to use a deterministic approximation in which the behavior is
represented by a set of ordinary differential equations (ODE) [17]. However, this
approach is not suitable for the study of models where stochasticity (bimodality,
high variance) plays an important role even for large population counts. To ana-
lyze a model’s stochastic nature, in [18] a diffusion approximation was proposed,
based on a set of stochastic differential equations (SDE), that can be applied up
to the first visit of the boundary of the state space. Both the deterministic and
the diffusion approximation are such that every state variable is approximated
by a continuous variable, i.e., the state variables are made “fluid”. Since in real
systems the boundaries of the state space often can be visited many times, in [7]
we proposed an extension, namely, a jump diffusion approximation, to properly
approximate the original model at the boundaries as well. A further extension
was made in [3] that uses partial fluidification of the state space, which results
in a switching jump diffusion approximation, allowing us to mimic better the
original process in the case of low population counts.

Contribution. Starting from [7], in this paper, we propose a new statistical
model checking method based on jump diffusion approximation. This method
takes as input a DDMC and, following [9, 16, 10, 11], a formal description of a
property, in this paper described as a (deterministic) timed automaton [1]. The
jump diffusion approximation of the DDMC is used to generate trajectories of
the system and the deterministic timed automaton is used to accept or reject
each trace. Based on the proportion of the accepted traces confidence intervals
are derived for the probability that the system exhibits the property in question.

Applicability. The applied theoretical framework requires a sequence of DDMCs
indexed by a parameter N [17]. The sequence is such that the state space, the
transition intensities and also the vector describing the initial state increase as
N increases. Four possibly overlapping ranges of values can be identified for N .
N can be so small that the corresponding DDMC can be analyzed by analytical
approaches. As N grows, analytical analysis becomes unfeasible, but the DDMC
can still be evaluated efficiently by simulation. By further increasing N , even
simulation of the DDMC becomes impractical but the model can still exhibit
important stochastic behavior. This is the range in which the approach we pro-
pose is convenient to use: in this range the diffusion approximation provides
results with reasonable precision in much shorter time than dealing with the
original DDMC. For even larger values of N , the stochastic behavior disappears
and the model can be analyzed with a deterministic approximation.

Organization. The paper is organized as follows. Section 2 introduces DDMCs
and Section 3 discusses their approximations. In Section 4 we provide the defi-
nition of the applied timed automata. We discuss the issues related to assessing
properties through a diffusion approximation in Section 5. In Section 6 a case
study is presented. Conclusions are drawn in Section 7.



2 Nearly density dependent Markov chains

Continuous time Markov chains (CTMC) are often used to describe the inter-
action of groups of identical objects. Informally, such CTMCs are called density
dependent if the intensities of the interactions can be expressed as a function of
the density of the objects present in the area (or volume) described by the model
(as opposed to being expressed as a function of the number of objects itself).

Definition 1. Consider a sequence of CTMCs, denoted by X [N ](t), indexed by
N ∈ N \ {0} and with state space S [N ] ⊆ Zk (i.e., every state is identified by a
vector of k integers), that describe the interaction of k groups of identical objects.
The sequence X [N ](t) is called density dependent if the associated transition
intensities, given any two states r ∈ S [N ] and r + m ∈ S [N ] that are connected
by a transition, can be written in the form

q
[N ]
r,r+m = Nf

( r
N
,m
)

(1)

where f : Rk × Zk → R≥0 is a bivariate function whose first argument is a
vector that provides the density for each group of objects in state r and its second
argument is the change in the state due to the transition from state r to state
r +m ( R≥0 is the set of non-negative real numbers).

The indexing parameter N can represent the size of the considered area or vol-
ume, or the total number of objects in the model (in this case the vector r/N
is a vector of proportions). Note that in Definition 1 a single function, namely
f , provides the intensity of every transition of every CTMC of the sequence of
CTMCs. This implies that in every CTMC the transitions have the same effect
on the state.

The above definition can be relaxed by substituting (1) with

q
[N ]
r,r+m = Nf

( r
N
,m
)

+Ng
( r
N
,m,N

)
(2)

where g : Rk×Zk×N→ R≥0 is a trivariate function and g(r/N,m,N) ∈ O (1/N).
Sequences of CTMCs in which the transition intensities are in the form given
in (2) are referred to as nearly density dependent. The rationale behind the
definition is the following. As N grows, thanks to g(r/N,m,N) ∈ O (1/N), the
term Ng(r/N,m,N), which is not density dependent, remains in the order of
a constant. The other term instead grows proportionally to N . Accordingly, as
N grows the density dependent nature of the process prevails. Indeed, density
dependent and nearly density dependent processes can be studied with the same
approximations.

As for notation, the set of possible changes in the state due to a transition
will be denoted by C. Formally, a vector m ∈ Zk is in C if and only if there exist
two states r ∈ S [N ] and r + m ∈ S [N ] such that there is a transition from r to
r +m. Note that, like the function f , also the set C is shared by every member
of a given sequence of DDMC.



Example 1. As an example we consider a simple epidemic model in which two
groups are involved, namely, susceptible and infected individuals. Accordingly,
each state is described by a pair (i, j) providing the number of susceptible
and infected people, respectively. We assume that the modelled individuals
are uniformly distributed over an area split into N equally sized cells and
that three kinds of events are possible. The number of susceptible individuals

grows with an intensity proportional to the number of cells: q
[N ]
(i,j),(i+1,j) = Nλ1.

Due to the contact of two infected and one susceptible person in one of the
cells, one susceptible individual becomes infected; this happens with intensity

q
[N ]
(i,j),(i−1,j+1) = ij(j−1)

2
1
N3Nλ2, where the first term is the number of ways the

three individuals can be selected, the second term is the probability that the
three selected individuals are together in a given cell, and the multiplication by
N is due to the fact that the contact can occur in any cell. Infected individuals
can become immune independently of each other and independently of the num-

ber of cells; the associated intensity is q
[N ]
(i,j),(i,j−1) = jλ3. The intensity of the

first type of event is independent of the actual state and proportional to N and
thus it is a special form of (1). The intensity of the other two kinds of events
can be rewritten as

q
[N ]
(i,j),(i−1,j+1) = N

(
λ2
2

i

N

(
j

N

)2
)
−N

(
1

N

λ2
2

i

N

j

N

)
, q

[N ]
(i,j),(i,j−1) = Nλ3

j

N

where the first intensity is nearly density dependent while the second is density
dependent. The set of possible state changes is C = {(1, 0), (−1, 1), (0,−1)}.

3 Approximations of nearly density dependent CTMCs

All approximations we describe in the following use a process with a continuous
state space and thus are considered “fluid” approximations. In order to proceed
we need to introduce the sequence of normalized CTMCs given by Z [N ](t) =
X [N ](t)/N , called also the density process. The reason to use Z [N ] instead of
the original process is that normalization brings all CTMCs of a given density
dependent sequence to the same scale, making them comparable.

The first approximation we consider uses a set of ODEs in which there is
one equation per group. Accordingly, the original stochastic behavior is approx-
imated by a deterministic process. The set of ODEs used in the approximation
is provided by the following result of Kurtz [17]. Given a nearly density depen-
dent sequence of CTMCs X [N ](t) with initial state that tends to z0 as N tends
to infinity, i.e., limN→∞ Z [N ](0) = limN→∞X [N ](0)/N = z0, if the function∑
l∈C lf (y, l) satisfies some relatively mild conditions, then the density process

Z [N ](t) converges to a deterministic function z(t). The function z(t) is the solu-
tion of the following set of ODEs

dz(t) =
∑
l∈C

lf (z(t), l) dt, z(0) = z0. (3)



We note that (3) is equivalent to the more familiar form dz(t)
dt =

∑
l∈C lf (z(t), l);

however we prefer the form in (3) because it has more in common with the other
approximations that we introduce later.

The approximation given by z(t) has the following property:

lim
N→∞

P
{

sup
t≤T

∣∣∣Z [N ](t)− z(t)
∣∣∣ > δ

}
= 0, (4)

for every δ > 0 and where T is the upper limit of the considered finite time hori-
zon. Moreover, it was shown in [17] that the difference between the deterministic
approximation and the original stochastic behavior is characterized by

sup
t≤T

∣∣∣Z [N ](t)− z(t)
∣∣∣ = O

(
1/
√
N
)

(5)

The practical meaning of (5) is that the error of the deterministic approxi-
mation decreases as 1/

√
N .

Another approximation of a density dependent sequence X [N ], which is based
on stochastic differential equations and thus it preserves the stochastic nature of
the original process, was proposed in [18, 19]. This approximation, denoted by
Y [N ](t), is obtained by the following set of SDEs:

dY [N ](t) =
∑
l∈C

lf
(
Y [N ](t), l

)
dt+

∑
l∈C

l√
N

√
f
(
Y [N ](t), l

)
dWl(t) (6)

where the Wl(t) with l ∈ C are independent standard one-dimensional Brow-
nian motions. The approximation holds up to the first time Y [N ](t) reaches a
boundary of the state space. In (6) the first term is the same used by the deter-
ministic approximation in (3), while the second term is a noise that mimics the
stochasticity of the original CTMCs.

For what concerns the relation of the diffusion approximation and the original
density process, in [18] it has been proven that, for any finite N , we have

sup
t≤T

∣∣∣Z [N ](t)− Y [N ](t)
∣∣∣ = O (logN/N) (7)

In practice, one uses N ·z(t) or N ·Y [N ](t) to approximate the original CTMC
X [N ](t). The difference between N · z(t) and X [N ](t) according to (5) is in the
order of N(1/

√
N) =

√
N . Between N · Y [N ](t) and X [N ](t) according to (7) it

is instead N(logN/N) = logN which is much lower than
√
N .

A limitation of the previous approach based on SDEs is that it can be applied
only to models where the probability of reaching a boundary of the area of the
process is negligible. In order to overcome this limitation, in [7] we introduced a
jump diffusion process in which the jumps are used to capture the behavior of
the process at the boundaries. We provide here a brief description of the jump
diffusion process, denoted by J [N ](t); for a detailed treatment, see [7, 3].

The main idea is to split the transitions of the model into two sets depending
on the current state. In particular, we denote by C◦(y) the set of transitions



that change one or more components of the state which are at the boundary in
state y. The jump diffusion process is defined then by

dJ [N ](t) =
∑

l∈C−C◦(J [N](t))

lf
(
J [N ](t), l

)
dt+ (8)

∑
l∈C−C◦(J [N](t))

l√
N

√
f
(
J [N ](t), l

)
dWl(t) +

∑
l∈C◦(J [N](t))

l

N
dM

[N ]
l (t)

where the first two terms are analogous to those in (6) but are restricted to
those transitions that change components away from the boundaries. If none
of the components are at the boundary of the state space then J [N ](t) be-

haves exactly as Y [N ](t). The term M
[N ]
l (t) corresponds to Poisson counting

processes that gives rise to jumps that mimic the behavior of the original CTMC
at the boundaries. In other words, when the process reaches a boundary then
discrete jumps regulated by a Poisson process make it jump back eventually

to the inner part of the state space. The intensity associated with dM
[N ]
l (t)

is µl (t) = Nf
(
J [N ](t), j

)
, i.e., it is taken directly from the original CTMC

(note that J [N ](t) provides directly a vector of densities as required by f). Then

dM
[N ]
l (t) is multiplied by l/N because that is the effect of the transition in the

normalized state space.
Recent studies [8] have shown that the jump diffusion approximation has

similar characteristics to those of the pure diffusion approximation and, in par-
ticular, that the approximation it introduces is as good as that of the “pure”
diffusion process, that is:

sup
t≤T

∣∣∣Z [N ](t)− J [N ](t)
∣∣∣ = O (logN/N) (9)

Numerical evaluation of the goodness of the jump diffusion approximation has
been illustrated instead in [7, 3].

4 Timed Automata

In this section, we introduce a timed automata-based formalism for the specifica-
tion of timed properties of CTMCs. As is standard when using timed automata
for the specification of properties of stochastic systems (e.g., [13, 12, 20, 10, 11]),
we use deterministic timed automata (DTA): that is, each input sequence of
the timed automaton (which in our context is a trajectory, i.e., a function from
time to the state space of the CTMC, representing a particular behavior of the
CTMC or of its diffusion approximation) corresponds to a single run of the timed
automaton. In order to provide a uniform framework for timed properties inter-
preted on CTMC and on jump diffusion approximations, our DTA are labeled
with constraints both on clocks and on variables characterizing the state space,
but are not labeled with actions corresponding to individual CTMC transitions
(which have no meaning in the jump-diffusion diffusion approximation setting).



Edges of our variant of DTA are urgent : they are taken as soon as they are en-
abled. Urgency of edges allows for a natural interpretation of our DTA not only
on behaviors of CTMC, but also on trajectories of their diffusion approximations.

We denote by S ⊆ Zk the state space and by V = {ϑ1, ..., ϑk} a set of k
variables, where we interpret ϑi as a variable corresponding to the i-th element
of the vector representing a state. Let C be a finite set of variables called clocks.

Definition 2. A constraint is defined by the following grammar:

Φ ::= ϕ ≤ ϕ | c ≤ λ | c ≥ λ | Φ ∧ Φ ,
ϕ ::= ϕ+ ϕ | ϕ− ϕ | ϕ ∗ ϕ | ϕ/ϕ | ϑi | λ ,

where c ∈ C is a clock, ϑi ∈ V and λ ∈ Q is a rational constant. A guard
constraint is a constraint Φ such that, for each a ∈ V ∪ C, there is at most one
subformula of Φ featuring a. An invariant constraint is a guard constraint Φ in
which there is no subformula of the form c ≥ λ. We write Guards(V, C) and
Invariants(V, C) to denote the set of guard constraints and invariant constraints,
respectively, over V and C.

Examples of invariant constraints include ϑ1 ≤ 10∧ϑ2 ≥ ϑ3 and ϑ1 ≥ 3∧c1 ≤
15, whereas c1 ≥ 3 ∧ c2 ≤ 10 ∧ ϑ1 ≥ 3 is an example of a guard constraint that
is not an invariant constraint (due to the conjunct c1 ≥ 3).

A function v : C → R≥0 is referred to as a clock valuation, and the set of all
clock valuations is denoted by Val(C). For any v ∈ Val(C), γ ∈ R≥0 and C ⊆ C,
we use v+γ to denote the clock valuation that increments all clock values in
v by γ (that is, (v+γ)(c) = v(c)+γ for all c ∈ C), and v[C:=0] to denote the
clock valuation in which clocks in C are reset to 0 (that is, v[C:=0](c) = 0 for
c ∈ C, and v[C:=0](c) = v(c) for c ∈ C \ C). The clock valuation that assigns 0
to all clocks in C is denoted by 0. Let Φ be a constraint, let y ∈ S be a state
and let v ∈ Val(C) be a clock valuation. Then we write (y, v) |= Φ if and only if
substituting ϑi by yi (where yi is the i-th element of the vector y) and c by v(c)
in Φ results in Φ resolving to true. For example, for y such that y1 = 4 and v
such that v(c1) = 12.1, we write (y, v) |= ϑ1 ≥ 3 ∧ c1 ≤ 15.

Definition 3. A timed automaton is a tuple (L, `init,F , C, Inv, E) comprising:
(1) a finite set L of locations, with an initial location `init ∈ L and a set
F ⊆ L of final locations; (2) a finite set C of clocks; (3) an invariant condi-
tion Inv : L → Invariants(V, C); (4) a set E ⊆ L × Guards(V, C) × 2C × L of
edges, where each edge (`, Φ,C, `′) ∈ E comprises a source location `, an en-
abling condition Φ, a set C of clocks to be reset to 0, and a target location `′.
A timed automaton is deterministic if, for any location ` ∈ L and for any pair
(`, Φ1,C1, `1), (`, Φ2,C2, `2) ∈ E, we have that Φ1 ∧ Φ2 is unsatisfiable.

We use DTA to determine whether a trajectory X : R≥0 → S satisfies a timed
property. More precisely, the DTA reads the trajectory X and traverses edges
between locations on the basis of (1) the states visited by the trajectory as time
passes and (2) the current values of the clocks. The values of the clocks increase



at the same rate as real-time. The DTA must leave its current location ` without
letting time pass if there exists an edge (`, Φ,C, `′) ∈ E such that the enabling
condition Φ is currently satisfied (hence, the DTA can be regarded as having an
“urgent” semantics in which an enabled edge must be taken as soon as possible):
this satisfaction of the enabling condition of the guard may occur, for example,
because the value of a state variable falls below some threshold, or the value
of a clock reaches a particular value. Furthermore, an additional constraint on
the trajectory is imposed by the invariant conditions: during a period in which
the DTA is in a particular location `, the invariant condition Inv(`) must be
satisfied by the states visited by the trajectory and by the current value of
the clocks during that period, otherwise the trajectory will be regarded as not
satisfying the timed property. A set of clocks can be reset to 0 when an edge
is taken. If the DTA, starting from the initial location, reaches a final location
when reading the trajectory X, then we say that the trajectory is accepted by
the DTA (which, intuitively, corresponds to the trajectory X satisfying the timed
property represented by the DTA), otherwise it is rejected.

In the following, we describe formally the acceptance of trajectories by
a DTA. Let (`, Φ,C, `′) ∈ E be an edge of a DTA A. Then we write
source(`, Φ,C, `′) = `, guard(`, Φ,C, `′) = Φ, reset(`, Φ,C, `′) = C, and
target(`, Φ,C, `′) = `′. Let ` ∈ L be a location of A, and let y ∈ S be state
and v ∈ Val(C). We write (y, v) 6|= Guards(`) if and only if (y, v) 6|= guard(e) for
all e ∈ E such that source(e) = `. A pair (`, v) ∈ L × Val(C) is called a config-

uration. We write (`, v)
γ,e−−→ (`′, v′) to denote the DTA-transition from configu-

ration (`, v) to configuration (`′, v′) after γ > 0 time units have elapsed and by

taking the edge e. The transition (`, v)
γ,e−−→ (`′, v′) exists if (1) source(e) = `,

(2) v′ = (v + γ)[reset(e):=0], and (3) target(e) = `′. A path of A is a finite

sequence of DTA-transitions π = (`0, v0)
γ0,e0−−−→ (`1, v1)

γ1,e1−−−→ · · · γm−1,em−1−−−−−−−→
(`m, vm). Let Λπ = {λπ0 , λπ1 , . . . , λπm} be the set of constants such that λπ0 = 0

and λπi =
∑i−1
k=0 γk for all i such that 1 ≤ i ≤ m.

Definition 4. Let A be a DTA. We say that X : R≥0 → S is accepted by

the DTA if there exists a path π = (`0, v0)
γ0,e0−−−→ (`1, v1)

γ1,e1−−−→ · · · γm−1,em−1−−−−−−−→
(`m, vm) of A such that `0 = `init, v0 = 0, `m ∈ F and, for all 0 ≤ i < m, the
following conditions are satisfied:

– for all 0 ≤ γ′ < γi, we have (X(λπi + γ′), vi + γ′) |= Inv(`i) and (X(λπi +
γ′), vi + γ′) 6|= Guards(`i);

– (X(λπi + γi), vi + γi) |= guard(ei).

5 Assessing timed automata based properties by diffusion
approximations

In this paper we limit our attention to illustrating the practical applicability
of the approach. According to (9), there is a correspondence between the tra-
jectories of the CTMC and those of the approximating jump diffusion process.



Moreover, the larger N is, the tighter the relation gets. It is natural hence to ex-
pect that over a certain threshold for N , which depends on the considered model,
one can safely use trajectories of the diffusion process instead of trajectories of
the CTMC to assess DTA-based temporal properties.

There is, however, a fundamental difference between a CTMC and a diffu-
sion process. A diffusion process exhibits extreme oscillatory nature along its
drift in any infinitesimal interval. This means that if a diffusion exceeds a given
limit L for the first time then it goes below L with probability 1 afterwords
in any infinitesimal interval. Consider now a diffusion process X(t) and a DTA
with three locations. The initial location is with invariant X(t) ≤ L and has a
transition enabled if X(t) ≥ L. The second location is with invariant X(t) ≥ L,
it does not have an enabled transition associated with the situation X(t) ≤ L
and it has a transition enabled when X(t) ≥ 2L that leads to the third location
which is a final one. Due to the oscillatory nature of the diffusion process, with
probability 0 a trajectory is accepted by the DTA. Note however that such a
situation is coherent with what happens in a CTMC as N grows large. For large
values of N , the trajectories of a CTMC are more and more similar to those of
a diffusion. Consequently, the probability of the set of those trajectories of the
CTMC that are accepted by the above described DTA tends to 0 as N tends
to infinity. The characteristics of the diffusion process and that of the CTMCs
with large N must be taken into account during the definition of the DTA in
order to avoid results that are consequences of these characteristics and not the
properties of the studied phenomenon. In practice, the problem is alleviated by
using piecewise constant abstractions of the trajectories of the diffusion process.
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Fig. 1. Two versions of the same tra-
jectory of a pure Wiener process with
different time steps.

We consider now the three kinds of ap-
proximations errors that occur during the
analysis of CTMCs based on diffusion pro-
cesses. First, the diffusion process is an ap-
proximation of the original CTMC. The
goodness of this approximation was dis-
cussed in Section 3. Second, the analysis
is carried out based on traces generated by
approximate simulation. Indeed, exact sim-
ulation can be carried out only in special
cases of diffusion (for example, in case of a
Wiener process without drift) but in gen-
eral the process is multidimensional and it
includes a state dependent drift and a state dependent noise that cannot be simu-
lated exactly in general. Third, a diffusion process fluctuates in any infinitesimal
interval which means that it is not possible to obtain a complete representation
of a trace. Indeed, the temporal properties are assessed based on a constant
piecewise approximation of an infinitely fluctuating trace.

Let us illustrate this third source of approximation error in some detail. In
Figure 1 we plotted two versions of the same trajectory with two different time
steps (δ). Consider now a DTA which accepts only those traces along which



name description init.
values

A Axin2 protein 0
Am Axin2 mRNA 0
G GSK3 protein 50 ·N
L LRP5/6 coreceptor 20 ·N
B free β-catenin 0
AL Axin2-LRP5/6 complex 50 ·N
GA GSK3-Axin2 complex 0
C GSK3-Axin-β-catenin complex 0

Table 1. Species of the Wnt pathway.

R1 :C
k1−−→ B +GA R7 : Am

k7−−→ A+ Am

R2 :C
k2−−→ GA R8 : A+ L

k8−−→ AL

R3 :B +GA
k3−−→ C R9 : AL

k9−−→ A+ L

R4 :A+G
k4−−→ GA R10 : 2B

k10−−−→ 2B + Am

R5 :GA
k5−−→ G+ A R11 : Am

k11−−−→ ∅

R6 :∅
k6−−→ B R12 : AL

k12−−−→ L

Table 2. Reactions of the Wnt pathway.

the process never exceeds level 12 in the time interval [0, 10]. Clearly, using the
piecewise constant abstraction of the trace, the trace with δ = 1 is accepted
while the other is rejected.

The previous example indicates that the choice of the time step during the
generation of the traces is of fundamental importance to achieve good approxima-
tion of the original behavior. The same problem, i.e., not knowing the fluctuation
between two consecutive time points, is present to a somewhat lesser extent also
when jump diffusion processes are used to obtain approximations of more classi-
cal measures, like transient probabilities. In that case, it is of crucial importance
to find with sufficient precision the time instants when the process reaches the
boundary, i.e., the time instants when the change from pure diffusion process
to jump diffusion process has to be made. When assessing temporal properties
described by DTA, the problem appears also inside the state space around the
thresholds present in the automaton. The choice of the time step was discussed
to some extent in [3, 7]. In theory, it is possible to add intermediate points given
a trace but this can be done only in very special cases, like the one used before,
i.e., the pure Wiener process.

All the three kinds of approximation error decrease as the indexing parameter
N increases. Numerical experiments suggest that in the situation when it is
reasonable to use the diffusion approximation, i.e., when the CTMC is too large
for the analysis but there are still important stochastic behaviors in the system,
the approximation errors are in an acceptable range.

6 Experimental results

The experimental results described in this section were carried out using a pro-
totype implementation integrated in the GreatSPN suite [2], for the SDE part,
and with the COSMOS statistical model checker [6] (which uses a generalisation
of the DTA formalism [5]), for the CTMC part.
Case study: A model of the Wnt pathway. We consider a model of the Wnt/β-
catenin pathway, an intracellular signalling pathway involved in neuroinflamma-
tion, a key mechanism in numerous brain diseases [14]. Such model [15] accounts



kinetic rates
k1 7 k4 0.2/N k7 0.7 k10 0.7/N
k2 200 k5 1.2 k8 10/N k11 0.025
k3 0.1/N k6 0.4·N k9 0.08 k12 0.1

initial population
G N · 50
L N · 20
AL N · 50

Table 3. Kinetic rate constants
and initial populations for the
DDMC model of the Wnt pathway
(both dependent on index N).
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Fig. 2. Sample paths of A (Axin2 protein)
for various values of N and the behavior
obtained by the ODE description.

for 8 biochemical species (Table 1) regulated through 12 reactions (Table 2).
It consists of three main actors: the β-catenin (denoted B) and Axin2 proteins
(A), forming a negative feedback loop, and the Wnt protein (here subsumed by
the LRP5-6 membrane receptor, i.e., L), representing the extracellular signal.
The behavior can be summarised as follows. With scarcity of extracellular Wnt
molecules (low L), a degradation complex (C, a trimer resulting by β-catenin
binding to previously formed GSK3-Axin2 dimer, i.e., GA) causes the phospho-
rylation and subsequent destruction of β-catenin located in the cell’s cytosol. On
the other hand with an abundant Wnt signal (high L), the degradation complex
is deactivated (as Axin is degraded through reversibly binding with receptor L,
i.e., forming the AL complex) resulting in an accumulation of β-catenin which in
turn activates (through transcription of the Axin2 messenger RNA, i.e., Am) the
expression Axin2, and therefore determining its own destruction (i.e., negative
feedback loop).

In [15] the model is given in ODE form and it is shown to exhibit sustained
oscillations (Figure 2) for specific parameter settings. Here we consider a se-
quence of DDMCs indexed by N (here proportional to the volume) and of the
parameters of the ODE model in [15]5. Table 3 depicts the kinetic rate constants
and the initial populations of the Wnt-pathway DDMC 6 whereas Figure 2 com-
pares species A’s projection of a sample path of the CTMC for various values of
N with the deterministic trajectory of the corresponding ODEs (notice that for
readability the CTMC paths have been normalised, i.e., the molecule count of A
is divided by N). Furthermore observe that ODEs exhibit sustained oscillations,
which, after the second period, have almost constant amplitude, and that, for
increasing values of N , CTMC trajectories approximated quite accurately the
ODE’s. The choice of N when analyzing a real scenario depends on the consid-

5 I.e., for N = 1 we assumed the discrete initial populations and reaction intensities
being equal to the continuous ones as given in [15], note that this is in agreement
with a cell volume V = 109/nA where nA is the Avogadro number given that species
concentrations and kinetic rate constants of the ODE model are expressed in nM.

6 Notice that zero-order and second-order reactions’ rates are dependent on N because
for these conversion from continuous to discrete rates depends on cell’s volume.
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Fig. 3. DTA to study the oscillation period of Axin2 proteins.

ered volume; in wet-lab experiments typically molecular value is usually greater
than 500.

Automaton. Inspired by Mikeev at al. [20] we propose a DTA (Figure 3) to
measure the duration of the period exhibited by the population of the Axin2
protein. The rationale for noisy period detection [20] is to split the domain
of the observed species, i.e., A, in three subintervals: low (i.e., A ≤ L), mid
(i.e., L < A ≤ H) and high (i.e., A ≥ H)7. A noisy period realisation [4]
corresponds to the time interval occurring between two successive entries to
the low region of the state-space interleaved by a visit to the high region. The
single clock DTA in Figure 3 is indeed designed to detect the first noisy period
realisation of species A. It consists of two parts: the first one processes the initial
low0-high0-low1 traversal (representing a spurious period), at the end of which
(low1-mid2 transition) the clock x is reset to start timing the realisation of the
first non-spurious period whose termination corresponds with the low3-midend

edge. Note that ignoring the first spurious period (through the first part of
the DTA) is necessary since to detect a complete period we need to identify
the actual starting point (i.e., the first low-mid crossing that follows a visit
to high) which we cannot do from the initial state because the system starts
at A = 0. Furthermore note that trajectories are accepted on condition that
the observed duration of the first period is within Tmin ≤ x≤ Tmax which, by
choosing different values for Tmin and Tmax, allows us to assess the probability
density of the period duration (Figure 4). Observe that for any element N>1 of
the Wnt-DDMC sequence the probability of non-sustainably oscillating paths
(i.e., paths non-perpetually traversing the low-mid-high regions) is negligible,
therefore, given that L and H are properly chosen (so to be above, resp. below,
the average height of minimal, resp. maximal peaks of oscillations), the DTA
accepts all trajectories of the model.

Experiments. We compare the proposed approach by assessing of DTA-based
oscillation-period properties on both a few CTMCs (of the Wnt-DDMC se-

7 L and H, where L<H, are two thresholds chosen so that the minimal, resp. maximal,
peaks of oscillation are most likely to fall below L, resp. above H.



SDE COSMOS

N L H Time Average period
Jump
Tot.

Time Average period Speedup

100 50 1×104 180h. [103.174, 103.344] 0.90 30h. [112.628, 113.133] 0.17
500 50 5×104 88h. [111.021, 111.115] 0.76 167h. [112.654, 112.784] 1.9

1,000 500 1×105 54h. [111.977, 112.089] 0.60 344h. [112.381, 112.499] 6,37
2,000 500 1.5×105 39h. [112.408, 112.474] 0.45 705h. [112.504, 112.578] 18.08
5,000 500 5×105 28h. [112.693, 112.725] 0.26 1763h. [112.708, 112.749] 62.96

Table 4. Comparing SDE and COSMOS results considering 10000 traces.

quence) and on their SDE approximation. The experiments were executed on
a server with 48 core AMD Opteron(tm) Processor 6176 by considering five
CTMCs of the Wnt-DDMC sequence corresponding to the following values of N ,
i.e., N ∈{100, 500, 1000, 2000, 5000}, and while the SDE results were computed
with the GSPN prototype the CTMCs results were computed with COSMOS [6]
which, to the best of our knowledge, is one of the most efficient statistical model
checkers. We have run two families of experiments. The first one is devoted to
assessing the density function of the oscillation period (Figure 4) and employs
the DTA of Figure 3. The second one is devoted to comparing both runtime and
accuracy of the two approaches w.r.t. estimating the duration of the oscillation
period (Table 4) and employs a slightly modified DTA8.

Table 4 compares, as a function of N , the execution times and the confidence
intervals for the mean duration of the first non-spurious oscillation period with
confidence level set to 0.99 in case of generating 10000 traces. Columns two
and three depict the value of the L, resp. H, parameter of the DTA; the fourth
and fifth (resp. seventh and eighth), columns show the runtime and estimated
confidence-interval computed through our SDE prototype (resp. COSMOS); the
sixth column shows the proportion of the number of jumps occurred because of
hitting the border during the simulation of the SDE; finally the ninth column
gives the speed up obtained by our SDE approach. In Figure 4 the probability
density functions (pdf) of the length of the first non-spurious period are plotted
for N equal to 100, 500, 1000 and 2000. The pdf for N equal to 5000 (not
shown for the lack of space) confirms the trend toward a closer correspondence
between the SDE and COSMOS results.

Discussion. As expected, the SDE approach becomes more convenient, in terms
of runtime and precision, as N increases.9 In particular, for N=100 the precision
is strongly affected by the SDE approximation error, moreover the SDE execution
time is greater than COSMOS since for each SDE trace the process hits the

8 I.e., we use the DTA in Figure 3 but without the Tmin ≤ x ≤ Tmax conjunct on
the edge from low3-midend, which allows us to obtain the value of the clock x at
the moment of reaching the final location of this modified DTA: this value gives the
length of the first non-spurious oscillation period.

9 Observe that the dimension of integration step is dynamically computed through a
heuristic function which provides a good trade-off between speed-up and precision
of the solution
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Fig. 4. Probability mass functions of the length of the first non-spurious oscillation
period with bin length equal to 0.1 and with N equal to 100 (top left), 500 (top right),
1000 (bottom left), 2000 (bottom right).

boundaries, on average, along 90% of a trace length (col. 6, Table 4). With
N = 1000 the SDE based analysis is about twice faster than that based on
the CTMC (col. 9, Table 4) while the precision is acceptable: indeed the SDE
approach is able to reproduce the multimodal behavior of the pdf generated by
COSMOS (Figure 4 bottom-left plot, i.e., N = 1000). Such trend is confirmed
by experiments with N = 2000, (speedup ∼6x, even closer approximation) and
with N=5000 (exhibiting a 63x speedup obtained with the SDE approach).

7 Conclusions

In this paper we presented a framework that allows for assessing temporal prop-
erties, described in terms of DTA, of DDMCs through their jump diffusion ap-
proximation. The applicability of the approach was illustrated through a case
study regarding a biological oscillator. As future work we aim to study the theo-
retical limits of assessing DTA-based temporal properties of diffusion processes.
Furthermore, the approach can be extended to hybrid jump diffusion processes,
which are obtained by partial fluidification of DDMCs, that are useful to study
systems in which not all population counts are high and thus fluidification of all
state variables would lead to large approximation errors.
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