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Testing for the mean of random curves : a penalization approach

Introduction

1.1 The functional statistics setting.

Inference on random curves is undoubtedly a soaring area in nonparametric statistics. Modern computational techniques make it possible to deal with "high dimensional random vectors". Data that are obtained from an underlying continuous-time process, for instance, are extremely common in …nance, climatology, medicine, etc. Random curves collected from (independent or not) experiments are also likely to be studied by non parametric techniques. Some references are [START_REF] Franck | A statistical view of some chemometrics regression tools[END_REF], Cavallini, Montanari, Loggini, Lessi and Cacciari (1994), [START_REF] Besse | Autoregressive forecasting of some functional climatic variations[END_REF] for applications in respectively chemometrics, industry and meteorology.

This trend revealed that, conversely to probabilists, statisticians sometimes lack theoretical results for studying random functions. Many authors anyway paid attention to these topics, developping methods to link this rather formal framework with the statistician's "everyday's life". Amongst these are [START_REF] Kneip | Statistical tools to analyze data representing a sample of curves[END_REF], [START_REF] Ramsay | Functional Data Analysis[END_REF]. [START_REF] Dauxois | Asymptotic theory for the principal component analysis of a random vector function: some applications to statistical inference[END_REF], in an earlier paper, investigated the principal component analysis for Hilbert-valued random variables. Recently several authors generalized to the functional framework standard models in …nite dimension : the linear regression model in [START_REF] Cardot | Functional linear model[END_REF], the autoregressive model for time series in [START_REF] Bosq | Linear processes in function spaces[END_REF], the in…nite moving average model in [START_REF] Mas | Weak convergence for the covariance operators of a Hilbertian linear process[END_REF].

We propose an asymptotic procedure to test for the mean of a random function. Let X 1 ; :::; X n be an i.i.d. sample of random curves with mean m (note that m is also a curve) de…ned on some abstract probability space ( ; A; P ). We should write X i (!; t) where for …xed ! 2 ; X i (!; :) is the path of the curve and where for …xed t X i (:; t) is a real random variable. But for the sake of simplicity both indices will be dropped.

In this work we will suppose that the data are truly in…nite-dimensional or functional. In practice, the random curves are observed only at discrete times. A version of the underlying process is then rebuilt by interpolation techniques such as splines, wavelets, etc. These issues (as well as the problem of estimating the curve m) will not be considered in the sequel since they give rise to a considerable literature. We refer for instance to [START_REF] Rice | Estimating the mean and covariance structure nonparametrically when the data are curves[END_REF].

The test may be written :

H 0 : m = m 0 H a : m 6 = m 0
where m 0 = m 0 ( ) is a …xed known function. The principle of such a test is not new. Several authors developped procedures in the framework of di¤usion processes : X 1 is supposed to satisfy the stochastic di¤erential equation

dX (t) = m (t) dt + "dW (t)
where W is the standard Wiener process and " is the noise level. We refer to [START_REF] Spokoiny | Adaptive hypothesis testing using wavelets[END_REF], [START_REF] Lepski | Asymptotically exact nonparametric hypothesis tesing in sup-norm and at a …xed point[END_REF] for instance. The function m is supposed to belong to a class of functions (Sobolev, Hölder, or more generally Besov) indexed by some smoothness parameter. This gaussian and typical framework allows these authors to derive very interesting results : adaptive (w.r.t. the function class) tests but also optimal rates of testing -optimal in a sense that is de…ned by introducing the notion of minimax rate of testing-when the noise level decays to zero. [START_REF] Fan | Test of signi…cance based on wavelet thresholding and Neyman's truncation[END_REF] and Fan and Lin (1998) also proposed, in connection with high-dimensional ANOVA, an adaptive Neyman test.

Here adaptivity means that the procedure will automatically reduce the dimension of the model. All these authors apply wavelet thresholding techniques.

A new feature of the paper relies on the removal of the assumption of Gaussian observations, which was almost systematic in the above-mentioned articles. This framework makes the test truly new because we need to carry out alternative techniques based on lower moment assumptions, enlarging the class of process which may be investigated. The drawback is : we lose optimality properties. The procedure remains asymptotic and does not rely on a …nite dimensional approximation of m: The limiting distribution is however extremely simple. Some may view it as goodness of …t test. It also turns out that the main technical problems arising may be expressed in terms of an ill-posed inverse problem.

The setup of the paper is closer to a recent work by Cardot, Ferraty, [START_REF] Cardot | Testing hypotheses in the functional linear model[END_REF]. The authors propose a test for the regression operator in a linear model with functional inputs. The second serious point in this work is the mild condition on the rate of decrease of the eigenvalues of the covariance operator.

It should also be stressed that our problem does not depend on parameters intrinsec to the model or to spaces of functions. All the calculations just rely on the Hilbertian structure of the space, no matter which space is chosen. Consequently minimaxity or adaptivity make no sense.

From now on, the studied random curves will always be seen as random variables de…ned on the abstract probability space ( ; A; P ) and with values in an in…nite dimensional, real and separable Hilbert space H endowed with inner product h:; :i and norm k k : The Hilbert space setting enables to consider di¤erent sorts of basis and also to derive similar results for the sequence space l 2 . It also makes computations easier (especially as far as the central limit theorem is concerned). In the special case when H = L 2 ([0; 1]) and for all random functions u and v in H (u and v are consequently de…ned on [0; 1]) hu; vi is a random number :

hu; vi (!) = Z 1 0 u(!; t)v(!; t)dt: (1) 
Spaces of smooth functions, such as Sobolev spaces, may (and are often) prefered to L 2 spaces for stability reasons. We refer to [START_REF] Silverman | Smoothed principal component Analysis by choice of norm[END_REF] for developments of this approach. Formally, this does not change much the inner product de…ned in (1) : Lebesgue's measure dt is replaced with another non-…nite measure d (t) (about this well-known fact see Rudin (1973) Ch 8.8 : Sobolev Spaces).

Preliminary facts about operators

Let X 1 ; :::; X n be an i.i.d. sample of Hilbert-valued random variables with mean m: We are …rst going to assume that the covariance operator of these random variables exists. Assumptions about the second order structure of X 1 will appear in the next paragraph. We denote (resp. n ) the covariance operator of X 1 (resp. the empirical covariance operator of the sample). These operators are bounded linear selfadjoint and positive mappings from H to H: They are de…ned this way : for all x in H;

(x) = E [hX 1 m; xi (X 1 m)] ; n (x) = 1 n n X k=1 [hX k m; xi (X k m)] :
In the following, for all u; v in H; u v just stands for the rank-one operator de…ned for all x in H by u v(x) = hu; xi v: With these notations, we get :

= E [(X 1 m) (X 1 m)] ; n = 1 n n X k=1 [(X k m) (X k m)] :
We will now assume that the random variable X 1 has a …nite strong moment of order two i.e. E kX 1 k 2 < +1: This means that is a trace class operator on H: If ::: 0 denotes the ordered sequence of its real and positive eigenvalues (associated to the eigenvectors e 1 ; e 2 ; ::::) it also implies that the vector ( 1 ; 2 ; :::) 2 l 1 : For further information about these facts we refer to Vakhania, Tarieladze and Chobanyan (1987).

We will always suppose that is one to one : the sequence of its strictly positive eigenvalues is in…nite and that the set ker = fh 2 H : h = 0g is reduced to f0g. Under the moment assumptions on X mentioned just above, it is well-known that is a positive selfadjoint compact operator. For any linear operator T de…ned on and with values in H; kT k 1 stands for the usual norm of continuous linears operators i.e. kT k 1 = sup kT xk for x in the unit ball of H. If we go further in the moments assumption, we even know that p n k n k is bounded in probability whenever E kX 1 k 4 is …nite.

The operator 1=2 plays a key-role in the sequel. It is de…ned by

1=2 = +1 X k=1 p k (e k e k )
and is a compact operator. When is one to one, its inverse 1=2 is de…ned on a domain D in H (D is a dense vector subspace of H). The linear mapping 1=2 is unbounded (i.e.

1=2 is continuous at no point of D) which also means

1=2 1 = +1 . As a consequence
1=2 X 1 cannot be considered as a (bounded) random variable. More information about these topics may be found in Dunford and Schwartz (1988).

2 Formulating the problem.

An original linear inverse problem

Now, in order to understand the particularities of the situation, let us consider …rst what happens in the …nite dimensional setting. Let X 1 ; :::; X n be a sample of i.i.d. vectors of R p with mean m 2 R p : The test is the following

H 0 : m = m 0 H a : m 6 = m 0 :
The operator n is replaced with a square matrix of size p; say M n (p); the empirical covariance matrix of the sample, which is often supposed to be invertible for n large enough. Then the test statistics (usually chi-square) is derived from :

M n (p) 1=2 1 p n n X k=1 (X k m 0 )
! which converges under the null hypothesis to a gaussian random variable whose covariance matrix is the identity.

In our functional framework we still have : S n = n 1=2 P n k=1 (X k m 0 ) converges weakly to a gaussian r.v. G by the central limit theorem for Hilbert space valued random elements but the distribution of G depends on the unknown i 's (see Fact 2 of Appendix 1). These eigenvalues may be viewed as nuisance parameters. Besides n ; conversely to M n is never invertible in H even for large n since its range (the linear span of X 1 ; ::

:; X n ) is of …nite dimension. Considering " 1=2 n
S n " makes no sense, as well as " 1=2 G" as was mentioned above. Consequently our goal is double. First we should approximate the operator 1=2 by a pseudo inverse, say L n ; built from n and hence random. Then we will have to study weak convergence for L n S n : This approach will be made more precise in the next section. Anyway we should expect the norm of L n to be a non decreasing sequence tending to +1: We could also say that the sequence of operators L n is unstable or ill-conditioned. Finally, copying the …nite dimensional approach to our test procedure leads us to a non standard ill-posed inverse problem : G will be approximated by S n and 1=2 by L n but S n and L n are connected via the sample X 1 ; :::; X n . Fortunately we will see that it is possible to propose a convergent test procedure.

Approximating 1=2 by a sequence of bounded operators is the purpose of the forthcoming paragraph.

Pseudo-inverse estimators.

The problem of approximating inverses of selfadjoint compact operators is absolutely not new. It is adressed in [START_REF] Nashed | Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations[END_REF], [START_REF] Arsenin | Solutions of ill-posed problems[END_REF], [START_REF] Groetsch | Inverse Problems in the Mathematical Sciences[END_REF] amongst many others. The main point is always to regularize a matrix M (resp. an operator S) which is invertible but "not by much"(resp. unbounded). This property implies that for any vector x; M x (resp. Sx) may have large variations even when x does not vary much. Numerous procedures were proposed. We will keep one wich is suited to our problem and may be easily implemented.

The penalized regularization procedure is based on ( + I) 1=2 . It is a ridge-type method and depends on the index which is a strictly postive real number The penalization term is I where I is the identity operator on H: The operator ( + I) 1=2 is continuous for all strictly postive with norm 1= p : Another way to regularize 1=2 consists in deleting all the terms beyond a threshold p: In the basis e i we get which is often used has several drawbacks :

1=2 (p) = diag
The S.T. estimator is based on the functional Principal Component Analysis of n . It is necessary to estimate the eigenvectors and eigenvalues of this random operator before projecting the sample X 1 m; :::; X n m on these eigenvectors (to obtain principal components as a by-product). The estimation procedure is consequently not that simple and usually entails serious stability problems. Estimating the penalized estimate just requires a nonrandom basis, (e.g. spline, Fourier, wavelet). The data are then projected on a known vector space.

As it may be seen in Cardot, Ferraty and Sarda (1999), and [START_REF] Bosq | Modelization, non-parametric estimation and prediction for continuous time processes[END_REF], convergence rates of estimates steming from the S.T. procedure always depend on the speed of decay of the (unknown) eigenvalues and eigenvectors of : Several assumption are usually made, restricting the generality of the results. Speed of convergence of estimates involving the S.T. estimator are usually not good, due to the very slow rate of uniform convergence of the empirical eigenvectors of n to the eigenvectors of for large values of p. Also note that, conversely to the S.T. estimator, the norm of the penalized one, 1= p n , is nonrandom and does not depend on the rate of decay of the eigenvalues of or on the observed data. All the previous reasons explain the …nal choice of a penalization procedure for regularizing the inverse of the square root of the covarariance operator.

However even if the regularized operator does not depend explicitely on the eigenvalues, it should be stressed that the test statistics depends on them. A good knowledge of the rate of decay of the eigenvalues is even crucial to compute smoothing parameters intrinsic to our estimates (the above-mentioned n as well as k n , mentioned below-see next section.)

Main results

Weak convergence (resp. convergence in probability) will be denoted w ! (resp. P !) in the sequel and will be considered with respect to the norm of the space H. As mentioned above, we denote D the domain of the operator 1=2 i.e. the set of points x in H for which 1=2 x has a …nite norm. Clearly if x is expressed in the basis e i , x = P x k e k . We have :

D = ( x 2 H : X k x 2 k k < +1 
)

:
Before giving the main results, we recapitulate the two assumptions needed :

H1 : E kX 1 k 4 < +1: H2 : is one to one.
We set once and for all :

S n = 1 p n n X k=1 (X k m 0 ) :
and we know that S n w ! G where G is the H valued gaussian random element with mean 0 and covariance operator : For further purpose we …nally recall that the following well-known decomposition for G holds almost surely on an appropriate probability space

G = +1 X p=1 p p p e p
where the p 's are gaussian centered random variables with unit variance. N (0; 3) : Remark 3.2 : Note that Theorem 3.1 which just asserts the existence of the test procedure is valid without any assumptions on the distribution of the data or on the spectrum of : The crucial step in the proofs relies on a result by Mas (2002a) on the estimate of closeness of distributions for images of measures on Banach spaces by general families of mappings. The distance between distributions is expressed in terms of the Prokhorov metric. We refer to the Appendix for the main properties of this metric as well as references.

Weak convergence

The next theorem determines explicitely both sequences k n and n such that b T n converges. The "price to pay" is quite low and relies on the forthcoming uniform bound on the eigenvalues : H3 : for some M; " > 0; p M= p (log p) 1+" Theorem 3.2 Let 0 < < 1=2: Under H1, H2 and H3 when k n = n 1=2 and n = (ln n) "=(1+ ") ; and when H 0 holds :

b T n w ! n!+1 N (0; 3) : Remark 3.
3 Assumption H3 may be viewed as prior information on the eigenvalues. The estimates b 0 p s obviously provide a good knowledge of the unknown p 's. If however more information is available and if the bound provided in H3 can be made more precise, one may get deeply di¤erent rates of increase (resp. of decrease) for k n (resp. n ). An inspection of the proof would lead to the following table :   Rate of decay for the eigenvalues exponential geometric assumption H3 k n log geometric geometric n geometric geometric log

The point is : the respective "speed" of k n and n are inverted. When the problem is "higly ill-conditionned" (i.e an exponential rate of decrease for the eigenvalues) k n should increase slowly. Conversely when the eigenvalues are assumed to converge "slowly" to zero (assumption H3) k n may be large and the penalization parameter may also decrease slowly. The reduction of dimension induced by k n is implicitely governed by n which depends on the "illness" of the inverse problem.

Study of the power for local alternatives

For the sake of completeness, the test procedure is given below :

Fix m 0 and compute b T n where S n = n 1=2 P n k=1 (X k m 0 ) and

n = 1 n n X k=1 (X k m 0 ) (X k m 0 ) :
Fix a level of signi…cance and compute u such that P (jN (0; 1)j u ) = 1

If b

T n p 3u H 0 is accepted otherwise, it is rejected.

A very classical way to investigate the power of the test consists in studying the power function against sequences of alternatives tending to the null. Let us take

H a ( n ) : m = m 0 + n t:
where t 2 H and n > 0 with n # 0: We are interested in computing the "optimal" rate of decay for n i.e. the fastest rate of decay for which the test distinguishes H a ( n ) from H 0 at a prescribed level.

At this point we need to recall a notation. Remind that the set

D = ( x 2 H : X k x 2 k k < +1
) ; considerations made above prove that the power of the test is directly connected to the "ill-posedness" situation. The eventual bad rate is not only due to the in…nite dimensional setting but gets worse because of the inverse problem.

is

Proofs

Along the proofs C and M will stand for …xed constants whose values do not matter. Remind that the notation Y n = O P (t n ) means that the sequence of random variables Y n t 1 n is bounded in probability. Let us denote

e T n = 1 d n ( n + n ) 1=2 S n 2 c n where c n = kn X p=1 p p + n ; d n = v u u t kn X p=1 p p + n 2 Proposition 4.1 If k n = ( n p n) 1; e T n b T n P ! 0: When H1 holds k n k 1 = O P (1= p n) : We turn to ( + n I) 1=2 S n P ( + n I) 1=2 S n > M 1 M 2 E ( + n I) 1=2 S n 2 = 1 M 2 E ( + n I) 1=2 X 1 2 = 1 M 2 +1 X p=1 p p + n c n + m n M 2
and ( + n I) 1=2 S n = O P ( p m n + c n ) and we can conclude as announced

1 d n ( n + n I) 1=2 S n 2 ( + n I) 1=2 S n 2 = O P p m n + c n 3=2 n d n p n ! (4) 
For the next Proposition we need to introduce kn the projector on the k n …rst eigenvectors of Proposition 4.3 : It is possible to …nd coupled sequences n and k n such that the limiting distribution of

e T n = 1 d n ( + n I) 1=2 S n 2 c n
is the same (if it exists) as the limiting distribution of

T G;n = 1 d n kn ( + n I) 1=2 G 2 c n :
Proof of the Proposition : The proof of this lemma is based on a recent result by Mas (2002a). It should be …rst stressed that calculations show that e T n cannot be written as a sum of n random variables. Indeed

e T n = 1 d n ( + n I) 1=2 S n 2 c n :
If the square norm is developped, n 2 terms will appear. Consequently, it seems that it is not possible to prove the weak convergence of e T n by standard methods. The famous theorems of preservation of weak convergence by mappings (e.g. Billingsley, 1968 p.30 and 31) cannnot be applied either. We introduce E the Prokhorov metric for measures on a Banach space E: Reformulating the Proposition and identi…ying a random variable on H with the measure it induces we will get the desired result if R e

T n ; T G;n ! 0:

Or equivalently

1 d n R ( + n I) 1=2 S n 2 ; kn ( + n I) 1=2 G 2 ! 0:
First we bound

H ( + n I) 1=2 S n ; kn ( + n I) 1=2 G H kn ( + n I) 1=2 S n ; kn ( + n I) 1=2 G + H ( + n I) 1=2 S n ; kn ( + n I) 1=2 S n :
The last term may be bounded by m 1=3 n . We refer to the Appendix for further explanations about this bound. The …rst term may be bounded, following Theorem 1 p.236 in Vakhania (1977) 

We are going to cope with each term separatedly. On a one hand it is always possible to …x two conjugate sequences k n and n (depending on each other) such that m n ! 0:

On the other hand, once either k n or n is determined, it is possible to choose the other such that k 

  is a bounded operator with norm 1=2 p and is known as the spectral truncation (S.T.) of order p of 1=2 . But 1=2 (p)

2 whereRemark 3 . 1 2 b c n Theorem 3 . 1 :

 231231 Let the sequences k n (of integers) and n (of nonnegative numbers) respectively increase to in…nity and decrease to zero We set b c n = the b p are the estimated eigenvalues of n : The random term b c n (resp. b d n ) is a bias term (resp. a normalizing term). The b p 's are directly estimated from the (smooth) PCA of the X i 's hence from the spectrum of n : Asymptotic results (almost sure convergence, weak convergence) are given in Dauxois, Pousse and Romain (1982). The test statistic is bT n = 1 b d n ( n + n ) 1=2S n Under H1 and H2 there exists two conjugated sequences k n and n such that, when H 0 holds (m = m 0 ) :

  Proof of the Proposition :

  the domain of 1=2 : Consequently 1=2 t is …nite if and only if t 2 D. The optimal rate of convergence of the sequence of local alternatives to the null is n = p d n =n: Let us pick a t in H and distinguish two cases.

	Proposition 3.1 First case : If t = 2 D the test statistic b T n diverges.for the sequence of alternatives H a p d n =n
	Second case : If t 2 D, b T n converges weakly to a N alternatives H a p d n =n :	1=2 t	2 ; 3 for the sequence of
	Remark 3.4 Since d n	C 1 n	

  by : For the sake of clarity we denote H = H ( + n I) 1=2 S n ; kn ( + n I) 1=2 G :We will get the …nal result whenever we can express the Prokhorov distance between kU k 2 and kV k 2 only by means of the Prokhorov distance between U and V: This was precisely done in Case 1 of paragraph 4.1 in Mas (2002a). We have : Since obviously the function s ! s p ln s is non decreasing in a positive neighborhood of zero, the …nal bound is

		C	k	1=4 n jln nj 1=2 n 1=8 3=8
	H	m 1=3 n + C	k	1=4 n jln nj 1=2 n n 1=8 3=8	= n :
	R e T n ; T G;n ln R e C d n H p T n ; T G;n C n p ln n d n	:

n : H for a su¢ ciently large n:

  Dkn ( + n I) 1=2 G; kn ( + n I) 1=2 t EThe …rst term obviously converges weakly to a N (0; 3) ; the second is deterministic and converges to 1=2 t 2 : The last term has the same distribution as a centered gaussian real random variable whose variance is (apply Lebesgue's dominted convergence theorem) which ensures that s n tends to zero as d n " +1 and concludes the proof.

	expression. But					
	1 d n		kn ( + n I) 1=2 G	p	n n t	2	c n
	=	1 d n	kn ( + n I) 1=2 G	2	c n
	+		kn ( + n I) 1=2 t	2
		2 p d n			
					s 2 n =	4 d 2 n	kn X p=1	p ( p + n ) 2 t 2 p
	The series converges to	P +1 p=1	t 2 p p	
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We have :

Proof of the Proposition :

This last term may be bounded by

We have successively :

The central limit theorem for triangular arrays of independent random variables yields the …nal result (see Billinglsey (1968) p.42).

Proof of Theorem 3.1 : Collecting Propositions 4.1, 4.2, 4.3 we have to check that the three rates of convergence are not contradictory, namely those obtained in (2), ( 4), [START_REF] Bosq | Modelization, non-parametric estimation and prediction for continuous time processes[END_REF]. The conclusion will then follow from Proposition (4.4).

We …rst go back to [START_REF] Bosq | Linear processes in function spaces[END_REF]. This conditions still implies an underlying link between k n and n : It does not seem possible to compare condition [START_REF] Cardot | Functional linear model[END_REF] and condition (4) but both will be full…lled whenever

and ( 2) is obvioulsy respected in this case: Note also that p c n p k n : Consequently we are again in the situation of Proposition 4.3 but ( 7) is replaced with (8) and Theorem 3.1 follows.

Proof of Theorem 3.2 : Assumption H3 implies that

Setting ln k n =

1=" n where > 0 implies that the term above tends to zero. The expression in ( 8) is now

Taking at last, for instance k n = n 1=2 gives the …nal result.

Proof of Proposition 3.1 :

The method of the proof for Theorem 3.1 and especially the use of Prokhorov metric directly yields the following : under H a ( n ) the distribution of b T n is asymptotically the same as the distribution of

We prove just below that taking n = d n = p n is su¢ cient for the sequences of alternatives to be detected by the test procedure.

In fact we have to consider two cases. The …rst one is quite simple : if t = 2 D, kn ( + n I) 1=2 t does not converge at all and the test statistic diverge if n = p d n =n. The second case is not that much complicated. If t 2 D, kn ( + n I) 1=2 t converges to 1=2 t and we have to determine the limiting distribution of the above displayed Appendix De…nition and some properties of the Prokhorov metric Along the proofs we used a metric de…ned on spaces of measures. This (Prokhorov) distance metrizes the topology of weak convergence for probability measures on a separable Banach space E: It will be denoted E . We refer to [START_REF] Billingsley | Convergence of probability measures[END_REF], [START_REF] Dudley | Distances of Probability Measures and Random Variables[END_REF] and [START_REF] Araujo | The central limit theorem for real and Banach valued random variables[END_REF] for an introduction to the main features of E : The de…nition is the following (it is given for two measures 1 and 2 on E but is immediatly adaptable to random elements) :

where F is the family of closed sets in E and A " stands for the "-neighborhood of A (with respect to the norm on E). In fact E may be de…ned for other family of sets than F:

Within the proofs we need the follwing property of E : First, Theorem 1 in Dudley (1968) implies that H (X; Y ) inf f" > 0 : P (kX Y k > ") "g

Hence if k denotes the projector on the k …rst eigenvectors of the covariance operator of the H valued random variable X P X k X > "

by Tchebytchev inequality and

which was the result needed to get m n in the proof of Proposition 4.3.