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Weak error for nested Multilevel Monte Carlo

Daphné Giorgi∗, Vincent Lemaire†, Gilles Pagès‡

June 17, 2018

Abstract

This article discusses MLMC estimators with and without weights, applied to nested
expectations of the form E [f(E [F (Y, Z)|Y ])]. More precisely, we are interested on the
assumptions needed to comply with the MLMC framework, depending on whether the
payoff function f is smooth or not. A new result to our knowledge is given when f is not
smooth in the development of the weak error at an order higher than 1, which is needed
for a successful use of MLMC estimators with weights.

Keywords: Multilevel Monte Carlo; Weighted Multilevel Monte Carlo; Nested Monte Carlo;
Weak error expansion.
MSC 2010: primary 65C05; secondary 65C30.

1 Introduction

Multilevel estimators are commonly used when the underlying random variable of interest –
here f (E [F (Y,Z)|Y ]), with Y and Z independent as far as nested simulation is concerned –
cannot be simulated exactly at a reasonable computational cost. However, such approximations

– here f
(

1
N

∑N
k=1 F (Y,Zk)

)
– induce some bias. Nested simulation is one of the two most

popular setting where Multilevel method are implemented, the other being the numerical
schemes associated to stochastic dynamics.

The optimal calibration and the resulting performances of Multilevel Monte Carlo estima-
tors depend on the weak and strong error rate of convergence of these simulable proxies toward
f (E [F (Y,Z)|Y ]). By weak error, we mean here an expansion of the bias as a function of a
given parameter h representative of the (inverse) complexity.

The existence of weak error expansions at order one leads to the (regular and original)
Multilevel Monte Carlo (MLMC) method introduced by M. Giles in [Gil08], whereas higher
order expansions led naturally to develop a weighted multilevel framework, called Richardson-
Romberg Multilevel method (ML2R) introduced in [LP17]. However, the existence of such an
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expansion not only depends upon random variable of interest and its approximations but also
on the regularity of the “payoff” function f , as it has been widely popularized by the analysis
of time discretization schemes of Brownian diffusion processes (see [TT90] and [BT96a]).

The seminal result concerning the first order weak error expansion for nested Monte Carlo
simulation when f is not regular – namely a quantile – is due to Gordy and Juneja in [GJ10].

For such indicator function the strong rate of convergence remains slow and reduces the
efficiency of regular multilevel estimators since their performances are ruled by this strong con-
vergence rate. In particular they no longer behave as unbiased or almost unbiased estimators
as it is the case for faster strong convergence regimes.

By contrast weighted multilevel estimators are still almost unbiased in some sense but this
performance strongly relies on higher order expansions of the weak error. So the main objective
and result of this paper is to establish (see Proposition 5.1) such a higher order expansion for
non-smooth payoff function f in a nested simulation framework.

Let us briefly recall the multilevel paradigm (see [Pag18]). Let Y0 ∈ L2(Ω,A,P) be a
random variable and Yh, h∈ H =

{
h

n , n > 1
}
be a family of approximations of Y0 such that

limh→0 ‖Yh − Y0‖2 = 0 with a simulation cost of the form

Cost(Yh) = κh−1

so that the parameter h is inverse linear in the complexity. Its role in the weak expansion error
will lead us to call it bias parameter.

The central idea behind the regular MLMC estimator is to consider a R-tuple of parameters
hj = h/M j−1, j = 1, . . . , R (h∈ H) and to write the telescopic sum

E [YhR
] = E [Yh1 ] +

R∑

j=2

E
[
Yhj

− Yhj−1

]

which suggests to introduce the estimator (see [Gil08])

ÎNh,R,q =
1

N1

N1∑

k=1

Y
(1),k
h +

R∑

j=2

1

Nj

Nj∑

k=1

(
Y

(j),k
hj

− Y
(j),k
hj−1

)
(1)

where
(
Y

(j),k
hj

)
k=1,...,Nj

are independent copies as k varies of Y
(j)
hj

itself “attached” to Y
(j)
0 where

(Y
(1)
0 , . . . , Y

(R)
0 ) are i.i.d. with the same distribution as Y0. The size Nj of each simulation at

level j is of the form Nj = ⌈qjN⌉, j = 1, . . . , R.
If a first order weak expansion error assumption

E [Yh] = E [Y0] + c1h
α + o(hα) (WEα,1)

is fulfilled for some α > 0, then

E
[
ÎNh,R,q

]
= E [YhR

] = E [Y0] + c1
h

MR−1
+ o
(
h/MR−1

)
.

which dramatically reduces the bias compared to a crude Monte Carlo simulation based on
i.i.d. copies of Yh. At this stage the calibration of the allocation parameters q1, . . . , qR across
the R levels relies on a strong error convergence rate assumption

∀h, h′∈ H,
∥∥Yh − Yh′

∥∥
2
6 V1|h− h′|β, (SEβ)

2



or its variants (see e.g. [Pag18] among other references where this conditions are discussed).
Thus, it happens that Yh−Yh′ is replaced by a random variable Yh,h′ satisfying (SEβ) and such
that E

[
Yh,h′

]
= E [Yh − Yh′ ]. This calibration aims at minimizing the effort of the estimator

ÎNh,q,R, that is the product of its variance by its complexity, given a prescribed Root Mean

Square Error (RMSE) level ‖ÎNh,R,q − Y0‖2 6 ε.
If a higher order weak error expansion can be established, namely

E [Yh] = E [Y0] +
R∑

r=1

crh
αr + o(hαR), (WEα,R)

then there exists weights (wj)j=1,...,R, only depending on α, M and R such that
∑

16j6Rwj = 1
and satisfying

R∑

j=1

wjE
[
Yhj

]
= E [Y0] + w̃

R+1cRh
αR + o

(
hαR

)
.

These weights, solution to a Vandermonde system (see [LP17]), as well as w̃
R+1

have closed for-

mulas (w̃
R+1 =

∑R
i=1 win

−αR
i ). This naturally leads to define the weighted multilevel estimator

(or Richardson-Romberg multilevel estimator, ML2R) as

ĨNh,R,q =
1

N1

N1∑

k=1

Y
(1),k
h +

R∑

j=2

WR
j

Nj

Nj∑

k=1

(
Y

(j),k
hj

− Y
(j),k
hj−1

)
, (2)

where WR
j = wj + · · · +w

R
, j = 1, . . . , R and the Y

(j),k
hj

are as above. One checks that such
an estimator “kills” the bias in a much more efficient manner yet since

E
[
ĨNh,R,q

]
= E [Y0] + w̃

R+1cRh
αR + o

(
hαR

)
.

Then ĨNh,R,q can be calibrated like the MLMC estimator to minimize its effort for prescribed
RMSE. For more precise results on the performances of these two families of estimators, we
refer to [LP17] or [Gio17] or [Pag18]. But the important fact to be kept in mind is that,
as far as nested Monte Carlo simulations are concerned with f = 1[a,+∞) (see next section
for the specification of the r.v. Yh for this purpose), the β parameter is lower than 1 (see
Proposition 5.2) so that, as a consequence, the ML2R estimator ĨNh,R,q behaves “almost” like

an unbiased estimator, for which the cost is known to beKε−2, K > 0 constant. More precisely,
if (WEα,R) holds for every depth R > 1 and limR→∞ |cR|

1
R = c̃∞ ∈ (0,+∞), then

Cost
(
Ĩ
N(ε)
h(ε),R(ε),q(ε)

)
� Kα,β,Mε−2 · e

1−β√
α

√
2 log(1/ε) log(M)

,

where we recall that f(ε) � g(ε) if and only if lim supε→0 g(ε)/f(ε) ≤ 1, Kα,β,M > 0 is constant

and we highlight that e
1−β√

α

√
2 log(1/ε) log(M)

= o (ε−η) for all η > 0. Note that some numerical
experiments carried out in [LP17] and in [Gio17] confirm the fact that weighted multilevel
ML2R simulations outperform regular MLMC estimator.

The paper is organized as follows. In Section 2 we give the description of the nested
framework. In Section 3 we give some useful results which will be valid in both frameworks,
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both f smooth and not. Section 4 is devoted to the smooth case, with a particular attention
to the antithetic approach, and in Section 5 we treat the non smooth case and we give a new
result concerning the weak error.

2 Nested Monte Carlo simulation

The purpose of the so-called nested Monte Carlo method is to compute by simulation nested
expectations of the form

E
[
f
(
E [Ξ|Y ]

)]
,

where (Ξ, Y ) is an R ×Rd-valued couple of random variables defined on a probability space
(Ω,A,P) satisfying Ξ∈ L2 and f : R → R is a specified function such that f(E [Ξ|Y ])∈ L2.

We assume that there exist a Borel function F : Rd × Rq → R and a random vector
Z : (Ω,A) → Rq independent of Y such that

Ξ = F (Y,Z).

Let us introduce the Borel function φ0 : Rd → R defined by φ0(y) = E [F (y, Z)] so that one
may set E [F (Y,Z)|Y ] = φ0(Y ). Then one has the following representation

E [Ξ|Y ] = φ0(Y ) =

∫

Rq

F (Y, z)PZ(dz).

To comply with the multilevel framework, we set K0 ∈ N∗ and H =
{
1/K, K∈ K0N

∗
}
,

X0 := E [Ξ|Y ] , Xh :=
1

K

K∑

k=1

F (Y,Zk) with h =
1

K
∈ H,

where (Zk)k>1 is an i.i.d. sequence of random vectors with the same distribution as Z, defined
on (Ω,A,P) and independent of Y (up to an enlargement of the probability space if necessary)
and

Y0 := f(X0), Yh := f(Xh).

To prove that the nested Monte Carlo estimator satisfies the bias error expansion (WEα,R)
and the strong approximation error (SEβ), we introduce the random functions, ∀y ∈ Rd,

D(y) = F (y, Z)−E [F (y, Z)] , (3)

Eh(y) =
1

K

K∑

k=1

(
F (y, Zk)−E [F (y, Z)]

)
=

1

K

K∑

k=1

F (y, Zk)− φ0(y). (4)

Note that Eh(y) is the statistical error of the inner Monte Carlo estimator, which can be

rewrited as Eh(y) =
1

K

K∑

k=1

D(y)(k) where (D(y)(k))k>1 is a sequence of i.i.d. copies of D(y),

and that Eh(Y ) = Xh −X0.
We distinguish between two main frameworks, depending on whether or not f is smooth,

a classical example of non-smoothness being f = 1(a,b) (see [DL09]). When the function f is
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smooth enough, say f ∈ C1+ρ(R,R) with ρ∈ (0, 1], a variant of the former Multilevel nested
estimator has been proposed in [BHR15], [Haj12] and [CL12] (see also [Gil15]) to improve the
rate of strong convergence in order to attain the asymptotically unbiased setting, namely (SEβ)
with β > 1. A root M > 2 being given, the idea is to replace in the successive refined levels
of the MLMC and ML2R estimators (see (1) and (2)) the difference Y h

M
− Yh (where h = 1

K ,

K∈ K0N
∗) by an antithetic type as follows

Yh, h
M

:= f

(
1

MK

MK∑

k=1

F
(
Y,Zk

)
)

− 1

M

M∑

m=1

f

(
1

K

K∑

k=1

F
(
Y,Z(m−1)K+k

)
)
.

It is clear that E
[
Yh, h

M

]
= E

[
Y h

M
− Yh

]
.

Before getting into the smooth and non smooth case, we give some useful results that
will be valid in both frameworks and will be used to establish the higher order of weak error
expansion.

3 Useful results

Following Comtet [Com74], we introduce the partial Bell polynomials Bn,k for n > 1 and
k = 1, . . . , n defined by

Bn,k(x1, . . . , xn−k+1) =
∑ n!

ℓ1! · · · ℓn−k+1!

(x1
1!

)ℓ1
· · ·
( xn−k+1

(n− k + 1)!

)ℓn−k+1

(5)

where the summation takes place over all integers ℓ1, . . . , ℓn > 0, such that ℓ1 + 2ℓ2 + · · · +
(n− k+1)ℓn−k+1 = n and ℓ1 + · · ·+ ℓn−k+1 = k. Note that deg(Bn,k) = k. The complete Bell
polynomials Bn are defined by

Bn(x1, . . . , xn) =
n∑

k=1

Bn,k(x1, . . . , xn−k+1).

The first statement is a formal Taylor expansion with integral remainder of E [g(Xh)] around
E [g(X0)], with g : R → R a test function.

Lemma 3.1 (Taylor expansion). Let R > 0 and let g : R → C be a 2R+1 times differentiable
function.

Assume Ξ = F (Y,Z) ∈ L2R+1 and let κj(ξ) be the j–th cumulant (a.k.a. semi-invariant)
of a random variable ξ. We set κj,y := κj(D(y)) with D(y) = F (y, Z)−E [F (y, Z)] for y ∈ Rd

and j ∈
{
1, . . . , R

}
. Let (Bn,k)16k6n be the partial Bell polynomials defined by (5). We then

define for r ∈ N, r + 1 6 n 6 2r and every y ∈ Rd,

br,n−r(y) = Br,n−r

(
κ2,y
2

, . . . ,
κ2r−n+2,y

2r − n+ 2

)
.

Then

∀h ∈ H, E [g(Xh)] = E [g(X0)] +

2R−1∑

r=1

c(r, (2r + 1) ∧ 2R)hr +R2R+1, (6)
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with

c(r, k) =
1

r!

k∑

ℓ=r+1

E
[
g(ℓ)(X0)br,ℓ−r(Y )

]
, 1 6 r < k 6 2r + 1, (7)

and

R2R+1 =
1

(2R)!
E

[∫ Xh−X0

0
g(2R+1)(t+X0)(Xh −X0 − t)2Rdt

]
. (8)

Proof. The case R = 0 is trivial, since it is a direct application of the fundamental theorem of
calculus.

Let R > 1 be an integer. The Taylor formula at order 2R applied to g at φ0(y) reads

E

[
g

(
1

K

K∑

k=1

F (y, Zk)

)]
= g(φ0(y)) +

2R∑

n=1

g(n)(φ0(y))

n!
E [(Eh(y))

n] +R2R+1(y), (9)

where R2R+1(y) =
1

(2R)!E
[∫ Eh(y)

0 g(2R+1)(t+ φ0(y))(Eh(y)− t)2Rdt
]
.

The Bell polynomials allow us to explicitly compute the moments E
[
(Eh(y))

n
]
, n = 1, . . . , R

of Eh(y) as follows. Let κj,y = κj(D(y)), j = 1, . . . , R, y ∈ Rd. Additivity and homogeneity
of cumulants give

∀j = 1, . . . , 2R − 1, κj
(
Eh(y)

)
= hj−1κj,y.

Moments of Eh(y) can be expressed in terms of cumulants using complete Bell polynomials
(see [Com74] p.160 Equation(2)) as:

E
[
(Eh(y))

n
]
= Bn

(
κ1
(
Eh(y)

)
, . . . , κn

(
Eh(y)

))
.

First note that κ1,y = 0 so that κ1
(
Eh(y)

)
= 0. Moreover, it follows from the definition (5)

that Bn,k is k–homogeneous, consequently

E
[
(Eh(y))

n
]
= hn

n∑

k=1

h−k Bn,k

(
0, κ2,y, . . . , κn−k+1,y

)
.

We again derive from (5) that Bn,n(0) = 0, hence the last term in the above sum is null. In
particular the sum in (9) starts from n = 2. Note now that

Bn,k (0, κ2,y, . . . , κn−k+1,y) =

{
n!

(n−k)!bn−k,k(y) if 1 6 k 6 ⌈n/2⌉,
0 if k > ⌈n/2⌉,

with bn−k,k(y) = Bn−k,k

(
κ2,y
2

, . . . ,
κn−2k+2,y

n− 2k + 2

)
which implies that

E
[
(Eh(y))

n
]
= hn

⌈n/2⌉∑

k=1

h−k n!

(n− k)!
bn−k,k(y). (10)

6



Plugging (10) in (9) gives, since the sum starts at n = 2 as mentioned above,

E

[
g

(
1

K

K∑

k=1

F (y, Zk)

)]
= g(φ0(y)) +

2R∑

n=2

g(n)(φ0(y))

⌈n/2⌉∑

k=1

hn−k

(n− k)!
bn−k,k(y) +R2R+1(y).

Setting r = n− k in the above expression, noting that ⌈n/2⌉+ ⌊n/2⌋ = n and that ⌊n/2⌋ 6 r
if and only if n ≤ 2r + 1, on derives by interchanging the sums that

E

[
g

(
1

K

K∑

k=1

F (y, Zk)

)]
= g(φ0(y)) +

2R−1∑

r=1

hr

r!




(2r+1)∧2R∑

n=r+1

g(n)(φ0(y))br,n−r(y)


 +R2R+1(y).

We conclude by integrating with respect to PY (dy).

Taking advantage of this expansion we will derive two results. First a bias error expansion
for smooth enough payoff functions, in which no regularity is required on the law of (X0,Xh)
(see Subsection 4.1). Conversely a second result will be established relying on the regularity
of the distribution of (X0,Xh) when the payoff function is not smooth (see Subsection 5.1).

As concerns the strong error, elementary computations show that, if Ξ∈ L2, then

∥∥Xh −X0

∥∥2
2
=

1

K

∫
PY (dy)var

(
F (y, Z)

)
= hE

[
(F (Y,Z)− φ0(Y ))2

]
≤ h var

(
F (Y,Z)

)
,

(11)
since φ0(Y ) = E [F (Y,Z)|Y ]. To prove (SEβ) we extend this result to

∥∥Xh −Xh′
∥∥

p
when

Ξ ∈ Lp, p > 1, as described in Lemma 3.2.
Note that from now on we give the results for a generic p > 1 instead of p = 2, because

this wider assumption can be useful to establish a condition of uniform integrability needed to
prove a Central Limit Theorem (and strong law of large numbers) for Multilevel Monte Carlo
estimators, see Lemma 5.2 in [GLP17].

The proof of Lemma 3.2 relies on the Marcinkiewicz-Zygmund inequality that we recall for
clarity. If (ξn)n>1 is a sequence of centered independent random variables such that E

[∣∣ξn
∣∣p] <

+∞, 1 < p < +∞, then
∥∥∥∥∥

K∑

k=1

ξk

∥∥∥∥∥
p

6 (Bp)
1
p

∥∥∥∥∥

K∑

k=1

ξ2k

∥∥∥∥∥

1
2

p
2

, (12)

where Bp =
18p

3
2

(p−1)
1
2
(see [Shi96] p.499). If moreover (ξn)n>1 are identically distributed we have

∥∥∥∥∥

K∑

k=1

ξk

∥∥∥∥∥
p

6 (Bp)
1
p

√
K
∥∥ξ1
∥∥

p
(13)

We make an intensive use of this inequality in Section 4.

Lemma 3.2. Assume Ξ∈ Lp, p > 1. Then, for every h, h′∈ H,

∥∥Xh −Xh′
∥∥

p
6 2Bp

∥∥Ξ−E [Ξ|Y ]
∥∥

p
|h− h′| 12 . (14)

7



Proof. Assume first that h′ 6 h, and set K = 1
h , K

′ = 1
h′ > K. First note that by Fubini’s

theorem ∥∥Xh −Xh′
∥∥p

p
=

∫

Rd

P
Y
(dy)E [|Eh(y)− Eh′(y)|p] .

Setting F̃ (y, z) = F (y, z)− φ0(y), we write

Eh(y)− Eh′(y) =

(
1

K
− 1

K ′

) K∑

k=1

F̃ (y, Zk) +
1

K ′

K ′∑

k=K+1

F̃ (y, Zk).

Then, for every y∈ Rd, it follows from Minkowski’s Inequality,

∥∥Eh(y)− Eh′(y)
∥∥

p
6 |h− h′|

∥∥∥∥∥

K∑

k=1

F̃ (y, Zk)

∥∥∥∥∥
p

+ h′

∥∥∥∥∥

K ′∑

k=K+1

F̃ (y, Zk)

∥∥∥∥∥
p

.

Applying Marcinkiewicz-Zygmund Inequality to both terms on the right hand side of the above
inequality yields

∥∥Eh(y)− Eh′(y)
∥∥

p
6 |h− h′|Bp

∥∥∥∥∥

K∑

k=1

F̃ (y, Zk)
2

∥∥∥∥∥

1
2

p
2

+ h′Bp

∥∥∥∥∥

K ′∑

k=K+1

F̃ (y, Zk)
2

∥∥∥∥∥
p
2

,

6 |h− h′|BpK
1
2

∥∥F̃ (y, Z)
∥∥

p
+ h′Bp(K

′ −K)
1
2

∥∥F̃ (y, Z)
∥∥

p
.

Finally, for every y∈ Rd,

∥∥Eh(y)− Eh′(y)
∥∥

p
6 Bp

∥∥F̃ (y, Z)
∥∥

p

(
(h− h′)

1√
h
+ h′

( 1

h′
− 1

h

) 1
2

)

= Bp

∥∥F̃ (y, Z)
∥∥

p
(h− h′)

1
2

((
1− h′

h

) 1
2
+
(h′
h

) 1
2

)

6 2Bp

∥∥F̃ (y, Z)
∥∥

p
(h− h′)

1
2 .

Plugging this bound in the above equality yields, owing to Minkowski’s Inequality and Jensen’s
Inequality for conditional expectations, the announced result

∥∥Xh −Xh′
∥∥p

p
6 (2Bp)

p

∫

Rd

P
Y
(dy)

∥∥F̃ (y, Z)
∥∥p

p
(h− h′)

p
2

= (2Bp)
p
∥∥Ξ−E [Ξ|Y ]

∥∥p
p
(h− h′)

p
2 .

4 Smooth payoff function

We first focus on the smooth case, where we give a bias error expansion and a strong conver-
gence rate when the payoff function f is smooth. This result beyond its direct application will
be an important step when dealing with indicator functions.
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4.1 Weak error

The bias error expansion of the nested Monte Carlo estimator when f is smooth is a conse-
quence of Lemma 3.1, as we emphasized in the proof of the following Proposition.

Proposition 4.1 (Bias error (I): smooth functions). Let R ∈ N∗ and let f : R → R be a
2R+1 times differentiable payoff function with bounded derivatives f (k), k = R+1, . . . , 2R+1.
Assume X ∈ L2R+1. Then there exists c1, . . . , cR such that

∀h ∈ H, E [f(Xh)] = E [f(X0)] +

R∑

r=1

crh
r +O(hR+1/2). (15)

Proof. Applying Lemma 3.1 with the function g = f we get, for every h ∈ H,

E [f(Xh)] = E [f(X0)] +

R−1∑

r=1

c(r, 2r + 1)hr + c(R, 2R)hR +

2R−1∑

r=R+1

c(r, 2R)hr +R2R+1, (16)

with c(r, k) defined in (7) and R2R+1 in (8). Establishing the proposition amounts to proving
that the remainder term R2R+1 is well controlled. Using that f (2R+1) is bounded, we have

∣∣R2R+1

∣∣ 6
∥∥f (2R+1)

∥∥
∞

(2R + 1)!
E
[∣∣Xh −X0

∣∣2R+1
]
.

Using successively the Marcinkiewicz-Zygmund Inequality and the Minkowski Inequality for
the LR+ 1

2 (P)-norm, we get, keeping in mind that h = 1
K ,

E
[∣∣Eh(y)

∣∣2R+1
]
6 (B2R+1)

2R+1h2R+1E



∣∣∣∣
K∑

k=1

(F (y, Zk)− φ0(y))
2

∣∣∣∣

R+1/2



6 (B2R+1)
2R+1hR+1/2E

[∣∣F (y, Z)− φ0(y)
∣∣2R+1

]

Integrating with respect to PY finally yields

E
[∣∣Xh −X0

∣∣2R+1
]
6 (B2R+1)

2R+1hR+1/2E
[∣∣F (Y,Z)− φ0(Y )

∣∣2R+1
]

6 2R+ 1
2 (B2R+1)

2R+1hR+1/2E
[
|Ξ|2R+1 + |E [Ξ|Y ] |2R+1

]

6 2R+ 3
2 (B2R+1)

2R+1hR+1/2E
[
|Ξ|2R+1

]
(17)

so that
∣∣R2R+1

∣∣ = O(hR+1/2).

4.2 Strong convergence rate

If we assume that f is Lipschitz continuous, Lemma 3.2 straightforwardly shows that the
standard nested Monte Carlo satisfies a strong convergence at a rate hβ with β = 1. More
precisely, if Ξ ∈ L2, we have

∥∥Yh − Yh′
∥∥

2
6 2B2[f ]Lip

∥∥Ξ−E [Ξ|Y ]
∥∥

2

∣∣h− h′
∣∣ 12 ,

9



where [f ]Lip denotes the Lipschitz coefficient of f .
When asking for more smoothness, more precisely that f ′ is ρ–Hölder, we can build an

antithetic version of the nested Monte Carlo which attains a strong convergence at a rate
hβ with β > 1. As we saw, this corresponds to the optimal unbiased setting in terms of
minimization of the computational cost. This antithetic multilevel estimator is obtained by
replacing each difference Y h

M
−Yh, h ∈ h1, . . . , hR−1, in the MLMC (1) and ML2R (2) estimators

by the following random variable

Yh, h
M

:= f

(
1

MK

MK∑

k=1

F
(
Y,Zk

)
)

− 1

M

M∑

m=1

f

(
1

K

K∑

k=1

F
(
Y,Z(m−1)K+k

)
)
,

satisfying E
[
Yh, h

M

]
= E

[
Y h

M
− Yh

]
. We set

X̄K,m =
1

K

K∑

k=1

F (Y,ZK(m−1)+k) and X̄MK =
1

M

M∑

m=1

X̄K,m =
1

MK

MK∑

k=1

F (Y,Zk),

so that the nested antithetic MLMC estimator (1) then reads

ÎNh,R,q =
1

N1

N1∑

i=1

f(X̄
(i)
K,1) +

R∑

j=2

1

Nj

Nj∑

i=1

(
f(X̄

(i)
MK)− 1

M

M∑

m=1

f(X̄
(i)
K,m)

)
,

with (X̄
(i)
K,m)i≥1 independent copies of X̄K,m, and similarly for the ML2R estimator (2) with

the weights (Wj)26j6R.

Proposition 4.2. Let p > 1 and 0 < ρ 6 1. Assume Ξ ∈ Lp(1+ρ) and f ′ ρ–Hölder, i.e.

∀x, y ∈ R,
∣∣f ′(x)− f ′(y)

∣∣ ≤
[
f ′
]
ρ
|x− y|ρ. (18)

Then Yh, h
M

satisfies a strong approximation error control similar as (SEβ) with β = 1+ρ > 1.

More precisely, we prove that there exists Ṽ1 > 0 depending only on p, ρ, [f ′]ρ and M such that

∥∥∥Yh, h
M

∥∥∥
p

6 Ṽ1

(
h− h

M

) 1+ρ
2

. (19)

Proof. Owing to Taylor’s formula, for all m = 1, . . . ,M , there exists xm in the geometric
segment

(
X̄K,m, X̄MK

)
such that

f(X̄K,m) = f(X̄MK) + f ′(X̄MK)(X̄K,m − X̄MK) +
(
f ′(xm)− f ′(X̄MK)

)
(X̄K,m − X̄MK).

Hence, using the definition of X̄MK ,

1

M

M∑

m=1

f(X̄K,m) = f(X̄MK) +
1

M

M∑

m=1

(
f ′(xm)− f ′(X̄MK)

)
(X̄K,m − X̄MK). (20)
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We aim at computing
∥∥∥Yh, h

M

∥∥∥
p

=

∥∥∥∥∥
1

M

M∑

m=1

f(X̄K,m)− f(X̄MK)

∥∥∥∥∥
p

. Owing to the decomposi-

tion (20), to Minkowski’s Inequality and to the ρ–Hölder assumption (18) on f ′, we get

∥∥∥∥∥
1

M

M∑

m=1

f(X̄K,m)− f(X̄MK)

∥∥∥∥∥
p

=

∥∥∥∥∥
1

M

M∑

m=1

(
f ′(xm)− f ′(X̄MK)

)
(X̄K,m − X̄MK)

∥∥∥∥∥
p

≤ [f ′]ρ
1

M

M∑

m=1

∥∥∥XK,m − X̄MK |1+ρ
∥∥∥

p

. (21)

We first notice by an exchangeability argument that the variables (X̄K,m − X̄MK)m=1...,M are
identically distributed with X̄K,m − X̄MK ∼ X̄K,1 − X̄MK . Moreover we write

X̄K,1 − X̄MK = X̄K,1 −
1

M

M∑

m=1

X̄K,m =
1

M

M∑

m=1

(X̄K,1 − X̄K,m) =
1

M

M∑

m=2

(X̄K,1 − X̄K,m).

Hence, we get

∥∥∥∥∥
1

M

M∑

m=1

f(X̄K,m)− f(X̄MK)

∥∥∥∥∥
p

≤ [f ′]ρ
1

M1+ρ

∥∥∥∥∥

∣∣∣∣∣

M∑

m=2

(X̄K,1 − X̄K,m)

∣∣∣∣∣

1+ρ∥∥∥∥∥
p

. (22)

Owing to the independence of Y and (Zk)k≥1, we may write

E



∣∣∣∣∣

M∑

m=2

(X̄K,1 − X̄K,m)

∣∣∣∣∣

(1+ρ)p



=

∫
PY (dy)E



∣∣∣∣∣

M∑

m=2

(
1

K

K∑

k=1

F (y, Zk)−
1

K

K∑

k=1

F (y, ZK(m−1)+k)

)∣∣∣∣∣

(1+ρ)p



=

∫
PY (dy)

1

K(1+ρ)p
E



∣∣∣∣∣

K∑

k=1

(
(M − 1)F (y, Zk)−

M∑

m=2

F (y, ZK(m−1)+k)

)∣∣∣∣∣

(1+ρ)p

 .

We notice that, for each fixed y ∈ Rd, the random variables ξk = (M − 1)F (Zk, y) −∑M
m=2 F (y, ZK(m−1)+k), k > 1, are centered and i.i.d. . Moreover (1 + ρ)p > 1 hence, ow-

ing to Marcinkiewicz-Zygmund inequality (13), we have

E



∣∣∣∣∣

M∑

m=2

(X̄K,1 − X̄K,m)

∣∣∣∣∣

(1+ρ)p



≤ B(1+ρ)p
1

K
(1+ρ)p

2

∫
PY (dy)E



∣∣∣∣∣(M − 1)F (y, Z1)−

M∑

m=2

F (y, ZK(m−1)+1)

∣∣∣∣∣

(1+ρ)p

 .
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Applying twice Minkowski’s Inequality yields

E



∣∣∣∣∣

M∑

m=2

(X̄K,1 − X̄K,m)

∣∣∣∣∣

(1+ρ)p

 ≤ Cp,ρ

1

K
(1+ρ)p

2

(M − 1)(1+ρ)p2(1+ρ)pE
[
|F (Y,Z1)|(1+ρ)p

]
.

Plugging this in (22) we get
∥∥∥∥∥
1

M

M∑

m=1

f(X̄K,m)− f(x̄)

∥∥∥∥∥

p

p

≤ Ṽ1

(
1− 1

M

) p(1+ρ)
2 1

K
p(1+ρ)

2

,

with Ṽ1 = [f ′]pρCp,ρ2
p(1+ρ)

(
1− 1

M

) (1+ρ)p
2 ∥∥Ξ

∥∥(1+ρ)p

(1+ρ)p
, and (19) is proved.

If we replace the ρ–Hölder assumption on f ′ by a weaker assumption f ′ locally ρ–Hölder,
i.e.

∀x, y ∈ R,
∣∣f ′(x)− f ′(y)

∣∣ ≤ C|x− y|ρ (1 + |x|q + |y|q) ,
a strong convergence assumption with β = 1 + ρ > 1 similar to (19) can still be proved. Since
|xm|q ≤ max(|X̄K,m|q, |X̄MK |q) ≤ |X̄K,m|q + |X̄MK |q, Inequality (21) must be replaced by

∥∥∥∥∥
1

M

M∑

m=1

f(X̄K,m)− f(X̄MK)

∥∥∥∥∥
p

=

∥∥∥∥∥
1

M

M∑

m=1

(
f ′(xm)− f ′(X̄MK)

)
(X̄K,m − X̄MK)

∥∥∥∥∥
p

≤ [f ′]ρ
1

M

M∑

m=1

∥∥∥|X̄K,m − X̄MK |1+ρ(1 + |X̄K,m|q + 2|X̄MK |q)
∥∥∥

p

. (23)

Owing to Hölder’s Inequality with r, s > 1 such that 1
r + 1

s = 1 and Minkowski’s Inequality,
we get
∥∥∥|X̄K,m − X̄MK |1+ρ(1 + |X̄K,m|q + 2|X̄MK |q)

∥∥∥
p

≤
∥∥∥|X̄K,m − X̄MK |1+ρ

∥∥∥
pr

(
1 +

∥∥∥|X̄K,m|q
∥∥∥

ps

+ 2
∥∥∥|X̄MK |q

∥∥∥
ps

)
.

Since the variables (X̄K,m)m=1,...,M are identically distributed, Inequality (23) yields

∥∥∥∥∥
1

M

M∑

m=1

f(X̄K,m)− f(X̄MK)

∥∥∥∥∥
p

≤ [f ′]ρ

∥∥∥|X̄K,1 − X̄MK |1+ρ
∥∥∥

pr

(
1 +

∥∥∥|X̄K,m|q
∥∥∥

ps

+ 2
∥∥∥|X̄MK |q

∥∥∥
ps

)
.

The analysis of the term
∥∥∥|X̄K,1 − X̄MK |1+ρ

∥∥∥
pr

does not change, except for the condition

Ξ ∈ L(1+ρ)pr. Under the assumption Ξ ∈ Lqps, the term
∥∥∥|X̄K,m|q

∥∥∥
ps

+2
∥∥∥|X̄MK |q

∥∥∥
ps

is bounded,

since
∥∥∥XK,1|q

∥∥∥
ps

=

∥∥∥∥∥

∣∣∣∣∣
1

K

K∑

k=1

F (Y,Zk)

∣∣∣∣∣

q∥∥∥∥∥
ps

≤
∥∥Ξ
∥∥q

qps∨1
.
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Keeping in mind that r = s/(s − 1), the optimal choice for s which minimizes both (1 +
ρ)pr and qps is given by s = (1 + ρ + q)/q (hence r = (1 + ρ + q)/(1 + ρ)). This leads to
the additional condition Ξ ∈ Lp(1+ρ+q). In conclusion, if f ′ is locally ρ–Hölder, under the
assumption Ξ ∈ Lp(1+ρ+q), Yh, h

M
satisfies the Lp version of the strong convergence assumption

with β = 1 + ρ > 1, similarly to (19).

5 Indicator function and smooth density

There are many situations where we need to consider non smooth payoff functions of the
type f = 1{g(E[Ξ|Y ])∈I}, with g : R → R and I ⊂ R interval. Among them we can cite the
computation of loss thresholds, i.e.when we search, a threshold q ∈ R being fixed, for the
corresponding αq ∈ [0, 1] such that

1− αq = P(g(E [Ξ|Y ]) ≥ q) = E
[
1{g(E[Ξ|Y ])≥q}

]
,

or the inverse problem, which consists in computing the quantile qα such that for a fixed
α ∈ [0, 1],

1− α = P(g(E [Ξ|Y ]) ≥ qα) = E
[
1{g(E[Ξ|Y ])≥qα}

]
.

Another situation of interest is the approximation of density functions (see the seminal paper of
Bally and Talay [BT96a] and [BT96b], treating the law of the Euler scheme for distributions).

The payoff function f being non smooth, the regularity assumptions on f that we needed
to prove the weak and the strong convergence of the estimator in the smooth case, will be
replaced by some regularity assumptions on the density functions, as we detail in the next two
Subsections.

5.1 Weak error

We recall the notation that X0 = E [Ξ|Y ] and Xh = 1
K

∑K
k=1 F (Y,Zk) with h = 1

K ∈ H and
we introduce the notation

∆h = Xh −X0.

The following result on the weak error derives from Lemma 3.1 and gives a bias error
expansion relying on the density of the joint distribution of (X0,∆h) and of (X0, Y ). More
precisely, assume that (X0,∆h) is a random vector with smooth density with respect to the
Lebesgue measure on R2. Let fX0 be the density of X0, let fX0,Y be the density of (X0, Y )
and let fX0,∆h

be the density of (X0,∆h). Moreover let FXh
(x) and FX0(x) be the cumulative

distribution functions of ∆h and X0.

Proposition 5.1 (Bias error (II): smooth density). (a) Let R > 0. Assume that the partial

derivatives ∂
(ℓ)
x fX0,Y (x, y) exist for ℓ = 1, . . . , 2R, that the partial derivatives ∂

(ℓ)
x fX0,∆h

(x, y)

exist for ℓ = 1, . . . , 2R+1 and that ∂
(2R+1)
x fX0,∆h

(x, y) is continuous. Assume that Ξ ∈ L2R+1.
Let

Pr(x) =
1

fX0(x)

(2r+1)∧2R∑

ℓ=r+1

(−1)ℓ
∫

R

br,ℓ−r(y)∂
(ℓ)
x fX0,Y (x, y)dy.

13



(a) If suph∈H,x,v∈R

∣∣∣∂(2R+1)
x fX0|∆h=v(x)

∣∣∣ < +∞, then

fXh
(x) = fX0(x) + fX0(x)

R∑

r=1

hr

r!
Pr(x) +O(hR+ 1

2 ) (24)

uniformly with respect to x ∈ R.

(b) If furthermore suph∈H,x,v∈R

∣∣∣∂(2R)
x fX0|∆h=v(x)

∣∣∣ < +∞ and limx→−∞ ∂
(2R)
x fX0|∆h=v(x) = 0

for every v∈ R, then

FXh
(x) = FX0(x) +

R∑

r=1

hr

r!
E
[
Pr(X0)1{X06x}

]
+O(hR+ 1

2 ) (25)

uniformly with respect to x ∈ R.

Proof. The case R = 0 is trivial, using the expansion (6) and the convention
∑0

r=1 = 0. Let
g : R → R be an infinitely differentiable test function with compact support. We apply the
expansion (6) to the smooth function g where coefficients c(r, 2r + 1), r = 1, . . . , R − 1 and
c(r, 2R), r = R, . . . , 2R − 1 are given by (7) and the remainder term Rg

2R+1 is given by (8).
We first note that, for every ℓ∈ {1, . . . , 2R},

E
[
g(ℓ)(X0)br,ℓ−r(Y )

]
=

∫

R2

g(ℓ)(x)br,ℓ−r(y)fX0,Y (x, y)dxdy.

Then, performing successively ℓ integrations by parts yields

E
[
g(ℓ)(X0)br,ℓ−r(Y )

]
=

∫

R

g(x)

∫

R

(−1)ℓbr,ℓ−r(y)∂
(ℓ)
x fX0,Y (x, y)dydx.

As for the remainder term,

Rg
2R+1 =

1

(2R)!
E

[∫ Xh−X0

0
g(2R+1)(t+X0)(Xh −X0 − t)2Rdt

]

=
1

(2R)!
E

[∫ 1

0
g(2R+1)(X0 + s∆h)(∆h)

2R+1(1− s)2Rds

]

=
1

(2R)!

∫ 1

0

∫

R2

g(2R+1)(x)v2R+1fX0,∆h
(x− sv, v)dxdv(1− s)2Rds.

Performing successively 2R + 1 integrations by parts yields

Rg
2R+1 =

1

(2R)!

∫ 1

0

∫

R

(∫

R

g(x)∂(2R+1)
x fX0,∆h

(x− sv, v)dx

)
v2R+1dv(1− s)2Rds,

=

∫

R

g(x)r(h, x)dx,

where

r(h, x) =
1

(2R)!

∫ 1

0

∫

R

∂(2R+1)
x fX0,∆h

(x− sv, v)v2R+1dv(1− s)2Rds,

=
1

(2R)!

∫ 1

0

∫

R

∂(2R+1)
x fX0|∆h=v(x− sv)f∆h

(v)v2R+1dv(1− s)2Rds.

(26)
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Plugging these identities in (6), we get that, for every test-function g,

E [g(Xh)] =

∫

Rd

g(x)

[
fX0(x) + fX0(x)

R∑

r=1

hr

r!
Pr(x) + r̃(h, x)

]
dx,

where

r̃(h, x) = fX0(x)

2R−1∑

r=R+1

hr

r!
Pr(x) + r(h, x),

Hence

fXh
(x) = fX0(x) + fX0(x)

R∑

r=1

hr

r!
Pr(x) + r̃(h, x). (27)

The continuity of the function on the right hand side of the above equality will establish the
announced expansion, provided we show that r(h, x) = O

(
hR+ 1

2

)
uniformly with respect to

x∈ R. It follows from the boundedness assumption made on ∂
(2R+1)
x fX0|∆h=v(x) that

∣∣r(h, x)
∣∣ 6 1

(2R)!
sup

x,v∈R

∣∣∣∂(2R+1)
x fX0|∆h=v(x)

∣∣∣E
[∣∣∆h

∣∣2R+1

2R+ 1

]
6

C
Ξ,R

(2R+ 1)!
hR+ 1

2 , (28)

owing to the upper-bound established in (17) for E
[
|Xh −X0|2R+1

]
, since Ξ ∈ L2R+1.

(b) The claim amounts to integrating Equation (27), provided we show that the integrals of
Pr(x)fX0(x), for r = 1, . . . , 2R − 1, are at least semi-convergent and that, for all b ∈ R,∫ b
−∞ r(h, x)dx = O(hR+ 1

2 ). Owing to Fubini’s Theorem, using the definition (26) of r(h, x),
we have for all a < b ∈ R,

∫ b

a
r(h, x)dx =

1

(2R)!

∫ 1

0

∫

R

(
∂(2R)
x fX0|∆h=v(b− sv)− ∂(2R)

x fX0|∆h=v(a− sv)
)

× f∆h
(v)v2R+1dv(1− s)2Rds

The assumption suph∈H,x,v∈R |f (2R)
X0|∆h=v(x)| < +∞ and the upper bound (17), yield that

∫ b
a

∣∣r(h, x)
∣∣dx < +∞. Hence, owing to Lebesgue’s Dominated Convergence Theorem and

to the assumption

limx→−∞ f
(2R)
X0|∆h=v(x) = 0, we get

∫ b

−∞
r(h, x)dx =

1

(2R)!

∫ 1

0

∫

R

∂(2R)
x fX0|∆h=v(b− sv)f∆h

(v)v2R+1dv(1 − s)2Rds,

=
1

(2R)!

∫ 1

0
E
[
∂(2R)
x fX0|∆h

(b− s∆h)(∆h)
2R+1

]
(1− s)2Rds.

(29)

and then, likewise (28), using the boundedness of f (2R)
X0 |∆h=v

(x),

∫ b

−∞
r(h, x)dx = O(hR+ 1

2 ). (30)
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Owing to Equation (27), if we take h1, . . . , h2R−1 ∈ H pairwise distinct, we get, for all i =
1, . . . , 2R − 1,

2R−1∑

r=1

hr−1
i

(
Pr(x)

r!
fX0(x)

)
= ρi(x), (31)

with

ρi(x) =
fXhi

(x)− fX0(x)− r(hi, x)

hi
, i = 1, . . . , 2R − 1. (32)

Hence we get a Vandermonde system, V u(x) = ρ(x) with

V = V (h1, . . . , h2R−1) =




1 h1 h21 . . . h2R−2
1

1 h2 h22 . . . h2R−2
2

...
...

... . . .
...

1 h2R−1 h22R−1 . . . h2R−2
2R−1


 ,

u(x) = (u1(x), . . . , u2R−1(x)) with ur(x) =
Pr(x)

r!
fX0(x)

and
ρ(x) = (ρ1(x), . . . , ρ2R−1(x)).

We set, for all j = 1, . . . , 2R − 1,

Ṽj(x) = Ṽj(h1, . . . , h2R−1, ρ(x)) =




1 . . . hj−2
1 ρ1(x) hj1 . . . h2R−2

1

1 . . . hj−2
2 ρ2(x) hj2 . . . h2R−2

2
... . . .

...
...

... . . .
...

1 . . . hj−2
2R−1 ρ2R−1(x) hj2R−1 . . . h2R−2

2R−1


 .

By expanding along the jth column, the determinant of Ṽj writes

det(Ṽj(x)) =

2R−1∑

i=1

(−1)i+jdijρi(x),

where dij := dij(h1, . . . , hi−1, hi+1, . . . , h2R) ∈ R with

dij(h1, . . . , hi−1, hi+1, . . . , h2R−1) = det




1 . . . hj−2
1 hj1 . . . h2R−2

1
... . . .

...
... . . .

...

1 . . . hj−2
i−1 hji−1 . . . h2R−2

i−1

1 . . . hj−2
i+1 hji+1 . . . h2R−2

i+1
... . . .

...
... . . .

...

1 . . . hj−2
2R−1 hj2R−1 . . . h2R−2

2R−1




.

Hence, owing to Cramer’s rule, the solution of the Vandermonde system writes

uj(x) =
det
(
Ṽj(x)

)

det(V )
=

1

det(V )

2R−1∑

i=1

(−1)i+jdijρi(x).
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Finally, since we saw that for all i = 1, . . . , 2R− 1, the integral of ρi(x) is semi-convergent, we
deduce the semi-convergence of the integral

∫ b

−∞
Pr(x)fX0(x)dx =

r!

det(V )

2R−1∑

i=1

(−1)i+rdir

∫ b

−∞
ρi(x)dx,

where, owing to the expression (32) and to (30),
∫ b
−∞ ρi(x)dx is finite, which concludes the

proof.

5.2 Strong convergence rate

We conclude by showing the strong convergence rate (SEβ) for the nested Monte Carlo esti-
mator. The following Lemma is more or less standard (see for instance [Avi09]).

Lemma 5.1. Let ξ and ξ′ be two real valued random variables lying in Lp, p > 1, with densities
fξ and fξ′ respectively. Then, for every x∈ R,

∥∥∥1{ξ6x} − 1{ξ′6x}

∥∥∥
2

2
6

(
p

p
p+1 + p

1
p+1

)(∥∥fξ
∥∥
sup

+
∥∥fξ′

∥∥
sup

) p
p+1
∥∥ξ − ξ′

∥∥ p
p+1
p

. (33)

Proof. Let L > 0. Note that

∥∥∥1{ξ6x} − 1{ξ′6x}

∥∥∥
2

2
= P

(
ξ 6 x 6 ξ′

)
+P

(
ξ′ 6 x 6 ξ

)

6 P
(
ξ 6 x, ξ′ > x+ L

)
+P

(
ξ 6 x 6 ξ′ 6 x+ L

)

+P
(
ξ′ 6 x, ξ > x+ L

)
+P

(
ξ′ 6 x 6 ξ 6 x+ L

)

6 P
(
ξ′ − ξ > L) +P

(
ξ − ξ′ > L)

+P(ξ′∈ [x, x+ L]) +P(ξ∈ [x, x+ L])

= P
(
|ξ′ − ξ| > L) +P(ξ∈ [x, x+ L]) +P(ξ′∈ [x, x+ L])

6
E [|ξ′ − ξ|p]

Lp
+ L

(∥∥fξ
∥∥
sup

+
∥∥fξ′

∥∥
sup

)
.

A straightforward optimization in L yields the announced result.

The strong convergence is a consequence of the Proposition 5.1 combined with the previous
Lemma and Lemma 3.2.

Proposition 5.2. Assume X∈ Lp, p > 2. Under the assumptions of Proposition 5.1 (a) with
R = 0 and if the density fX0 is bounded, then there exists h0 = 1

K0
∈ H\{0} such that, for

every h, h′∈ (0, h0] ∥∥∥1{Xh6x} − 1{Xh′6x}

∥∥∥
2

2
6 C|h− h′|

p
2(p+1) ,

where C = 2
p

p+1

(
p

p
p+1 + p

1
p+1

)
(
∥∥f

X0

∥∥
sup

+ 1)
p

p+1
(
4Bp

∥∥X
∥∥
p

) p
p+1 . This means that the strong

approximation error assumption holds with β = p
2(p+1) ∈ (0, 12 ).
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Proof. It follows from Proposition 5.1 (a) that

fXh
(x) 6 fX0(x) + o(h

1
2 ) uniformly with respect to x∈ R.

Consequently, there exists an h0 =
1
K0

∈ H\{0} such that, for every h∈ (0, h0],

∀x∈ R, fXh
(x) 6 fX0(x) + 1.

Plugging the above bound and (14) in Inequality (33) of Lemma 5.1 applied with ξ = Xh and
ξ′ = Xh′ completes the proof.
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