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Introduction

Functional data analysis has known recent advances in the past two decades, addressing simultaneously many fields of applications. We refer to Ferraty and Vieu [START_REF] Ferraty | Nonparametric functional data analysis[END_REF] and Ramsay and Silverman [START_REF] Ramsay | Functional Data Analysis[END_REF] for detailed examples in medicine, linguistics and chemometrics and to Preda and Saporta [START_REF] Preda | PLS regression on a stochastic process[END_REF] for applications in econometrics.

In this paper we suppose that the dependence between a real-valued response Y and a functional predictor X belonging to a Hilbert space (H, < •, • >, • ) is given by the functional linear model, namely

Y =< β, X > +ε, (1) 
where ε stands for a noise term with variance σ 2 and is independent of X and β ∈ H is an unknown function to be estimated. In order to simplify the notations, the random variable X is supposed to be centred as well, which means that the function t → E[X(t)] is identically equal to zero. By multiplying both sides of Equation (1) by X(s) and taking the expectation, we see easily that the function β is solution of

Γβ := E [< β, X > X(•)] = E [Y X] =: g, ( 2 
)
where Γ is the covariance operator associated to the functional predictor X. Equation ( 2) is known to be an ill-posed inverse problem (see Engl et al. [START_REF] Engl | Regularization of inverse problems[END_REF]Chapter 2.1]). The literature on the functional linear model is wide and numerous estimation procedures exist. A first method consists in minimizing a least square criterion subject to a roughness penalty. For instance, Li and 1 Hsing [START_REF] Li | On rates of convergence in functional linear regression[END_REF] proposed an estimation procedure by minimization of such a criterion on periodic Sobolev spaces, Crambes et al. [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF] generalized the well-known smoothing-spline estimator used in univariate nonparametric regression. Another approach is based on dimension reduction: this consists in approximating the regression function β by projection onto finite-dimensional spaces. Those spaces are usually obtained by taking the first components of a basis of H. Some authors considered projection onto fixed basis, such as B-spline basis (Ramsay and Dalzell [START_REF] Ramsay | Some tools for functional data analysis[END_REF]) or general orthonormal basis (Cardot and Johannes [START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF]). But the most popular method is Functional Principal Component Regression (FPCR), this consists in taking the random space spanned by the eigenfunctions associated to the largest eigenvalues of the empirical covariance operator:

Γ n : f ∈ H → 1 n n i=1 < f, X i > X i . (3) 
The resulting estimator is shown to be consistent, but its behaviour is often erratic in simulation studies, thus a smooth version by using splines has been proposed by Cardot et al. [START_REF]Spline estimator for the functional linear model[END_REF]. The FPCR estimator is shown to attain optimal rates of convergence for the risk associated to the prediction error over fixed curves x (see Cai and Hall [START_REF] Cai | Prediction in functional linear regression[END_REF]) as well as for the L 2 -risk (see Hall and Horowitz [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]).

All the proposed estimators rely on the choice of at least one tuning parameter (the smoothing parameter appearing in the penalized criterion or the dimension of approximation space) which influences significantly the quality of estimation. Optimal choice of such parameters depends generally on both unknown regularities of the slope function β and the predictor X (see e.g. [START_REF] Cai | Prediction in functional linear regression[END_REF][START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF][START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF]) and the parameters are usually chosen in practice by cross-validation.

Until the recent work of Comte and Johannes [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF], nonasymptotic results providing adaptive datadriven estimators were missing. Comte and Johannes [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF][START_REF]Adaptive functional linear regression[END_REF] propose model selection procedures for the orthogonal series estimator introduced first by Cardot and Johannes [START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF]. In [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF], they propose to select the dimension by minimization of a penalized contrast criterion under strong assumption of periodicity of the curve X while in [START_REF]Adaptive functional linear regression[END_REF] they define a dimension selection criterion by means of a stochastic penalized contrast emulating Lepski's method (see Goldenshluger and Lepski [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]) and do not require specific assumptions on the curve X. The resulting estimators are completely data-driven and achieve optimal minimax rates for general weighted L 2 -risks. However, since both dimension selection criteria depend on weights defining the risk, these selection procedures do not address prediction error, which can be written as a weighted norm whose weights are the unknown eigenvalues of the covariance operator.

In the same context as Comte and Johannes [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF], Brunel and Roche [START_REF] Brunel | Penalized contrast estimation in functional linear models with circular data[END_REF] propose to estimate the slope function by minimizing a least square contrast on spaces spanned by the trigonometric basis. The dimension is selected by means of a penalized contrast. Their estimator is proved to attain the optimal minimax rate of convergence for the risk associated to the prediction error.

Another approach is proposed by Cai and Yuan [START_REF] Cai | Minimax and adaptive prediction for functional linear regression[END_REF] carrying out reproducing kernel Hilbert spaces. They develop a data-driven choice of the tuning parameter of the roughness regularization method (see e.g. Ramsay and Silverman [START_REF] Ramsay | Functional Data Analysis[END_REF]). Their estimation procedure is shown to attain the optimal rate of convergence without the need of knowing the covariance kernel. Lee and Park [START_REF] Lee | Sparse estimation in functional linear regression[END_REF] also suggest general variable selection procedures based on a weighted L 1 penalty under assumption of sparsity on the functional parameter β. Their estimator is shown to be consistent and to satisfy the oracle-property.

In this paper, we propose an entirely data-driven procedure to select the adequate dimension for the classical FPCR estimator. The method proposed is based on model selection tools developed in a general context by Barron et al. [4], outlined by Massart [START_REF] Massart | Concentration inequalities and model selection[END_REF], and in a context of regression by Baraud [2,[START_REF]Model selection for regression on a random design[END_REF]. However, these tools are not meant to deal with estimators defined on random approximation spaces and thus have to be adapted. Section 1 is devoted to the description of estimation procedure. The resulting estimator is proved to satisfy an oracle-type inequality and to attain the optimal minimax rate of convergence for the risk associated to the prediction error for slope functions belonging to Sobolev classes in Section 2. In Section 3, a simulation study is presented including a comparison with cross-validation. The proofs are detailed in Section 4 and in the Appendix.

Definition of the estimator

We assume that we are given an i.i.d. sample (Y i , X i ) i≥1 where the generic Y is real and X belongs to the Hilbert space H. Thereafter, the Hilbert space is set to be H = L 2 ([0, 1]) equipped with its usual inner product < •, • > defined by < f, g >= 1 0 f (t)g(t)dt but our method adapts to more general Sobolev spaces as well. We assumed above that X is a centred random curve.

We recall that the theoretical covariance operator Γ of X defined by Equation (2) in the introductory section is a selfadjoint trace class operator defined on and with values in L 2 ([0, 1]). This means that the sequence of its eigenvalues denoted (λ j ) j≥1 is positive and summable. The associated sequence of eigenfunctions is denoted by (ψ j ) j≥1 .

Collection of models

If the (ψ j ) j≤1 were known an obvious choice would be to consider a model collection (S m ) m based on these eigenfunctions. Unfortunately this is not possible. As the empirical covariance operator Γ n defined by Equation ( 3) is selfadjoint too, there exists an orthonormal basis ( ψj ) j≥1 of L 2 ([0, 1]) composed of eigenfunctions of Γ n ; we denote by ( λj ) j≥1 the associated eigenvalues arranged in decreasing order. Since Γ n is finished-rank, the ( λj ) j≥1 are necessarily null at least for j > n. The couples ( λj , ψj ) j≥1 are the empirical counterparts of the (λ j , ψ j ) j≥1 . Dimension reduction based on functional Principal Component Analysis usually comes down to projecting the data on the space spanned by the ( ψj ) j≤K for some K. Our aim here is to shift to a model selection approach.

Let Nn be a random integer which will be defined later. For all m ∈ M n := {1, ..., Nn }, we define:

Ŝm := span{ ψ1 , ..., ψm } and the vector space Ŝm is an empirical counterpart of S m := span {ψ 1 , ..., ψ m }. It is important to note that a major difference appears here. Classical model selection is carried out with fixed and known families of model. Here we handle random bases and this is the source of additional problems related to the convergence of (possibly random) projectors associated to these finite-dimensional spaces. Other difficulties come from the non-linear dependence between the coefficients of our estimator in the basis ( ψj , ...., ψm ) and the basis itself.

Estimation on Ŝm

Introduce the following simple least square contrast:

γ n (t) := 1 n n i=1 (Y i -< t, X i >) 2 .
Define ĝ := (1/n) n i=1 Y i X i the cross-covariance between Y and X (which is also the theoretical counterpart of the function g appearing in Equation ( 2)) and

βm := m j=1 < ĝ, ψj > λj ψj . (4) 
We can see easily that (4) is the unique minimizer of the least square contrast γ n if λm > 0.

From (1) the noise variance is as a parameter that we cannot dismiss since it appears in many computations. We distinguish two cases below.

Model selection with known noise variance

We suppose as a first step that the noise variance σ 2 is known.

We set Nn := max N ∈ N * , N ≤ 20 n/ ln 3 (n) and λN ≥ s n , where s n := 2 n 2 1 -1 ln 2 n ; and its theoretical counterpart

N n := max N ∈ N * , N ≤ 20 n/ ln 3 (n) and λ N ≥ n -2 .
The introduction of an empirical maximal dimension is motivated by the need to ensure that the terms λj appearing in the definition of our estimator are not too small. We select the dimension m(kv) ∈ M n by minimizing the criterion crit(m) = γ n ( βm ) + pen (kv) (m) [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] with

pen (kv) (m) := (1 + θ) σ 2 n m, (6) 
where θ is a positive constant. Then, we propose the following estimator of the function β β (kv) := β m(kv) .

Model selection with unknown noise variance

Let θ > 4 and δ > 0, we set Nn := max N ∈ N * , N ≤ min{20 n/ ln 3 (n), n/θ(1 + 2δ)} and λN ≥ s n , and

N n := max N ∈ N * , N ≤ min{20 n/ ln 3 (n), n/θ(1 + 2δ)} and λ N ≥ n -2 ,
the term σ 2 appearing in Equation ( 6) is replaced by the following estimator

σ2 m := 1 n n i=1 (Y i -< βm , X i >) 2 = γ n ( βm ).
The penalty becomes: pen(m

) := θ(1 + δ)σ 2 m m n ,
and the selection criterion: m(uv) ∈ arg min m∈ Mn (γ n ( βm ) + pen(m)) = arg min m∈ Mn γ n ( βm

) 1 + θ(1 + δ) m n . (7) 
We also denote pen (uv) 

(m) := θ(1 + δ)σ 2 m n ,
the theoretical counterpart of pen(m). Finally, we define the following estimator:

β (uv) := β m(uv) .
In the sequel, when a property applies to both β (kv) and β (uv) we denote simply these estimators by β, in that case we will denote also, m(kv) and m(uv) by m and pen (kv) (m) and pen (uv) (m) by pen(m).

Main results

In this section we derive oracle-type inequalities and uniform bounds for the risk associated to the prediction error. The prediction error of an estimator β (see e.g. [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF][START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF]) is defined by

E Ŷn+1 -E[Y n+1 |X n+1 ] 2 |X 1 , ..., X n = Γ 1/2 ( β -β) 2 =: β -β 2 Γ , (8) 
where Ŷn+1 := 1 0 β(t)X n+1 (t)dt. We suppose that λ j > 0 for all j ≥ 1, which implies that the quantity (8) defines a norm on L 2 ([0, 1]) denoted by • 2 Γ . This condition is necessary for the model to be identifiable. Indeed, if there exists j 0 ≥ 1 such that λ j 0 = 0, we have:

0 = λ j 0 ψ j 0 2 =< Γψ j 0 , ψ j 0 >= E < X, ψ j 0 > 2 ,
and < X, ψ j 0 >= 0 almost surely. By consequence, if the slope function β satisfies Equation (1), then any slope function of the form β + cψ j 0 , with c ∈ R, satisfies also Equation (1): it is clearly impossible to identify the slope function with our sample in that case. However this condition is not sufficient, for more details on the problem of identifiability in functional linear models see Section 2 of Cardot et al. [START_REF]Spline estimator for the functional linear model[END_REF].

Assumptions

Recall that (λ j , ψ j ) j≥2 denote the eigenelements of the covariance operator Γ. We can control the risk under four assumptions:

H1 There exists p > 4 such that τ p := E[|ε| p ] < +∞.
H2 There exists b > 0 such that, for all l ∈ N * ,

sup j∈N E < X, ψ j > 2l λ l j ≤ l!b l-1 .
H3 For all j = k, < X, ψ j > is independent of < X, ψ k >.

H4 There exists a constant γ > 0 such that the sequence jλ j ln 1+γ (j) j≥2 is decreasing.

Assumption H1 is standard in regression. Assumption H2 is necessary to apply exponential inequalities. Assumption H3 is also classical and we know from the Karhunen-Loeve decomposition of X that it is true for X a Gaussian process (see [START_REF] Ash | Topics in stochastic processes[END_REF]Section 1.4]). Moreover, note that for every general random variables X ∈ L 2 ([0, 1]), the random variables < X, ψ j > and < X,

ψ k > are uncorrelated since if j = k, E[< ψ j , X i >< ψ k , X i >] =< Γψ j , ψ k >= 0.
The assumption on the sequence jλ j ln 1+γ (j) j≥2 allows to avoid more restrictive hypotheses about spacing control between eigenvalues as usually made frequently in the literature (see [START_REF] Cai | Prediction in functional linear regression[END_REF], [START_REF] Hall | On properties of functional principal components analysis[END_REF], [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]).

In order to derive oracle-inequalities for the risk associated to the prediction error, we need to precise the decreasing rate of the sequence (λ j ) j≥1 . Usually in functional linear regression, this rate is supposed to be polynomial (see for instance [START_REF] Cai | Prediction in functional linear regression[END_REF][START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF][START_REF] Cai | Minimax and adaptive prediction for functional linear regression[END_REF]) but more regular processes may be considered. That is the reason why, following Cardot and Johannes [START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF] or Comte and Johannes [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF], we consider also exponential rates.

(P) Polynomial decrease There exists two constants a > 1 and c P ≥ 1 such that, for all j ≥ 1 c -1 P j -a ≤ λ j ≤ c P j -a .

(E) Exponential decrease There exists two constants a > 0 and c E ≥ 1 such that for all j ≥ 1

c -1 E exp(-j a ) ≤ λ j ≤ c E exp(-j a ).

Upper-bound on the empirical risk

We define an empirical semi-norm naturally associated to our estimation problem by

f 2 Γn := Γ 1/2 n f 2 = 1 n n i=1 < f, X i > 2 , for all f ∈ L 2 ([0, 1]).
In a first step, in propositions 1 and 2, we prove that our estimators verify an oracle type inequality for the risk associated to this semi-norm whatever the regularity of the slope function β and the decreasing rate of the covariance operator eigenvalues are.

Bound on the empirical risk with known noise variance

Proposition 1. Suppose that Assumption H1 is fulfilled, we have

E[ β (kv) -β 2 Γn ] ≤ C inf m∈Mn E[ β -Πm β 2 Γn ] + pen (kv) (m) + C (σ 2 + β 2 ) n ,
with C, C > 0 depending only on θ and p and Πm the orthonormal projector onto Ŝm .

Proof. We want here to take advantage of Corollary 3.1 in Baraud [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] who provided a very similar result in the context of regression on a fixed design. Indeed Baraud considers a model Y = s(x) + where Y is real, x takes values in some measurable space and s is a general mapping. Conditioning our functional linear model with respect to X := {X 1 , ..., X n } we can switch from the model considered in Baraud to ours by setting s(x) = β, x . The seminorm • n becomes our • Γn and the least square contrast is now :

γn : φ → 1 n n i=1 (Y i -φ(X i )) 2 .
Our last task consists in identifying the class of models, namely the S m 's. Still sticking to Baraud's notation the latter should be subspaces of L 2 (H, • n ). It is simple to see that the following collection suits:

Ŝm := span ψj , j = 1, ..., m ⊂ L 2 (H, • n ) , m = 1, ..., N n ,
through the identification mentioned above that is ψj (x) = ψj , x . As Assumption H1 is supposed to be verified, we are now ready to apply Corollary 3.1 of Baraud [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] with q = 1 and obtain that a.s.

E X β -β m 2 n ≤ C(θ) inf m∈ Mn β -Π Ŝm β 2 n + pen(m) + Θ p n σ 2 , (9) 
with

Θ p := C (θ, p) τ p σ p   1 + m∈ Mn m -(p/2-2)   ≤ C (θ, p) τ p σ p ,
and E X denotes the conditional expectation with respect to X.

Noticing that we set earlier Π Ŝm = Πm , Equation (9) leads to :

E X β -β m 2 Γn ≤ C(θ) inf m∈ Mn β -Πm β 2 Γn + pen(m) + C (θ, p) n σ 2 .
Now, we must ensure that the dimension of the oracle (i.e. the dimension that realises the best bias-variance compromise in

M n ) is included in M n . Remark that, if m > Nn , β -Π Nn β 2 Γn + pen( Nn ) ≤ j> Nn λj < β, ψj > 2 +pen(m) + (1 + θ)σ 2 n ( Nn -m), moreover j> Nn+1 λj < β, ψj > 2 = β -Πm β 2 Γn + m j= Nn+1 λj < β, ψj > 2 ≤ β -Πm β 2 Γn + s n β 2 ,
since, for all j > Nn , λj ≤ s n . Therefore

β -Π Nn β 2 Γn + pen( Nn ) ≤ β -Πm β 2 Γn + pen(m) + β 2 n 2 , (10) 
and we obtain, for all m ∈ M n

E X β -β m 2 Γn ≤ C(θ) β -Πm β 2 Γn + pen(m) + C (θ, p) n (σ 2 + β 2 ).
The proof is completed by taking expectation on both sides of the last inequality.

Bound on the empirical risk with unknown noise variance

Proposition 2. Suppose that Assumption H1 is fulfilled. We have

E[ β (uv) -β 2 Γn ] ≤ C inf m∈Mn E[ β -Πm β 2 Γn ] + pen (uv) (m) + C n (σ 2 + β 2 + τ 2/p p ),
with C, C > 0 depends only on θ, p and δ.

Proof. Because of the random penalty, we cannot proceed as in the proof of Proposition 1. The following proof is based on contrast decomposition and control of the remaining empirical process. More precisely, by definitions of m(uv) and βm :

γ n ( β (uv) ) -γ n ( Πm β) ≤ pen(m) -pen( m(uv) ),
and

γ n ( β (uv) ) -γ n ( Πm β) = β -β (uv) 2 Γn -β -Πm β 2 Γn + 2ν n ( Πm β -β (uv)
), with:

ν n (t) := 1 n n i=1 ε i < t, X i >,
an empirical linear centred process. Then:

β -β (uv) 2 Γn ≤ β -Πm β 2 Γn + pen(m) -pen( m(uv) ) + 2ν n ( β (uv) -Πm β). (11) 
The first step is to replace the random function pen by its empirical counterpart pen (uv) , this can be done by using the results of Lemma 13 in the Appendix directly in Equation ( 11):

E X [ β -β (uv) 2 Γn ] ≤ 1 + κ m n β -Πm β 2 Γn + E X [pen (uv) (m) -pen (uv) ( m(uv) )] +E X 2 1 + κ m(uv) n ν n ( β (uv) -Πm β) + τ 2/p p + β 2 Γ + σ 2 n , (12) 
where κ := 2(θ + 1).

Then the last step consists in controlling the empirical linear process ν n on Ŝm∨ m. Remark that for all δ > 0, for all m ∈ M n ,

2ν n ( β (uv) -Πm β) ≤ 1 θ β (uv) -Πm β 2 Γn + θ sup f ∈ Ŝ m(uv) ∨m f Γn =1 ν 2 n (f ), (13) 
since for all x, y ∈ R and θ > 0, 2xy ≤ θ -1 x 2 + θy 2 . Let p(m, m ) := 2(1 + δ) m∨m n σ 2 , remark that pen(m) + pen(m ) ≥ p(m, m ). Then, since θ > 4 and Nn ≤ n/κ, gathering equations ( 12) and ( 13) we obtain:

1 - 4 θ E X β (uv) -β 2 Γn ≤ 2 + 4 θ β -Πm β 2 Γn +2pen (uv) (m) + 2θE X          sup f ∈ Ŝ m(uv) ∨m f Γn =1 ν 2 n (f ) -p(m, m(uv) )     +      .
Then the last step is to bound the variations of sup f ∈ Ŝ m(uv) ∨m

f Γn =1
ν 2 n (f ) (which can be seen as a variance term) around p(m, m ), the results comes from Lemma 1 detailed below:

E X β (uv) -β 2 Γn ≤ C(θ) min m∈ Mn β -Πm β 2 Γn + pen (uv) (m) + C(p, δ) n σ 2 .
Then we conclude as in the proof of Proposition 1 by Inequality [START_REF] Cardot | Functional linear model[END_REF].

For sake of clarity, Lemma 1, which is the key of the previous result, is given below.

Lemma 1. Suppose that Assumption H1 is fulfilled. Let p(m, m ) = 2(1 + δ) m∨m n σ 2 , then for all m ∈ M n , m ∈ Mn E X         sup f ∈ Ŝm∨m f Γn =1 ν 2 n (f ) -p(m, m )     +     ≤ C(p, δ) n σ 2 .
The proof of this lemma is given in Section 4.1 and relies on results of Baraud [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] based on Talagrand's Inequality.

Oracle inequality

In this section, we derive an oracle-inequality for the risk associated to the prediction error. We define first an allipsoid of L 2 ([0, 1])

W R r :=    f ∈ L 2 ([0, 1]), j≥1 j r < f, ψ j > 2 ≤ R 2    .
Theorem 1. Suppose that assumptions H1, H2, H3 and H4 hold and that the decreasing rate of (λ j ) j≥1 is given by (P) or (E). Then, for all slope function

β ∈ L 2 ([0, 1]), if n ≥ 6: E[ β -β 2 Γ ] ≤ C 1 min m∈Mn E[ β -Πm β 2 Γ ] + E[ β -Πm β 2 Γn ] + pen(m) + C 2 n 1 + β 2 (14)
where C 1 > 0 and C 2 > 0 are independent of β and n.

If, in addition, β ∈ W R r -with the condition a + r > 2 in the polynomial case (P) -we have

E[ β -β 2 Γ ] ≤ C 1 min m∈Mn E[ β -Πm β 2 Γ ] + pen(m) + C 2 n 1 + β 2 , ( 15 
)
where the constants C 1 > 0 and C 2 > 0 do not depend on β or n.

Remark 1: The condition a + r > 2 is verified as soon as a ≥ 2 without condition on the regularity parameter r of the slope β. Note that if X is a Brownian motion, the sequence (λ j ) j≥1 associated to the process X verifies (P) with a = 2. Then we do not need additional condition on r if X is smoother than the Brownian motion.

Sketch of proof. The core of the proof relies on the bounds on the empirical risk given in Proposition 1, for the known variance case, and Proposition 2 for the unknown variance case. Then it remains to replace the empirical risk appearing in propositions 1 and 2 by the risk associated to the prediction error in order to obtain the final oracle-inequality. This is done with the results of Lemma 2 which allows to control the set

∆ n := {∀f ∈ Ŝn , f 2 Γ ≤ ρ 0 f 2 Γn }, (16) 
where ρ 0 > 1 is a constant and we define Ŝn := Ŝ Nn .

Proof. The following equality holds:

E[ β -β 2 Γ ] = E[ β -β 2 Γ 1 ∆n ] + E[ β -β 2 Γ 1 ∆ n ],
where, for a set A, we denote by A its complement. Lemma 4 in Section 4 allows to bound the second term of this inequality. Thus the end of the proof will be devoted to upper-bound the first term.

We remark that, for all m ∈ M n ,

β m -β Γ 1 ∆n ≤ β m -Πm β Γ 1 ∆n + β -Πm β Γ ≤ √ ρ 0 β m -β Γn + √ ρ 0 β -Πm β Γn + β -Πm β Γ . (17) 
By propositions 1 and 2, for all m ∈ M n :

E[ β m -β 2 Γn ] ≤ C(p, θ, δ, σ 2 , τ p ) E[ β -Πm β 2 Γn ] + pen(m) + 1 + β 2 n ,
and by Equation ( 17)

E[ β m -β 2 Γ 1 ∆n ] ≤ C(p, θ, δ, σ 2 , τ p , ρ 0 ) E[ β -Πm β 2 Γn ] + E[ β -Πm β 2 Γ ] + pen(m) + 1 + β 2 n ,
and Equation ( 14) follows.

Then Equation ( 15) comes from Equation ( 14) and Lemma 12.

Convergence rates

As a direct consequence of the oracle-inequality given in Theorem 1, associated with the control of the random projector on the spaces Ŝm given in Lemma 11, we derive uniform bounds on the risk of our estimators on the ellipsoids W R r .

Theorem 2. Assume that the assumptions of Theorem 1 are fulfilled. For all r > 0 and R > 0:

Polynomial case. If (P) holds with a + r > 2 then:

sup β∈W R r E[ β -β 2 Γ ] ≤ C P n -(a+r)/(a+r+1) ; ( 18 
)
Exponential case. If (E) holds then:

sup β∈W R r E[ β -β 2 Γ ] ≤ C E n -1 (ln n) 1/a , (19) 
with C P and C E independent of n.

Remark 2: In the case where the noise ε is Gaussian, the bounds ( 18) and ( 19) coincide with the minimal bounds given by Cardot and Johannes [START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF].

Proof. Let us start with the polynomial case (P). By Theorem 1, we have:

E[ β -β 2 Γ ] ≤ C min m∈Mn E[ β -Πm β 2 Γ ] + pen(m) + 1 n (1 + β 2 ) ,
with C independent of β and n. Denote by Πm the orthogonal projector onto S m = Span{ψ 1 , . . . , ψ m }, by Lemma 11

β -Πm β 2 Γ ≤ 2 β -Π m β 2 Γ + C 1 ln 3 m n m max{(1-r) + ,2-a-r} + C 2 ln 5 m ln 4 n n 2 m max{(2-a+(7-r) + ) + ,2-a+(5-r) + } , with C 1 , C 2 > 0, independent of β and n. Now since β ∈ W R r , E[ β -Π m β 2 Γ ] = j≥1 λ j < β, ψ j > 2 ≤ m -a-r j≥m j r < β, ψ j > 2 ≤ Rm -a-r .
We can see easily that it is possible to define a sequence of integers (m * n ) n∈N * such that 3 Numerical results

Simulation method

Following the method proposed by Hall and Hosseini-Nasab [START_REF] Hall | On properties of functional principal components analysis[END_REF], we simulate the random function X in the following way

X = J j=1 λ j ξ j ψ j , (20) 
where, for all j ≥ 1, ψ j (x) = √ 2 sin(π(j -0.5)x) and {ξ j , j = 1, ..., J} is independent and follows the standard normal distribution. This sequence of functions (ψ j ) j≥1 has been chosen so that if J is sufficiently high and if λ j = (j -0.5) -2 π -2 , we obtain a Brownian motion (see Ash and Gardner [START_REF] Ash | Topics in stochastic processes[END_REF]). In order to see how the decreasing rate of (λ j ) j≥1 influences the estimation, we take three different sequences:

λ P 1 j = j -2 , λ P 2 j = j -3 and λ E j = e -j .
It is interesting to note from Equation ( 20) that the higher the rate of decrease of the λ j 's, the better the regularity of the function X.

The function X is then discretized over p = 100 equispaced points t j = j-1 p , j = 1, ..., p . We take ε ∼ N (0, σ 2 ) and σ 2 = 0.01. We consider here two different slope functions β 1 (x) = ln(15x 2 + 10) + cos(4πx) (see [START_REF] Cardot | Functional linear model[END_REF]) and β 2 (x) = e (x-0.3) 2 /0.05 cos(4πx).

Comparison with cross validation

We compare our dimension selection criterion with two cross validation criteria frequently used in practice.

The first method consists in minimizing

GCV (m) := n i=1 (Y i -Ŷi ) (1 -tr(H m )/n) 2 ,
where Ŷi := 1 0 βm (t)X i (t)dt and H m is the classical Hat matrix defined by Ŷ = ( Ŷ1 , ..., Ŷn ) = H m Y. This criterion has been proposed in a similar context by Marx and Eilers [START_REF] Marx | Flexible smoothing with b-splines and penalties[END_REF] and in the context of functional linear models by Cardot et al. [START_REF]Spline estimator for the functional linear model[END_REF]. The second one consists in minimizing the criterion

CV (m) := 1 n n i=1 Y i - Ŷ (-i) i 2 ,
which has been proposed in the framework of functional linear model by Hall and Hosseini-Nasab [START_REF] Hall | On properties of functional principal components analysis[END_REF]. Here Ŷ (-i) i is the value of Y i predicted from the sample {(X j , Y j ), j = i}. Note that an immediate drawback of this criterion is that it requires a much longer CPU time than the GCV criterion or our penalized criterion.

Results

As we can see in figures 1 and 2, the regularity of estimators increases when the rate of convergence of the λ j 's decreases. This is a specificity of functional PCA: the estimated slope function β is an element of Im(Γ n ) = span{X 1 , ..., X n } and thus has the same regularity as the function X. It also explains the side effect observed in figures 1 and 2 since X i (0) = 0 implies that β(0) = 0. ) and approximated 95% confidence interval (calculated from 500 independent samples of size n = 1000). kv: dimension selected by minimization of (5), uv: dimension selected by [START_REF] Brunel | Penalized contrast estimation in functional linear models with circular data[END_REF]. The results of Table 1 indicate that the substitution of the term σ 2 by the estimator σ2 m in case of unknown variance does not have a significant effect on the quality of estimation. In fact the Monte Carlo study also revealed that the dimension selected by minimization of ( 5) and ( 7) is the same in 70% to 99% of cases (percentage depending on the sample size n, the decreasing rate of the λ j 's and the function β).

Moreover, according to Figure 3 and Table 1, performances of our estimators seem to be quite similar to the functional PCR estimator with dimension selected by minimization of the CV criterion. Conversely, the GCV criterion selects systematically the highest dimensional model which leads to poor performances.

Proofs

Proof of Lemma 1

Proof of Lemma 1. First denote by fX := (< f, X 1 >, ..., < f, X n >) and ε := (ε 1 , ..., ε n ) . Remark that ν n (f ) = f X ε/n and that, by usual properties of orthogonal projectors

sup f ∈ Ŝm f Γn =1 ν n (f ) = sup α∈ŝm α α=n α ε n = 1 √ n sup α∈ŝm α α=1 α ε = 1 √ n (Π ŝm ε) Π ŝm ε 1/2 = 1 √ n ε Π ŝm ε 1/2 ,
where ŝm denotes the subspace of R n defined by ŝm := α ∈ R n , ∃f ∈ Ŝm , α = fX and Π ŝm is the orthogonal projector onto ŝm .

Then, by Assumption H1, applying Corollary 5.1 of Baraud (2000) [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] with à = Π ŝm we obtain, for all x > 0,

P X     n sup f ∈ Ŝm f Γn =1 ν 2 n (f ) ≥ mσ 2 + 2σ 2 √ mx + σ 2 x     ≤ C(p)σ p τ p m x p/2 ,
where P X stands for the probability given X. Then for all δ > 0 remark that √ mx ≤ δm + δ -1 x we obtain

P X     sup f ∈ Ŝm f Γn =1 ν 2 n (f ) ≥ (1 + δ) mσ 2 n + (1 + δ -1 ) σ 2 x n     ≤ C(p) m x p/2 .
Set

Q m∨m :=     sup f ∈ Ŝm∨m f Γn =1 ν 2 n (f ) -p(m, m )     + .
We have, for all m, m ∈ M n

E X [Q m∨m ] = +∞ 0 P X (Q m∨m ≥ t) dt ≤ C(p) σ p n p/2 +∞ 0 dt t + σ 2 m∨m n (1 + δ) p/2 ≤ C (p, δ) σ 2 n (m ∨ m ) 1-p/2 .
As p > 4, (m ∨ m ) 1-p/2 ≤ 1 and we obtain the expected result.

Upper-bound of the risk on ∆ n

We first bound the probability of ∆ n :

Lemma 2. Under assumptions H2, H3 and H4 and if the decreasing rate of (λ j ) j≥1 is given by (P) or (E), the set ∆ n defined by Equation ( 16) verifies

P(∆ n ) ≤ C/n 6 ,
with C > 0 independent of n.

Proof. First remark that:

P(∆ n ) = P(∆ n ∩ { Nn ≤ N n }) + P(∆ n ∩ { Nn > N n }),
the second term of this equality is easily bounded by Cn -6 by Lemma 5. It remains to bound the first term. We have

∆ n ∩ { Nn ≤ N n } = inf f ∈ Ŝn f 2 Γn f 2 Γ < ρ -1 0 ∩ { Nn ≤ N n } ⊂ inf f ∈ ŜNn f 2 Γn f 2 Γ < ρ -1 0 .
Let f = Nn j=1 α j ψj ∈ ŜNn , we have a.s.

f 2 Γn = Nn j=1 λj α 2 j = | Λn α| 2 2 ,
where

| • | 2 is the norm of R Nn defined by |x| 2 2 = Nn j=1
x 2 i for all x = (x 1 , ..., x n ) ∈ R Nn and Λn is the diagonal matrix with diagonal entries { λ1 , ..., λn }. Moreover

f 2 Γ = Nn j,k=1 α j α k < Γ 1/2 ψj , Γ 1/2 ψk >= α Ψ n α,
where Ψ n is the symmetric and positive-definite matrix

Ψ n := < Γ 1/2 ψj , Γ 1/2 ψk > 1≤j,k≤ Nn . Then, f 2 Γn f 2 Γ = | Λn α| 2 2 α Ψ n α = | Λn α| 2 2 |Ψ 1/2 n α| 2 2 = | Λn Ψ -1/2 n Ψ 1/2 n α| 2 2 |Ψ 1/2 n α| 2 2 . Now inf f ∈ ŜNn f 2 Γn f 2 Γ = inf α∈R Nn \{0} α Ψ -1/2 n Λ2 n Ψ -1/2 n α |α| 2 2 = min{λ, λ eigenvalue of Ψ -1/2 n Λ2 n Ψ -1/2 n }.
On the set J n defined by Equation ( 30) in Section A.2, by Lemma 7, for all, j = 1, ..., N n , λj > 0. Hence the matrix Λn is invertible, therefore inf

f ∈ Ŝn f 2 Γn f 2 Γ = ρ (Ψ -1/2 n Λ2 n Ψ -1/2 n ) -1 -1 = ρ( Λ-1 n Ψ n Λ-1 n ) -1 ,
where, for a matrix A, ρ(A) = max{|λ|, λ is a complex eigenvalue of A} denotes the spectral radius of A.

We have then

P ∆ n ∩ N n < N n ≤ P(J n ∩ {ρ( Λ-1 n Ψ n Λ-1 n ) > ρ 0 }) + P(J n ). ( 21 
)
By Lemma 9 in Section A.2, P(J n ) ≤ C/n 6 , with C depending only on Γ and b. Thus it remains to control the spectral radius of Λ-1 n Ψ n Λ-1 n . We define a linear (random) application O from R Nn to L 2 ([0, 1]) by:

O : α = (α 1 , ..., α Nn ) → Nn j=1 α j ψj .
We denote by O * the adjoint of O, which is the linear map from L 2 ([0, 1]) to R Nn defined by:

O * : f → (< f, ψj > 1≤j≤Nn ).
We can check that OO * = ΠNn and Ψ n is the matrix of the linear map O * ΓO in the standard basis of R Nn .

It is known that the spectral radius of an operator is equal to the spectral radius of its adjoint, then,

ρ( Λ-1 n Ψ n Λ-1 n ) = ρ( L-1 n O * ΓO L-1 n ) = ρ(Γ 1/2 O L-1 n L-1 n O * Γ 1/2 ), ( 22 
)
where Ln denotes the linear endormorphism of R Nn whose matrix in the standard basis is Λn . Denote by Π Nn the orthogonal projector onto S Nn = span{ψ 1 , ..., ψ Nn }. Moreover, let Γ † (resp. Γ † n ) the pseudo-inverse of operator Γ (resp. Γ n ) on ŜNn (resp. Ŝn ), defined by:

Γ † f := Nn j=1 < f, ψ j > λ j ψ j and Γ † n f := Nn j=1 < f, ψj > λj ψj 1 { λj >0} , (23) 
we have

Γ 1/2 Γ † Γ 1/2 = Π Nn and O L-2 n O * = Γ † n . Then, Γ 1/2 O L-1 n L-1 n O * Γ 1/2 = Γ 1/2 Γ † n Γ 1/2 = Γ 1/2 (Γ † + Γ † n -Γ † )Γ 1/2 = Π Nn + Γ 1/2 (Γ † n -Γ † )Γ 1/2
, and by Equation ( 22)

ρ( Λ-1 n Ψ n Λ-1 n ) = Π Nn + Γ 1/2 (Γ † n -Γ † )Γ 1/2 ∞ ≤ 1 + Γ 1/2 (Γ † n -Γ † )Γ 1/2 ∞ ,
where • ∞ denotes the usual operator norm. Now

P(J n ∩ {ρ( Λ-1 n Ψ n Λ-1 n ) > ρ 0 }) ≤ P J n ∩ Γ 1/2 (Γ † n -Γ † )Γ 1/2 ∞ > ρ 0 -1 .
Thus, the results of Lemma 3 -whose technical proof is given in Section A.5 -in Equation ( 21) allows us to bound P ∆ n ∩ N n < N n . Then the proof is finished by Lemma 5.

Lemma 3. Suppose that assumptions H2, H3 and H4 are fulfilled and that the decreasing rate of (λ j ) j≥1 is given by (P) or (E), then

P J n ∩ Γ 1/2 (Γ † n -Γ † )Γ 1/2 ∞ > ρ 0 -1 ≤ Cn -6 ,
with C > 0 independent of n.

Lemma 4. For all β ∈ L 2 ([0, 1]), if assumptions of Lemma 2 are fulfilled then

E[ β -β Γ 1 ∆ n ] ≤ C n (1 + β 2 Γ ),
with C > 0 independent of β and n.

Proof. First remark that, as

Y i =< β, X i > +ε i , for all m ∈ M n βm = m j=1 1 n n i=1 Y i < X i , ψj > λj ψj = Πm β + R m ,
where

R m := m j=1 1 n n i=1 ε i < X i , ψj > λj ψj .
Then

E[ β -β Γ 1 ∆ n ] ≤ 2E Π mβ -β 2 Γ 1 ∆ n + 2E R m 2 Γ 1 ∆ n ≤ 2 β 2 Γ P(∆ n ) + 2E R m 2 Γ 1 ∆ n .
The first term can be easily bounded using the results of Lemma 2. Then we focus on the second term, the idea is to bound the quantity R m Γ by R m which can be written simply,

E R m 2 Γ 1 ∆ n ≤ ρ(Γ)E R m 2 1 ∆ n = ρ(Γ)E   m j=1 < R m, ψj > 2 1 ∆ n   . Now remark that, since m ≤ Nn ≤ 20 √ n, m j=1 < R m, ψj > 2 ≤ m j=1 1 n n i=1 ε i < X i , ψj > λj 2 ≤ s -1 n 20 √ n j=1   1 n n i=1 ε i < X i , ψj > λj   2 1 { λj >0} .
Then we have, by independence of ε i with

X i and ∆ n E R m 2 Γ 1 ∆ n ≤ 20ρ(Γ) σ 2 √ n s -1 n P(∆ n ),
and the results come from lemmas 2 and 5 and the definition of s n .

Lemma 5. If Assumption H2 is fulfilled and n ≥ 6, then

P( Nn > N n ) ≤ Cn -6 ,
with C independent of β and n.

Proof. The sequence (λ j ) j≥1 being non-increasing we have

P( Nn > N n ) ≤ P(λ Nn+1 ≥ λ Nn ) ≤ P λ Nn+1 ≥ λ Nn ∩ A n + P A n ,
where A n is defined by Equation ( 26) in Section A.2. Then by definition of A n ,

λ Nn+1 ≥ λ Nn ∩ A n ⊂ λ Nn+1 ≥ λ Nn - δ Nn 2 = ∅, since λ Nn+1 < n -2 , λNn ≥ s n and δ Nn ≤ λ Nn 4 ≤ n -2 4
. Thus the proof is finished following the conclusions of Remark 3 in Section A.2. 0 
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A.2 Preliminary notions

Let γ be either the rectangular path given by Figure 4 or the union (for j = 1, ..., m) of the circular paths ∂Ω j of center λ j and radius δ j represented in Figure 5.

We have, for all j ≥ 1, x ∈ [0, 1]:

Π m ψ j (x) = 1 j≤m ψ j (x) = 1 2iπ γ ψ j (x) ζ -λ j dζ = 1 2iπ γ (ζI -Γ) -1 ψ j (x)dζ, and Π m = 1 2iπ γ (ζI -Γ) -1 dζ, (24) 
we refer to Chapter III of Dunford and Schwartz [START_REF] Dunford | Linear Operators. I. General Theory, With the assistance of W[END_REF] for an exact definition and properties of this integral. Now the aim is to write similarly the random projector Πm . This can be done if, for all j ≤ m, λj is in the interior of γ.

For t > 0, let J γ (t) be the set

J γ (t) = sup ζ∈supp(γ) T (ζ) ∞ < t , (25) 
where

T (ζ) := R 1/2 (ζ)(Γ n -Γ)R 1/2 (ζ) with R(ζ) = (ζI -Γ) -1 .
Define also the set

A n := n j=1 | λj -λ j | < δ j 2 . ( 26 
)
Lemma 7. Let t < 1/2, then for both circular and rectangular path γ J γ (t) ⊂ A n .

The proof of Lemma 7 may be deduced from the proof of Lemma 14, p.12 of Mas and Ruymgaart [START_REF] Mas | High Dimensional Principal Projections[END_REF]. Now Lemma 7, allows us to write that for all t < 1/2:

Πm = 1 Jγ (t) 1 2iπ γ (ζI -Γ n ) -1 dζ. (27) 
Define R (ζ) := (ζI -Γ n ) -1 , equations ( 24) and ( 27) lead to:

( Πm -Π m )1 Jγ (t) = 1 Jγ (t) 1 2iπ γ R (ζ) -R (ζ) dζ, for all t < 1/2.
Then we rewrite the interior of the last integral by remarking that

R (ζ) -R (ζ) = R (ζ) (Γ -Γ n ) R (ζ) = R (ζ) (ζI -Γ) 1/2 T (ζ) R 1/2 (ζ) . (28) 
By definition, when t < 1, on the set J γ (t), the operator I -T (ζ) is invertible for all ζ ∈ supp(γ) and we have:

(I -T (ζ)) -1 = (ζI -Γ) 1/2 R (ζ) (ζI -Γ) 1/2 .
Then Equation ( 28) leads to

R (ζ) -R (ζ) 1 Jγ (t) = R 1/2 (ζ) [I -T (ζ)] -1 T (ζ) R 1/2 (ζ) 1 Jγ (t) .
We obtain in a similar way a rewriting of (π j -π j )1

Jγ (t) or (Γ † -Γ † n )1 Jγ (t)
where Γ † and Γ † n are defined by Equation [START_REF] Hall | On properties of functional principal components analysis[END_REF]. All results are summarized in the following lemma. Lemma 8. For all t < 1/2 if γ is either the union of circular contour represented in Figure 5 or the rectangular contour given by Figure 4:

( Πm -Π m )1 Jγ (t) = 1 2iπ γ R 1/2 (ζ) [I -T (ζ)] -1 T (ζ) R 1/2 (ζ) dζ1 Jγ (t) (π j -π j )1 Jγ (t) = 1 2iπ ∂Ω j R 1/2 (ζ) [I -T (ζ)] -1 T (ζ) R 1/2 (ζ) dζ1 Jγ (t) (Γ † -Γ † n )1 Jγ (t) = 1 2iπ γ 1 ζ R 1/2 (ζ) [I -T (ζ)] -1 T (ζ) R 1/2 (ζ) dζ1 Jγ (t) .
The last lemma allows us to finally control our quantities on J γ (t) . 

a k := i =k λ i |λ i -λ k | + λ k δ k , for all k ≥ 1.
If γ is the path ∂Ω k covering the circle of center λ k and of radius δ k or the rectangular contour given in Figure 4 we have, under Assumption H2 :

P J γ (t) ≤ 2 exp - nt 2 2a 2 k (2b -1) 1 (2b -1) + 256b 3 /((2b -1)a k t .
The proof of Lemma 9 relies on Bernstein's exponential inequality for Hilbert-valued random variables (see for instance Bosq [START_REF] Bosq | Linear processes in function spaces: theory and applications[END_REF]). Details can be found in Mas and Ruymgaart [START_REF] Mas | High Dimensional Principal Projections[END_REF]Lemma 13]. Definition 1. Let, for all t > 0, J γ (t) be the set defined by Equation ( 25) then we define a set J n in the following way: take l j,n := min

a j √ n ln n, 1/2 ,

Circular contour

J n := m j=1 J ∂Ω j (l j,n ); (29) 
Rectangular contour

J n := J γ (l m,n ). ( 30 
)
Remark 3: By Lemma 9, the sets J n defined by Equation ( 29) or [START_REF] Preda | PLS regression on a stochastic process[END_REF] verifies

P(J n ) ≤ 2 exp(-c * ln 2 n), (31) 
where c * > 0 depends only on b and c δ . Moreover, as l j,n < 1/2, by Lemma 7, we have

J n ⊂ A n
and the results of Lemma 8 are true.

A.3 Upper-bound on the distance between empirical and theoretical projectors

We need a preliminary lemma Lemma 10 (Hilgert et al. [START_REF] Hilgert | Minimax adaptive tests for the Functional Linear model[END_REF], Lemma 10.1). If Assumption H4 is verified, then for all k ∈ N * :

a k ≤ C(γ)k ln k Lemma 11. Let r, R > 0 and β ∈ W R r .
Suppose that assumptions H2, H3 and H4 are fulfilled. If (λ j ) j≥1 decreases at polynomial rate (P) then

E[ Πm β -Π m β 2 Γ 1 Jn ] ≤ C 1 ln 3 m n m max{(1-r) + ,2-a-r} + C 2 ln 5 m ln 4 n n 2
m max{(2-a+(7-r) + ) + ,2-a+(5-r) + } , and if (λ j ) j≥1 decreases at exponential rate (E)

E[ Πm β -Π m β 2 Γ 1 Jn ] ≤ C 2 ln 3 m n m (1-r) + + ln 6 m ln 4 n n 2 ,
with C 1 > 0, C 2 > 0 and C 3 > 0 depending on r, R and on the sequence (λ j ) j≥1 but are independent of m and n.

Proof. First, by Equation ( 31)

E[ Πm β -Π m β 2 Γ 1 J n ] ≤ 2 β 2 Γ P(J n ) ≤ C β 2 Γ /n 2 ,
with C independent of β, n and m. Now by Lemma 8,

( Πm β -Π m β)1 Jn = 1 Jn 1 2iπ m j=1 ∂Ω j R 1/2 (z) [I -T (z)] -1 Π (z) R 1/2 (z) βdz. Remark that (I -T (z)) -1 T (z) = T (z) + (I -T (z)) -1 T 2 (z), then 1 Jn Π m -Π m = A n + B n , with A n = 1 Jn 1 2πi m j=1 ∂Ω j (zI -Γ) -1 (Γ n -Γ) (zI -Γ) -1 dz B n = 1 Jn 1 2πi m j=1 ∂Ω j (zI -Γ) -1/2 [I -T (z)] -1 T (z) 2 (zI -Γ) -1/2 dz.
We deal with A n first. Calculations show that

E Γ 1/2 A n β 2 ≤ 1 n m j=1 β 2 j k>m λ j λ 2 k (λ j -λ k ) 2 + 1 n m j=1 λ 2 j k>m λ k β 2 k (λ j -λ k ) 2 ≤ 1 n m j=1 λ j β 2 j a 2 j + 1 n m j=1 λ 2 j (λ j -λ m+1 ) 2 λ m+1 m -r k>m k r β 2 k ≤ C m (1-r) + ln 3 m n + m 2-r ln 2 m n λ m+1 , (32) 
as soon as (λ j ) j≥1 decreases exponentially or polynomially with C > 0 depending only on R, r, a and Γ.

The last line comes from the inequality λ j j -1 and Lemma 10. We turn now to B n

B n β1 Jn 2 Γ ≤ 1 Jn 1 4π 2 k≥1 λ k   m j=1 ∂Ω j < R 1/2 (ζ) [I -T (ζ)] -1 T (ζ) 2 R 1/2 (ζ) β, ψ k > dζ   2 . ( 33 
)
We have:

< R 1/2 (ζ) [I -T (ζ)] -1 T (ζ) 2 R 1/2 (ζ) β, ψ k >=< [I -T (ζ)] -1 T (ζ) 2 R 1/2 (ζ) β, R 1/2 (ζ) ψ k > .
We denote by β := j≥1 j r/2 β j ψ j ; as β is in W R r , the function β is in L 2 ([0, 1]). Moreover we denote by P r the diagonal compact operator defined by P r ψ j = j -r/2 ψ j , we remark that β = P r β . We have

R 1/2 (ζ)ψ k = (ζI -Γ) -1/2 ψ k = 1 √ ζ -λ k ψ k .
Then,

| < R 1/2 (ζ) [I -T (ζ)] -1 Π (ζ) 2 R 1/2 (ζ) β, ψ k > | ≤ 1 |ζ -λ k | (I -T (ζ)) -1 ∞ T (ζ) 2 ∞ R 1/2 (ζ)P r ∞ β .
Now on the set J n , by definition, we have for all ζ ∈ Ω j :

(I -T (ζ)) -1 ∞ < 2 and T (ζ) ∞ < a j √ n ln n.
Moreover, the eigenvalues of the operator

R 1/2 (ζ)P r are {k -r/2 (ζ -λ k ) 1/2 , k ≥ 1} then, for all, ζ ∈ ∂Ω j : R 1/2 (ζ)P r ∞ = sup k≥1 {k -r/2 |ζ -λ k | -1/2 } = j -r/2 / δ j , (34) 
and Equation (33) becomes:

B n β1 Jn 2 Γ ≤ 1 Jn 1 π 2 β 2 k≥1 λ k   m j=1 a 2 j n ln 2 n j -r/2 δ j ∂Ω j dz |z -λ k |   2 .
In the polynomial case (P), calculations lead to the following bound

B n β1 Jn 2 Γ ≤ C ln 5 m ln 4 n n 2
m max{(2-a+(7-r) + ) + ,2-a+(5-r) + } , with a > 1 such that λ j j -a and C > 0 depends only on R, r, a and Γ. Gathering with [START_REF] Ramsay | Functional Data Analysis[END_REF] we obtain the expected result.

In the exponential case (E) we have

B n β1 Jn 2 Γ ≤ C ln 6 m ln 4 n n 2 ,
with C depending only on R, r, a and Γ.

A.4 Empirical and theoretical bias terms

Lemma 12. Suppose that assumptions H2, H3 and H4 are fulfilled and that β ∈ W R r with r, R > 0 such that, in the polynomial case (P), a + r > 2. Then for all m = 1, ..., N n :

E[ β -Πm β 2 n ] ≤ 4E[ β -Πm β 2 Γ ] + τ m,n , (35) 
where τ m,n ≤ mε(m)/n where ε(m) → 0 when m → +∞ and is independent of β and m.

Proof. First imagine that the random projectors in the equation above are replaced by non random one. It is elementary to see that

E β -Π m β 2 n = β -Π m β 2 Γ
and that consequenlty to get (35) it is enough to show that both

E Π m -Π m β 2 Γ and E Π m -Π m β 2 n
are bounded by τ m,n . The first bound was proved asymptotically in Cardot et al. [START_REF] Cardot | CLT in functional linear regression models[END_REF] and non-asymptotically in the Proposition 20 of Crambes and Mas [START_REF] Crambes | Optimal prediction and dimension selection in linear models with functional output[END_REF] in a slightly more general framework. Specifically these authors get

E Π m -Π m β 2 Γ ≤ A m 2 λ m n
where A does not depend on m and n. The only point left is to prove the same sort of bound for

E Π m -Π m β 2 n .
The derivation makes use of perturbation methods already used in other parts of proofs. We will skip technical details to concentrate on the essential facts.

In a first step remark that

Π m -Π m β 2 n = (Γ n -Γ) Π m -Π m β, Π m -Π m β + Π m -Π m β 2 Γ
and it is enough to focus on the first term and to prove the bound for

E (Γ n -Γ) Π m -Π m β .
after a Cauchy-Schwartz's Inequality coupled with the fact that Π m -Π m β ≤ 2 β . Now by Lemma 8

(Γ n -Γ) Π m -Π m β1 Jn = 1 2πi m j=1 ∂Ω j (Γ n -Γ)R 1/2 (ζ)[I -T (ζ)] -1 T (ζ)R 1/2 (ζ)βdζ1 Jn .
Hence by definition of J n , (I -T

(ζ)) -1 ∞ 1 Jn ≤ 2 and T (ζ) ∞ 1 Jn ≤ a j ln n n then E (Γ n -Γ) Π m -Π m β 1 Jn ≤ 1 π m j=1 ∂Ω j E (Γ n -Γ) R 1/2 (ζ) ∞ T (ζ) ∞ 1 Jn R 1/2 (ζ) β dζ ≤ ln n π √ n m j=1 a j ∂Ω j R 1/2 (ζ) P r ∞ β ♦ E (Γ n -Γ) R 1/2 (ζ) ∞ 1 Jn dζ ≤ ln n π √ n β ♦ m j=1 a j j -r/2 δ j ∂Ω j E (Γ n -Γ) R 1/2 (ζ) 2 HS 1 Jn dζ (36)
where we recall that, by Equation (34),

R 1/2 (ζ) P r ∞ ≤ j -r/2 δ j
(the definitions of β and P r are given in the proof of Lemma 11).

Treating E (Γ n -Γ) R 1/2 (ζ) 2 
HS with computations similar to those carried previously we get, for all

ζ ∈ ∂Ω j E (Γ n -Γ) R 1/2 (ζ) 2 HS ≤ C a j n ,
with C = Tr(Γ) max{1, b -1} and putting into Equation (36) we obtain

E (Γ n -Γ) Π m -Π m β 1 Jn ≤ C ln n πn β ♦ m j=1 a 3/2 j j -r/2 δ j .
Considering again two cases related to the rate of decrease for the eigenvalues we see first that for an exponential decay the term above is bounded up to a constant by (ln n)/n. Secondly in case of polynomial decay we get :

E (Γ n -Γ) Π m -Π m β 1 Jn ≤ C ln n πn β ♦ m j=1 j 3/2 j -r/2 j -(1+a)/2 ln 3/2 j ≤ C ln n πn β ♦ m 2-(r+a)/2 ln 5/2 m and ln n ln 5/2 m • m 2-(r+a)/2 /n = o (m/n) when r + a > 2.
Thus the proof is finished by Lemma 9

E Π m -Π m β 2 n 1 J n ≤ β 2 Γ P(J n ) ≤ C (b, Γ) n 2 .
A.5 Technical part of the bound on P(∆ n )

Proof of lemma 3. Let γ be the contour defined by Figure 4 with m = N n . We have by Lemma 8 and the fact that (I -T

(z)) -1 T (z) = T (z) + (I -T (z)) -1 T 2 (z) Γ 1/2 Γ † n -Γ † Γ 1/2 1 Jn = 1 Jn 1 2iπ γ 1 z Γ 1/2 R 1/2 (z) [I -T (z)] -1 T (z)R 1/2 (z)Γ 1/2 dz (37) = 1 Jn 1 2iπ γ 1 z Γ 1/2 R(z) (Γ n -Γ) R(z)Γ 1/2 dz + 1 Jn 1 2iπ γ 1 z Γ 1/2 R 1/2 (z) [I -T (z)] -1 T 2 (z)R 1/2 (z)Γ 1/2 dz. (38) 
Now, we consider separately the two decreasing rates of the λ j 's.

Exponential decrease : λ j exp(-j a ), with a > 0 By Equation (37) and the fact that (I -T

(z)) -1 ∞ < 2, on the set J n Γ 1/2 (Γ † n -Γ † )Γ 1/2 ∞ 1 Jn ≤ 1 2π γ 1 z Γ 1/2 R 1/2 (z) [I -T (z)] -1 T (z)R 1/2 (z)Γ 1/2 dz ∞ 1 Jn ≤ π -1 sup z∈γ [ T (z) ∞ ] γ 1 |z| Γ 1/2 R 1/2 (z) 2 ∞ dz1 Jn .
For z ∈ supp(γ), the eigenvalues of the operator Γ

1/2 R 1/2 (z) are λ 1/2 j (z -λ j ) -1/2 , j ≥ 1 , then Γ 1/2 R 1/2 (z) 2 ∞ = sup j≥1 λ j |z -λ j | , and 
γ 1 |z| Γ 1/2 R 1/2 (z) 2 ∞ dz ≤ C + 2 2λ 1 /δ Nn 0 du 1 + u 2 ≤ C ,
where C and C are independent of n and the last inequality comes from the fact that in the exponential case, there exists a constant c > 0 such that δ Nn /λ Nn ≥ c. Then by lemmas 9 and 10:

P(J n ∩ Γ 1/2 (Γ † n -Γ † )Γ 1/2 ∞ > ρ 0 -1 ) ≤ P C sup z∈supp(γ) [ T (z) ∞ ] > π(ρ 0 -1) ≤ 2 exp -c * n N 2 n ln 2 N n
with c * independent of n. The result comes from the fact that N n ≤ 20 n/ ln 3 n.

Polynomial decrease : λ j j -a , a > 1 Denote by T 1 and T 2 the two terms of Equation (38) i.e.

T 1 = 1 Jn 1 2iπ γ 1 z Γ 1/2 R(z) (Γ n -Γ) R(z)Γ 1/2 dz, T 2 = 1 Jn 1 2iπ γ 1 z Γ 1/2 R 1/2 (z) [I -T (z)] -1 T 2 (z)R 1/2 (z)Γ 1/2 dz.
First we control T 2 , the proof in the exponential case leads us to:

T 2 ∞ ≤ π -1 sup z∈γ T (z) 2 ∞ γ 1 |z| Γ 1/2 R 1/2 (z) 2 ∞ dz,
and

γ 1 |z| Γ 1/2 R 1/2 (z) 2 ∞ dz ≤ C + 2λ 1 /δ Nn 0 λ Nn du (λ Nn -δ Nn ) 2 + δ 2 Nn u 2 √ 1 + u 2 ≤ C + 1 0 λ Nn λ Nn -δ Nn du + 2λ 1 /δ Nn 1 λ Nn du (λ Nn -δ Nn ) 2 + δ 2 Nn u 2 √ 1 + u 2 ≤ 1 + C + 2λ 1 /δ Nn 1 du √ 1 + u 2 ≤ C ln(N n ),
with C, C > 0 independent of n. Then lemmas 9 and 10 and the fact that N n ≤ 20 n/ ln 3 n lead us to

P( T 2 ∞ > (ρ 0 -1)/2) ≤ P C ln(N n ) sup z∈γ T (z) 2 ∞ > π(ρ 0 -1)/2 ≤ exp -c * * n N 2 n ln 4 (N n ) ≤ C n -6 ,
with c * * and C independent of n Now, we can calculate explicitly the term T 1

T 1 = 1 Jn 1 2iπ γ j,k≥1 √ λ k λ j z(z -λ k )(z -λ j ) π k (Γ n -Γ)π j dz.
By the Residue Theorem

1 2iπ γ dz z(z -λ k )(z -λ j ) =          -1 λ j λ k if j = k, j ≤ N n and k ≤ N n , 1 λ j (λ j -λ k ) if j ≤ N n < k, 1 λ k (λ k -λ j ) if k ≤ N n < j, 0 otherwise. 
Then

T 1 = -1 Jn Nn j,k=1 j =k 1 λ j λ k π k (Γ n -Γ)π j + Nn j=1 k>Nn √ λ k λ j (λ j -λ k ) π k (Γ n -Γ)π j + j>Nn Nn k=1 λ j √ λ k (λ k -λ j ) π k (Γ n -Γ)π j = -1 Jn Nn j,k=1 j =k π k √ λ k Γ n π j λ j + Nn j=1 s j Γ n π j λ j + π j λ j Γ n s j = T 1 + T 1 ,
where s j := k>Nn √ λ k λ j -λ k π k . The term Γ disappears because π j Γπ k = 0 if j = k. We control separately the operators T 1 and T 1 . We have: 

ξ (i) p ξ (i) q > ρ 0 -1 4N n .
For all p = q, the sequence of random variables ξ 32(2b+(ρ 0 -1)/4) and C 2 depends only on b and ρ 0 .

We deal now with the operator T 1 , we can rewrite it like an array of independent random variables with values in H, the set of the Hilbert-Schmidt operators of L 2 ([0, 1]) equipped with the usual norm T 2 HS = p,q≥1 < T ψ p , ψ q > 2 , i.e.

T 1 = 1 n n i=1 Nn j=1 s j X i ⊗ π j λ j X i + π j λ j X i ⊗ s j X i = 1 n n i=1 Z i ,
where, for all f, g, h ∈ L 2 ([0, 1]), f ⊗ g h :=< f, h > g. In order to apply the exponential inequality for centred Hilbert valued random variable given in Bosq (λ p -λ q ) 2 ξ (i) p ξ (i) (λ p j -λ q j ) 2 E ξ (i) p 1 ...ξ (i) pm 2 E ξ (i) q 1 ...ξ (i) and obtain, with the condition N n ≤ 20 n/ ln 3 n,

P T 1 ∞ > ρ 0 -1 4 ≤ P T 1 HS > ρ 0 -1 4 ≤ 2 exp -C 1 n N n ≤ C 2 n -6 ;
where C 1 := (ρ 0 -1) 2 /(2δb 2 + √ 2δb(ρ 0 -1)/4), C 2 depends only on ρ 0 and δ where δ > 0 depends only on the sequence (λ j ) j≥1 and verifies, for all p ≤ N n , q>Nn λ 2 q (λ p -λ q ) 2 ≤ N n δ/2. 

Appendix B Control of pen in the unknown variance case

(Y i -< Πm β, X i >) 2 -σ 2 = E X 1 n n i=1 ε 2 i -2ε i < β -Πm β, X i > + < β -Πm β, X i > 2 -σ 2 = E X [< β -Πm β, X i > 2 ] = E X [ β -Πm β 2 Γn ],
and Equation (39) follows.

Likewise:

E X [(pen (uv) ( m(uv) ) -pen( m(uv) ))] = = Nn Var(ε 2 i ) n , and, since the ε i 's are independent of the X i 's and by consequence of Πm , we have:

E X [ mν n (β -Πm β)] ≤ Nn E X [ν 2 n (β -Πm β)] 1/2 ≤ Nn n   n i 1 ,i 2 =1 E X [ε i 1 ε i 2 < β -Πm β, X i 1 >< β -Πm β, X i 2 >]   1/2 ≤ Nn √ n σE[ β -Πm β 2 Γn ] 1/2 ≤ Nn √ n σ β Γ .

m * n n 1 /

 1 a+r+1 and m * n ≤ N n for all n ∈ N * , where for two sequences (a k ) k≥1 and (b k ) k≥1 , we note a k b k if there exists some constant c > 0 such that, for all k ≤ 1, a k ≤ cb k and we note also a k b k if a k b k and b k a k . Now considerations above lead us to sup β∈W R r E[ β -Πm * n β 2 Γ ] n -a+r a+r+1 , as soon as a + r > 2 and in addition pen(m * n ) n -a+r a+r+1 , which leads to the expected bound. The exponential case (E) is treated similarly with m * n ln 1/a n.

Figure 1 :

 1 Figure 1: Plot of β 1 (bold, dashed) and β (kv) 1 computed for 10 independent samples of size n = 1000.

Figure 2 :

 2 Figure 2: Plot of β 2 (bold, dashed) and β (kv) 2 computed for 10 independent samples of size n = 1000.

Estimation of β 1 Figure 3 :

 13 Figure 3: Left: comparison of estimators βm when m is selected by minimization of the penalized criterion crit defined by (5) or the CV criterion. Right: comparison with the GCV criterion. n = 2000, λ j = j -3 .

Figure 5 :

 5 Figure 5: Contour made of disjoint circles

Lemma 9 .

 9 Denote by

2 ,

 2 where we recall that ξ(i) p =< X i , ψ p > / λ p . Then P( T 1 ∞ > (ρ 0 -1)/4)

q 2 n≤

 2 , i = 1, ..., n is independent and centred and by assumptions H2 and H3,E [|ξ p ξ q | m ] ≤ m!b m-1 ,then Lemma 6 and the condition N n ≤ 20 n/ ln 3 n impliesP T 1 ∞ > ρ 0 -1 4 ≤ 2N 2 n exp -C 1 n N C 2 n -6 ,with C 1 = (ρ 0 -1) 2

[ 6 ,

 6 Theorem 2.5], we have to find two constants B and c such thatE [ Z i m HS ] ≤ (m!/2)B 2 c m-2 . We compute first Z i i ⊗ s j X i ψ p , ψ q > 2 =

q 2 .

 2 Now, by assumptions H2 and H3,E [ Z i m HS ] ≤ E Z i

2 q(λ p -λ q ) 2   m/ 2 . 2

 2222 We apply then Theorem 2.5 of Bosq[START_REF] Bosq | Linear processes in function spaces: theory and applications[END_REF] with B 2 = 2b Nn

Lemma 13 .

 13 Under Assumption H1, set κ := 2θ(1 + 2δ), we have, for all m ∈ M n E X ( pen(m) -pen(uv) (m))1 G ] ≤ κ m n β -Πm β 2 Γn ,(39)andE X [(pen (uv) ( m(uv) ) -pen( m(uv) ))] ≤ κ n E X [2 m(uv) ν n ( Πm β -β m(uv) )] + κ Nn n √ n Var(ε 2 ) + 2 β Γ σ . (40)Proof. By definitions of σ2 m = γ n ( βm ) and βm , we have σ2 m ≤ γ n ( Πm β), thenE X [( pen(m) -pen (uv) (m))] = κ m n E X [(σ 2 m -σ 2 )] ≤ κ m n E X [(γ n ( Πm β) -σ 2 )]. Now, by independence of ε i with < β -Πm β, X i >, E X [(γ n ( Πm β) -σ 2 )] = E X 1 n n i=1

1 n n i=1 ε 2 i

 12 κ n E X [ m(uv) (σ 2 -σ2 m(uv) )] = κ n (E X [ m(uv) (σ 2 -σ 2 )] -E X [ m(uv) β -β m(uv) 2 Γn ] + 2E X [ m(uv) ν n (β -β m(uv) )] ≤ κ n (E X [ m(uv) (σ 2 -σ 2 )] + 2E X [ m(uv) ν n (β -β m(uv) )]) ≤ κ n (E X [ m(uv) (σ 2 -σ 2 )] + 2E X [ m(uv) ν n (β -Πm β) + m(uv) ν n ( Πm β -β m(uv) )])with σ 2 := . By Cauchy-Schwarz's InequalityE X [ m(uv) (σ 2 -σ 2 )] ≤ Nn E X [(σ 2 -σ 2 ) 2 ]

Table 1 :

 1 Mean prediction error (×10-4 

	2	kv	12.8 ±0.4	5.9 ±0.2	3.57 ±0.08 4.7 ±0.3 1.88 ±0.09 0.89 ±0.05
		uv	12.5 ±0.4	5.8 ±0.2	3.51 ±0.08 4.7 ±0.3 1.89 ±0.09 0.89 ±0.05
		GCV	80 ±2	55 ±2	47 ±2	80 ±2	55 ±2	47 ±2
		CV 12.2 ±0.5	5.6 ±0.2	3.34 ±0.09 5.7 ±0.4	2.2 ±0.2	1.08 ±0.06
	j -3	kv	6.7 ±0.3	3.3 ±0.1	1.84 ±0.06 5.5 ±0.2	1.8 ±0.1	0.88 ±0.04
		uv	6.6 ±0.3	3.2 ±0.1	1.83 ±0.06 5.4 ±0.3	1.8 ±0.1	0.88 ±0.04
		GCV 18.4 ±0.5	12.6 ±0.3	9.3 ±0.2	18.5 ±0.5	12.7 ±0.3	9.5 ±0.2
		CV	7.3 ±0.4	3.3 ±0.2	1.78 ±0.07 5.1 ±0.4	2.0 ±0.2	1.05 ±0.08
	e -j	kv	4.8 ±0.2 2.05 ±0.08 1.12 ±0.05 5.0 ±0.2	1.9 ±0.1	0.78 ±0.05
		uv	4.7 ±0.2 2.03 ±0.08 1.11 ±0.05 4.9 ±0.2 1.82 ±0.09 0.77 ±0.05
		GCV	5.8 ±0.3	2.67 ±0.09	1.45 ±0.05	6.0 ±0.3	2.7 ±0.1	1.40 ±0.05
		CV	4.8 ±0.3 2.05 ±0.09 1.10 ±0.05 4.6 ±0.3	1.8 ±0.1	0.87 ±0.05
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Appendix A Perturbation theory background

Many intermediate results are based on perturbation theory. We give in this section some preliminary results on this subject. The aim is to control the proximity between the random space Ŝm spanned by the eigenfunctions of Γ n and the space S m spanned by the eigenfunctions of Γ.

Recall that Π m (resp. Πm ) denotes the orthonormal projector onto S m (resp. Ŝm ) and π j (resp. πj ) denotes the orthonormal projector onto span{ψ j } (resp. span{ ψj }). We write the difference of projectors Π m -Πm (or equivalently π j -πj ) explicitly in terms of the operators difference Γ -Γ n easier to handle.

A.1 Exponential inequalities

In the proofs, we use the following version of Bernstein's Inequality: Lemma 6 (Birgé et [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]). Let Z 1 , ..., Z n be independent random variables satisfying the moments conditions

for some positive constants v and c. Then, for any positive ε,

We use also a version of Lemma 6 for Hilbert valued random variables which can be found in Bosq [START_REF] Bosq | Linear processes in function spaces: theory and applications[END_REF].