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1 Introduction

1.1 A category of problems and theorems

In different ages and places, practitioners of mathematics have distinguished and forged
many categories such as disciplinary rubrics, families of objects, and classes of problems.1
Accordingly, many historical investigations have been conducted to understand the significance
of such categories for the people who created or used them, the dynamics of the research
concealed behind their labels, or their role in the development of particular parts of
mathematics. For instance, having aimed attention at the corresponding entries in various
encyclopedic publications, [Gilain 2010] explained the evolution of the status of “analysis”
during the Enlightenment; in another paper, I have tackled the organization of the knowledge
linked to a family of objects called “geometrical equations” and the role of this family in the
process of assimilation of substitution theory in the second half of the nineteenth century, [Lê
2016]; as for classes of problems, [Chorlay 2010] delineated how the so-called “Cousin
problems,” coming from complex analysis, were involved in the emergence of sheaf theory
in the course of the twentieth century.2

If the contents of such categories have often been investigated, such investigations
rarely extend to the processes of their creation.3 The present article proposes to tackle this
question in the case of a category of geometric problems and theorems that have been called
Schliessungsprobleme and Schliessungssätze by German-speaking mathematicians since the
beginning of the 1870s.4

∗Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11
novembre 1918, F-69622 Villeurbanne Cedex, France.

1Note that in this paper, the word “category” will never refer to its current technical mathematical meaning.
2Aside from these recent examples dealing with explicit categories, [Chemla 2009] proved the existence of

classes of problems that were seen (but not made explicit) by commentators of the Nine Chapters. Further, the
collective project [Bernard 2015] tackled the notion of “series of problems” to designate a specific textual genre
characterized by sequences of mathematical questions and answers.

3See, however, the descriptions given in [Chorlay 2010, pp. 19–24, 65–66].
4I will translate Schliessungsprobleme and Schliessungssätze by “problems of closure” and “theorems of

closure.” Theword Schliessungstheoremewas also used bymathematicians of the time instead of Schliessungssätze,
and similarly, although much less frequently, Schliessungsaufgaben sometimes replaced Schliessungsprobleme.
Following [Müller 1900, pp. 143, 260, 276, 293], I chose to adopt the same translation for Theorem and Satz on
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Figure 1 – The theorem of Poncelet: because one starting point A leads to a closed
quadrilateral, every starting point (like A′) leads to a closed quadrilateral.

One emblematic example belonging to this category is the problem about polygons and
conics that Jean-Victor Poncelet enunciated and solved in his 1822 Traité des propriétés
projectives des figures, [Poncelet 1822], and that was recognized in 1876 by the mathematician
and historian of mathematics Max Simon as “the most famous of the problems of closure.”5
This problem can be formulated as follows: two conics being given, one starts from a point A
on one of them and draws a tangent to the other one, which defines a new point B on the first
conic. Continuing this way, one constructs a polygonal line ABCD . . . The problem is then to
determine if it is possible to obtain a closed polygonal line, thus yielding a polygon inscribed
in the first conic and circumscribed about the other. Poncelet then proved the theorem that if
it is possible to find one such polygon with, say, n sides, then infinitely many polygons with n
sides exist, every point on the first conic being the starting point of a closed polygon (see
figure 1).6

Two general remarks should be made at this point. The first one bears upon the
difference between problems and theorems, a difference which can obviously be seen in
the existence of the two labels Schliessungsprobleme and Schliessungssätze, and which
shaped my explanations in the preceding paragraph. It echoes the distinction inherited from
Greek Antiquity: problems primarily link to constructions of objects having given properties,
whereas theorems mostly relate to the statement of properties of given objects.7 That being
said, we will see that the vast majority of the mathematicians involved in the activities

one hand, and for Problem and Aufgabe on the other hand.
5“[Das] bekanntest[e] der Schliessungsproblemen.” [Simon 1876, p. 303]. As has been remarked in [Bos

et al. 1987, pp. 311–313], Poncelet proved this theorem already in 1813–1814, yet with different methods as
those employed in the Traité. However, we will see that the authors who worked on the theorems of closure
mostly cited Poncelet’s 1822 book. On the Traité, see for instance [Friedelmeyer 2011; Nabonnand 2015].

6In this paper, all the figures whose caption do not contain a citation are mine.
7More detailed explanations are given in [Vitrac 1990, pp. 133–137].
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surrounding closure problems and theorems expressed no strong distinction between the
two notions, and sometimes even amalgamated and interchanged them. In any case, it is
important to note that the presence of two kinds of labels neither indicates the existence of
two distinct categories, nor reflects a special organization of the mathematical work.8 On the
contrary, we will see that the labels Schliessungsprobleme and Schliessungssätze did refer to
one family of propositions which were sometimes formulated as problems, sometimes as
theorems, without affecting the mathematical work itself.

The second remark is that several historical investigations have already depicted the
works of Poncelet on his theorem, as well as those of his identified predecessors and of some
of the mathematicians who tackled the same theorem throughout the nineteenth and the
twentieth centuries.9 If, therefore, the present paper will meet these investigations here and
there, its aim is different from theirs, as its attention will be directed to the process through
which the category associated with the name Schliessungssätze was constituted during the
nineteenth century. Hence other theorems than that of Poncelet will be considered—like the
celebrated theorem of Jacob Steiner [1826] about chains of circles that are tangent to each
other and to two given circles—, and I will analyze how they have been connected to one
another and, at some point, recognized to be elements of a bigger whole.10

Because the aim here is to understand the mechanisms that have underlain the recognition
and the constitution of the theorems of closure, the focus will be not so much on the whole
technical content of the mathematical works in which the elements of the category were dealt
with, but rather on the traces of the emergence and the strengthening of this category.11 A
notable feature is that its constitution has been a collective process which took place during a
great part of the nineteenth century: we will see that when the labels Schliessungsprobleme
and Schliessungssätze appeared in the writings of mathematicians in the 1870s, they were
used to designate problems and theorems that had been tackled by others decades ago (like
Poncelet and Steiner themselves, but also Carl Gustav Jacob Jacobi [1828], who used the
theory of elliptic functions to tackle Poncelet’s theorem), without yet being explicitly seen as
instances of a single family. We will also see that the creation and the use of encompassing
words went along with statements of new theorems obtained by extensions, observations
of analogies,12 or searches for technical unifying points of view were the features that
conducted and sustained the constitution of the theorems of closure as a proper category. In

8Therefore, the situation differs from what is described in [Goldstein 2013], where the emphasis put on
problems marks a particular way of communicating within Marin Mersenne’s correspondence. Moreover, the
English-speaking authors that I encountered did not employ the phrases “theorems of closure” and “problems of
closure.” Instead, they often used the term “porism,” another term coming from Greek Antiquity and designating
a kind of proposition somewhat situated between “problem” and “theorem.” Even if this distinction was thus
more obvious for these authors, it did not seem to impact the organization of their work. I will elaborate on the
specificity of the English (and the French) situation later in this text.

9See [Bos et al. 1987; Del Centina 2016; Friedelmeyer 2007]. Because the theorem of Poncelet has been
approached with the help of elliptic functions in the course of the nineteenth century, it also appears in historical
studies devoted to these functions, or, more specifically, to their link with geometry. See for instance [Barbin and
Guitart 2001; Bottazzini and Gray 2013].

10[Del Centina 2016, p. 78 sqq.] briefly describes some other closure theorems, but their link with that of
Poncelet and the dynamics of their constitution are not clearly delineated.

11Nevertheless, some of these traces are to be found within mathematical details, and we will enter into the
technique when needed.

12About the different roles of analogy in the history of mathematics, see [Knobloch 1991] and [Durand-Richard
2008], several contributions of which also deal with other sciences.
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particular, we will see that between 1876 and 1879, three mathematicians presented their
own unifying point of view: Friedrich August based his approach on the use of adequate
geometric projections, while Simon saw the elliptic functions as the objects explaining the
unity of the theorems of closure, and Adolf Hurwitz justified this unity with the help of a
certain “fundamental theorem of algebra.”

1.2 The theorems of closure in the Encyklopädie; creation of a corpus of
investigation

As explained above, the label Schliessungssätze and its variants have been used by mathe-
maticians in their published production since the 1870s. These labels also appear in the titles
of different sections of the famous Encyklopädie der mathematischen Wissenschaften mit
Einschluss ihrer Anwendungen, which suggests that, at least for some (influential) mathe-
maticians, they did refer to an identified category used in synthetic presentations of certain
topics at the beginning of the twentieth century.13 All of these sections are contained in the
volumes of geometry of the Encyklopädie; more precisely, Max Zacharias’ chapter, devoted
to elementary geometry, contains a section entitled “Kreis und Kugel. Schliessungsaufgaben,
Inversion, Pol und Polare” [Zacharias 1913, §17]; the chapter on conics, written by Friedrich
Dingeldey, has three sections called “Schliessungssatz von Poncelet,” “Zusammenhang des
Schliessungsproblems mit den elliptischen Funktionen,” and “Weitere Arbeiten zum Schlies-
sungstheorem” [Dingeldey 1903, §§26, 27, 28]; Otto Staude’s chapter on quadric surfaces
has a section named “Schliessungssätze” [Staude 1904, §123]; finally, Gustav Kohn’s chapter
dealing with cubic and quartic curves contains a section entitled “Schliessungsprobleme,
eingeschriebene Polygone und Konfigurationen” [Kohn 1908].

It is interesting to remark that, according to the titles of the other sections of these
chapters, the theorems of closure appear to be on the same level as other topics that may
be more familiar to the present-day reader. For instance, one finds sections devoted to
“constructions with ruler and compass” and to the “cyclotomy and the problems of Apollonius
and of Malfatti” (§§23, 24 of Zacharias’ chapter); to the “axis of conics and the imaginary
circular points” and to Pascal’s theorem (§§13, 18 of Dingeldey’s chapter); to the “canonical
equations and shapes” of quadric surfaces and to the “parametric representation” of the
intersections of two such surfaces (§§10, 113 of Staude’s chapter); to the “inflection points of
a cubic curve” and to the “univocal algebraic transformations of elliptic curves” (§§15, 37 of
Kohn’s chapter).

Now, to create a corpus of investigation on the theorems of closure, I gathered all
the references given in the six mentioned sections of the Encyklopädie dealing with these
theorems. Moreover, because Zacharias cites a section of the book of Simon on the history
of elementary geometry as a bibliographical reference, I added the texts listed in this section,
called “Schliessungsproblem” [Simon 1906, pp. 108–109].14

13Let us recall that the Encyklopädie is the fruit of a collaborative project launched by Felix Klein at the very
end of the nineteenth century. The objective was to give a view on the mathematical research of the time, and
to draw up a report on the mathematical knowledge of the nineteenth century. The geometric volumes, which
interest us here, have been edited by Franz Meyer and Hans Mohrmann. About the Encyklopädie, see [Gispert
1999; Tobies 1994].

14Simon’s book was initially meant to be included in the Encyklopädie, but this eventually did not happen
because the references given therein were too imprecise, see [Volkert 1994, p. 79].
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This corpus contains 130 texts, written by 87 authors, and whose dates of publication
extend from 1749 to 1907. As the diagram in figure 2 shows, only a few sporadic texts are
dated from the eighteenth century, and a small group of texts were published between 1822
and 1831. The majority of the contributions appeared between 1845 and 1907, with a notable
peak during the decade 1875–1885. Among the 130 texts, 60 are written in German, 32 in
French, 30 in English, 4 in Italian, and 4 in Latin. The corpus includes 15 books, most of
them treatises of advanced mathematics of their time, like Poncelet’s Traité des propriétés
projectives des figures [Poncelet 1822] or Georges-Henri Halphen’s Traité des fonctions
elliptiques et de leurs applications [Halphen 1886]. About a fifth of the 115 articles are
distributed in journals aimed at teachers or students of mathematics.15 The other articles
appeared mostly in Crelle’s Journal für die reine und angewandte Mathematik (25 articles),
but also in Mathematische Annalen (8 articles), Quarterly Journal of Pure and Applied
Mathematics (7 articles), Journal de mathématiques pures et appliquées and Proceedings of
the London Mathematical Society (6 articles each).16 If almost all of the 87 authors published
once or twice in the corpus, Arthur Cayley and Jacob Steiner are two exceptional cases, with
10 and 7 papers respectively. As will be seen, these numbers reflect different situations: while
Cayley’s publications exclusively relate to Poncelet’s polygons and are often supplements,
corrections, or syntheses of one another, those of Steiner appear to be more independent
from each other and deal with a large range of geometric problems and theorems. Let us
finally note that the corpus contains papers of Simon and of Staude, two of the authors of
the reviews we used to create it. The corpus thus reflects the point of view of some of the
mathematicians who researched the subject of the theorems of closure.17

The description of the corpus will be chronological, in order to delineate the dynamic
constitution of the category of closure theorems: in doing so, we will see that taking for
granted the division of the four chapters of the Encyklopädie would be misleading, for it
neither reflects a chronological progression, nor displays the many links existing between
works of the corpus coming from different chapters. Accordingly, four sections will be
devoted to four moments of this constitution: the research on several theorems that were
treated quite independently from each other (1749–1864), the first mentions of a certain class
of problems and theorems, called “Schliessungsprobleme” shortly after (1864–1870), the
search for unifying technical frameworks of the theorems of closure (1876–1879), and finally
the production of many works revisiting the already-known theorems of closure, or creating
and investigating extensions of them (1880–1907). After these four sections, I will conclude
with a reflection on the process of categorization that underlain the progressive constitution
of the theorems of closure, specifically in the light of Ludwig Wittgenstein’s notion of family
resemblance.

15Among these “intermediate” journals, the two ones which gather the greatest number of papers of the corpus
are Zeitschrift für Mathematik und Physik and Nouvelles Annales de mathématiques, each representing 6 papers.
Most of the articles of the corpus published in intermediate journals come from Simon’s history of elementary
geometry. On Nouvelles Annales de mathématiques, see [Rollet and Nabonnand 2013].

16The total number of non-intermediate journals in the corpus is 26. Each of those which are not cited here
represents less than 6 articles.

17Moreover, as has been noted by one of the reviewers, one should keep in mind that some of the authors of
our sources (Zacharias, Dingeldey, Staude, Kohn, and Simon) might have been more systematic than the others in
their bibliographical research, so that the corpus might also reflect such dissymmetries.
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Figure 2 – Number of publications in the corpus.

2 Several theorems and their extensions, 1749–1864

2.1 Poncelet’s polygons and Steiner’s chains of circles

The very first publications of our corpus constitute what has been called the “prehistory” of
Poncelet’s theorem on the polygons inscribed in a conic and circumscribed about another
conic, a “prehistory” lasting from 1749 to 1802.18 These publications exclusively pertained
to the case where the two conics are two circles and the considered polygons have a definite
number of sides between 3 and 8. For instance, William Chapple [1749] proved that if it is
possible to “interscribe”19 a triangle between two circles, then it is possible to interscribe
infinitely many of them. In that case, he found the formula

a2 = R2 − 2rR

linking the radii r and R of the exterior and the inner circles with the distance a between
the centers of the two circles. A similar formula in the case of a quadrilateral interscribed
between two circles was proved by Nicolas Fuss in a 1798 paper, [Fuss 1798]; a few years
later, Fuss also tackled the cases of pentagons, hexagons, heptagons, and octagons, but he

18See [Bos et al. 1987, pp. 291–297; Del Centina 2016, pp. 5–19]. These references describe works of
Leonhard Euler, John Landen, and Simon Antoine Jean Lhuiller, which belong to our corpus but which will
not be discussed here. Remark that the word “prehistory” has been used in these references to designate works
that had been published before the research of Poncelet himself. Here I consider them as part and parcel of the
history of the theorems of closure.

19This neologism is borrowed from [Bos et al. 1987]. A polygon is said to be interscribed between two curves
if it is circumscribed about one of these curves and inscribed in the other one.
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Figure 3 – A case of a closed quadrilateral ABCD interscribed between two ellipses.
The point K , defined as the intersection of the diagonals, is the same for all the
interscribed quadrilaterals. This figure is one of the many that Poncelet included at the
end of the Traité, [Poncelet 1822, fig. 103].

could only obtain such metric formulas (expressed with r , p = R + a, and q = R − a) when
these polygons have particular symmetries, [Fuss 1802].

Jean-Victor Poncelet published his Traité des propriétés projectives des figures in 1822, a
treatise whose main part culminated with the statement and the proof of the theorem about
the polygons interscribed between two conics.20 The theorem was expressed in the following
words:

When a polygon is inscribed in a conic and circumscribed about another one, there exist
infinitely many other polygons having the same property; or rather, every polygon one
would try to describe according to these conditions would close by itself on these curves.

Conversely, if it happens that, trying to inscribe in a conic a polygon whose sides touch
another conic, this polygon does not close by itself, there would necessarily be no other
polygon having this property.21 [Poncelet 1822, p. 361]

Although it is not clearly expressed in this extract, Poncelet’s theorem includes the fact that if
closed polygons exist, they all have the same number of sides. Poncelet also investigated
further properties of particular closed polygons: for example, he proved that the diagonals of
all the quadrilaterals interscribed between two conics meet in the same point (see figure 3).

Shortly after the publication of Poncelet’s Traité, the French mathematician J. B. Durrande
wrote an article, which aimed at proving diverse properties of triangles, quadrilaterals,
pentagons, and hexagons interscribed between two circles [Durrande 1823/1824].22 The

20The section of this book about interscribed polygons is followed by a Supplément, which relates to geometry
in the three-dimensional space.

21“Quand un polygone quelconque est à la fois inscrit à une section conique et circonscrit à une autre, il en
existe une infinité de semblables qui jouissent de la même propriété à l’égard des deux courbes ; ou plutôt, tous
ceux qu’on essaierait de décrire, à volonté, d’après ces conditions, se fermeraient d’eux-mêmes sur ces courbes.
Et réciproquement, s’il arrive qu’en essayant d’inscrire à volonté, à une section conique, un polygone dont les
côtés en touchent une autre, ce polygone ne se ferme pas de lui-même, il ne saurait nécessairement y en avoir
d’autres qui jouissent de cette propriété.”

22Other works of Durrande are described and analyzed in [Lorenat 2017].
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article also contained a proof of the theorem of Poncelet in the particular case of triangles
interscribed between two circles:

When a triangle is at the same time circumscribed about a circle and inscribed in another
circle, an infinity of other triangles can be at the same time circumscribed about the first
of these circles and inscribed in the second one.23 [Durrande 1823/1824, p. 52]

After having remarked that this result could serve to derive the “general theorem [for triangles
and conics] due to Monsieur Poncelet, who even extended it to any polygon,”24 Durrande
proposed another theorem, about tetrahedrons and spheres:

If a tetrahedron is at the same time circumscribed about a sphere and inscribed in another
sphere, an infinity of other tetrahedrons can be at the same time circumscribed about
the first one and inscribed in the second one.25 [Durrande 1823/1824, p. 52]

The nearly exact same wordings of Durrande’s two theorems reveals how similar they
appeared to him. Yet Durrande did not simply analogically extend the first theorem to space
by a mere replacement of the words “triangles” and “circles” by “tetrahedrons” and “spheres”:
he proved the spatial theorem with a combination of the planar one and of an appropriate
projection on a plane [Durrande 1823/1824, p. 53].

As we will see, such extensions and interdependence of theorems occurred at many places
in the corpus, and we argue that they are one of the factors that implicitly and gradually
brought these theorems into a coherent whole.

Between 1826 and 1828, Steiner published several articles, one of them describing
properties of particular polygons interscribed between circles, while the others presented
investigations about a theorem that would later be recognized as one of Steiner’s Schlies-
sungssätze.26 This theorem was stated and proved in [Steiner 1826], a paper devoted to
diverse problems involving intersections and contacts of circles, and to the development
of several geometric notions (like those of point of similitude, and of common power of
two circles) meant to solve them. As Steiner explained in the introduction, his research had
been motivated by the Apollonius problem (to find a circle tangent to three given circles),
the Malfatti problem (to inscribe three tangent circles to a triangle), a theorem attributed to
Pappus (to determine relations between distances linked to two tangent circles inscribed in
the space between two other tangent circles), as well as “diverse porisms, and the purely
geometric consideration on curves and surfaces of the second degree.”27 The theorem we are
interested in here was related to chains of circles in the plane:

23“Lorsqu’un triangle est, à la fois, circonscrit à un cercle et inscrit à un autre cercle, une infinité d’autres
triangles peuvent être, à la fois, circonscrits au premier de ces cercles et inscrits au second.”

24“On peut déduire de ce qui précède le théorème général que voici, dû à M. Poncelet, qui l’a même étendu à
un polygone quelconque.” [Durrande 1823/1824, p. 52].

25“Si un tétraèdre est, à la fois, circonscrit à une sphère et inscrit à une autre, une infinité d’autres tétraèdres
pourront aussi, à la fois, être circonscrits à la première et inscrits à la seconde.”

26See for instance the chapter of the Encyklopädie from which we started, [Zacharias 1913, p. 1026].
27“... verschiedenen Porismen und der rein geometrische Betrachtung der Curven und Flächen zweiten

Grades” [Steiner 1826, p. 161]. Steiner did not explain what he meant by “porism,” nor did he explain what
results were aimed at. For a thorough description of the first part of Steiner’s paper, and especially in the
perspective of his treatment of the Apollonius problem, see [Lorenat 2016, pp. 422–427]. About the Malfatti
problem, see [Lorenat 2012].
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Figure 4 – Steiner’s drawing of chains of circles, extracted from the table of illustrations
at the end of the paper [Steiner 1826].

Let us suppose that the gap between two circles n, N (one of them lying within the other)
is commensurable for a given chain of circles M, M1, M2, . . . , Mx which are all tangent
to the two given ones and touch one another consecutively; that is, let us suppose that the
chain is composed of x + 1 members making u turns around the inner circle such that
the last circle Mx is tangent to the first one, M . Then the same gap is commensurable
for each chain of circles m,m1,m2, . . . ,mx , of which the first member may be chosen
at will; moreover, the last chain is also composed of x + 1 members making u turns
around the inner circle.28 [Steiner 1826, p. 256]

In other words, this theorem states that if it is possible to insert, between two given circles, a
closed chain of tangent circles, then every chain of tangent circles lying between the two
given ones closes on itself, is composed with the same number of circles, and makes the
same number of turns around the inner circle (see figure 4, or figure 6 below).

After having completed the proof of this theorem, Steiner wrote that “analogous” theorems
held when considering chains of spherical circles tangent to two given spherical circles,29
or chains of spheres tangent to given spheres [Steiner 1826, p. 257]. Yet, Steiner neither
proved these extensions, nor even precisely stated them—other mathematicians would return
to these questions later.

Nevertheless, Steiner delved into diverse properties of such chains of spherical circles
and of spheres, alongside chains of planar circles, in subsequent papers. One of the questions
was to determine metric relations existing between the data of these situations when closed
chains exist. In the case of circles in a plane, Steiner asserted that if the radii of the inner and

28“Ist der Zwischenraum zwischen zwei [...] in einander liegenden Kreisen n, N für eine bestimmte Reihe
Kreise M, M1, . . . , Mx , von denen jeder jene beiden ungleichartig berüht, und welche einander der Ordnung
nach berühren, commensurabel, d.h., besteht die Reihe aus x + 1 Gliedern, welche u Umläufe bilden, und berüht
der letzte Kreis Mx wiederum den ersten M: so ist derselbe Zwischenraum für jede beliebige Reihe Kreise
m,m1,m2, . . . ,mx , wo man auch das Anfangsglied m annehmen mag, commensurabel; und es besteht die letztere
Reihe ebenfalls aus x + 1 Gliedern, welche u Umläufe bilden, wie jene erstere Reihe.” In all our quotations, the
italics are the original ones (except when we have kept non-English words in the translations).

29Spherical circles are circles drawn on a sphere, or, equivalently, intersections of a sphere with planes.
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outer circle are r and R, if the distance between their centers is d, and if there exists a closed
chain made of m circles and making n turns around the inner circle, then

(R − r)2 − 4rR tan2 n
m
π = d2.

He immediately added that “the same things occur for circles drawn on the surface of a
sphere; the equation is then

cos(R − r) − 2 sin r sin R tan2 n
m
π = cos d, ”30

and he also stated such a formula in the case of chains of spheres.
These successive extensions and analogies of the theorems of existence of closed chains,

and of several additional properties like those related to metrical relations, as well as their
close textual contact within the same paper, suggest that Steiner saw the three theorems on
the chains of circles and of spheres as analogous. However, the absence of proofs of the
extended theorems prevent us to understand this analogy more precisely: was it perceived
on the basis of the resemblance of their wordings and on the similar nature of the involved
geometric objects, or was it built upon uniform methods of proof, for instance?

As we wrote before, Steiner was at the same time interested into Poncelet’s polygons
interscribed between circles, and he notably published results about metrical relations for
these polygons in the paper [Abel, Clausen, and Steiner 1827]. There, he gave the equation
a2 = R2 − 2rR expressing the existence of a triangle interscribed between two circles, as
well as the formulas corresponding to quadrilaterals, pentagons, hexagons, and octagons.31
to give one example, the case of the quadrilateral yielded

(R2 − a2)2 = 2r2(R2 + a2).

After having listed these formulas, Steiner turned to the case of a spherical quadrilateral
interscribed between two spherical circles: he asserted that if such a quadrilateral exists, then(

cos2(r + a) − cos2 R
) (

cos2(r − a) − cos2 R
)
= sin4 r cos4 R.

Hence Steiner proceeded to the same kind of extension as he had done for the chains of circles,
passing from planar quadrilaterals interscribed between two circles to the corresponding
spherical objects.

Steiner did not explicitly express any idea of unity between the problem of the polygons
interscribed between two circles and that of the chains of circles, nor did he establish technical
features (like projections) explaining how to pass from problem to the other. Yet the structure
we just described—treating the planar cases before extending them by analogy to spherical
objects, searching for metrical relations linking the same constants—suggests that Steiner
perceived them as fitting into a certain common frame.32

30“Les mêmes choses ont lieu pour des cercles tracés sur la surface d’une sphère ; l’équation est alors [...]”.
[Steiner 1827/1828, p. 380].

31Steiner did not mention the works of Chapple and Fuss that we described above. Moreover, Steiner mistakenly
attributed the triangle formula to Euler in [Steiner 1827, p. 96], see [Bos et al. 1987, p. 297].

32The fact that the metrical relations in both cases of the chains of circles and of interscribed polygons look

10



2.2 Entrance of elliptic functions

The problem of the polygons interscribed between two circles was taken up again in a
publication of Jacobi of 1828, in which the latter showed how to use the theory of elliptic
functions into this problem [Jacobi 1828].33 Let us recall that elliptic functions are essentially
the reciprocal functions of the elliptic integrals of the first kind

u =
∫ θ

0

dϑ
√

1 − k2 sin2 ϑ
,

where k is a real number in ]0 , 1[ called the module of the integral. The upper bound θ is
called the amplitude of u, denoted by θ = am(u), and one defines the elliptic functions sn, cn,
and dn with the formulas34

sn(u) = sin am(u), cn(u) = cos am(u), dn(u) =
√

1 − k2 sn2(u).

These functions, defined at first in a real neighborhood of 0, can be extended as complex
functions having two periods, which are independent over R and are expressed as adequate
integral combinations of

K =
∫ π/2

0

dϑ
√

1 − k2 sin2 ϑ
and K ′ =

∫ π/2

0

dϑ√
1 − (1 − k)2 sin2 ϑ

.

This property of periodicity is the one that lay at the core of Jacobi’s approach.
More precisely, Jacobi considered two circles of radii r and R, and noted a the distance

between their centers. Then he defined a module k and a constant c depending only on R, r ,
and a, and he demonstrated that the existence of one closed n-gon making ` turns around the
inner circle is equivalent to the condition c = 2`K/n. The theorem of Poncelet, which was
quoted by Jacobi from the Traité, followed from the fact that this condition is independent
from the chosen starting point of the polygonal line, so that the closure of one n-gon implies
that of every n-gon (starting from any point). Jacobi also explained how to obtain the metrical
formulas that Steiner had listed in [Abel, Clausen, and Steiner 1827, p. 289]: he indicated that
these formulas could be derived from the equality c = 2`K/n when expressing the constants
c and K with the numbers r , R, and a.35

alike may reinforce this idea, but Steiner did not comment on this resemblance. As Jemma Lorenat points out
to me, Steiner proceeded to similar extensions for the Malfatti problem and the Apollonius problem, and other
geometric situations were also treated at first for circles, and were then extended to the case of ellipses and to
that of general conics. Thus it seems that such a practice of successive extensions was not characteristic of the
problem of chains of circles. See also [Chemla 1998] for a description of the same kind of extensions in some
works of Lazare Carnot of the very beginning of the nineteenth century.

33As has already been noted by historians, Poncelet later wrote that Jacobi had been encouraged by Steiner
himself to make use of elliptic functions in order to tackle the problem of the interscribed polygons. See for
instance [Bos et al. 1987, p. 322], and [Poncelet 1862, p. 481] for the story told by Poncelet.

34This way of defining elliptic functions is the one adopted in Jacobi’s famous Fundamenta nova theoriae
functionum ellipticarum [Jacobi 1829], published shortly after the paper we discuss here, but the notations sn,
cn, dn have been introduced in 1838 by Christoph Gudermann. See for instance [Bottazzini and Gray 2013,
pp. 35–49, 344–346].

35Jacobi did not carried out the corresponding computations. However, he proved that the formulas given by
Steiner are in concordance with those given by Fuss (who used the quantities r , p = R + a, and q = R − a).
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This article of Jacobi is one of the most frequently cited texts by other mathematicians
in the corpus: even though Jacobi only tackled the polygons of Poncelet in the case of two
circles, he was still cited in works related to other problems because he was identified as the
first to introduce elliptic functions in order to treat such a problem.

For instance, elliptic functions were used by Jacobi’s student Friedrich Richelot, in a
paper published in 1830, [Richelot 1830]. Specifically, Richelot tackled again the problem of
the polygons interscribed between two circles, and showed how to deduce metric relations
for a 2n-gon from the relations for a n-gon. Still working with elliptic functions, he then
proved the spherical equivalent of Poncelet’s theorem, and managed to find metrical formulas
for spherical n-gons, with n = 3, 4, 5, 6, 8.36 Hence Richelot proceeded to the same kind
of extension as Steiner had done, passing from the planar case to the spherical one, and
searching for metrical relations in this new situation.

Apart from two papers of Thomas Clausen related to chains of circles and of spheres, our
corpus does not contain any publication between 1830 and 1845, when a French translation
of Jacobi’s paper by Olry Terquem was published, [Jacobi 1845].

2.3 Polygons inscribed in cubics and in bidonal quartics

Two new geometric situations appeared in 1846 in a publication of Steiner which, in the
image of many other ones, is basically a list of theorems without proof, [Steiner 1846]. One
of them was related to polygons inscribed in a cubic curve,37 whose sides alternatively pass
through two fixed points of the curve (see figure 5). In Steiner’s words:

Let us take two fixed points P and Q on a curve of the third order, and let us consider
another arbitrary point A on it. The straight line PA being drawn, it intersects the curve
in a third point B; the straight line QB being then drawn, it cuts the curve in a third
point C; the line PC being then drawn, it meets the curve in a third point D [etc.]; in
this manner is created a polygon ABCDEFG . . . inscribed in the curve, whose sides
alternatively pass through the two fixed fundamental points P and Q, and which either
1o does not close, as long as one carries on the construction, or 2o closes, having then
an even number of sides 2n. In the latter case, the following theorem holds:

“If the polygon closes itself, then it always closes and has always the same number of
sides 2n, the first point A being chosen at will on the curve.”38 [Steiner 1846, p. 182]

36Richelot would simplify the formulas he found there almost twenty years later, again by using elliptic
functions [Richelot 1849].

37A cubic curve, also called a “curve of the third order,” is a curve that can be defined by a polynomial equation
of degree 3. We will also deal with binodal quartic curves, that is, curves defined by a polynomial equation of
degree 4 and having two nodes (i.e. singular points where two branches of the curve intersect transversally).

38“Werden in einer Curve dritter Ordnung zwei beliebige Puncte P und Q als fest genommen, wird ferner in
derselben ein willkürlich Punct A angenommen und die Gerade PA gezogen, welche der Curve zum dritten Male
in einem Punct B begegnet, wird sodann weiter die Gerade QB gezogen, welche die Curve zum dritten Male
in einem Punct C schneidet, wird ferner die Gerade PC gezogen, welche die Curve in einem neuen Punct D
trifft [usw.], so entsteht ein der Curve eingeschriebenes Polygon ABCDEFG . . ., dessen Seiten der Reihe nach
abwechselnd durch die festen Fundamentalpuncte P und Q gehen, und welches entweder 1o sich nicht schließt,
wie lange auch die Construction fortgesetzt werden mag, oder 2o sich schließt und dann eine gerade Zahl 2n von
Seiten hat. Im letzern Falle findet folgender Satz statt: ‚Wenn das Polygon sich schließt, so schließt sich immer und
hat stets die nämliche Seitenzahl 2n, man mag die erste Ecke A desselben in der Curve annehmen, wo man will.‘”
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Figure 5 – Quadrilaterals of Steiner inscribed in a cubic (on the left) and in a binodal
quartic (on the right), whose sides alternatively pass through two fixed points P and Q.

Let us remark that the form of this theorem obviously recalls those about Poncelet’s polygons
and Steiner’s chains of circles, especially because it provides the alternative of the non-
existence of closed 2n-gons or the existence of an infinity of them. Furthermore, as in
Poncelet’s statement, Steiner stressed the possible closure of an iterative construction: this
feature is certainly what would later be conveyed by the choice of the labels Schliessungssätze
and Schliessungsprobleme.

After having stated this theorem, Steiner also listed several properties of closed quadrilat-
erals, hexagons, and decagons. For instance, he asserted that if two fixed points P and Q
generate a closed quadrilateral, then the tangents to the cubic curve at these points intersect
in a point which belongs to the curve; reciprocally, he explained how this result could be
used to construct a pair of fixed points leading to a construction of a closed quadrilateral.

After having stated all these properties, Steiner added another theorem, whose wording
began with a geometric construction presented as similar to that of the previous theorem (see
figure 5):

If a curve of the fourth order has two double points P and Q, then it is possible likewise
to inscribe polygons ABCDEF . . . in it, whose sides alternatively pass through the
fixed points P and Q, and the same law occurs:

“If the polygon closes by itself, it always closes and has then the same even number
of sides 2n, the first point A being chosen at will on the curve.” Etc.39 [Steiner 1846,
p. 184]

The almost exact same wordings of the two theorems, combined with the way Steiner uses the
expressions “likewise” and “the same law”, attest their affiliation, although such a connection

39“Hat eine Curve vierter Ordnung zwei Doppelpuncte P und Q, so lassen sich ihr gleicherweise Polygone
ABCDEF . . . einschreiben, deren Seiten abwechselnd durch jene festen Puncte P und Q gehen und es findet
dasselbe Gesetz statt: ‚Dass wenn das Polygon sich schließt, es sich dann immer schließt und dabei stets die
nämliche gerade Seitenzahl 2n hat, man mag die erste Ecke A derselben in der Curve annehmen, wo man will.‘
Etc.”
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was not commented by Steiner. Furthermore, the employment of “Etc.” at the end of the
second theorem seems to allude to the properties of the closed quadrilaterals, hexagons, and
decagons that he stated after the first theorem. This locution thus suggests the existence of
analogous results in the case of a binodal quartic curve, results that the reader should be able
to infer from the cubic case.

A supplementary element reinforces this image of sibling theorems: after having stated
the second one, Steiner asserted that “the two theorems [hold] similarly when the sides of
the polygon are replaced by conics (instead of straight lines).”40 More precisely, Steiner
explained that this replacement consists first in fixing, in addition to P and Q, three other
points X , Y , Z on the considered curve, and then in considering the conic passing through
P, X , Y , Z , and a starting point A. His explanations stopped there; let us complete them in
the case of a cubic curve. The conic being supposed to intersect the cubic in 6 points,41
this yields a point B, the sixth intersection point apart from A, P, X , Y , Z . Then the conic
passing through B, Q, X , Y , Z defines a sixth intersection point C, and so on. This produces
a polygon ABC . . . made of an even number of (arcs of) conics which can close by itself or
not.

An interesting point is that this completion of Steiner’s hints for analogical extension does
not adapt to the case of a binodal quartic curve. Indeed, a conic is supposed to intersect such
a curve in 8 points, so that a conic passing through A, X , Y , Z (each being counted once),
and P (counted twice) intersects the quartic curve in two additional points, and not one.42
Whether Steiner here made a mistake or had something else in mind is not clear to me.43 In
any case, it is remarkable that Steiner’s common, analogical hint to conical extensions, i.e.
replacing rectilinear polygons by conical polygons, strengthened the connection of the two
theorems.

The first subsequent paper of our corpus dealing with these theorems of Steiner is a
paper of Alfred Clebsch published 18 years later, in which the latter used elliptic functions
to prove the theorem about cubic curves [Clebsch 1864]. In the mean time, about 20
publications belonging to our corpus appeared, most of them related to the polygons of
Poncelet interscribed between two general conics: this is the period of time when Cayley
contributed for the most to the corpus, with 9 papers published between 1853 and 1862.44

40“Die vorstehende Sätze [...] finden analogerweise statt, wenn die Seiten des Polygons Kegelschnitte sind
(anstatt Gerade).” [Steiner 1846, p. 184].

41Let us recall that, according to the theorem of Bezout, two curves of degrees n and m with no common
component intersect in nm points (counted with multiplicities), under the condition that complex coordinates, as
well as points at infinity, are allowed.

42This was remarked by Eduard Weyr [1870, p. 26] in a paper devoted to a proof of the theorems about
rectilinear polygons for cubics and quartics, and about conical polygons for cubics.

43This indecision is notably due to the imprecise formulations used by Steiner. In particular, the significance
of the last word of his paper, “Etc.,” could either refer to another procedure for the quartic curves, or to additional
properties of conical quadrilaterals, hexagons, and octagons, as in the case of rectilinear polygons [Steiner 1846,
p. 184].

44The corpus contains one more paper of Cayley, which also deals with the polygons of Poncelet, yet from the
point of view of (2, 2)-correspondences, [Cayley 1871b].
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2.4 Cayley and the English porisms

The result which lies at the core of Cayley’s papers is the formulation of necessary and
sufficient conditions for the closure of n-gons, depending on the numerical coefficients of the
equations of the two given conics. To be more precise, Cayley [1853a] proved, with the help
of elliptic functions45 and invariant theory, that if U = 0 and V = 0 are the equations of two
conics, and if one expands46√

det(U + ξV) = A + Bξ + Cξ2 + Dξ3 + Eξ4 + Fξ5 + · · · ,

then there exist Poncelet’s triangles, quadrilaterals, pentagons, hexagons, heptagons, etc., if
and only if

C = 0, D = 0,
����C D
D E

���� = 0,
����D E
E F

���� = 0,

������C D E
D E F
E F G

������ = 0, etc.

Cayley also specified these conditions under given particular conditions: for example, he
considered the special case of two conics defined by the equations U = y2 − 4xz = 0 and
V = ax2 + by2 + cz2 = 0, and, computing the corresponding coefficient C, proved the
condition of existence of interscribed triangles to be ac+ 16b2 = 0 [Cayley 1857]. In [Cayley
1861], Cayley also computed the conditional determinants up to n = 9 in function of the
coefficients β, γ, δ defined by det(U + ξV) = 1 + 4βξ + 4γξ2 + 4δξ3. In another publication,
[Cayley 1853b], he considered the case of two given circles, and proved that his formulas
matched those already known, as the one for triangles a2 = R2 − 2rR, mentioned above.

An interesting feature of Cayley’s works is his use of the word “porism” to refer to the
theorem about the interscribed polygons. For instance, the titles of almost all his publications
in the corpus mention “the porism of the in-and-circumscribed polygon,” or “the porism of
the in-and-circumscribed triangle.” More generally, the use of this word within Cayley’s
published research is almost exclusively linked with the interscribed polygons: a textual
search in his Collected Mathematical Papers reveals that “porism” is employed only in the
texts of our corpus, plus a paper of 1871 where it is used in the context of the polygons of
Poncelet and the chains of circles of Steiner [Cayley 1871a].47

This 1871 paper is interesting for the question of the use of the word “porism,” because it
clearly makes a distinction between “porism” and “problem.” Indeed, one of the questions
tackled by Cayley in this paper was to “connect together the porisms arising out of the two
problems”:

45As is remarked in [Del Centina 2016, p. 54], Cayley explicitly placed his works as a continuation of
Jacobi [1828]: “The preceding investigations were, it is hardly necessary to remark, suggested by a well-known
memoir of the late illustrious Jacobi, and contain, I think, the extension which he remarks it would be interesting
to make of the principles in such memoir to a system of two conics.” [Cayley 1853c, p. 284].

46Since U and V are both quadratic forms in three variables, they are associated with symmetric matrices
with three rows and three columns. The determinant det(U + ξV) of the formula refers to the determinant of the
matrix obtained from these two ones, the letter ξ denoting a complex variable.

47Let us add that “porism” also appears in a biographical notice that had been inserted in the 8th volume of the
Papers after his death [Cayley 1895, pp. ix-lxiv]. This appearance is also linked with the polygons of Poncelet
(see p. xlii).
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(1) given two conics, to find a polygon of n sides inscribed in the one and circumscribed
about the other.

(2) given two circles, to find a closed series of n circles each touching the two given
circles and the two adjacent circles of the series. [Cayley 1871a, p. 202]

A few lines later, Cayley stated the first of the mentioned porism:

The porism in regard to the two conics is, that in general it is not possible to find any
polygon of n sides satisfying the conditions; but that the conics may be such that there
exists an infinity of polygons; viz. any point whatever of the one conic may then be
taken as a vertex of the polygon, and then constructing the figure, the (n + 1)th vertex
will coincide with the first vertex, and there will be a polygon of n sides. [Cayley 1871a,
p. 203]

Thus the word “porism” was clearly used to refer to the formulation of the proposition linked
to the corresponding problem, a formulation consisting in an alternative between a situation
where no solution exists, and another one where infinitely many solutions exist.

This can be confirmed at other places in our corpus, sometimes through the use of the
adjective “porismatic.” Indeed, Cayley explained (in the context of polygons interscribed
between two conics) that “the porismatic property is that, if for a given position of [a point]
A this series closes at a certain term, [...] then it will always close, whatever be the position
of A” [Cayley 1871b, p. 84]. Besides, many other British mathematicians also used the terms
“porism” and “porismatic” in their contributions to our corpus. For example, Andrew Hart
talked about “the porism of the in-and-circumscribed triangle” [Hart 1858], Henry Martyn
Taylor dealt with “the porism of the ring of circles touching two circles” [Taylor 1878], and
Joseph Wolstenholme, in a paper devoted to a particular case of the interscribed polygons,
even applied the adjective “porismatic” to qualify a system of equations having “either no
solutions or an infinite number” [Wolstenholme 1870, p. 356].

The term “porism” comes from the title of a lost book of geometry of Euclid, known
through a notice of Pappus and some comments of Proclus.48 Both Pappus and Proclus had
tried to account for the meaning of the word “porism,” but their explanations were quite
obscure. As Thomas Heath explained, for Proclus, a porism was a kind of proposition situated
somewhere between a problem and a theorem: “it deals with something already existing, as a
theorem does, but has to find it (e.g. the center of a circle), and, it partakes to that extent of
the nature of a problem, which requires us to construct or produce something not previously
existing” [Heath 1921, p. 434]. The questions of restoring the content of Euclid’s Porisms
and interpreting the meaning of its title have been attempted since the seventeenth century by
mathematicians like Albert Girard, Pierre Fermat, Robert Simson, John Playfair, and Michel
Chasles.

According toHeath [1911, p. 103], it is Playfair’s definition that has been “most favoured in
England [while] Simson’s view has been most generally accepted abroad, and has the support
of the great authority of Michel Chasles.” For Playfair, a porism was “a proposition affirming
the possibility of finding such conditions as will render a certain problem indeterminate, or
capable of innumerable solutions” [Playfair 1794, p. 170], a definition which strongly echoes

48See [Heath 1921, vol. 1, pp. 431–438]. Let us recall that Thomas Heath (1861–1940) was a English civil
servant and a historian of mathematics, specialized in the Greek Antiquity. For an overview on his historical
works, see [Wardhaugh 2016].
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our previous remarks on Cayley, Hart, Taylor, etc. On the contrary, Simson’s definition of a
porism does not strikingly match these remarks, as it explains that a porism is “a proposition
in which it is proposed to show that something or several things are given when it is required
that a certain common property described in the proposition is satisfied by it or by them as
well as by one of innumerable things which are not in fact given but which have the same
relation to those things that are given.”49

Maybe because of the distance between the latter definition and the formulations of
the theorems on the polygons of Poncelet and on the chains of Steiner, and because it was
the one which was commonly accepted in the continental part of Europe, I found only two
non-English texts in the corpus where the word “porism” appears. The first one is [Steiner
1826] which we already presented, but, as “porims” is only employed twice in the general
statements introducing this paper, it is difficult to understand what it points to. The second one
is [Poncelet 1862], where Poncelet commented the works of Cayley related to the interscribed
polygons and reproached him for not having cited the Traité:

Monsieur Cayley [...], being certainly unaware of my publications [...], gratuitously
attributed to [Fuss], under the denomination of porism, the theorem [on polygons
interscribed between two circles].50 [Poncelet 1862, p. 483]

Interestingly, this extract displays a certain distance (maybe a distaste?) between Poncelet and
the use of the word “porism,” a distance which could reflect a difference between the French
and the English appreciation of this word. Indeed, the French “porismes” and the German
“Porismen” were actually used at the time of Cayley, but in the context of Euclid’s book
(see for instance [Cantor 1857; Chasles 1860]). Thus it is possible that in these languages,
“porism” was mainly, if not exclusively, employed in such a context, or that it lost its ancient
meaning at some point.51

This English specificity is of particular interest for our question of the constitution of the
category of closure theorems because Cayley’s and the other English contributors’ use of
“porism” indicates that they did acknowledge a distinct form of the theorems of Poncelet and
of Steiner, but that this form was recognized to be a case of the already-existing category of
porisms. As we will see, the German label Schliessungssätze and its variants seem, on the
contrary, to have been created from the examples of Poncelet and Steiner, which displays
another kind of mechanism: the constitution of a new, proper category of problems and
theorems. Finally, it is striking that no encompassing words have been employed at all by
French authors. For example, Poncelet’s theorem was often called “le (célèbre) théorème de
Poncelet,” sometimes “le théorème de fermeture de Poncelet,” but there were no occurrence
of phrases like “les théorèmes de clôture.” In this sense, the French contributors of our corpus
did not directly participate to the constitution of an explicit category of closure theorems.
But their papers, which were read by the other mathematicians, did connect together some
of the theorems of closure: by analogy, as observed above, but also by technical links, as

49This definition is included in a work (written in Latin) of Simson published after his death, in 1776. The
present English translation comes from [Tweddle 2000, p. 17].

50“M. Cayley, qui, ignorant sans doute mes publications [...], a attribué gratuitement à [Fuss], sous le nom de
porisme, le théorème de la page 364 sur les cercles [...].”

51For instance, the French Encyclopédie explains that a “Porisme (Géom.) est la même chose qu’un lemme,
qui est aujourd’hui seul usité.” This definition dates from 1765. See the new online edition of the Enyclopédie,
Enccre: http://enccre.academie-sciences.fr (seen on November 4 2017).
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exemplified in what follows now.52

2.5 The theorem of Poncelet as an element of proof

Before ending this section, we thus mention two papers in which technical links between
two different geometrical situations emerged. The first one was published by Paul Serret in
1862, and aimed at presenting new demonstrations of the theorems on the chains of circles
and of spheres. Let us look for instance at the proof of the theorem of the chains of circles,
consisting in “reducing this theorem to that ofMonsieur Poncelet.”53 For this purpose, Serret
proved two lemmas. The first one is that the locus of the centers of circles that are tangent to
two fixed circles is a conic; the second one is that if a chain of circles is given, then the points
of contact of the circles of the chain lie on a circle (see figure 6). Then the polygon whose
vertices are the centers of the circles making a chain is inscribed in the conic of the first
lemma and circumscribed about the circle of the second one: this allowed Serret to deduce
the theorem about the chains of circles thanks to the theorem of Poncelet.

Serret thus established a direct mathematical link between the two situations of the chains
of circles and the polygons of Poncelet, which were not presented a priori as extensions of
one another, contrary to the case of Durrande’s proof of the theorem on tetrahedrons and
spheres for instance.

Two years later, Théodore Moutard published a short article in Nouvelles Annales de
mathématiques devoted to the study of a particular kind of surfaces called “anallagmatic
surfaces of the fourth order” [Moutard 1864b].54 At the very end of it, Moutard deduced
from his study of anallagmatic quartic surfaces a theorem which is “independent of the
anallagmatics, and entirely analogous to the famous theorem of Monsieur Poncelet about the
polygons simultaneously inscribed and circumscribed to two conics”:

It is in general impossible to inscribe in the intersection curve of a hyperboloid and
another surface of the second order a polygon having a given even number of sides and

52A current echo of this curious trichotomy can be observed in the Wikipedia pages devoted to the theorem of
Poncelet: while the French one is called “Grand théorème de Poncelet,” the English one is about “Poncelet’s
porism (sometimes referred to as Poncelet’s closure theorem),” and the German one is entitled “Schliessungssatz
von Poncelet” (seen on November 4 2017). It would be premature, at this stage of the study, to infer general
conclusions on larger national divergences, for instance about inclinations to forge neologisms, or about
preferences in the way of classifying in mathematics.

53“On peut, à l’aide des lemmes suivants, ramener ce théorème à celui de M. Poncelet.” [Serret 1862, p. 184].
Serret offered a second proof, in which the two fixed circles are transformed into two concentric circles by means
of an inversion. Let us recall that the inversion of center Ω and of parameter k is the transformation which
associates, to a point M , the point M ′ ∈ (ΩM) such that ΩM ′ · ΩM = k.

54A surface of the fourth order, also called a quartic surface, is a surface that can be defined by a polynomial
equation of degree 4. A surface (of the fourth order or not) is said to be anallagmatic if there exists an inversion
which leaves it invariant. The notion of anallagmatic surface was defined by Moutard himself in an article
published in the same volume of Nouvelles Annales de mathématiques as the one we are describing here [Moutard
1864a]. About anallagmatic surfaces, in particular as tackled by Gaston Darboux, see [Croizat 2016, ch. 2].
Moreover, another text of Moutard belongs to the corpus, [Moutard 1862], which is a supplement to Poncelet’s
book Applications d’analyse et de géométrie, qui ont servi de principal fondement au Traité des propriétés
projectives des figures [Poncelet 1862]. The supplement was entirely devoted to the polygons of Poncelet; in
particular, Moutard used elliptic functions to find conditions expressing the possibility of existence of n-gons
interscribed between two conics, yet in a different way than Cayley did.
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Figure 6 – The centers of any chain of circles associated to the two fixed ones describe
an ellipse (the dashed line), and the points of contact describe a circle (the dotted line).

made of rectilinear generators of the hyperboloid;55 but if it is possible to find one such
polygon, then there exist infinitely many others.

Moutard then concluded his paper alluding to the fact that “this theorem can be deduced
from that of Monsieur Poncelet by a mere perspective.”56

Hence the link presented by Moutard between his theorem and that of Poncelet was
double. On the one hand, the former was presented as “analogous” to the latter, an analogy
which, in the absence of any further explanation, seems to refer to the formulation of the
theorem according to which the existence of one polygon implies the existence of an infinity
of polygons. On the other hand, Moutard hinted to a technical link consisting in a geometric
transformation (a perspective) allowing one to pass from the theorem of Poncelet to the
theorem of Moutard, and incidentally yielding another way to prove the latter.

From prehistorical works on the polygons of Poncelet to this research of Moutard, the
different geometric problems and theorems dealt with in the corpus gave rise to research
full of diverse extensions and analogies, which, however, were never commented on by their
authors. In particular, this research did not bring any explicit grouping of theorems to light.
Links between different theorems seemed to be only grounded on similar wordings, even
if a few technical links were proved at the beginning of the 1860s. Thus, the unity of the
theorems that we have encountered until now, and that would later be recognized as instances

55Let us recall that a hyperboloid is a special kind of quadric surface which contains infinitely many straight
lines called the (rectilinear) generators of the surface. More precisely, through each point of the surface pass
exactly two generators: this yields two families of lines which both describe the surface.

56“On rencontre ainsi un théorème indépendant des anallagmatiques, tout à fait analogue au célèbre théorème
de M. Poncelet sur les polygones simultanément inscrits et circonscrits à deux coniques : dans la courbe
d’intersection d’un hyperboloïde et d’une autre surface du deuxième ordre, il est, en général, impossible d’inscrire
un polygone d’un nombre pair donné de côtés formé par des génératrices rectilignes de l’hyperboloïde ; mais
lorsqu’on pourra en trouver un, il en existera une infinité d’autres. Ce théorème se déduit de celui de M. Poncelet
par une simple perspective.” [Moutard 1864b, p. 539].
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of the theorems of closure, was mostly assured by resemblances of formulations and of
associated questions (like the search for metric relations). The situation would change from
the mid-1860s on, as mentions of some classes of theorems began to occur in the corpus.

3 From a class of problems to the problems of closure

3.1 Hints to certain classes of problems

As explained earlier, in 1864 Clebsch published a paper in which he aimed to prove the
theorem on polygons inscribed in cubic curves that Steiner had stated in 1846 [Clebsch 1864].
In the introduction of the paper, after having recalled this theorem, Clebsch evoked the name
of Jacobi, who he associated with the theory of elliptic functions:

The nature of the mentioned theorem immediately leads to the assumption that we have
here an instance of the class of algebraic problems about which Jacobi showed how
easily they can be connected with the theory of elliptic functions.57 [Clebsch 1864,
p. 94]

Clebsch did not make explicit which works of Jacobi he had in mind, but it is very likely that
it was the 1828 paper where Jacobi tackled the problem of Poncelet’s polygons with elliptic
functions.58

Two other elements of the previous quotation are more difficult to interpret. First, the
meaning of the “nature” of the theorem of Steiner is not clear: it could refer to several of
its characteristics, like the objects that are involved in it (polygons and algebraic curves of
small degree), the fact that it pertains to the closure of an iterative geometric construction,
its formulation as an alternative (of the non-existence of closed polygons or the existence
of infinitely many of them), or even to a combination of these three features. Secondly, it
may seem odd that Clebsch talked about “algebraic” problems, and not geometric ones. An
explanation could be that he aimed at problems that would be geometrically disembodied and
that would underlie the theorems of Poncelet and of Steiner, like the problem of the division
of elliptic functions.59 In any case, it is remarkable that Clebsch acknowledged the existence
of a class of problems, the belonging to which was characterized by the recognition of a
resemblance of nature.

Moreover, the affiliation thus expressed between the theorems of Poncelet and of Steiner
was accompanied by a transfer of method: because the theorem of Steiner looked like that of
Poncelet, the theory of elliptic functions, which had been successfully used to prove the latter,
would also help prove the former. This transfer, however, only consisted in the general idea
of introducing elliptic functions; the technical steps of Clebsch radically differed from those
of Jacobi. In particular, Clebsch used invariant theory in combination with elliptic functions
in order to parameterize the points of any (non singular) cubic curve with these functions.

57“Die Natur des angeführten Satzes führt sofort zu der Vermuthung, dass man hier eines aus der Classe jener
algebraischen Probleme vor sich habe, welche Jacobi mit der Theorie der elliptischen Functionen in so einfachen
Zusammenhang bringen gelehrt hat.”

58As depicted by the authors of his obituary [Brill et al. 1873, p. 7], Clebsch had not personally known Jacobi,
but he had studied his works a great deal and used to present himself as one of his students.

59This problem of division does appear later in Clebsch’s paper. See [Lê 2018], where this research of Clebsch
is studied in depth.
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The key point, then, was that three points of the curve of parameters u1, u2, u3 are aligned if
and only if u1 + u2 + u3 is congruent to a constant modulo an integral combination of the
periods of the elliptic function sn.

The idea of a certain class of problems linked to that of Poncelet’s polygons also appeared
in some research that Jacob Rosanes (1842–1922) and Moritz Pasch (1843–1930) did during
the second half of the 1860s.60 In 1865, they published an article where they explained that
they wanted to find conditions on the coefficients of two conics expressing the possibility
of existence of interscribed polygons [Rosanes and Pasch 1865]. They began by citing the
works of Steiner relative to particular cases of polygons interscribed between two circles, as
well as those of Jacobi, who managed, “in a surprising way, to establish the conditions for
any polygon with the help of elliptic functions.”61 Rosanes and Pasch also explained that
Cayley’s [1853a,b] and Moutard’s [1862] works on the same question had been unknown to
them until shortly before the publication of their paper, but they added that both the “route
taken” and the “form of the results” differed from Cayley’s and Moutard’s approaches.62

A few years later, Rosanes and Pasch published another joint paper, which they linked
to the previous one, explaining that the problem they had tackled there was the source of
an algebraic problem they wanted to study now [Rosanes and Pasch 1869]. Actually, not
only did they refer to the polygons of Poncelet, but they also evoked a certain “class of such
problems”:

The geometric problem treated in this journal [Rosanes and Pasch 1865]—and even a
class of such problems—appears, when interpreted purely algebraically, in the following
form.63 [Rosanes and Pasch 1869, p. 169]

Furthermore, the same idea was also contained in the title of the paper: “On an algebraic
problem underlying a type of geometric problems.”64 The extent and the content of the
evoked class of geometric problems were not discussed by Rosanes and Pasch, but the
explanations on the algebraic one gives us clues which illuminate the question.

Indeed, this algebraic (form of the) problem was presented by Rosanes and Pasch as
follows. They defined a function

F(x, y) = ax2y2 + 2bxy(x + y) + c(x + y)2 + 2dxy + 2e(x + y) + f ,

and considered a sequence of numbers t0, t1, t2, . . . such that F(t0, t1) = 0, F(t1, t2) = 0,

60Rosanes and Pasch were friends, had both studied at the University of Breslau, and had both defended their
doctoral thesis (made under the supervision of Heinrich Schröter) in 1865. The research we describe here is
among the very first of Rosanes and Pasch. See Pasch’s autobiography [Pasch 1930]. Pasch is now better-known
for his works on the foundations of geometry, see [Gandon 2005].

61“Jacobi [...] gelang es, für die Voraussetzung, dass ein Kreis den anderen ganz umschliesst, die Bedingung
für ein beliebiges Polygon auf überraschende Weise mit Hülfe der elliptischen Functionen aufzustellen.” [Rosanes
and Pasch 1865, p. 126].

62“Die gegenwärtige Abhandlung, deren Verfasser von den letztgenannten beiden Arbeiten bis vor kurzer
Zeit keine Kenntniss hatten, scheint von diesen sowohl in Bezug auf den eingeschlagen Weg, als die Form der
Resultate, welche grosse Aehnlichkeit mit den von Jacobi gefundenen Formeln aufweist, sosehr verschieden,
dass die Veröffentlichung derselben wohl gerechtfertigt erscheinen dürfte.” [Rosanes and Pasch 1865, p. 126].

63“Die in diesem Journal Bd. 64 S. 126 ff. behandelte geometrische Aufgabe — und überhaupt eine Klasse
von solchen — tritt, rein algebraisch aufgefasst, in foldender Form auf.”

64“Ueber eine algebraische Aufgabe, welche einer Gattung geometrischer Probleme zu Grunde liegt.”
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F(t2, t3) = 0, etc.65 Their problem, then, was to find conditions on the coefficients of
F implying that tn = t0 and tn+1 = t1 for some integer n > 2, which in turn implies that
tk = tn+k = tn−k for every integer k. In Rosanes and Pasch’s own words, it was thus demanded
to find conditions on a, b, . . . , f so that the sequence t0, . . . , tn “closes by itself.”66 Later in
the text, they specified that “the sequence t0, t1, t2, . . . either does not close at all, or closes
for every value of t0,”67 a property whose formulation, consisting in an alternative of the
non-existence of closing sequences or the existence of infinitely many, clearly echoes those
of the different theorems that we described above. Therefore it is very probable that these
problems were the ones which were encompassed in the “class” they had in mind.68

Clebsch, Rosanes, and Pasch thus explicitly recognized the existence of classes of
problems linked with the polygons of Poncelet or those of Steiner. Even if the actual content
of these classes was not explicitly delineated, it seemed to be associated to the particular
formulations of the problems or to their nature. This marks a particular step in the process of
categorization of the problems and theorems of closure. Another one would be to distinguish
them with the creation and the use of a specific label.

3.2 A new label

Eduard Weyr (1852–1903) wrote a paper in 1870 in which he aimed at proving the theorems
that Steiner had stated in 1846 about the polygons inscribed in cubics and in binodal
quartics [Eduard Weyr 1870].69 Weyr explained that even if the theorem about cubic curves
had been proved by Clebsch with elliptic functions in 1864, he sought for demonstrations
that would not involve these functions. Thus, after having quoted Steiner’s two theorems, he
wrote:

Although the connection of the first of these two Schliessungsproblemewith the theory of
elliptic functions has already been presented byHerr Clebsch [1864], it is still interesting
to prove the two theorems of Steiner [...] independently from any consideration of
transcendent functions, and to fathom their relation with certain elementary geometric

65The first term t0 being chosen at will, there are two choices for t1, namely the two solutions of the quadratic
equation F(t0, y) = 0. After having chosen t1, one considers the equation F(t1, y) = 0: because of the symmetry
of F, the first term t0 is a solution. The term t2 is thus uniquely determined, as the other solution; equivalently, t2
is the solution of the equation F(t1, y)/(y − t0) = 0. For the same reasons, all the terms tk with k > 2 are then
completely determined.

66“[D]ie Werthe t0, . . . , tn sollen eine Reihe bilden, welche sich von jedem aus nach beiden Seiten schliesst.”
[Rosanes and Pasch 1869, p. 169].

67“Die Reihe t0, t1, t2, . . . schliesst sich also entweder gar nicht oder für jeden Werth von t0.” [Rosanes and
Pasch 1869, p. 172].

68After having solved the algebraic problem, Rosanes and Pasch applied it to that of the polygons of Poncelet,
but this was the only application.

69This paper was written while Eduard Weyr was still a student both at the Technical University and at the
Charles-Ferdinand University in Prague. Later, in 1872, he completed his mathematical training in Göttingen,
where he attended lectures of Clebsch, met Felix Klein, and obtained his doctorate (about spatial algebraic curves)
in 1873. After a year spent in Paris, he returned to Prague in 1874 where he obtained his Habilitaion. According
to the Jahrbuch, almost all of Weyr’s first reviewed publications (1869–1875) pertain to algebraic curves and
surfaces. Later, Weyr also contributed to algebraic topics: about his works on the decomposition of matrices,
see [Brechenmacher 2010, p. 579 sqq.]. Note that Eduard Weyr had a brother, Emil Weyr (1848–1894), who was
also a mathematician, and who also contributed to the subject of the theorems of closure. For the people with the
ability to read the Czech language (which is not the case for me), see [Bečvář 1995].
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figures.70 [Eduard Weyr 1870, pp. 18–19]

This excerpt displays the first appearance of the word Schliessungsprobleme in our corpus. If
it would later reappear in a singular form (like in the phrase: “the Schliessungsproblem of
Poncelet”), let us note that Weyr used it here in a plural version meant to gather two entities
under a common label. This label, of course, explicitly refers to the question of the closure of
the diverse polygons associated to given curves, and the very act of labeling clears up some
of the ambiguities related to the content of Clebsch’s, and of Rosanes and Pasch’s vague
“classes.”

As announced in our introduction, the label Schliessungsprobleme and its variants became
commonly used in the corpus Weyr’s 1870 text. Moreover, even if this label can hardly
be seen as a very inventive new one—this neologism is a mere reunion of the common
words Schliessung and Probleme—, its specificity and its uses at many places indicates
that it was collectively adopted to designate a recognized, specific category of problems
and theorems. But such uses would often be accompanied by other elements that would
(explicitly or implicitly) strengthen the constitution of this category. Here, the problems of
closure that Weyr wanted to prove were connected together by their very inclusion in the set
of Schliessungsprobleme, but also by a will to exclude elliptic functions from their proofs
and by technical features that incidentally appeared.

Indeed, Weyr grounded his approach on the notion of “(2, 2)-correlated fundamental
figures of the first degree.”71 Essentially, figures of the first degree are families of geometric
objects that can be described by one parameter, as the points on a line or the lines (on a
plane) passing through a fixed point. Two such families are said to be (2, 2)-correlated if
there is a way to associate, to each element of one family, two elements of the other one,
and reciprocally. Weyr considered for instance a cubic curve with two points P and Q on it:
these points define two families of lines, and one declares that two lines of these families are
correlated if they meet on the curve. Since a line passing through P intersects the curve in
two additional points, this is a (2, 2)-correlation (see figure 7).

Weyr also explained how two families of lines (passing through fixed points) that are
(2, 2)-correlated can be used to define binodal quartic curves and cubic curves. The rough
idea is that if two such families are given, then the locus of the points of intersection of
corresponding lines is, in general, a quartic curve; bidonal quartics and cubics arise as
particular cases of this construction.

The key point of the article is a theorem about (2, 2)-correlated figures of the first degree,72
a theorem “to which the theorems of Steiner will be reduced”:

Let us consider two fundamental figures S and Σ [of the first degree] that are (2, 2)-
correlated, and suppose that there exist two groups of n elements (a, b, c . . . on S, and

70“Obgleich das erste dieser beiden Schliessungsprobleme bereits in seinem Zusammenhange mit der Theorie
der elliptischen Functionen von Herrn Clebsch (Bd. 63, pag. 94 dieses Journal) dargestellt worden ist, so bleibt es
doch von Interesse, die obigen Steinerschen Sätze [...] unabhängig von der Betrachtung transcendenter Functionen
zu beweisen und ihren Zusammenhang mit den Beziehungen gewisser geometrischer Elementargebilde zu
ergründen.”

71“Zwei und zweigliedrig verwandten Grundgebilde ersten Grades”. We will see that other mathematicians
talked about “(2, 2)-Korrespondenzen.”

72The proof of this theorem contained a mistake and was corrected in the subsequent paper [Eduard Weyr
1871]. The fact that the correction implied differential calculus would later be remarked by other mathematicians,
who qualified Weyr’s approach of the theorems of Steiner as non-“geometric.”
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Figure 7 – The line (M1M2) is correlated with the lines (QM1) and (QM2) because their
respective intersection points lie on the cubic curve.

α, β, γ . . . on Σ) such that the two elements corresponding to any element of one group
belong to the other group. Then there exist infinitely many such associated groups;
namely, every element of the fundamental figures belongs to one such group. Such
groups cannot have more or less than n elements.73 [Eduard Weyr 1870, p. 22]

Interestingly, when Weyr applied this theorem in order to prove the theorems of Steiner, he
remarked that, as two families of lines could generate both a binodal quartic curve and a
cubic curve, he just had to consider “the generated curve,” without specifying its order. This
allowed him to prove the two theorems of Steiner at the same time.74

Finally, after having proved them, Weyr indicated that his demonstration had led him to
“a theorem which is analogous to those of Steiner, and which is related to the intersection
curve of two ruled surfaces of the second order.”75 To be more precise, related to polygons
made of generators of two ruled surfaces of the second order and inscribed in the spatial
quartic curve defined as the intersection of these surfaces.76 Weyr formulated it as follows:

If two ruled pencils of the second order S and Σ have a space curve C4 in common,77 let
us draw the line belonging to S going through a point A of this curve until it cuts C4

73“Wir sprechen folgenden Satz aus, auf welchen sich die Steinerschen Sätze zurückführen lassen werden:
Sind zwei einförmige Grundgebilde S und Σ zwei und zweigliedrig auf einander bezogen, und kann man in jedem
derselben eine Gruppe von n Elementen a, b, c . . . resp. α, β, γ . . . so angeben, dass sich die einem beliebigen
Elemente der einen Gruppe zugeordneten zwei Elemente in der anderen Gruppe befinden, so existiren unendlich
viele solcher beigeordneten Gruppen, nämlich jedes Element ist in einer solchen Gruppe enthalten. Gruppen
dieser Art von mehr oder weniger als n Elemente giebt es nicht.”

74The link with the previously quoted theorem is that a closed polygon gives rise to two groups S and Σ,
respectively made of the sides passing through P and through Q.

75“Es möge zum Schlusse als eine weitere Folgerung des gegebenen Beweises ein den Steinerschen Sätzen
analoger Satz für die Schnittcurve zweier Regelflächen zweiter Ordnung aufgestellt werden.”

76A ruled surface is a surface containing infinitely many lines. As we saw above, hyperboloids are examples
of ruled surfaces of the second order. More generally, when considered as surfaces in the complex projective
space, all the surfaces of the second order are ruled surfaces: through each point of such a (smooth) surface pass
two lines. It is thus possible to describe a ruled quadric surface thanks to two different families of lines, just as in
the specific case of hyperboloids.

77The fact that Weyrs here talks about “ruled pencils of the second order” means that S and Σ are both seen as
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a second time in B, then draw the line belonging to Σ going through B until it meets
C4 once more in C, and further draw the line belonging to S going through C, which
will have another point D in common with C4, etc., so that we obtain a skew polygon
ABCD . . .; this polygon either does not close itself, how long one may carry on the
construction, or closes itself, and has then an even number 2n of sides. In this case,
it always closes itself and has each time the same number of sides 2n, wherever the
starting point A is chosen on C4.78 [Eduard Weyr 1870, p. 28]

The proof consisted in defining a (2, 2)-correlation between the lines composing S and those
composing Σ, and then in applying once more the previous theorem.

The analogy between this theorem and those of Steiner was made manifest by the choice
of the wording of the former, which looked just like those of the latter, and thus was reinforced
in the technical details by a proof based on the same general theorem. This new theorem
about polygons inscribed in spatial quartic curves was certainly qualified as a theorem of
closure, even if Weyr did not label it as such. But this would be done by other mathematicians
in research papers published a few years later, and eventually in the corresponding chapter of
the Encyklopädie, [Staude 1904].

4 Searching for common sources of the theorems of closure

During the five years following the paper of Weyr [1870], a dozen texts of the corpus
were published. Let us only mention here one of them which would be frequently cited in
subsequent works, namely the monograph of Gaston Darboux devoted to the surfaces called
cyclides, [Darboux 1873]. As has already been noted, this monograph contained a new proof
of the theorem of Poncelet, as well as some generalizations of this theorem; Darboux also
proved how this theorem was connected to that of Moutard [1864a] about polygons inscribed
in a spatial quartic curve.79

We now turn to three articles (two of them published in 1876, the third one in 1879)
which appear as singularities within the corpus because they are the only ones whose authors
not only explicitly gathered a number of theorems under the label “closure theorems,” but also
presented technical reasons to explain the unity of this category of theorems. It is remarkable
that each author connected his approach to a particular domain of mathematics: geometry for
the first one, the theory of elliptic functions for the second one, and algebra for the third one.

quadric surfaces generated by one family of lines (among the two possible ones). Thus, through each point of S
(resp. Σ) passes only one line belonging to S (resp. Σ).

78“Haben zwei Regelschaaren zweiter Ordnung S und Σ eine Raumcurve C4 gemein, und man zieht durch
einen Punkt A derselben den zu S gehörigen Strahl, bis er C4 zum zweiten Male in B schneidet, ferner durch B
den Σ gehörigen Strahl, bis er C4 noch einmal in C trifft, weiter durch C den in S liegenden Strahl, der mit C4
überdies einen Punkt D gemein haben mag u.s.w., so erhält ein windschiefes Polygon ABCD . . .; dieses Polygon
schliesst sich entweder nicht, wie weit man auch dieses Verfahren fortsetzen mag, oder es schliesst sich und hat
dann eine gerade Seitenzahl 2n. In diesem Falle schliesst es sich immer und hat jedesmal die nämliche Seitenzahl
2n, wo man den Anfangspunkt A auf C4 auch annehmen mag.”

79“Cette première proposition, comme Monsieur Moutard en a fait le premier la remarque en 1864 [...], est
au fond le théorème de Poncelet ; elle s’est déduit par une simple perspective.” About Darboux’s monograph,
see [Del Centina 2016, pp. 91–102; Croizat 2016, pp. 318–340].
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4.1 The simplest possible geometric considerations

The first one is an article of Friedrich August (1840–1900), published in the 1876 volume
of Archiv der Mathematik und Physik, and entitled “On the connection between certain
theorems referring to closed series of geometric figures” [August 1876b].80 August evoked at
once the existence of a certain family of theorems, as he listed a number of examples of “the
kind of theorems which are dealt with in [his] research.”81 The list began with cases of the
theorem of Poncelet, first stated for triangles and concentric circles, then for triangles and any
circles, for polygons and circles, and finally for polygons and conics. August then recalled
that Steiner had given other “similar theorems” about closed chains of circles and spheres, as
well as theorems on polygons and cubic curves, which “belong to the same type.”82 This
enumeration of theorems served August to emphasize their coherence and therefore to justify
the search for mathematical reasons linking them together:

The great consistency of these theorems makes us guess that they can be explained
from a common point of view, and indeed the analytic treatment revealed that both the
theorems of Poncelet and those about the polygons of Steiner led to the theorem of
addition of the elliptic integrals of the first kind, as proved by Jacobi and Clebsch.

Although the connection between these theorems has thus been discovered, it remains
desirable to explain this connection in a geometric way, and so to find a theorem from
which the above-mentioned theorems can be deduced, by means of the simplest possible
geometric considerations.83 [August 1876b, p. 2]

August thus acknowledged that elliptic functions provided a point of view explaining the
listed theorems as a whole, but he wanted to exclude these transcendent functions and to find
a “geometric” alternative.

As the list of the theorems given in the previous quote reveals, August sought for a
common view on Poncelet’s polygons, on Steiner’s polygons, and on Steiner’s chains of
circles. Yet August also made an inventory of “other closure theorems of less elementary

80“Ueber den Zusammenhang gewisser Sätze, welche sich auf geschlossene Reihe geometrischer Gebilde
beziehen”. Friedrich Wilhelm Oscar August was born in 1840 in Berlin, and went to the university of this
city where he followed lectures of Steiner, Ernst Eduard Kummer, and Karl Weierstrass, among others. After
having completed his doctoral thesis in 1862 (on the use of imaginary objects in geometry, [August 1862]), he
taught mathematics in several high-schools and in a school of artillery and engineering in Berlin: see the short
autobiographical note inserted in his dissertation [August 1862, p. 40] and the necrology on pages 46–47 of the
36th volume of Leopoldina (1900). The Jahrbuch über die Fortschritte der Mathematik counts 22 references
having Friedrich August as their author, mostly published in Archiv der Mathematik und Physik and related to
conics, cubics curves, and quadric surfaces; August also appears to have written quite a large number (774) of
reviews for the Jahrbuch. Let us finally note that August seems now to be better-known in the field of cartography,
notably for a particular conformal map that still bears his name [Snyder 1993, pp. 141–142].

81“[Die] Art von Sätzen, mit welchen die folgende Untersuchungen beschäftigt [...]” [August 1876b, p. 1].
82“Ferner hat Steiner ähnliche Sätze angegeben über geschlossene Reihen von einander berührenden Kreisen

und Kugeln [...]; endlich sind es die Steinerschen Sätze über Polygone bei Curven dritten Grades, die zu diesem
Typus gehören.” [August 1876b, p. 2].

83“Die grosse Uebereinstimmung in diesen Sätzen lasst vermuten, dass sich dieselben von einem gemeinsamen
Geschichtpunkte aus werden begründen lassen, und so zeigte sich denn auch in der analytischen Behandlungsweise,
dass sowohl die Poncelet’schen Sätze, wie diejenigen über die Steiner’schen Polygone auf das Additionstheorem der
elliptischen Integrale erster Gattung führten, wie dies Jacobi und Clebsch nachgewiesen haben. Obschon hierdurch
der Zusammenhang jener Theoreme aufgedeckt ist, bleibt es doch wünschenswert, diesen Zusammenhang auch
in geometrischer Weise klar zu legen, also einen Satz aufzufinden, aus welchem sich die genannten Theoreme
durch möglichst einfache geometrische Betrachtungen ableiten lassen.”
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character,”84 to which his research could not be easily extended. Hence August explicitly
included the previous theorems in the category of the theorems of closure, but he also admitted
that his search for a common point of view would not encompass all the instances of this
category. About these supplementary examples, he described the works of Darboux [1873]
on generalizations of the theorem of Poncelet, added that “Herr Felix Klein had the kindness
to attract [his] attention to a theorem of closure for geodesic polygons on surfaces of the
second order,” and mentioned another paper he himself published shortly before, in which he
had proved a theorem “belonging to the domain of the theorems of closure.”85

As these formulations suggest, the label “theorems of closure” was used by August to
designate a certain set, a “domain” of theorems which was not defined a priori as a determined
agglomerate of fixed elements; rather, it seems that he perceived it as characterized by a
certain property which allowed him in return to decide whether a theorem belongs to the
domain or not—the use of an indefinite, singular article in the phrase “a theorem of closure,”
which was repeated by August several times, emphasizes this idea of a global category from
which single entities could be inferred.

For his mathematical proofs, August started by considering what he called “generalized
polygons of Steiner”: he took a cubic curve with 2n − 1 fixed points on it, and considered a
variable inscribed 2n-gon whose 2n − 1 first sides are supposed to pass through the fixed
points. Then he proved that the last side of the polygon intersects the cubic curve in a fixed
point (see figure 8).86

By an adequate use of projections, August deduced from this theorem a result about
polygons inscribed in a spatial quartic curve of the first species, i.e. a curve arising as the
intersection of two quadric surfaces. More precisely, August proved that if the 2n−1 first sides
of a variable 2n-gon inscribed in such a curve all describe the generators of hyperboloids, then
the last side also describes the generators of a hyperboloid. Afterwards he particularized this
theorem to the case where all the hyperboloids coincide, and deduced that if it is possible to
inscribe in a spatial quartic curve of the first species a 2n-gon of which the sides alternatively
belong to the two families of generators of a hyperboloid containing the curve, then there exist
infinitely many such 2n-gons. Again, adequate plane projections were then used to deduce
the theorem of Poncelet, the theorem on Steiner’s chains of circles, and generalizations of the
latter (e.g. a version where circles are replaced by conics).87

The point of view developed by August, therefore, united the theorems on Poncelet’s
polygons, Steiner’s polygons, and Steiner’s chains of circles, yet in an asymmetric way.
Indeed, its basis was the generalization of the Steiner’s polygons which served to prove an
analogous theorem on polygons inscribed in spatial quartic curves of the first species, which
in turn could be projected to obtain the theorems on the interscribed polygons and the chains

84“[D]iejenigen Schliessungstheoreme [...], die weniger einfachen Charakters sind.” [August 1876b, p. 2].
85“Herr Felix Klein in München hat die Güte gehabt, mich auf ein Schliessungssatz für geodätische Polygone

auf Flächen zweiten Grades aufmerksam zu machen. Auch der im vorigen Teile (LVIII) p. 216 publicirte Lehrsatz,
eine gewisse Raumcurve sechsten Grades betreffend, gehört dem Gebiet der Schliessungstheoreme an.” The cited
article is [August 1876a].

86August did not even indicate that the theorem of Steiner corresponds to the case where the fixed points
alternatively coincide, yielding only two fixed points.

87For instance, August used the fact that it is possible to find a planar projection transforming the quartic curve
into a conic, the spatial polygon being then projected on a plane polygon whose sides are tangent to the conic
projection.
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Figure 8 – Generalized Steiner polygons (with n = 2). Three points P, Q, R being
supposed to be fixed on the curve, one considers polygons ABCD and A′B′C ′D′

inscribed in the curve, such that the sides AB and A′B′ (resp. BC and B′C ′, resp. CD
and C ′D′) pass through P (resp. Q, resp. R). Then the sides DA and D′A′ pass through
the same point on the curve, here S.

of circles. August’s desire to get rid of elliptic functions and to explain the unity of (some of)
the theorems of closure with the “simplest possible geometric considerations” thus consisted
in linking these theorems through projections from a spatial situation to several planar ones.

4.2 Elliptic functions as the true source of the theorems of closure

A completely different role was endorsed by elliptic functions in a 1876 paper of Simon called
“Integral multiplication of elliptic functions in connection with the closure problem” [Simon
1876].88 As Simon indicated in the introduction of the paper, he had already tackled the
subject of the paper during the mathematical seminar in Berlin between 1864 and 1865, and
this subject then led to his doctoral dissertation published shortly after, [Simon 1867].89 He
started his paper by explaining that “just as the integral multiplication of cyclic functions
is linked to the problem of the cyclotomy, that of elliptic functions is linked to that of the
closure.”90

To explain this parallel, let us first recall that the problem of cyclotomy consists in
dividing the circle into a number n of equal parts; it is linked to the problem of determining

88“Ganzzahlige Mutliplication der elliptischen Functionen in Verbindung mit dem Schliessungsproblem.”
89Simon studied at the University of Berlin between 1862 and 1866. He taught mathematics in this city

between 1868 and 1871, and was then appointed professor at the University of Strasbourg. One main difference
between the disseration and the paper we discuss here is that the former only refers to the theorem of Poncelet
and does not use any Schliessungs-word. About Simon’s activities as an historian and didactician of mathematics,
see [Volkert 1994].

90“Wie die ganzzahlige Multiplikation der cyklischen Functionen mit dem Problem der Kreistheilung
zusammenhängt, so die der elliptischen mit dem der Schliessung.” [Simon 1876, p. 301].

28



the complex numbers α such that nα is a period of the usual circular function exp(i·). Another
way to present it is to start from an initial argument u and to search for the numbers α such
that exp(i(u + nα)) = exp(iu). Of course, the corresponding α are the same—they are such
that nα is a period of the function exp(i·)—but what is important to note is that this condition
is independent of u.91

As for the explanation of the link between the problem of closure and the multiplication
of elliptic functions, it was presented by Simon in a (vague) paragraph contained in the
introduction of the paper. Simon considered geometrical magnitudes of the form (x, y, z . . .),
described by a parameter t, and took an interest in the sequences of such magnitudes
corresponding to sequences t1, t2, t3, . . . such that all the consecutive numbers tk and tk+1 are
linked by a relation f (tk, tk+1) = 0 where f (X,Y ) is a symmetric polynomial which is of
degree 2 both in X and Y .92 Under these conditions, Simon asserted, an elliptic function χ
exists, which can express the parameters tk in function of a new parameter u (defined by t1)
and a constant α: t1 = χ(u), t2 = χ(u + α), t3 = χ(u + 2α) . . . With this, he stated that the
sequence of the ti would be a “cycle” t1, . . . , tn, i.e. one would have tn+k = tk for all integer
k, if χ(u + nα) = χ(u), that is, if nα be a period of the elliptic function χ, a condition he
noticed to be independent of u—whence the parallel with the cyclotomic case.93 Simon
concluded:

Whenever a univocal progression is determined by fixation of t and
√

R(t) (where the
degree of R is no greater than 4), a theorem of closure is obtained.94 [Simon 1876,
p. 301]

Simon thus presented a frame for the theorems of closure that was disconnected from any
particular geometric incarnation, and in which these theorems were subsumed as mere
instances of “the problem of closure,” a problem whose generality is attested by the employed
singular formulation. The theory of elliptic functions thus appeared as the root both explaining
and producing these theorems.

Simon considered a first case, namely the Steiner polygons on cubic curves, and explained
how the theory of elliptic functions could solve the corresponding problem. He considered a
cubic curve given by an equation y2 = 4x3 − g2x − g3 and the associated parameterization
x = ℘(t), y = ℘′(t) expressing the coordinates of the points of the curve thanks to the
Weierstrass elliptic function ℘ and its derivative.95 Simon then proved that three points of

91The problem of cyclotomy, with its associated so-called cyclotomic equations, had been the subject (but not
under this name) of the seventh chapter of Carl Friedrich Gauss’s Disquisitiones Arithmeticae (1801), a chapter
that assured the fame of the book and alimented the research on equation theory during the first decades of the
nineteenth century. See [Goldstein and Schappacher 2007, pp. 18–24].

92This echoes the research of Rosanes and Pasch of 1869, which is cited at the end of Simon’s introduction.
93Note that a parallel between circular functions and the cyclotomy on one hand, and the elliptic function

associated to the lemniscate and its problem of division on the other hand, had already been emphasized by
mathematicians like Gauss, Jacobi, and Abel at the beginning of the nineteenth century. See [Goldstein and
Schappacher 2007, pp. 32–39].

94“Jedesmal also, wenn durch Fixirung von t und
√

R(t) (wo R höchstens vom vierten Grade) ein eindeutiger
Fortgang bestimmt wird, gilt ein Schliessugstheorem.” The introduction of square root

√
R(t) refers to the

definition of an elliptic integral
∫

dt/
√

R(t), or to the definition of the inverse elliptic function.
95Simon neither commented the choice of the special equation y2 = 4x3−g2x−g3 for a cubic curve, nor proved

that every smooth cubic curve can be described by such an equation for an appropriate choice of coordinates. Let
us note that Weierstrass had defined ℘ as a solution of the differential equation s′2 = 4s3 − g2s − g3 in a lecture
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the curve defined by the parameters t1, t2, t3 are aligned if and only if t1 + t2 + t3 ≡ 0 modulo
the periods of ℘, and deduced from this characterization the theorem about the Steiner’s
polygons: he showed that if α, β are the parameters of the two fixed points in the construction
of the polygons of Steiner, then the condition of closure is that n(α − β) is a (combination of
the) period(s) of the Weierstrassian elliptic function.96

But Simon’s main objective was to study the problem of the polygons of Poncelet or, as
he wrote, “the most famous of the problems of closure.”97 Simon explained that there were
three main questions to be solved: first, to prove the theorem of Poncelet itself; second, to
express, in function of the invariants of the conics, the constants having the same role as that
of the radii and the distance between the centers in the case of two circles; third, to find, in a
simple way, the relations existing between these magnitudes and the number of sides of an
interscribed polygon.

He also insisted on the fact that Jacobi was the very first to have tackled the problem of
the polygons of Poncelet (in the case of two circles) by means of elliptic functions:

With the introduction of the addition theorem of elliptic functions, [Jacobi] discovered
the true source of this theorem and of similar ones, and gave at the same time the general
proof of the theorem and the relation between the constants of the problems, yet not in
its simplest form.98 [Simon 1876, p. 303]

Then he acknowledged that these questions had already been treated by Cayley [1853a],
Moutard [1862], and Rosanes and Pasch [1865], but explained that he allowed himself to
return on the subject because of the simplicity of the formulas that he found [Simon 1876,
p. 304].99 We will not go into the technical details of Simon’s research. Nevertheless, it
is interesting to note that, in the previous quotation, Simon insisted again on the fact that
elliptic functions, and especially the addition theorem, were the “true source” of the theorems
of closure.

These theorems were thus united in Simon’s work through a conception of them as arising
from a common source, namely the elliptic functions. His general explanations, however,
remained a bit unclear, and the theorems of Poncelet and of Steiner (about cubic curves) were
the only ones that were mentioned and tackled by Simon—according to the titles and reviews
of Simon’s production listed in the Jahrbuch, it seems that he did not return to the subject of
closure theorems later, and thus never gave other examples of theorems which would have
their source in the theorem of addition of elliptic functions.100

given in 1863 [Bottazzini and Gray 2013, p. 428], which corresponds to the period of time when Simon was a
student at the university of Berlin.

96Clebsch’s 1864 solution of this problem was built on the elliptic functions of Jacobi, but relied on the same
congruence (up to a constant) expressing the alignment of three points of the cubic, which led him to a similar
condition on n(α − β), yet expressed in terms of the periods of the Jacobian functions. See [Lê 2018].

97“Ich wende mich nun zu dem bekanntesten unter den Schliessungsproblemen.” [Simon 1876, p. 303].
98“Mit der Einführung des Additionstheorems der elliptischen Functionen deckt er selber die wahre Quelle

dieser und aller ähnlichen Sätze auf und giebt zugleich den allgemeinen Beweis des Satzes und die Relation
zwischen den Constanten des Problems, nur die letztere nicht in ihrer einfachsten Form.”

99Let us remark that contrary to the works of Cayley, of Moutard, and of Rosanes and Pasch, Simon makes use
of the Weierstrass elliptic function and the associated invariants, which seems to be connected to the issue of
simplicity.
100This point of view is perhaps the one which is the closest to our current view on closure theorems, consisting

in interpreting them as the search of points of finite order on some elliptic curves. For instance, [Griffith and
Harris 1978] revisited the problem of Poncelet’s polygon in this way.
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4.3 A fundamental theorem of algebra

Another kind of unification operated in the work of Adolf Hurwitz (1859–1919) entitled “On
infinite-ambiguous geometric problems, particularly the problems of closure,” one of his very
first publications [Hurwitz 1879].101 As the title indicates, Hurwitz aimed at investigating
a certain set of problems containing the problems of closure, a set which he described as
follows:

There are, in geometry, a large number of theorems stating that a certain event happens
infinitely many times as soon as it happens once or a certain finite number of times.102
[Hurwitz 1879, p. 8]

Hurwitz did not specify the nature of the events in question, thus attributing some generality
to the set of problems he was dealing with. The problems of closure, which were supposed
to fit in this description, could correspond to the case where these events are the closure
of sequences of geometrical objects like lines or circles satisfying additional conditions.103
But the nature of these events was no concern for Hurwitz’s first reflections, focused on the
general structure of the theorems described above:

The exterior form of these theorems already indicates the relation they have with the
fundamental theorem of algebra according to which an equation with one unknown
having a number of roots greater than its degree has infinitely many roots, being then
satisfied by every value of the unknown.104 [Hurwitz 1879, p. 8]

This analogy between the geometric theorems and the fundamental theorem of algebra was
then technically realized within the frame of (m, n)-correspondences. As Hurwitz explained,
a (m, n)-correspondence is a way to associate two families of geometrical objects, both
depending of one parameter, so that every object of the first family corresponds to n objects
of the second family, and reciprocally, that every object of the second family corresponds
to m objects of the first one.105 If the two families are made of objects of the same kind, a
coincidence is an object which is associated to itself in the correspondence, and there exist in
general m + n coincidences in a (m, n)-correspondence. This notion of coincidence allowed
Hurwitz to state a theorem according to which if a (m, n)-correspondence has more than m+n
coincidences, then every object is a coincidence. Hurwitz stressed that “[this] conclusion,
according to which each element is a coincidence, comes from the fact that, under the

101“Ueber unendlich-vieldeutig geometrische Aufgaben, insbesondere über die Schliessungsprobleme.” Ac-
cording to the Jahrbuch, the first publication of Hurwitz is an article of 1876 written together with Hermann
Schubert, [Hurwitz and Schubert 1876]. The paper we examine here is his second one. Hurwitz attended lectures
of Klein in Munich in 1877, and then spent the academic year 1877/1878 at the university of Berlin. For more
biographical information about Adolf Hurwitz (and his brother Julius), and their works on continued complex
fractions, see [Oswald and Steuding 2014].
102“Es giebt in der Geometrie eine grosse Anzahl von Sätzen, die aussagen, dass ein gewisses Ereignis unendlich

oft Statt hat, sobald es nur einMal oder endlich oft eintritt.”
103This distinction recalls our discussion about the inclusion of the theorems of closure within the porisms for

the English mathematicians of the time.
104“Schon die äussere Form dieser Sätze weist auf den Zusammenhang hin, in welchen dieselben mit jenem

Fundamentalsatze der Algebra stehen, dass eine Gleichung mit einer Unbekannten, die mehr Wurzeln hat als ihr
Grad angiebt, unzählig viele Wurzeln besitzt, indem sie durch jede Werth der Unbekannten befriedigt wird.”
Thus the “fundamental theorem of algebra” mentioned by Hurwitz is not the one concerning the existence of
roots of complex, non-constant polynomials. On this theorem and its different formulations, see [Gilain 1991].
105The particular case of (2, 2)-correspondence is the same as the (2, 2)-correlations used by Weyr.
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assumption that was made, the equation determining the coincidences of the correspondence
is satisfied by every value of the unknown.”106

The idea behind this result is the following: a (m, n)-correspondence gives rise to an
algebraic equation f (λ1, λ2) = 0 between the parameters of the families in correspondence,
an equation of degree m in λ1 and of degree n in λ2. The coincidences are parameterized by
the solutions of the equation f (λ, λ) = 0, which is of degree m+n. According to the algebraic
theorem evoked by Hurwitz, if there exist more than m + n coincidences, the equation has
infinitely many solutions, and so every object is a coincidence.107

These general considerations were then applied to the particular case of the theorems of
closure, and Hurwitz emphasized the simplicity allowed by the theorem on coincidences:
“We now apply the previous theorem to the problems of closure, and we will see how
easily the remarkable theorems to which they give rise follow.”108 Accordingly, the next
four paragraphs of Hurwitz’s paper were respectively devoted to Steiner’s chains of circles,
Poncelet’s polygons, Steiner’s polygons on cubic curves, and Weyr’s polygons associated to
spatial quartic curves of the first species.109 In each case, Hurwitz’s method consisted in
defining an adequate (2, 2)-correspondence for which the coincidences are linked to closed
polygons or chains of circles; the existence of one such closed sequence yielded a number of
coincidence large enough to conclude that there are infinitely many coincidences and thus
infinitely many closed polygons or chains or circles.110

Hence these four theorems of closure were presented as mere applications of one theorem
on (m, n)-correspondences. This common root, and the exact same structure of their respective
proofs, tended to reinforce their unity, a unity already seen through their “exterior form,”
as we saw above. The fundamental theorem of algebra thus appeared as a principle both
explaining the resemblance of the formulations of the theorems of closure and underlying a
common scheme of proof.

Let us finally remark that Hurwitz’s intention of grounding the theorems of closure on a
certain theorem of algebra differed from August’s will to find a common geometric point of
view on these problems, fuelled by the desire to exclude elliptic functions. In fact, Hurwitz
published another paper shortly after, [Hurwitz 1882], in which he connected the approach
of the (2, 2)-correspondences with elliptic functions, and proved again the theorems about
Steiner’s polygons on cubics and chains of circles. If elliptic functions were thus used by
Hurwitz to prove these theorems, he made no comment on a possible unifying role of these
special functions for the category of the theorems of closure.

106“Zu letzterem Schluss, dass jedes element Coincidenzelement ist, berechtigt uns der Umstand, dass
die Gleichung, welche die Coincidenzen der betreffenden Correpsondenz bestimmt, unter der gemachten
Voraussetzung, durch jedenWerth der Unbekannten befriedigt ist.” [Hurwitz 1879, pp. 8–9].
107The existence of m + n coincidences in general is called “correspondence principle” or “Chasles’ correpson-

dence principle” in [Dieudonné 1974, p. 38] and [Del Centina 2016, p. 83]. The latter refers to the paper [Chasles
1864], where the result is stated on page 1175.
108“Wir wenden nun den so oben aufgestellten Satz auf die Schliessungsprobleme an, und werden sehen, dass

sich die bei letzteren auftretenden merkwürdigen Sätzen mit grosser Leichtigkeit dabei ergeben.” [Hurwitz 1879,
p. 9].
109In a last paragraph, Hurwitz also indicated, without giving any proof, that his method could also be applied

to obtain some of the theorems that Darboux proved in [Darboux 1873].
110See [Del Centina 2016, pp. 88–89] for more details.
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4.4 Three different partial unifications

Each of the unifications that we have described in this section had its own operating mode.
August first considered a geometric configuration which he depicted as a generalization of
that of the polygons of Steiner associated to cubic curves; then he deduced some of the
already-known theorems of closure with the help of different projections. His unifying
approach thus consisted in deriving by means of geometric transformations the configurations
linked to the closure theorems from an other configuration. On the other hand, Simon began
by explaining how certain geometric problems could be expressed, one by one, with the
theory of elliptic functions, and the core of the gathering of closure problems, then, was
the problem of the division of the periods of these functions: the unification came from the
possibility of reducing each closure problem to the problem of the division. Hurwitz, for
his part, started by emphasizing the particular formulation of some geometric theorems, a
formulation that he immediately linked with the fundamental theorem of algebra. Each of the
usual closure theorems then appeared as examples of application of this theorem, or rather,
of its version expressed with the theory of correspondences.

Hence these unifications were technically organized in different manners, and their
authors situated them in specific, distinct domains of mathematics, namely geometry, the
theory of elliptic functions, and algebra. Yet they shared the feature that, from an effective
point of view, they were only partial unifications. Indeed, August emphasized this point
himself when he explained that his approach could only reach a restricted part of the theorems
of closure, and we saw that both Simon and Hurwitz applied their general principles to a
small number of these theorems. This observation thus displays an interesting phenomenon,
viz. a tension between statements announcing unifications in a general and somewhat vague
way on one hand, and effective, technical, but incomplete realizations of them on the other
hand.

Whatever their claimed disciplinary membership, the completion of their unifying role,
or their actual ability to encompass all the problems of closure, the approaches of August,
Simon, and Hurwitz tended to strengthen the category as they explicitly sought for reasons
concealed behind the wordings of these problems. Therefore their respective papers represent
a decisive step in the process of constituting of the category of the problems of closure,
as they deliberately designated them with the label Schliessungsprobleme and presented
unifying viewpoints explaining them as a whole.

5 Between novelty and old issues, 1880–1907

Before turning to our general conclusions, let us describe in this section the content of the
publications of the corpus published from the beginning of the 1880s. We will be briefer
here, trying to delineate the general themes which can be observed in this part of the corpus
and which are relevant for our purpose. These themes are for the most part reminiscent
of what we already described earlier about extensions, analogies, mathematical links, and
alternative methods; but in this part of the corpus, they are explicitly linked to the labels like
Schliessungssätze.

A number of publications in the period 1880–1907 aimed at tackling some already-known
geometric situations with other methods than those used before. Let us take a look at the
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case of the theorem of the polygons of Steiner on cubics. Like the works of Weyr [1870,
1871] and, in a way, of August [1876b] which we depicted before, several texts had the
objective to come back to the proof of this theorem and of diverse subsequent properties of
the polygons of Steiner, especially with the intention to avoid the theory of elliptic functions
and to suggest alternative “geometric” methods. For instance, in 1883, Pieter Hendrik
Schoute (1846–1913), professor of mathematics at the university of Groningen, wrote that
“the problems of closure that Steiner proposed almost 40 years ago in the 32nd volume of
[Crelle’s] journal are still waiting for a geometrical solution”111 [Schoute 1883, p. 105]. He
acknowledged that Clebsch [1864] had solved the problem for smooth cubic curves with
elliptic functions and remarked that Weyr had to use differential calculus to complete his
approach, so that a “geometric” proof, covering both the cases of smooth and of singular
cubics, was still needed—apparently, Schoute did not know of the research of August. After
this work of Schoute, other publications tackled the same questions, each presenting their
own priorities. To take but one example, in 1888, Martin Disteli (1862–1923) published a
monograph in which, as its title indicates, he wanted to tackle the theorem of Steiner with
methods of descriptive geometry [Disteli 1888].112 For him, these methods had the advantage
of encompassing both the smooth and the singular cases of cubic curves, contrary to those
based on elliptic functions. But Disteli also stressed that descriptive geometry addressed
the issue of the graphical representation of the obtained results, for it yielded “the simplest
constructive means to actually represent” them [Disteli 1888, pp. iv–v] (see figure 9).

Other publications were devoted to new geometric situations, frequently presented as
extensions of the problems of Poncelet’s polygons, of Steiner’s polygons, or (to a lesser
extent) of Steiner’s chains of circles. This is the case of Henry Picquet, a French répétiteur at
the École polytechnique, who proposed a memoir aiming at studying polygons that are both
inscribed in, and circumscribed to a single cubic curve—in other words, these polygons have
their vertices on the curve, and their sides are tangent to it [Picquet 1884]. If Picquet made an
extensive use of elliptic functions in this research, works of other mathematicians were later
developed to bypass these functions, just like in the previously noted situations.113 Other
typical examples of successive extensions of aldready-known problems are that of Frank
Morley, who made investigations on polygons interscribed between two cubic curves [Morley
1907], and of Henry White, whose research about polygons interscribed between a conic and
a cubic was explicitly presented in a frame implying the original situation as well as the more
recent related works: “Poncelet’s porism of the inscribed and circumscribed polygons has a
certain extension to the system of a non-singular plane cubic and a curve of the second class,
resembling that recently given by Morley to point cubic and line cubic” [White 1906].114
Such extensions hence recall the situation of the first decades of the nineteenth century, and

111“Die Schliessungsprobleme, welche Steiner vor fast vierzig Jahren im 32. Bande dieses Journals (Seite
182-184) aufgestellt hat, warten noch immer einer geometrischen Lösung.” Here, the plural form of Schlies-
sungsprobleme refers to the cases of cubics and of binodal quartics.
112The monograph is entitled “Die Steiner’schen Schliessungsprobleme nach darstellend geometrischer

Methode,” which can be translated as “The problems of closure of Steiner with methods of descriptive geometry.”
Disteli had been the student of Wilhelm Fiedler, the famous translator of George Salmon’s books on geometry
and invariant theory. In 1888, Disteli was assistant professor at the Eidgenössische Polytechnikum in Zürich. For
biographical information about him, see [Frei and Stammbach 1994, p. 23].
113See for instance a paper of Eduard Weyr’s brother Emil, [Emil Weyr 1893].
114The paper of Morley which we just mentioned and which is alluded to by White is dated 1905, which explains

the apparent chronological inversion in this quotation.
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Figure 9 – Examples of Disteli’s simple means of representation of the results on cubic
curves, [Disteli 1888, tables III and VI].

they surely contributed to gather all the corresponding problems and theorems as a coherent
whole.

Two other factors, similar to the ones that have been already noted in the previous
sections, also tended to aggregate them: on the one hand, the demonstrations of technical
links connecting together two situations that were a priori perceived as different, and, on
the other hand, the emphasis put on the analogies existing between different problems. To
illustrate the first of these factors, let us only, and very briefly, mention the polygons of Steiner
inscribed in a cubic and the polygons inscribed in a spatial quartic of the first species whose
sides alternatively belong to the two families of generators of a quadric surface. In a paper
devoted to particular quartic surfaces, Friedrich Schur proved that these two sorts of polygons
are linked by various geometric transformations (like projections), [Schur 1882].115 As for
the analogies, we refer to a paper of Otto Staude devoted to geodesic polygons drawn on a
quadric surface [Staude 1883]. In this paper, Staude explained that two ways of constructing
ellipses could be extended to space in order to construct quadric surfaces, and he added:

Accordingly, Poncelet’s theorems of closure display a double analogywithin the geometry
of quadric surfaces: on the one hand, with the theory of the geodesic polygons on
quadric surfaces, and on the other hand, with the theory of the rectilinear polygons that
are circumscribed about two quadrics and inscribed in a third one. In both of these
theories, one can search for an application of hyperelliptic integrals which is analogous
to the application that elliptic integrals have found in [Jacobi 1828] for the first time.116

115The surfaces tackled by Schur in this paper have the particularity to contain exactly 64 straight lines, a
number which is now known to be the maximal number of lines in a (complex) non-singular quartic surface.
116“Entsprechend finden die Poncelet’schen Schliessungssätze innerhalb der Geometrie der Flächen 2. Grades
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[Staude 1883, pp. 219–220]

Thus the analogy operated on different levels: to introduce the subject of the paper (here, the
geodesic polygons on quadric surfaces), and to explain the transfer of method that was about
to be made in the technical details, with the use of hyperelliptic integrals. Here again, this
kind of remarks brings to mind what we described above: for instance, the transfer of method
of Staude recalls Clebsch’s comments in the introduction of his 1864 paper on the polygons
of Steiner.

As some of the descriptions we just made indicate, the Schliessungs-labels were employed
quite frequently in this last part of the corpus. To be more specific, three different kinds of
uses can be distinguished. We find again the plural forms “closure theorems” and “closure
problems” to designate a set of theorems or problems associated to different geometric
situations: this is exemplified by Viktor Eberhard, who talked about “the theory of the
problems of closure,” in a work where he endeavored to link the polygons inscribed in a
cubic with those inscribed in a spatial quartic curve [Eberhard 1887, p. 68].117 But the
labels in question also appeared in the context of a single geometric situation, sometimes
in a singular form—as in “the theorem of closure of Steiner” [Schröter 1888, p. 256]—and
sometimes in a plural form—as in “the theorems of closure of Poncelet” [Thomae 1895,
p. 352]. The difference between these two sorts of occurrences is that the former bore upon
the main theorem stating the alternative about the existence of closed polygons, whereas
the latter alluded to the main theorem as well as the supplementary properties that Poncelet
had proved alongside, like the concurrency of the diagonals of all the closed quadrilaterals.
Finally, echoes of these labels also appeared in disguised forms, through phrases like “closure
conditions,” “closure ratios,” or “closure numbers” that can be find, for instance, in [Vahlen
1896, pp. 154, 160].118

These numerous and varied uses of the Schliessungs-labels show their diffusion, adoption,
and establishment during the two last decades of the nineteenth century. Alongside the other
features we described, this suggests that at this time, the problems of closure were indeed
recognized as a proper category, with its typical issues and concerns. But it also had its own
history, a history that often appeared through names and references associated to specific
objects and approaches, and linked to mathematicians who belonged to previous generations,
like Poncelet, Steiner, or Jacobi.

6 Categorization, classification, and family resemblance

The descriptions that have been made in this paper show that the category of the theorems
of closure has been built gradually and collectively during the nineteenth century. In the

eine doppelte Analogie; es stellt sich nämlich über dieselben einerseits die Theorie der geodätische Polygone auf
den Flächen 2. Grades, welche einer Krümmungscurve umbeschrieben und einer andern einbeschrieben sind,
anderseits die Theorie der geradlinigen Polygone, welche zweien Flächen 2. Grades umbeschrieben und einer
dritten einbeschrieben sind. In beiden Theorien kann man eine Anwendung der hyperelliptische Integrale suchen
analog derjenigen, welche die elliptische Integrale zuerst in der Arbeit von Jacobi [...] gefunden haben.”
117Let us remark that the evocation of a “theory” of closure theorems brings out the idea of a proper set of

propositions and questions associated to these theorems.
118Theodor Vahlen talked about “Schliessungsbedingungen,” “Schliessungsverhältnisse,” but also “Schlies-

sungszahl,” to designate the conditions, the metric relations, and some of the numbers implied in these relations
linked to the closing chains of circles of Steiner.
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first decades of the century, the theorems on the polygons of Poncelet and on the chains of
circles of Steiner were still separate theorems, even though they generated similar issues (e.g.
their analogical extensions to spatial or spherical objects, or the search for metrical relations
expressing the existence of closed series of geometrical objects) that were tackled by different
mathematicians. Quite similarly, in the middle of the century, the two theorems of Steiner
about the polygons inscribed in cubic curves and in binodal quartic curves were not explicitly
connected to with one another, but their wordings, their close textual position within the same
paper, and the uses of the semantic field of analogy contributed to display them as siblings.
After a few works of the 1860s which evoked the existence of a certain class of problems, the
label Schliessungsprobleme appeared in the 1870 paper of Eduard Weyr to encompass the
two latter theorems of Steiner. The label and its variants subsequently disseminated, as their
appearances in the writings of numerous mathematicians attest: the papers of August, Simon,
and Hurwitz who evidenced the unity of the category with technical reasons, and the many
later articles of others who extended, transposed, or found new proofs of already-known
theorems of closure.

These elements are traces of the actions which, taken as a whole, manifest the historical
process of the emergence of the category of closure theorems. But now that we have arrived
at the end of our study, one question, which tacitly came up in several places above, remains
unsolved: on what basis did the mathematicians of the last third of the nineteenth century
recognize a given theorem to be a theorem of closure? In other words, what was the process
of categorization that operated in their mind in order to decide whether a theorem should
be grouped among the theorems of closure or not? This question bears upon the cognitive
mechanisms which grounded the mental recognition of closure theorems by mathematicians
of the past, and, especially because of the lack of historical material, I do not claim to be in
position to give a definitive answer to it. Nevertheless, I would like to propose some related
reflections in light of what has been done in the present paper.

There exist many variations of the notion of categorization in cognitive science, each of
them having peculiarities which reflect the priorities of their authors or of the sub-discipline
in which they have been developed.119 Here I choose to confront the case of the theorems of
closure with two usual acceptations of the notion: the so-called “classical” one, inherited from
Aristotle, and the one based on Ludwig Wittgenstein’s concept of “family resemblance.”120

On the one hand, the classical view conceives categories as “predetermined categories,
each defined by a set of essential features represented by the category label; and all members
of a given category [are] assumed to share a set of essential features that [is] identified by the
category label and [is] apprehended by all members of the linguistic community.” [Jacob 2004,
p. 520]. Therefore, from this viewpoint, people categorize on the basis of lists of necessary
and sufficient conditions defining each category and allowing to check the membership of
a given object to a given category. Let us note that within the framework of mathematics,
this view may be connected with the notion of classification, in the sense of a systematic

119For an overview on the subject, see the extensive [Cohen and Lefebvre 2017].
120The following explanations come in part from [Jacob 2004], in which the differences between these two

viewpoints are synthetically and clearly presented. As Ivahn Smadja rightly pointed out to me, other tracks
than that of Wittgenstein could have been followed here. My choice to confront the case of the theorems of
closure to this well-known distinction between the classical acceptation of categorization and Wittgenstein’s
family resemblance is meant to bring to light a number of observations and questions through one particular
prism, and is not intended to provide a definitive answer to the discussion.

37



distribution of objects into classes according to chosen principles: classifying integers
according to their parity, classifying algebraic curves according to their genus, etc.121

On the other hand, the acceptation of categorization coming from Wittgenstein’s works
is rooted in his notion of “family resemblance,” a notion he proposed in his Philosoph-
ical Investigations as he was attempting to account for what constitutes the category of
games [Wittgenstein 1953]. “While traditional classification is rigorous in that it mandates
an entity either is or is not a member of a particular class, the process of categorization
[based on family resemblance] is flexible and creative and draws nonbinding associations
between entities—associations that are based not on a set of predetermined principles but on
the simple recognition of similarities that exist across a set of entities.” [Jacob 2004, p. 527].
According to this description, categorization is made by subjects through a perception of
resemblance (the family resemblance) among certain given objects, which are then gathered
as a proper category. Using a mathematical example, Wittgenstein himself insisted on the
fact that the actual delimitation of categories is not an issue from this point of view:

“All right: the concept of number is defined for you as the logical sum of these individual
interrelated concepts: cardinal numbers, rational numbers, real numbers, etc.; and
in the same way the concept of a game as the logical sum of a corresponding set of
sub-concepts.”—It need not be so. For I can give the concept “number” rigid limits in
this way, that is, use the word “number” for a rigidly limited concept, but I can also use
it so that the extension of the concept is not closed by a frontier. And this is how we do
use the word “games.” [...]

How should we explain to someone what a game is? I imagine that we should describe
games to him, and we might add: “This and similar things are called ‘games.’”
[Wittgenstein 1953, §§ 68–69]

In what way do these considerations illuminate the case of the category of closure
theorems? First, as the present study showed, no mathematician of the nineteenth century
proposed a definition of what these theorems, seen as a whole, would be; none of them
evoked a list of criteria that should be checked to evaluate the membership of a given
theorem to the category. Furthermore, the creation of the label Schliessungssätze and its
variants did not appear in a general context of classification of every geometric problems and
theorems, but rather served to gather a number of disparate propositions into one identified
category. Besides, even the three approaches of August, Simon, and Hurwitz, which could
be interpreted as means to make explicit the delimitation of the category of closure theorems,
were not presented in this way: each of these works was intended to explain the unity of
(some of) the theorems of closure, and have been developed by their authors while placing
boundaries around the category was not an issue.122 These observations thus indicate that
the classical view is not relevant to account for the categorization process of the theorems of
closure.

On the contrary, the previous quotation of Wittgenstein could well be used when replacing
“games” by “closure theorems”: in light of our reading of the texts of the nineteenth century,
one could be tempted to define the theorems of closure by describing some of them (like

121The word “classification” is also used in [Jacob 2004] in this sense. Practices of classifications in the history
of science (especially in the nineteenth century) are the topic of a special volume of Cahiers François Viète, [Lê
and Paumier 2016b].
122Moreover, les us recall that these approaches were only partial, from an effective viewpoint.
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the theorem of Poncelet, or those of Steiner) and then by adding: “This and similar things
are called ‘closure theorems.’” Moreover, the particular wordings of the theorems, which
appeared frequently without being explicitly commented, as well as the vague hints to the
“exterior form” of the theorems, and the numerous extensions and analogies that tended to
implicitly aggregate them as a whole, also plead in favor of a categorization process grounded
on family-resemblance-like mechanisms. Borrowing Wittgenstein’s well-known metaphor
may eventually help sum up and illuminate the situation: the thread of the theorems of
closure had no fiber going through its entire length—excepting, perhaps, the theorem of
Poncelet—but its strength came from the way all its fibers were connected to one another by
mathematicians creating and using specific labels, building analogical bridges, transposing
particular wordings, or searching for unity among some of these fibers.123

In different ages and places, practitioners of mathematics have distinguished and forged
many categories such as disciplinary rubrics, families of objects, and classes of problems.
But what can be told about the diverse processes, both historical and cognitive, which have
grounded the creation of these categories? For a trained mathematician, recognizing an
even integer is certainly different from assigning a given paper into a rubric like “geometry.”
Likewise, there is no doubt that identifying kinds of cubic surfaces on the basis of their
visible shape and classifying them according to their “topological type” (a notion defined
in order to make rigorous the idea of similarity of shape)124 are two actions grounded by
different cognitive processes, even if the latter has been inspired by the former.

The case study that I analyzed here sheds some light on a particular kind of categorization
that has been progressively conducted by mathematicians throughout the nineteenth century,
each of them having proceeded by family resemblance rather than by strict classification. Yet
the previous example of cubic surfaces and the constant evolution of mathematics raise the
question of the possible shifts between these two notions of categorization: are objects or
theorems that have been once categorized by similarity meant to become later the elements
of a definite class in an exhaustive, systematic, and formalized classification?
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