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Testing for the mean of random curves : a
penalization approach.

André MAS�

Université Montpellier II

Abstract

Let X1; :::; Xn be an i.i.d. sample of random curves, viewed as Hilbert space
valued random elements, with mean curvem: An asymptotic test ofm = m0 vsm 6=
m0 is proposed, when m0 is a �xed known function. The test statistics converges
under very mild assumptions and relies on the pseudo-inversion of the covariance
operator (leading to a non standard inverse problem). The power against local
alternatives is investigated.

Key words : Random curves, functional data, weak convergence, hypothesis testing,
local alternatives.
AMS Mathematics Subject Classi�cation : 62E20, 62G10, 62G20.

1 Introduction

1.1 The functional statistics setting.

Inference on random curves is undoubtedly a soaring area in nonparametric statistics.
Modern computational techniques make it possible to deal with �high dimensional ran-
dom vectors�. Data that are obtained from an underlying continuous-time process, for
instance, are extremely common in �nance, climatology, medicine, etc. Random curves
collected from (independent or not) experiments are also likely to be studied by non para-
metric techniques. Some references are Franck and Friedman (1993), Cavallini, Montanari,
Loggini, Lessi and Cacciari (1994), Besse, Cardot and Stephenson (2000) for applications
in respectively chemometrics, industry and meteorology.
This trend revealed that, conversely to probabilists, statisticians sometimes lack the-

oretical results for studying random functions. Many authors anyway paid attention to
these topics, developping methods to link this rather formal framework with the sta-
tistician�s �everyday�s life�. Amongst these are Kneip and Gasser (1992), Ramsay and
Silverman (1997). Dauxois, Pousse and Romain (1982), in an earlier paper, investigated
the principal component analysis for Hilbert-valued random variables. Recently several
authors generalized to the functional framework standard models in �nite dimension : the
linear regression model in Cardot, Ferraty and Sarda (1999), the autoregressive model for
time series in Bosq (2000), the in�nite moving average model in Mas (2002b).

�Mailing address : André Mas, Laboratoire de Probabilités-Statistiques, CC051, Université Montpel-
lier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5.
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We propose an asymptotic procedure to test for the mean of a random function. Let
X1; :::; Xn be an i.i.d. sample of random curves with mean m (note that m is also a curve)
de�ned on some abstract probability space (
;A; P ). We should write Xi(!; t) where for
�xed ! 2 
; Xi(!; :) is the path of the curve and where for �xed t Xi(:; t) is a real random
variable. But for the sake of simplicity both indices will be dropped.
In this work we will suppose that the data are truly in�nite-dimensional or functional.

In practice, the random curves are observed only at discrete times. A version of the
underlying process is then rebuilt by interpolation techniques such as splines, wavelets,
etc. These issues (as well as the problem of estimating the curvem) will not be considered
in the sequel since they give rise to a considerable literature. We refer for instance to Rice
and Silverman (1991).
The test may be written : �

H0 : m = m0

Ha : m 6= m0

where m0 = m0 (�) is a �xed known function. The principle of such a test is not new.
Several authors developped procedures in the framework of di¤usion processes : X1 is
supposed to satisfy the stochastic di¤erential equation

dX (t) = m (t) dt+ "dW (t)

where W is the standard Wiener process and " is the noise level. We refer to Spokoiny
(1996), Lepski and Tsybakov (2000) for instance. The function m is supposed to be-
long to a class of functions (Sobolev, Hölder, or more generally Besov) indexed by some
smoothness parameter. This gaussian and typical framework allows these authors to de-
rive very interesting results : adaptive (w.r.t. the function class) tests but also optimal
rates of testing -optimal in a sense that is de�ned by introducing the notion of minimax
rate of testing- when the noise level decays to zero. Fan (1996) and Fan and Lin (1998)
also proposed, in connection with high-dimensional ANOVA, an adaptive Neyman test.
Here adaptivity means that the procedure will automatically reduce the dimension of the
model. All these authors apply wavelet thresholding techniques.
A new feature of the paper relies on the removal of the assumption of Gaussian

observations, which was almost systematic in the above-mentioned articles. This frame-
work makes the test truly new because we need to carry out alternative techniques based
on lower moment assumptions, enlarging the class of process which may be investigated.
The drawback is : we lose optimality properties. The procedure remains asymptotic and
does not rely on a �nite dimensional approximation of m: The limiting distribution is
however extremely simple. Some may view it as goodness of �t test. It also turns out
that the main technical problems arising may be expressed in terms of an ill-posed inverse
problem.
The setup of the paper is closer to a recent work by Cardot, Ferraty, Mas and Sarda

(2002). The authors propose a test for the regression operator in a linear model with
functional inputs. The second serious point in this work is the mild condition on the rate
of decrease of the eigenvalues of the covariance operator.
It should also be stressed that our problem does not depend on parameters intrinsec

to the model or to spaces of functions. All the calculations just rely on the Hilbertian
structure of the space, no matter which space is chosen. Consequently minimaxity or
adaptivity make no sense.
From now on, the studied random curves will always be seen as random variables

de�ned on the abstract probability space (
;A; P ) and with values in an in�nite dimen-
sional, real and separable Hilbert space H endowed with inner product h:; :i and norm
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k�k : The Hilbert space setting enables to consider di¤erent sorts of basis and also to derive
similar results for the sequence space l2. It also makes computations easier (especially as
far as the central limit theorem is concerned). In the special case when H = L2 ([0; 1])
and for all random functions u and v in H (u and v are consequently de�ned on 
� [0; 1])
hu; vi is a random number :

hu; vi (!) =
Z 1

0

u(!; t)v(!; t)dt: (1)

Spaces of smooth functions, such as Sobolev spaces, may (and are often) prefered to L2

spaces for stability reasons. We refer to Silverman (1996) for developments of this ap-
proach. Formally, this does not change much the inner product de�ned in (1) : Lebesgue�s
measure dt is replaced with another non-�nite measure d�(t) (about this well-known fact
see Rudin (1973) Ch 8.8 : Sobolev Spaces).

1.2 Preliminary facts about operators

Let X1; :::; Xn be an i.i.d. sample of Hilbert-valued random variables with mean m: We
are �rst going to assume that the covariance operator of these random variables exists.
Assumptions about the second order structure of X1 will appear in the next paragraph.
We denote � (resp. �n) the covariance operator of X1 (resp. the empirical covariance

operator of the sample). These operators are bounded linear selfadjoint and positive
mappings from H to H: They are de�ned this way : for all x in H;

�(x) = E [hX1 �m;xi (X1 �m)] ;

�n(x) =
1

n

nX
k=1

[hXk �m;xi (Xk �m)] :

In the following, for all u; v in H; u
 v just stands for the rank-one operator de�ned for
all x in H by u
 v(x) = hu; xi v: With these notations, we get :

� = E [(X1 �m)
 (X1 �m)] ;

�n =
1

n

nX
k=1

[(Xk �m)
 (Xk �m)] :

We will now assume that the random variable X1 has a �nite strong moment of
order two i.e. E kX1k2 < +1: This means that � is a trace class operator on H: If
�1 � �2 � ::: � 0 denotes the ordered sequence of its real and positive eigenvalues
(associated to the eigenvectors e1; e2; ::::) it also implies that the vector (�1; �2; :::) 2 l1:
For further information about these facts we refer to Vakhania, Tarieladze and Chobanyan
(1987).
We will always suppose that � is one to one : the sequence of its strictly positive

eigenvalues is in�nite and that the set ker � = fh 2 H : �h = 0g is reduced to f0g. Under
the moment assumptions on X mentioned just above, it is well-known that � is a positive
selfadjoint compact operator. For any linear operator T de�ned on and with values in H;
kTk1 stands for the usual norm of continuous linears operators i.e. kTk1 = sup kTxk
for x in the unit ball of H. If we go further in the moments assumption, we even know
that

p
n k�n � �k is bounded in probability whenever E kX1k4 is �nite.
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The operator �1=2 plays a key-role in the sequel. It is de�ned by

�1=2 =
+1X
k=1

p
�k (ek 
 ek)

and is a compact operator. When � is one to one, its inverse ��1=2 is de�ned on a domain
D in H (D is a dense vector subspace of H). The linear mapping ��1=2 is unbounded
(i.e. ��1=2 is continuous at no point of D) which also means

��1=21 = +1 . As
a consequence ��1=2X1 cannot be considered as a (bounded) random variable. More
information about these topics may be found in Dunford and Schwartz (1988).

2 Formulating the problem.

2.1 An original linear inverse problem

Now, in order to understand the particularities of the situation, let us consider �rst what
happens in the �nite dimensional setting. Let X1; :::; Xn be a sample of i.i.d. vectors of
Rp with mean m 2 Rp: The test is the following�

H0 : m = m0

Ha : m 6= m0:

The operator �n is replaced with a square matrix of size p; say Mn(p); the empirical
covariance matrix of the sample, which is often supposed to be invertible for n large
enough. Then the test statistics (usually chi-square) is derived from :

Mn(p)
�1=2

 
1p
n

nX
k=1

(Xk �m0)

!

which converges under the null hypothesis to a gaussian random variable whose covariance
matrix is the identity.
In our functional framework we still have : Sn = n�1=2

Pn
k=1 (Xk �m0) converges

weakly to a gaussian r.v. G by the central limit theorem for Hilbert space valued random
elements but the distribution of G depends on the unknown �i�s (see Fact 2 of Appendix
1). These eigenvalues may be viewed as nuisance parameters. Besides �n; conversely to
Mn is never invertible in H even for large n since its range (the linear span of X1; :::; Xn)
is of �nite dimension. Considering ���1=2n Sn�makes no sense, as well as ���1=2G� as
was mentioned above. Consequently our goal is double. First we should approximate the
operator ��1=2 by a pseudo inverse, say Ln; built from �n and hence random. Then we
will have to study weak convergence for LnSn: This approach will be made more precise
in the next section. Anyway we should expect the norm of Ln to be a non decreasing
sequence tending to +1:We could also say that the sequence of operators Ln is unstable
or ill-conditioned. Finally, copying the �nite dimensional approach to our test procedure
leads us to a non standard ill-posed inverse problem : G will be approximated by Sn and
��1=2 by Ln but Sn and Ln are connected via the sample X1; :::; Xn. Fortunately we will
see that it is possible to propose a convergent test procedure.
Approximating ��1=2 by a sequence of bounded operators is the purpose of the forth-

coming paragraph.
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2.2 Pseudo-inverse estimators.

The problem of approximating inverses of selfadjoint compact operators is absolutely not
new. It is adressed in Nashed and Wahba (1974), Arsenin and Tikhonov (1977), Groetsch
(1993) amongst many others. The main point is always to regularize a matrix M (resp.
an operator S) which is invertible but �not by much�(resp. unbounded). This property
implies that for any vector x; Mx (resp. Sx) may have large variations even when x does
not vary much. Numerous procedures were proposed. We will keep one wich is suited to
our problem and may be easily implemented.
The penalized regularization procedure is based on (� + �I)�1=2. It is a ridge-type

method and depends on the index � which is a strictly postive real number The penal-
ization term is �I where I is the identity operator on H: The operator (� + �I)�1=2 is
continuous for all strictly postive � with norm 1=

p
�:

Another way to regularize ��1=2 consists in deleting all the terms beyond a threshold
p: In the basis ei we get

�
�1=2
(p) = diag

�
�
�1=2
1 ; �

�1=2
2 ; :::; ��1=2p ; 0; 0; ::::

�
:

�
�1=2
(p) is a bounded operator with norm �

�1=2
p and is known as the spectral truncation

(S.T.) of order p of ��1=2. But ��1=2(p) which is often used has several drawbacks :

� The S.T. estimator is based on the functional Principal Component Analysis of �n.
It is necessary to estimate the eigenvectors and eigenvalues of this random operator
before projecting the sample X1 � m; :::; Xn � m on these eigenvectors (to obtain
principal components as a by-product). The estimation procedure is consequently
not that simple and usually entails serious stability problems. Estimating the pe-
nalized estimate just requires a nonrandom basis, (e.g. spline, Fourier, wavelet).
The data are then projected on a known vector space.

� As it may be seen in Cardot, Ferraty and Sarda (1999), and Bosq (1991), convergence
rates of estimates steming from the S.T. procedure always depend on the speed of
decay of the (unknown) eigenvalues and eigenvectors of �: Several assumption are
usually made, restricting the generality of the results.

� Speed of convergence of estimates involving the S.T. estimator are usually not good,
due to the very slow rate of uniform convergence of the empirical eigenvectors of �n
to the eigenvectors of � for large values of p.

Also note that, conversely to the S.T. estimator, the norm of the penalized one, 1=
p
�n,

is nonrandom and does not depend on the rate of decay of the eigenvalues of
� or on the observed data. All the previous reasons explain the �nal choice of a
penalization procedure for regularizing the inverse of the square root of the covarariance
operator.
However even if the regularized operator does not depend explicitely on the eigenval-

ues, it should be stressed that the test statistics depends on them. A good knowledge
of the rate of decay of the eigenvalues is even crucial to compute smoothing parameters
intrinsic to our estimates (the above-mentioned �n as well as kn, mentioned below-see
next section.)
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3 Main results

Weak convergence (resp. convergence in probability) will be denoted w! (resp. P!) in the
sequel and will be considered with respect to the norm of the space H. As mentioned
above, we denote D the domain of the operator ��1=2 i.e. the set of points x in H for
which ��1=2x has a �nite norm. Clearly if x is expressed in the basis ei, x =

P
xkek. We

have :

D =
(
x 2 H :

X
k

x2k
�k
< +1

)
:

Before giving the main results, we recapitulate the two assumptions needed :

H1 : E kX1k4 < +1:
H2 : � is one to one.

We set once and for all :

Sn =
1p
n

nX
k=1

(Xk �m0) :

and we know that Sn
w! G where G is the H valued gaussian random element with

mean 0 and covariance operator �: For further purpose we �nally recall that the following
well-known decomposition for G holds almost surely on an appropriate probability space

G =
+1X
p=1

p
�p�pep

where the �p�s are gaussian centered random variables with unit variance.

3.1 Weak convergence

Let the sequences kn (of integers) and �n (of nonnegative numbers) respectively increase
to in�nity and decrease to zero We set

bcn = knX
p=1

b�pb�p + �n and bdn =
vuut knX

p=1

 b�pb�p + �n
!2

where the b�p are the estimated eigenvalues of �n: The random term bcn (resp. bdn) is a bias
term (resp. a normalizing term).

Remark 3.1 The b�p�s are directly estimated from the (smooth) PCA of the Xi�s hence
from the spectrum of �n: Asymptotic results (almost sure convergence, weak convergence)
are given in Dauxois, Pousse and Romain (1982).

The test statistic is

bTn = 1bdn
�(�n + �n)�1=2 Sn2 � bcn�

6



Theorem 3.1 : Under H1 and H2 there exists two conjugated sequences kn and �n such
that, when H0 holds (m = m0) :

bTn w!
n!+1

N (0; 3) :

Remark 3.2 : Note that Theorem 3.1 which just asserts the existence of the test
procedure is valid without any assumptions on the distribution of the data or
on the spectrum of �: The crucial step in the proofs relies on a result by Mas (2002a)
on the estimate of closeness of distributions for images of measures on Banach spaces by
general families of mappings. The distance between distributions is expressed in terms of
the Prokhorov metric. We refer to the Appendix for the main properties of this metric as
well as references.

The next theorem determines explicitely both sequences kn and �n such that bTn con-
verges. The �price to pay�is quite low and relies on the forthcoming uniform bound on
the eigenvalues :

H3 : for some M; " > 0; �p �M=
�
p (log p)1+"

�
Theorem 3.2 Let 0 < � < 1=2: Under H1, H2 and H3 when kn = n1=2�� and �n =
(lnn)�"=(1+�") ; and when H0 holds :

bTn w!
n!+1

N (0; 3) :

Remark 3.3 Assumption H3 may be viewed as prior information on the eigenvalues.
The estimates b�0ps obviously provide a good knowledge of the unknown �p�s. If however
more information is available and if the bound provided in H3 can be made more precise,
one may get deeply di¤erent rates of increase (resp. of decrease) for kn (resp. �n). An
inspection of the proof would lead to the following table :

Rate of decay for the eigenvalues exponential geometric assumption H3
kn log geometric geometric
�n geometric geometric log

The point is : the respective �speed� of kn and �n are inverted. When the problem is
�higly ill-conditionned�(i.e an exponential rate of decrease for the eigenvalues) kn should
increase slowly. Conversely when the eigenvalues are assumed to converge �slowly� to
zero (assumption H3) kn may be large and the penalization parameter may also decrease
slowly. The reduction of dimension induced by kn is implicitely governed by �n which
depends on the �illness�of the inverse problem.

3.2 Study of the power for local alternatives

For the sake of completeness, the test procedure is given below :

� Fix m0 and compute bTn where Sn = n�1=2Pn
k=1 (Xk �m0) and

�n =
1

n

nX
k=1

(Xk �m0)
 (Xk �m0) :
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� Fix a level of signi�cance � and compute u� such that P (jN (0; 1)j � u�) = 1� �

� If
��� bTn��� � p3u� H0 is accepted otherwise, it is rejected.

A very classical way to investigate the power of the test consists in studying the power
function against sequences of alternatives tending to the null. Let us take

Ha (�n) : m = m0 + �nt:

where t 2 H and �n > 0 with �n # 0: We are interested in computing the �optimal�rate
of decay for �n i.e. the fastest rate of decay for which the test distinguishes Ha (�n) from
H0 at a prescribed level.
At this point we need to recall a notation. Remind that the set

D =
(
x 2 H :

X
k

x2k
�k
< +1

)

is the domain of ��1=2: Consequently
��1=2t is �nite if and only if t 2 D.

Proposition 3.1 The optimal rate of convergence of the sequence of local alternatives to
the null is �n =

p
dn=n: Let us pick a t in H and distinguish two cases.

First case : If t =2 D the test statistic bTn diverges.for the sequence of alternatives
Ha

�p
dn=n

�
Second case : If t 2 D, bTn converges weakly to a N ���1=2t2 ; 3� for the sequence of
alternatives Ha

�p
dn=n

�
:

Remark 3.4 Since dn � C��1n ; considerations made above prove that the power of the
test is directly connected to the �ill-posedness� situation. The eventual bad rate is not
only due to the in�nite dimensional setting but gets worse because of the inverse problem.

4 Proofs

Along the proofs C and M will stand for �xed constants whose values do not matter.
Remind that the notation Yn = OP (tn) means that the sequence of random variables
Ynt

�1
n is bounded in probability. Let us denote

eTn = 1

dn

�(�n + �n)�1=2 Sn2 � cn�
where

cn =

knX
p=1

�p
�p + �n

; dn =

vuut knX
p=1

�
�p

�p + �n

�2
Proposition 4.1 If kn= (�n

p
n) � 1;

eTn � bTn P! 0:
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Proof of the Proposition :
Straightforward considerations lead in fact to proving

cn � bcn
dn

P! 0

and
dn � bdn = OP (1)

since obviously bdn is not bounded in probability (dn increases to in�nity when kn does
and �n ! 0). Elementary calculations give

jcn � bcnj � �n knX
p=1

����p � b�p���
(�p + �n)

�b�p + �n�
� kn
�n

sup
1�p�kn

����p � b�p���
We invoke Dauxois, Pousse and Romain (1982) to claim that

p
n sup1�p�kn

����p � b�p��� is
bounded in probability. Hence

jcn � bcnj = OP � kn
�n
p
n

�
(2)

The same steps lead to an analogous result to get
���dn � bdn��� = OP � kn

�n
p
n

�
again.

Proposition 4.2 : Setting mn =
P+1

p=kn

�p
�p + �n

We have :

1

dn

����(�n + �nI)�1=2 Sn2 � (� + �nI)�1=2 Sn2���� = OP �pcn +mn

�2ndn
p
n

�
: (3)

Proof of the Proposition :

1

dn

����(�n + �nI)�1=2 Sn2 � (� + �nI)�1=2 Sn2����
=
1

dn

��
(�n + �nI)�1 Sn; Sn�� 
(� + �nI)�1 Sn; Sn���
=
1

dn

��
�(�n + �nI)�1 � (� + �nI)�1�Sn; Sn���
� 1

dn

�(�n + �nI)�1 � (� + �nI)�1�Sn kSnk
=
1

dn

�(�n + �nI)�1 (�� �n) (� + �nI)�1�Sn kSnk
This last term may be bounded by

1

dn

(�n + �nI)�1 (�� �n) (� + �nI)�1=2
1

(� + �nI)�1=2 Sn kSnk
� 1

�
3=2
n dn

k�� �nk1
(� + �nI)�1=2 Sn kSnk
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When H1 holds k�� �nk1 = OP (1=
p
n) : We turn to

(� + �nI)�1=2 Sn
P
�(� + �nI)�1=2 Sn > M� � 1

M2
E
(� + �nI)�1=2 Sn2

=
1

M2
E
(� + �nI)�1=2X1

2
=

1

M2

+1X
p=1

�p
�p + �n

� cn +mn

M2

and
(� + �nI)�1=2 Sn = OP (pmn + cn) and we can conclude as announced

1

dn

����(�n + �nI)�1=2 Sn2 � (� + �nI)�1=2 Sn2���� = OP
 p

mn + cn

�
3=2
n dn

p
n

!
(4)

For the next Proposition we need to introduce �kn the projector on the kn �rst eigen-
vectors of �

Proposition 4.3 : It is possible to �nd coupled sequences �n and kn such that the
limiting distribution of

eTn = 1

dn

�(� + �nI)�1=2 Sn2 � cn�
is the same (if it exists) as the limiting distribution of

TG;n =
1

dn

��kn (� + �nI)�1=2G2 � cn� :
Proof of the Proposition :
The proof of this lemma is based on a recent result by Mas (2002a). It should be �rst

stressed that calculations show that eTn cannot be written as a sum of n random variables.
Indeed eTn = 1

dn

�(� + �nI)�1=2 Sn2 � cn� :
If the square norm is developped, n2 terms will appear. Consequently, it seems that it
is not possible to prove the weak convergence of eTn by standard methods. The famous
theorems of preservation of weak convergence by mappings (e.g. Billingsley, 1968 p.30
and 31) cannnot be applied either. We introduce �E the Prokhorov metric for measures
on a Banach space E: Reformulating the Proposition and identi�ying a random variable
on H with the measure it induces we will get the desired result if

�R

�eTn; TG;n�! 0:

Or equivalently

1

dn
�R

�(� + �nI)�1=2 Sn2 ;�kn (� + �nI)�1=2G2�! 0:
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First we bound

�H

�
(� + �nI)

�1=2 Sn;�
kn (� + �nI)

�1=2G
�

� �H
�
�kn (� + �nI)

�1=2 Sn;�
kn (� + �nI)

�1=2G
�

+ �H

�
(� + �nI)

�1=2 Sn;�
kn (� + �nI)

�1=2 Sn

�
:

The last term may be bounded bym1=3
n . We refer to the Appendix for further explanations

about this bound. The �rst term may be bounded, following Theorem 1 p.236 in Vakhania
(1977) by :

C
k
1=4
n jlnnj1=2

n1=8�
3=8
n

:

For the sake of clarity we denote �H = �H
�
(� + �nI)

�1=2 Sn;�
kn (� + �nI)

�1=2G
�
:

�H � m1=3
n + C

k
1=4
n jlnnj1=2

n1=8�
3=8
n

= �n:

We will get the �nal result whenever we can express the Prokhorov distance between kUk2
and kV k2 only by means of the Prokhorov distance between U and V: This was precisely
done in Case 1 of paragraph 4.1 in Mas (2002a). We have :

�R

�eTn; TG;n� � C

dn
�H
p
� ln �H

for a su¢ ciently large n: Since obviously the function s ! s
p
� ln s is non decreasing in

a positive neighborhood of zero, the �nal bound is

�R

�eTn; TG;n� � C �np� ln �n
dn

: (5)

We are going to cope with each term separatedly.
On a one hand it is always possible to �x two conjugate sequences kn and �n (depending

on each other) such that
mn ! 0: (6)

On the other hand, once either kn or �n is determined, it is possible to choose the other
such that

k
1=4
n jlnnj1=2

n1=8�
3=8
n

! 0 (7)

hence the Proposition.

Proposition 4.4 :

1

dn

�kn (� + �nI)�1=2G2 � cn w! N (0; 3) :

Proof of the Proposition :

11



We have successively :

1

dn

�kn (� + �nI)�1=2G2 � cn
=

Pkn
p=1

�p
�p+�n

�
�2p � 1

�
dn

:

The central limit theorem for triangular arrays of independent random variables yields
the �nal result (see Billinglsey (1968) p.42).
Proof of Theorem 3.1 :
Collecting Propositions 4.1, 4.2, 4.3 we have to check that the three rates of conver-

gence are not contradictory, namely those obtained in (2), (4), (5). The conclusion will
then follow from Proposition (4.4).
We �rst go back to (6). This conditions still implies an underlying link between kn

and �n: It does not seem possible to compare condition (7) and condition (4) but both
will be full�lled whenever p

cn (lnn)
2

�
3=2
n dn

p
n
! 0 (8)

and (2) is obvioulsy respected in this case: Note also that
p
cn �

p
kn: Consequently we

are again in the situation of Proposition 4.3 but (7) is replaced with (8) and Theorem 3.1
follows.
Proof of Theorem 3.2 :
Assumption H3 implies that

mn � C
1

�n (ln kn)
"

Setting ln kn = �
���1="
n where � > 0 implies that the term above tends to zero. The

expression in (8) is now
1

dn

(kn)
1=2 (ln kn)

3"=2(1+�") (lnn)2

n1=2

Taking at last, for instance kn = n1=2�� gives the �nal result.
Proof of Proposition 3.1 :
The method of the proof for Theorem 3.1 and especially the use of Prokhorov metric

directly yields the following : under Ha (�n) the distribution of bTn is asymptotically the
same as the distribution of

1

dn

�kn (� + �nI)�1=2 �G�pn�nt�2 � cn
We prove just below that taking �n = dn=

p
n is su¢ cient for the sequences of alternatives

to be detected by the test procedure.
In fact we have to consider two cases. The �rst one is quite simple : if t =2 D,

�kn (� + �nI)
�1=2 t does not converge at all and the test statistic diverge if �n =

p
dn=n.

The second case is not that much complicated. If t 2 D, �kn (� + �nI)�1=2 t con-
verges to ��1=2t and we have to determine the limiting distribution of the above displayed

12



expression. But

1

dn

�kn (� + �nI)�1=2 �G�pn�nt�2 � cn
=
1

dn

�kn (� + �nI)�1=2G2 � cn
+
�kn (� + �nI)�1=2 t2

� 2p
dn

D
�kn (� + �nI)

�1=2G;�kn (� + �nI)
�1=2 t

E
The �rst term obviously converges weakly to a N (0; 3) ; the second is deterministic and
converges to

��1=2t2 : The last term has the same distribution as a centered gaussian
real random variable whose variance is

s2n =
4

d2n

knX
p=1

�p

(�p + �n)
2 t
2
p

The series converges to
P+1

p=1

t2p
�p
(apply Lebesgue�s dominted convergence theorem) which

ensures that sn tends to zero as dn " +1 and concludes the proof.
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Appendix
De�nition and some properties of the Prokhorov metric

Along the proofs we used a metric de�ned on spaces of measures. This (Prokhorov)
distance metrizes the topology of weak convergence for probability measures on a separable
Banach space E: It will be denoted �E. We refer to Billingsley (1968), Dudley (1968) and
Araujo and Giné (1980) for an introduction to the main features of �E: The de�nition is
the following (it is given for two measures �1 and �2 on E but is immediatly adaptable
to random elements) :

�E (�1; �2) = inf

�
" > 0 :

�1 (A
") � �2 (A) + "

�2 (A
") � �1 (A) + "

; A 2 F
�

where F is the family of closed sets in E and A" stands for the "-neighborhood of A
(with respect to the norm on E). In fact �E may be de�ned for other family of sets than
F :
Within the proofs we need the follwing property of �E:
First, Theorem 1 in Dudley (1968) implies that

�H (X; Y ) � inf f" > 0 : P (kX � Y k > ") � "g

Hence if �k denotes the projector on the k �rst eigenvectors of the covariance operator of
the H valued random variable X

P
�X � �kX > "� � P+1

p=k+1 �p

"2

by Tchebytchev inequality and

�H
�
X;�kX

�
�
 

+1X
p=k+1

�p

!1=3
(9)

which was the result needed to get mn in the proof of Proposition 4.3.
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