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Abstract We apply the asymptotic expansion method by P.G. Ciarlet to obtain a
Kirchhoff-Love-type plate model for a linear soft ferromagnetic material. We also give
a mathematical justification of the obtained model by means of a strong convergence re-
sult.
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1 Introduction

The use of the framework of continuum mechanics for the study of the influence of electro-

magnetic effects on solids has been largely stimulated by Truesdell and Toupin [14]. Their

research on the coupling between the mechanical and magnetic responses of magnetoelastic

solids was the first of a long list (without any attempt to be exhaustive, see, e.g. Brown [1]

Tiersten [13], Maugin and Eringen [6], Pao and Yeh [12], Moon [9], Maugin [8], Dorfmann and

Ogden [4], Kankanala and Triantafyllidis [5], ...). An important stimulus for the development

of these researches was the study of the magnetoelastic buckling problem. Indeed a plate,

made of a magnetoelastic material, subject to a transverse magnetic field, buckles when the

magnetic field attains a critical value; see also [5, 3], for a general analysis of the buckling of

some magnetoelastic structures. Following a pioneering experimental and theoretical research

of Moon and Pao, the first rigorous attempt to analyze this problem is due to Pao and Yeh

[12]. Maugin and Goudjo [7] have considered a plate model with particular attention on the

regularity of the boundary. More recently, in the case linear soft magnetoelastic materials,

Zhou and Zheng [15, 16, 17] have revisited the subject by adapting the usual Kirchhoff-Love

and von Kármán models only modifying the equivalent transverse force with the addition of

the magnetic effects.

The paper is organized as follows. In Sect. 2, we briefly recall the governing equilibrium

equations of magnetoelasticity and, then, in Sect. 3, we state the problem on a variable domain
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1Laboratoire de Mécanique des Solides, École Polytechnique, CNRS, Universit Paris-Saclay,
91128 Palaiseau, France
E-mail:giuseppe.geymonat@polytechnique.edu

2Institut Montpelli04erain Alexander Grothendieck, UMR-CNRS 5149, Université de Montpellier
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assuming that the magnetic forces are given. In order to apply the Ciarlet’s method (see, e.g.,

[2]), we must at first prove that the magnetic forces give rise to a linear and continuous form.

This can be achieved under suitable assumptions on the magnetic forces, see lemma 3.1. In

Sect. 4, we introduce the usual scaling on the mechanical quantities and we scale the magnetic

quantities in such a way that the Gauss’ Law (2.1) is conserved. Using the classical change of

variables, we deduce the scaled equations. Then we can apply the asymptotic methods, following

[2], to obtain the limit problem and the strong convergence result. It is interesting to remark

that in the simplest situation of a transversal magnetic field, we recover the Kirchhoff-Love

model of Zhou and Zheng, which is, hence, completely justified.

2 Governing equations of magnetoelasticity for linear soft ferromag-
netic materials

In the sequel, Greek indices range in the set t1, 2u, Latin indices range in the set t1, 2, 3u, and the Einstein’s

summation convention with respect to the repeated indices is adopted. Let us consider a three-dimensional

Euclidean space identified by R3 and such that the three vectors ei form an orthonormal basis. We introduce

the following notations for the vector product: a ^ b “ aiei ^ bjej “ aibjεijkek, for all vectors a “ paiq P R3

and b “ pbiq P R3, where εijk denotes the alternator Ricci’s symbol.

When a magnetizable, deformable elastic solid Ω is placed in a magnetic field, magnetic

moments are induced inside the body. The action of the external magnetic induction B0

manifests itself in magnetization M (magnetic moment per unit volume). Within the body, the

magnetic induction B is not necessarily equal to B0. The induced magnetization M “ pMiq

is related to B “ pBiq by B “ µ0pH `Mq, where H “ pHiq is called magnetic intensity

and µ0 is the magnetic permeability of vacuum. Generally, we have H “ HpMq, but, in

the sequel, we restrict our attention to a class of linear isotropic magnetoelastic materials

called soft ferromagnetic materials, which are characterized by the fact that their local average

magnetization becomes zero when the external field is set to zero. In this particular case, the

hysteresis loops are narrow and the influence of induced currents is small in comparison with

the effect of magnetization. Therefore, it is possible to use the quasi-static approximation, i.e.,

the equations of magneto-statics:
"

BiBi “ 0 in Ω, (Gauss’ Law)
εkijBjHi “ 0 in Ω. (Ampère’s Law)

(2.1)

The magnetic constitutive law takes the following linear form

M “ χH or B “ µ0µrH, (2.2)

where χ represents the magnetic susceptibility and µr :“ χ` 1 is the relative magnetic perme-

ability. For linear soft ferromagnetic materials, such as steels, iron, cobalt and various alloys,

the relative permeability is very large, µr or χ “ 102 „ 105.

In this work we use the model proposed by Brown [1] where the action of the magnetic field

is given by a magnetic body force (per unit volume) fm “ pfmi q and a magnetic body couple

(per unit volume) Im “ pImi q:

fm “ µ0p∇HqM and Im “ µ0M^H
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i.e. component-wise, fmi “ µ0MjBjHi and Imi “ µ0εkjiMkHj , This choice of the action of

the magnetic field is sometimes called the dipole model of microcurrents and has been used in

particular by Pao-Yeh for soft ferromagnetic elastic solids [12]. Using the Gauss’ law and the

Ampère’s law, the magnetic body force fm can also be written as the divergence of a second

order tensor Tm “ pTmij q, the so-called Maxwell’s stress tensor

fm “ divTm, (2.3)

or, component-wise, fmj “ BiT
m
ij with Tmij :“ BiHj ´

1
2µ0H

2δij and H2 :“ HkHk. As pointed

out by [1], other different choices of the Maxwell’s stress tensor are possible and, indeed, they

depend on the choice of the Helmomtz free energy; see in particular [5], for a clear explanation

of the influence of the choice of the arguments in the free energy on the Maxwell stress, magnetic

body forces and traction boundary conditions.

Considering the expressions above, in the absence of electric field, charge distribution and

conduction current, the mechanical governing equations defined in a magnetized body Ω can

be expressed by
$

&

%

Bitij ` f
m
j “ 0 in Ω,

tij ´ tji ` µ0pMiHj ´MjHiq “ 0 in Ω,
tijni “

1
2µ0pMnq

2nj in Ξ,
(2.4)

where tij is the non-symmetric total stress tensor, pniq represents the unit normal vector to the

boundary Ξ Ă BΩ and Mn :“ Mini is the normal surface boundary magnetization. The non-

symmetry of the total stress tensor is due to the presence of a magnetic body couple. In order

to simplify the model, we neglect magnetostriction and piezostrictive terms in the constitutive

laws and we consider an isotropic linear elastic material. Thus, we obtain that

tij “ σij ` µ0MiHj , with σij “ λeppδij ` 2µeij , (2.5)

where σij denotes the symmetric Cauchy stress tensor, associated with the linearized strain

tensor eij “
1
2 pBiuj ` Bjuiq, being puiq the displacement field, through the classical Lamé’s

constitutive equations. The presence of the term µ0MiHj in the decomposition of the total

stress always follows from the form of the Helmoltz free energy (see [1] and [5]).

In the Pao-Yeh’s case of soft ferromagnetic materials, thanks to (2.2), the magnetic body

couple Im “ µ0χH^H “ 0, and, hence, the stress tensor tij becomes symmetric, i.e., tij “ tji.

Moreover, substituting the expression of the Maxwell’s stress tensor into the divergence relation

(2.3) and using (2.1), we can find an alternative form of the magnetic body force:

fm “ µ0p∇HqM “
µ0χ

2
∇pH2q.

In the sequel, we will focus our attention to the reduced mechanical model arising from the

use of the asymptotic methods, assuming that the magnetization M and the magnetic intensity

H are a given external magnetic source.

3 Position of the problem

Let ω Ă R2 denote a smooth domain in the plane spanned by vectors eα, with boundary

γ; γ0 Ă γ is a measurable subset of γ with strictly positive length measure; γ1 :“ γzγ0 is the
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complement of γ0 with respect to γ; finally, 0 ă ε ă 1 is a dimensionless small real parameter

which shall tend to zero. For each ε, we define

Ωε :“ ω ˆ p´hε, hεq, Γε :“ γ ˆ p´hε, hεq
Γε0 :“ γ0 ˆ p´h

ε, hεq, Γε˘ :“ ω ˆ t˘hεu,

with hε ą 0. Hence the boundary BΩε of Ωε is partitioned into the lateral surface Γε and the

upper and lower faces Γε` and Γε´; the lateral surface is itself partitioned as Γε “ Γε0YΓε1, with

Γε1 :“ γ1 ˆ p´h
ε, hεq. Moreover, we let pΓε :“ Γε˘ Y Γε1 “ BΩ

εzΓε0, the complement of Γε0 with

respect to BΩε.

We assume that Ωε is constituted by a homogeneous isotropic linear soft ferromagnetic

material, whose constitutive law is given in (2.5). We suppose that the Lamé’s coefficients

satisfy the classical positivity properties. The plate is clamped on Γε0, so that uε “ 0, and, for

simplicity, we consider that no mechanical charges are applied to the body. The only source

terms are given by Mε
i and Hε

i .

Let V pΩεq :“
 

vε P H1pΩε;R3q; vε “ 0 on Γε0
(

be the functional space of admissible dis-

placements. The variational formulation of problem (2.4), defined on the variable domain Ωε,

takes the following form
"

Find uε “ puεi q P V pΩ
εq such that

Aεpuε,vεq “ Lεpvεq, for all vε “ pvεi q P V pΩ
εq,

(3.1)

where the bilinear form Aεp¨, ¨q and the linear form Lεp¨q are, respectively, defined by

Aεpuε,vεq :“

ż

Ωε

tεije
ε
ijpv

εqdxε, Lεpvεq :“

ż

Ωε

µ0M
ε
j B

ε
jH

ε
i v
ε
i dx

ε `

ż

pΓε

1

2
µ0pM

ε
nq

2nεiv
ε
i dΓε,

with tεij :“ λeεpppu
εqδij ` 2µeεijpu

εq ` µ0M
ε
i H

ε
j .

In order to prove the wellposedness of the problem, by virtue of the Lax-Milgram’s lemma,

we rewrite (3.1) in an alternative form:
"

Find uε “ puεi q P V pΩ
εq such that

Āεpuε,vεq “ L̄εpvεq, for all vε “ pvεi q P V pΩ
εq,

(3.2)

where

Āεpuε,vεq :“

ż

Ωε

 

λeεpppu
εqeεqqpv

εq ` 2µeεijpu
εqeεijpv

εq
(

dxε,

L̄εpvεq :“

ż

Ωε

µ0

 

Mε
j B

ε
jH

ε
i v
ε
i ´M

ε
i H

ε
j e
ε
ijpv

εq
(

dxε `

ż

pΓε

1

2
µ0pM

ε
nq

2nεiv
ε
i dΓε.

Since the bilinear form Āεp¨, ¨q is V pΩεq-coercive, in order to apply the Lax-Milgram’s lemma,

we have only to prove that the linear form L̄εp¨q is continuous on V pΩεq. For this when

1 ă p ă `8 we denote W 1
p pΩ

εq the Banach space of v P LppΩεq whose first order derivatives

(in the distribution sense) also belong to LppΩεq. The continuity of the linear form L̄εp¨q is the

object of the following lemma.

Lemma 3.1 Let us assume:

Mε
i , H

ε
i P W 1

12{5pΩ
εq (3.3)

then L̄εp¨q is continuous on V pΩεq.
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Proof. (i) Since vεi P H
1pΩεq, thanks to the Sobolev imbedding theorem, (see e.g. Nečas [11],

Chap. 2, Theor. 3.4) we obtain that vεi P L
6pΩεq and that fm,εi P L6{5pΩεq; hence, by

means of Hölder’s inequality, we can infer that

|

ż

Ωε

 

µ0M
ε
j B

ε
jH

ε
i v
ε
i

(

dxε| ď C}vi}1,Ωε (3.4)

(ii) Since Mε
i , H

ε
i P W 1

12{5pΩ
εq, thanks to the Sobolev imbedding theorem, we get that

Mε
i , H

ε
i P L12pΩεq Ă L4pΩεq and, thus, Mε

i H
ε
i P L2pΩεq. It then follows from Korn’s

inequality

|

ż

Ωε

 

µ0M
ε
i H

ε
j e
ε
ijpv

εq
(

dxε| ď C}eεijpv
εq}L2pΩεq ď C}v}V pΩεq (3.5)

(iii) By virtue of a trace imbedding theorem (see e.g. Nečas [11], Chap. 2, Theor. 4.2), we

have that Mε
i |BΩε P L8pBΩεq. Besides, being v P V pΩεq, then the same trace imbedding

theorem imply that vi|BΩε P L4pBΩεq, and so

|

ż

pΓε

1

2
µ0pM

ε
nq

2nεiv
ε
i dΓε| ď C}pMε

nq
2}L4pBΩεq}v

ε
i }L4pBΩεq ď C}v}V pΩεq (3.6)

Collecting (3.4), (3.5) and (3.6), we obtain the desired result.

Thanks to the V pΩεq-coercivity of the bilinear form Āεp¨, ¨q and the continuity of the linear

form L̄εp¨q we deduce, using the Lax-Milgram’s lemma, that the variational problem (3.1) admits

one and only one solution.

4 The asymptotic expansion

In order to perform an asymptotic analysis, we need to transform problem (3.1), posed on a

variable domain Ωε, onto a problem posed on a fixed domain Ω (independent of ε). We suppose

that the thickness of the plate hε depends linearly on ε, so that hε “ εh. Accordingly, we let

Ω :“ ω ˆ p´h, hq,
Γ0 :“ γ0 ˆ p´h, hq, Γ1 :“ γ1 ˆ p´h, hq,

Γ˘ :“ ω ˆ t˘hu, pΓ :“ Γ˘ Y Γ1.

and we define the following change of variables (see [2]):

πε : x ” px̃, x3q P Ω ÞÑ xε ” px̃, εx3q P Ω
ε
, with x̃ “ pxαq.

By using the bijection πε, one has Bεα “ Bα and Bε3 “
1
εB3. Moreover, we define the following

functional spaces

V pΩq :“
 

v “ pviq P H
1pΩ;R3q; v “ 0 on Γ0

(

, W 1
12{5pΩq.

In order to write the expression of the scaled problem, we need first to make some assumptions on

the data which will define their dependences with respect to the small parameter ε. In our case,

the only external data are represented by the magnetic field pBεi q, the magnetic intensity field

pHε
i q and the magnetization field pMε

i q. By virtue of the constitutive equations Bεi “ µ0µrH
ε
i
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and Mε
i “ χHε

i , we assume that Bεi , H
ε
i and Mε

i will share the same dependence on ε. The

scaling of Bεi must reflect the fact that the magnetic field is a solenoidal field, meaning that

BεiB
ε
i “ 0 in Ωε. This property must be satisfied also on the fixed domain Ω. Let us suppose

that

Bεαpx
εq “ εqBαpxq, Bε3px

εq “ εpB3pxq, x P Ω,

with Bi independent of ε. By applying the change of variables πε, we can write that the

scaled divergence vanishes in Ω, so that εqBαBα ` εp´1B3B3 “ 0 in Ω. In order to guarantee

the consistency of this equation, we ask that p “ q ` 1, finding a relation between the two

exponents p and q. In the sequel, we choose q “ 0 and, hence,

Bεαpx
εq “ Bαpxq, Bε3px

εq “ εB3pxq, x P Ω,
Hε
αpx

εq “ Hαpxq, Hε
3px

εq “ εH3pxq, x P Ω,
Mε
αpx

εq “Mαpxq, Mε
3 px

εq “ εM3pxq, x P Ω.

With the unknown displacement field uε, we associate the scaled unknown displacement field

upεq defined by

uεαpx
εq “ uαpεqpxq for all xε “ πεx P Ω

ε
,

uε3px
εq “ 1

εu3pεqpxq for all xε “ πεx P Ω
ε
.

We likewise associate with any test function vε, the scaled test function v, defined by the

scalings:
vεαpx

εq “ vαpxq for all xε “ πεx P Ω
ε
,

vε3px
εq “ 1

εv3pxq for all xε “ πεx P Ω
ε
.

According to the previous hypothesis, problem (3.1) can be reformulated on a fixed domain

Ω independent of ε. Thus we obtain the following scaled variational problem:

"

Find upεq “ puipεqq P V pΩq such that
Apupεq,vq “ Lpvq, for all v “ pviq P V pΩq,

(4.1)

where the scaled bilinear form Ap¨, ¨q and the scaled linear form Lp¨q are, respectively, defined

by

Apupεq,vq :“
1

ε4
a´4pupεq,vq `

1

ε2
a´2pupεq,vq ` a0pupεq,vq,

with

a´4pupεq,vq :“

ż

Ω

pλ` 2µqe33pupεqqe33pvqdx,

a´2pupεq,vq :“

ż

Ω

t4µeα3pupεqqeα3pvq ` λeσσpupεqqe33pvq ` λe33pupεqqeσσpvqu dx,

a0pupεq,vq :“

ż

Ω

tλeσσpupεqqeττ pvq ` 2µeαβpupεqqeαβpvq ` µoMiHjeijpvqu dx,

Lpvq :“

ż

Ω

µ0MjBjHividx`
1

2

ż

Γ`

µ0pM
`
3 q

2v`3 dΓ´
1

2

ż

Γ´

µ0pM
´
3 q

2v´3 dΓ`

`
1

2

ż

Γ1

µ0pMβnβq
2nαvαdΓ,

where φ˘ :“ φpx̃,˘hq denotes the restriction of φ on Γ˘. Since Hi, Mi P W
1
12{5pΩq, thanks to

lemma 3.1 and Lax-Milgram’s lemma, we can prove that the scaled problem admits one and

only one solution.
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We are now in position to perform an asymptotic analysis of the scaled problem (4.1). Since

the scaled problem (4.1) has a polynomial structure with respect to the small parameter ε, we

can look for the solution of the problem as a formal series of powers of ε:

upεq “ u0 ` ε2u2 ` ε4u4 ` . . . (4.2)

Hence, by substituting expressions (4.2) in (4.1) and by identifying the terms with identical

power of ε, we can write the following sequence of variational subproblems:

P´4 : a´4pu
0,vq “ 0,

P´2 : a´4pu
2,vq ` a´2pu

0,vq “ 0,
P0 : a´4pu

4,vq ` a´2pu
2,vq ` a0pu

0,vq “ Lpvq,
...

(4.3)

By solving the above variational problems, we can characterize the leading term of the asymp-

totic expansion u0, the so-called the limit displacement field, and its associated limit problem.

5 The limit problem

We define the usual functional space of Kirchhoff-Love admissible displacements:

VKLpΩq :“ tv P V pΩq; ei3pvq “ 0u,

and
VHpωq :“ tvH “ pvαq P H

1pω;R2q; vH “ 0 on γ0u,

V3pωq :“ tv3 P H
2pωq; v3 “ 0 and Bνv3 “ 0 on γ0u,

where ν “ pναq is the outer unit normal vector to γ.

Theorem 5.1 a) The leading term u0 of the asymptotic expansion (4.2) satisfies the fol-

lowing variational problem:

#

Find u0 P VKLpΩq such that

Apu0,vq “ Lpvq for all v P VKLpΩq,
(5.1)

where

Apu0,vq :“

ż

Ω

"

2µλ

λ` 2µ
eσσpu

0qeττ pvq ` 2µeαβpu
0qeαβpvq ` µ0MαHβeαβpvq

*

dx. (5.2)

b) The sequence tupεquεą0 strongly converges in H1pΩ;R3q to u0, the solution of the limit

problem (5.1).

Proof. The proof is straightforward, following the approach by [2].

Let us focus our attention to the expression of the magnetic force work Lp¨q of the limit

problem. By choosing a test function v P VKLpΩq, namely vαpx̃, x3q :“ ηαpx̃q ´ x3Bαη3px̃q and

v3px̃, x3q :“ η3px̃q, with ηα P H
1pωq and η3 P H

2pωq, after an integration along x3 and by
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applying the Gauss-Green’s formula, we get that

Lpηq “

ż

Ω

µ0 tpM3B3H3 `MαBαH3qη3 ` pMβBβHα `M3B3Hαqpηα ´ x3Bαη3qu dx`

`
1

2

ż

Γ`

µ0pM
`
3 q

2η3dΓ´
1

2

ż

Γ´

µ0pM
´
3 q

2η3dΓ`
1

2

ż

Γ1

µ0pMβnβq
2nαpηα ´ x3Bαη3qdΓ “

“

ż

ω

f̃mi ηidx̃`

ż

γ1

g̃mi ηidx̃`

ż

γ1

h̃m3 Bνη3dx̃.

where the reduced magnetic forces f̃mi , g̃mi and h̃m3 have the following form

f̃mα :“ µ0χxHiBiHαy “ µ0xf
m
α y,

f̃m3 :“ µoχ

"

1

2
pχ` 1qppH`3 q

2 ´ pH´3 q
2q ` xHβBβH3y ` BαxxHiBiHαyy

*

“

“ µ0χ

"

1

2
pχ` 1qppH`3 q

2 ´ pH´3 q
2q ` xHβBβH3y

*

` µ0xxBαf
m
α yy,

g̃mα :“
1

2
µ0χ

2xH2
ν yνα,

g̃m3 :“ ´µ0χxxHiBiHαyyνα “ ´µ0xxf
m
α yyνα,

h̃m3 :“ ´
1

2
µ0χ

2xxH2
ν yy,

where Hν :“ Hανα, and

xφypx̃q :“

ż h

´h

φpx̃, x3qdx3, xxφyypx̃q :“

ż h

´h

x3φpx̃, x3qdx3.

It easy to verify that if the induced magnetic intensity field is normal to the middle plane

of the plate, with Hα “ 0, the form of the limit magnetic force acting on a plate depends just

on the jump of the square of magnetic intensities evaluated at the top and bottom faces of the

plate. Indeed, since f̃mα “ g̃mα “ h̃m3 “ 0, one has

f̃m3 :“
1

2
µ0χ p1` χq

 

pH`3 q
2 ´ pH´3 q

2
(

«
1

2
µ0χ

2
 

pH`3 q
2 ´ pH´3 q

2
(

, (5.3)

χ is very large for soft ferromagnetic materials. Equation (5.3) is analogue to the one presented

in [16] and it can be considered as a mathematical justification of the magnetic force acting on

a plate, which is usually employed in magnetic instability problems.

The limit problem (5.1) can be decoupled into a membrane and a bending problem, by

virtue of the Kirchhoff-Love limit displacement field. The membrane problem reads as follows:

$

’

&

’

%

Find u0
H “ pu

0
αq P VHpωq such that

ż

ω

nαβpu
0
HqeαβpηHqdx̃ “

ż

ω

f̃mα ηαdx̃`

ż

γ1

g̃mα ηαdx̃ for all ηH “ pηαq P VHpωq,

where

nαβpu
0
Hq :“

4hλµ

λ` 2µ
eσσpu

0
Hqδαβ ` 4hµeαβpu

0
Hq ` µ0xMαHβy,

represents the ferromagnetic membrane stress tensor. After an integration by parts, we find
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that the membrane displacements u0
α solve the following membrane differential problem:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Field equation:

´Bβnαβ “ f̃mα in ω,

Boundary conditions:

nαβνβ “ g̃mα on γ1,

uα “ 0 on γ0.

The bending problem takes the following form

$

’

&

’

%

Find u0
3 P V3pωq such that

ż

ω

mαβpu
0
3qBαβη3dx̃ “

ż

ω

f̃m3 η3dx̃`

ż

γ1

g̃m3 η3dx̃`

ż

γ1

h̃m3 Bνη3dx̃ for all η3 P V3pωq,

where

mαβpu
0
3q :“

4h3λµ

3pλ` 2µq
∆u0

3δαβ `
4h3µ

3
Bαβu

0
3 ´ µ0xxMαHβyy, ∆ :“ Bσσ

represents the ferromagnetic moment stress tensor. After an integration by parts, we find that

the transversal displacement u0
3 solves the following bending differential problem:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Field equation:

Bαβmαβ “
2h3

3
λ`µ
λ`2µ∆∆u0

3 ´ µ0BαβxxMαHβyy “ f̃m3 in ω,

Boundary conditions:

Bαmαβνβ ` Bτ pmαβνατβq “ g̃m3 on γ1,

mαβνανβ “ h̃m3 on γ1,

u3 “ Bνu3 “ 0 on γ0,

(5.4)

where τ “ p´ν2, ν1q represents the unit tangent vector to γ.

Considering the case of an induced magnetic intensity field, normal to the middle plane of

the plate, with Hα “ 0, nαβ and mαβ reduce to the classical elastic membrane stress tensor and

moment stress tensor. Besides, since f̃mα “ g̃mα “ 0, we can infer that the membrane problem

admits the only zero solution, so that nαβ “ 0, and thus, in this case, the plate equilibrium

problem takes just into account the bending behavior.

6 Concluding remarks

In this work we derive a model of a soft ferromagnetic isotropic linear plate by means of an

asymptotic analysis. In the absence of mechanical loading, thanks to the particular scaling of

the magnetic charges, we obtain a complex expression of the reduced magnetic forces acting on

the plate. The problem can be decoupled as usual in a membrane problem and in a flexural

problem. It is important to notice that in the simple case in which the magnetic charges are

normal to the middle plane of the plate, we formally obtain an expression of the magnetic force

(5.3), acting on the plate, which is equivalent to the one used in classical literature, see, e.g.,

[12, 15, 16]. Moreover, by virtue of the strong convergence result, we also give a mathematical

justification to the limit model.
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The present work represents a first step on the asymptotic modeling of soft ferromagnetic

plates. Indeed, we do not consider the coupling between the mechanical and magnetic behaviors

within the equations of magnetostatics. We assume the magnetic charges as external loads

without investigating the asymptotic behavior of the magnetostatic equations for what concerns

with the magnetic field, the magnetic intensity and the magnetization. Therefore, the limit

problem becomes linear and we cannot see, at first glance, the so-called magnetic buckling

phenomenon.

Acknowledgement We thank K. Danas and N. Triantafyllidis for many useful discussions

on magnetoelastic materials.
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