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Semi-Parametric Joint Detection and Estimation for Speech Enhancement based on
Minimum Mean Square Error
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IMT Atlantique, UMR CNRS 6285 Lab-STICC, UBL, 29238 Brest, France

Abstract

We propose a novel estimator for estimating the amplitude of speech coefficients in the time-frequency domain. In order to avoid
a phase spectrum estimator of complex coefficients when using the Fourier transform, we consider the discrete cosine transform
(DCT). This estimator aims at minimizing the mean square error of the absolute values of the speech DCT coefficients. In order to
take advantage of both parametric and non-parametric approaches, the proposed method combines block shrinkage and Bayesian
statistical estimation. First, the absolute value of the clean coefficient is estimated by block smoothed sigmoid-based shrinkage
(Block-SSBS). The block size required by the block-SSBS is obtained by statistical optimization. This step enables us to reduce
the negative impact on speech intelligibility of classical denoising methods similarly to smoothed binary masking. Second, for
refining the estimation, an optimal statistical estimator is added to handle musical noise. For evaluating the performance of the
proposed method, objective criteria are used. The experiments enhance the relevance of the approach, in terms of speech quality
and intelligibility.

Keywords: Speech enhancement, noise reduction, Bayesian estimation, non-parametric estimation, Smoothed sigmoid-based
shrinkage.

1. Introduction

1.1. Motivation

Machine learning approaches can provide good performance
in speech enhancement (see [1, 2, 3] among others). How-
ever, unsupervised techniques are still needed when available
databases hardly cover all types of noise and speech signals
met in practice [4, 5, 6, 7] as, for example, in assisted listen-
ing for hearing aids, cochlear implants or voice communication
applications. Indeed, in such cases, unsupervised approaches
can achieve a good trade-off between intelligibility and quality
with low complexity.

It then turns out that many results in non-parametric and ro-
bust statistical estimation established in the last two decades
[8, 9, 10, 11, 12, 13] and based on sparse thresholding and
shrinkage, are general enough to suggest their use in unsuper-
vised speech denoising. Generally speaking and as recalled be-
low, the interest of non-parametric speech denoising is twofold.
First, it can be applied without any knowledge or assumption
on the signal distribution. Second, it achieves gain in intel-
ligibility [14]. Since Bayesian approaches are known to im-
prove speech quality [15], the idea is to combine the two ap-
proaches. Nonetheless, this combination requires some care.
Indeed, most non-parametric estimators force to 0 small mag-
nitude coefficients obtained after transformation into a certain
domain. Although much background noise is canceled by doing
so, removing small noisy coefficients pertaining to the signal
of interest generates musical noise and reduces speech quality

[16]. This problem is well known in image processing where
zero-forcing of small coefficients induces artifacts [10].

Therefore, if we want to improve quality by eliminating
residual musical noise, the non-parametric denoising should be
a smooth shrinkage merely aimed at attenuating small coeffi-
cients. A Bayesian estimator can then be used right after the
non-parametric one to retrieve speech information in small co-
efficients and thus improving the overall quality. Note that if the
Bayesian estimator were used before the non-parametric one,
the latter would tend to shrink small coefficients estimated by
the former, which is not desirable because even small coeffi-
cients after Bayesian estimation may pertain to relevant speech
contents for overall quality.

With respect to the foregoing, the problem addressed in this
paper is the design and combination of non-parametric and
Bayesian estimations for speech denoising. We restrict our at-
tention to the single-channel case. Indeed, a technique designed
in the single-channel case can always be used after beamform-
ing on a microphone array. Since we focus on statistical ap-
proaches, no psycho-acoustic knowledge on speech signals in
noise is considered below.

1.2. Contributions

In this paper, similar to the other methods mentioned above,
we estimate the amplitudes of the clean signal coefficients in
the time-frequency domain. The estimation is based on the
MMSE criterion. However, instead of the DFT, we focus on
the discrete cosine transform (DCT), which avoids estimating
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the phase spectrum as in [5, 17] and may reduce complexity
[18, 19]. To this end, we will consider the following strategy.

We begin by reducing the negative impact on speech intelli-
gibility of the denoising methods by a non-parametric approach
based on smoothed sigmoid-based shrinkage (SSBS) [11], orig-
inally introduced for image denoising. Two main features of
the approach are: 1) it attenuates DCT coefficients that are very
likely to pertain to noise only or to speech with small ampli-
tude in noise; 2) it tends to keep unaltered large-magnitude
DCT coefficients. However, such a non-parametric approach
can be regarded as an approximated Wiener filtering and, as
such, introduces musical noise. We then modify the original
SSBS approach and propose the SSBS block estimator, here-
after named Block-SSBS. Block-SSBS is relevant to eliminate
isolated points in the time-frequency domain that may induce
musical noise. Basically, Block-SSBS applies the same SSBS
gain function to time-frequency blocks. The sizes of these
blocks are determined by adaptive Stein’s Unbiased Risk Es-
timate (SURE) [20] so as to minimize the unbiased estimate of
the mean square error over regularly distributed time-frequency
regions. In addition, other parameters of Block-SSBS can be
optimized by resorting to recent results in non-parametric sta-
tistical signal processing [21]. A nice feature of the proposed
parameter optimization procedure is the level of control offered
on the denoising performance, which yields a good compro-
mise between speech quality and intelligibility. This is made
possible by discriminating speech components with significant
contents from speech components with lesser interest.

For reasons detailed below, the outcome of Block-SSBS is
assumed to satisfy the same hypotheses as those generally used
for Bayesian estimation. Therefore, in a second step, to further
reduce musical noise and, above all, improve speech quality, a
Bayesian statistical estimator is devised for application to the
smoothed short-time spectral amplitudes (STSA) provided by
Block-SSBS. This Bayesian estimator is hereafter called STSA-
MMSE.

In a nutshell, the main contributions of this paper are the
following ones. To begin with, the whole method is carried
out in the DCT domain, so as to get rid of the phase estima-
tion problem. It introduces Block-SSBS in the DCT domain
for speech denoising in presence of stationary or non-stationary
noise. Block-SSBS is then optimized via automatic and adap-
tive statistical methods tailored to speech enhancement. The
derivation of STSA-MMSE in the DCT domain is another con-
tribution. The paper also propounds and studies the combi-
nation of Block-SSBS and STSA-MMSE and shows that this
combination is very promising for speech denoising in presence
of various types of noise. It must also be pointed out that these
tests include situations where the noise spectrum is known, as
well as cases where this spectrum is estimated via an up-to-date
estimator.

1.3. Paper organization
Section 2 introduces the signal model, the notation and

makes some general recalls on the DCT. In Section 3, we
present semi-parametric speech enhancement by Block-SSBS,
derive the Bayesian STSA-MMSE in the DCT domain and then

combine the two. Experimental results are reported and ana-
lyzed in Section 4. Finally, Section 5 concludes this paper with
prospects opened by this work.

2. Signal Model and notation in the DCT domain

As announced above, the DCT will hereafter be used for de-
noising. Therefore, this section recalls the principle of DCT and
the reasons why DCT can be applied to speech enhancement.

DCT is analyzed from a general point of view in [22]. Orig-
inally developed for pattern recognition and Wiener filtering
in image processing, its application to speech enhancement is
more specifically studied in [18, 19]. Basically, given a se-
quence {y[n]} with 0 ≤ n ≤ K − 1, the DCT coefficients are
calculated as:

Y[k] = αk

K−1∑
n=0

y[n] cos
(2n + 1)kπ

2K
, (1)

with α0 =
√

1/K and αk =
√

2/K for 1 ≤ k ≤ K − 1 [23]. The
inverse DCT is then given by:

y[n] =
K−1∑
k=0

αk Y[k] cos
(2n + 1)kπ

2K
. (2)

The DCT defined by (1) and (2) can be advantageously used
in speech enhancement or noise reduction for the subsequent
reasons. As discussed in [18, 23, 22], DCT has higher energy
compaction than DFT. The signal of interest can thus have a
sparse representation in the DCT domain. That is why DCT is
widely used in image compression [22] and dictionary learn-
ing [24]. Second, the DCT coefficients are real, whereas the
DFT coefficients are complex. The DCT coefficients have bi-
nary phase, whereas phases of the DFT coefficients are often
assumed to follow the uniform distribution in the range [−π, π].
Therefore, the DCT phase [18] does not need to be estimated
because error in the DCT phase has no important impact for es-
timating the signal of interest. Third, DCT is known to be bet-
ter than DFT for approximating the Karhumen-Loève transform
(KLT), which is optimal in terms of variance distribution, rate
distortion function and mean-square estimation error. More-
over, DCT and inverse DCT (IDCT) can be also calculated by
fast computation algorithms.

For estimating clean speech from its noisy observation, the
latter is often segmented, windowed and transformed by com-
putational harmonic analysis. In the present framework, for the
reasons evoked above, this harmonic analysis will be performed
by DCT. Formally, let us denote the noisy signal in the DCT do-
main by:

Y[m, k] = S [m, k] + X[m, k], (3)

where m and k ∈ {0, 1, . . . ,K − 1} are the time and frequency-
bin indices, respectively. As an extension of (1) and similarly
to the expressions of the DFT coefficients, the DCT coefficients
are obtained as [16]:

Y[m, k] =
K−1∑
n=0

αn w[n] y[mK∗ + n] cos
(2n + 1)kπ

2K
, (4)
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where K is the frame length, K∗ is the number of the shifted
samples and w[n] is a window function such as the Hamming or
Hanning windows with length K. For the sake of simplicity, the
indices m and k will be omitted unless for clarification. Wide
hat symbols are henceforth used to denote estimates. Moreover,
lower case letters denote realizations of random variable. The
absolute value (resp. sign) of the DCT coefficients of the noisy
signal, signal of interest and noise are denoted by AY , AS , AX

(resp. ΦY ,ΦS ,ΦX), correspondingly.
The signal of interest and the noise are assumed to be in-

dependent and zero mean, so that E[Y2] = E[S 2] + E[X2] =
σ2

S + σ
2
X , where the spectra of the clean signal and noise are

denoted by E[S 2] = σ2
S , E[X2] = σ2

X , respectively, and where
E(.) is the expectation. We also define the a priori signal-to-
noise ratio (SNR) ξ and the a posteriori SNR γ as ξ = σ2

S /σ
2
X ,

γ = A2
Y/σ

2
X . As usual [25], the DCT coefficients Y[m, k] with

k ∈ {0, 1, . . . ,K − 1} are assumed to be uncorrelated. The nota-
tion introduced above is used throughout with always the same
meaning.

3. Block speech estimation of Discrete Cosine Coefficients

Our purpose is to design a method that achieves a good trade-
off between intelligibility and quality. To this end, we com-
bine an SSBS-based method with a Bayesian statistical esti-
mator. The rationale for this combination is the following.
Bayesian statistical estimators of STSA in the DCT domain can
be expected to provide good performance in speech enhance-
ment, especially to improve quality without introducing musi-
cal noise. Therefore, a Bayesian estimator placed right after an
SSBS-based approach which cancels most of the background
noise and attenuates small coefficients pertaining to speech,
should then contribute to retrieving information on clean speech
and thus enhancing speech quality.

In this respect, the next subsection reviews basics on non-
parametric thresholding methods originally developed for im-
age denoising, with a particular emphasis on SSBS. Then, Sub-
section 3.2 introduces the Block-SSBS approach. Based on the
SSBS estimator, it is designed for audio denoising. Section 3.3
then presents STSA-MMSE, a Bayesian estimation of STSA in
the DCT domain. The combination of Block-SSBS and STSA-
MMSE is described in Section 3.4.

3.1. Sparse thresholding and shrinkage for detection and esti-
mation

Denoising by shrinkage involves estimating the signal of in-
terest by thresholding the coefficients obtained by projection of
the noisy observation onto an orthogonal basis. Given an ob-
servation coefficient Y in the wavelet, DCT or DFT domain, the
estimate Ŝ is obtained by Ŝ = GY , where G is a gain or shrink-
age function. In the sequel, G will be expressed as a function of
γ or an estimate of γ. For instance, the hard thresholding gain
function [8, 9] with threshold λ is:

Gλ(γ) =
{

1 if γ ≥ λ2,
0 otherwise. (5)

Smooth shrinkage performs estimation of the clean trans-
formed coefficient by the soft thresholding gain function [9,
26]:

Gλ(γ) =
{

1 − λ
√
γ

if γ ≥ λ2,

0 otherwise.
(6)

Soft thresholding combines detection and estimation. Indeed,
by comparing the a posteriori SNR γ to λ2 and setting Ŝ to
zero if the a posteriori SNR γ falls below this threshold, a kind
of speech detection is realized. In addition, soft thresholding
provides a transformed coefficient estimate of the desired signal
by subtracting the threshold from the noisy coefficients.

The SSBS approach [11, 10] performs another type of
smoothed shrinkage. The original SSBS gain function [11]
reads:

Gτ,λ(γ) =
1

1 + e−τ(
√
γ−λ)

, (7)

where parameter λ influences the detection performance and τ
controls the shrinkage. Such a function achieves smoothness,
penalized shrinkage and vanishing attenuation at infinity. It is
a trade-off between hard and soft thresholding. In particular,
SSBS functions attenuate in a continuous manner values of

√
γ

that are below λ, instead of setting them to zero as in hard and
soft thresholding.

The attenuation factors or gain functions Gλ(γ) and Gτ,λ(γ)
are independently evaluated for each (time, frequency) pair. In
the sequel, we will extend these functions so as to incorporate
neighboring time-frequency atoms, as in [27] or [28].

3.2. Non-parametric estimation by Block-SSBS

The original SSBS estimation is a pointwise method which
may yield isolated spectral amplitudes and, thus, musical noise
in speech enhancement. We can eliminate these isolated points
by performing SSBS by blocks of time-frequency neighboring
atoms. Such an approach is very similar to that proposed in
[27] for denoising signals in the wavelet domain. However, the
method we propose has some specific features.

First, it is carried out in the DCT domain for reasons evoked
before. Second, speech is not stationary but can be considered
stationary on relatively small time-frequency zones. The same
may hold for non-stationary noise as well. It follows that we
must choose time-frequency zones in which speech and noise
can reasonably be expected to be stationary. Such zones are
unknown and highly dependent on the signal and noise of in-
terest. The design of algorithms dedicated to the detection of
such zones is postponed to future work. In this work, we restrict
our attention to a regular splitting of the time-frequency domain
in rectangular time-frequency boxes with same size (∆T,∆F),
where ∆T is the number of time frames and ∆F is the num-
ber of frequency bins in each box. Values for ∆T and ∆F
will hereafter be chosen so that speech and noise can accept-
ably be regarded as stationary in the resulting time-frequency
boxes. If the speech distribution in a given box is assumed to
be unknown, the general methodology exposed in [27] can be
adapted as follows for noisy speech estimation in the DCT do-
main.
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Since the signal distribution in a given box is unknown,
the idea is to divide the box into non-overlapping rectangular
blocks so that the signal can reasonably be considered to be
deterministic and unknown in each block. To reduce compu-
tational cost, we look for blocks with same size inside a given
box. The issue is then to find the optimal blocks size such that
the overall estimation error in the box containing these blocks
is minimal. On the one hand, when the box is filled with noise
only, it makes sense to divide this box into small blocks. In
this case, the optimal block size should be the minimum block
size. On the other hand, when the box contains speech, it is ex-
pected that the local stationarity of the speech signal will lead
to a relatively big optimal block size. In order to comply with
the aforementioned considerations, the following estimation al-
gorithm arises.

3.2.1. Block-SSBS gain function
Consider a given box B and a block B within this box. As

mentioned above, speech is assumed to be deterministic but un-
known in B. Noise is assumed to be zero-mean and Gaussian
distributed in the box under consideration, so that the noise vari-
ance is supposed to be the same in all blocks within this box.
Let σ2

X(B) stand for the noise power spectrum in B. Under
these assumptions, in block B, the estimated a posteriori SNR
γ̂ can be calculated by averaging the instantaneous noisy signal
energies Y2[m, k] divided by the noise variance, so that:

γ̂B =
1

σ2
X(B) × |B|

∑
(m,k)∈B

Y2[m, k] (8)

where |B| is the number of time-frequency points (m, k) within
B. Since we want to remove isolated time-frequency points, we
proceed similarly to [27] and [28] by choosing the SSBS gain
function in block B equal to Gτ,λ(̂γB) where Gτ,λ is given by (7).
To implement this gain function, we must choose the sizes of
the boxes and blocks as well as parameters τ and λ.

3.2.2. Size of the time-frequency boxes
With the notation introduced above, the larger∆T , the greater

the time delay. Therefore, for real time processing applications,
the length ∆T should be small enough. We have chosen ∆T =
8 frames (i.e 128 ms in our implementation) as a good trade-
off between performance and time-delay. Furthermore, taking
into consideration that non-stationary noise impacts differently
distinct frequency bands, we follow [29], which recommends to
choose more than 6 bands, linearly spaced within the bandwidth
[0, 8] kHz, to get good speech quality. Accordingly, and as a
good trade-off between performance and computational load,
we set ∆F = 16, which corresponds to 8 bands linearly spaced.

3.2.3. Time-frequency splitting by SURE
We now address the computation of the optimal block size

within a given box B. The common size of the blocks is a pair
henceforth denoted by (L,W). The number of DCT coefficients
pertaining to any block is thus N = LW. The computation of the
optimal size (L∗,W∗) for the blocks within a given box B can
be performed as in [27, 28], by resorting to the SURE approach

derived from Stein’s Theorem [20]. However and in contrast to
[27, 28], the SURE approach is hereafter limited to the estima-
tion of the optimal block size (L∗,W∗) and will not be used to
estimate λ or τ. Indeed, these two parameters can be evaluated
more appropriately via other means, as explained later.

For a given τ and λ, consider a box B. Split this box in
J non-overlapping rectangular blocks B1, . . . , BJ . The overall
estimation risk for B and its partition into J boxes is thus:

R =
J∑

j=1

R j, (9)

where
R j =

∑
(m,k)∈B j

E
[
|Ŝ [m, k] − S [m, k]|2

]
and

Ŝ [m, k] = Gτ,λ (̂γB j )Y[m, k]

for (m, k) ∈ B j. Since the SSBS gain function is constant in
each block and the blocks are constrained to have same size, the
overall risk depends on the block size (L,W). The SURE The-
orem now provides us with an unbiased estimate of R j. There-
fore, we can calculate an unbiased estimate of the overall risk
R. It is then possible to look for the block size (L∗,W∗) that
minimizes this unbiased estimate of R.

Specifically, we proceed as follows. Let Y[m, k] with (m, k) ∈
B j be the N available DCT values in block B j. We can re-
arrange these DCT values so as to form an N-dimensional ran-
dom vector Y. Since speech is supposed to be deterministic
unknown and noise to be Gaussian in B j with variance σ2

X , we
assume that

Y ∼ N(S, σ2
X(B)IN) (10)

where S models the unknown speech signal in B j and IN is the
N × N identity matrix.

Now, define Ŝ : RN → RN for any y ∈ RN by

Ŝ(y) = G(y)y

and use Eq. (8) so that:

G(y) = Gτ,λ

 ∥y∥22
Nσ2

X(B)


where ∥ · ∥2 stands for the usual Euclidean norm in RN . Readily,
Ŝ is differentiable. Therefore, [30, Section 2] applies and the
Stein’s unbiased risk estimate of R j is given by:

R̂ j(y) = −Nσ2
X(B) + ∥y − Ŝ(y)∥22 + 2σ2

X(B)
N∑

n=1

∂Ŝ n

yn
(y) (11)

with S = (S 1, . . . , S N). Straightforward algebra leads to:

R̂ j(y) = Nσ2
X

(
2Gτ,λ( γ̂B j ) − 1

)
+
(
1 −Gτ,λ( γ̂B j )

)
×

(
1 + τGτ,λ( γ̂B j )/

(
N
√
γ̂B j

)
−Gτ,λ( γ̂B j )

)
∥y∥22,

(12)
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We can then estimate R by:

R̂ =
J∑

j=1

R̂ j (13)

As enhanced at the beginning of this section, the overall risk
R depends on the size (L,W) of the blocks composing the box.
Therefore, we carry out an exhaustive search among all possi-
ble pairs (L,W) so as to find the pair (L∗,W∗) that minimizes R̂.
Note that the value of R̂ j does not only depend on N but also on
L and W through y. With respect to the values ∆T and ∆F cho-
sen above for the boxesB, it turns out that the set of all possible
sizes (L,W) contains 20 values only, which is easily tractable in
practice. In addition, the noise variance σ2

X(B) within a given
box B is estimated according to:

σ2
X(B) =

1
|B|

∑
(m,k)∈B

σ2
X[m, k], (14)

where |B| is the number of the time-frequency bin [m, k] in B
and the values σ2[m, k] are chosen equal to the actual noise
power spectrum if it is known, or estimated otherwise.

Fig. 1 shows an example of box and block tiling obtained
by minimization of the overall risk (13) on some noisy speech.
In this figure, boxes have size 8 × 16 and the color of each
box corresponds to the size determined by the SURE approach
for the blocks within this box. For example, the rectangular
box that spans from frames 17 to 24 and from frequency bins
17 to 32 is divided into blocks of size 16. Note that, as ex-
pected, the SURE approach yields a block size equal to the
box size in time-frequency zones that are mainly occupied by
speech. This is normal since, within such boxes, speech is ho-
mogeneous thanks to the chosen size for boxes. In contrast, in
boxes where mainly noise is present, the SURE approach re-
turns smaller block sizes because variations of speech inside
these boxes require a finer analysis. This was expected as well.

3.2.4. Random distortion threshold (RDT) based selection of
Block-SSBS parameters τ and λ

For speech enhancement applications, the two parameters τ
and λ in (7) are also key elements for controling the perfor-
mance of the proposed method and reaching the desired trade-
off between signal distortion and noise reduction. As mentioned
above, it is possible to estimate τ and λ via the SURE approach.
Such a possibility has not been tested in this work for reasons
detailed in the next two paragraphs.

Choice of λ. This parameter plays the role of a threshold that
can be used to make a decision on speech presence or absence.
This threshold may therefore vary significantly in the time-
frequency domain with respect to the type of speech signal un-
der observation. Thence the idea to estimate this threshold in
each block, once (L∗,W∗) has been calculated. Additionally,
it is desirable to keep some control on the estimation perfor-
mance, which is not actually feasible via the SURE approach.
Whence the interest of the following non-parametric approach,
since it ensures that the proposed choice for λ is optimal while

upper-bounding the false alarm probability of erroneously de-
ciding that significant speech is present.

The method we propose is based on the following ratio-
nale. Parameter λ influences the performance of shrinkage by
SSBS gain function because it affects the level of noise re-
duction applied to the noisy DCT coefficients. Although the
SSBS gain function is smoother than the hard thresholding gain
function, parameter λ must however be carefully chosen to en-
hance speech quality. Indeed, suppressing too many speech
components for reducing noise will necessary induce loss in
speech quality. Otherwise said, when one aims at improving
not only speech quality but also speech intelligibility, missing
some important speech-carrying time-frequency channels may
be more detrimental to speech enhancement than conserving
more noise-only channels than strictly required. This favors the
choice of small values for λ. On the other hand, the smaller
λ, the smaller the signal distortion and musical noise, but the
larger the residual background noise. Therefore, we cannot
choose too small a value for λ. A means to achieve such a
trade-off is to control the denoising by taking the outcome of
some speech detector into account [31, 32].

We follow a similar strategy by choosing λ such that DCT
coefficients with amplitudes above λ pertain to relevant speech
signal components with high probability, whereas DCT coef-
ficients below λ are more certainly components of noise only
or noisy speech coefficients that can be safely discarded. Since
we accept that observations with amplitudes below λ may con-
tain information merely attenuated by the SSBS function, the
choice of λ is not derived hereafter from a detection problem as
in [10, 33] for denoising images by wavelet shrinkage. Instead,
we resort to the random distortion testing (RDT) approach [21].

Basically, with the notation and hypotheses of (10), the RDT
approach amounts to testing whether ∥S∥2 ⩽ δ or not when we
observe Y, where δ is a tolerance that is specified by the ap-
plication. For a better understanding of the sequel, it must be
noticed that this binary hypothesis test is invariant by orthogo-
nal transform, in the sense that it remains identical under any
any orthogonal transform of RN applied to Y. This basically
derives from the properties of the Gaussian distribution.

Let us decide that ∥S∥2 ⩽ δ if ∥Y∥2 ⩽ σXηα(δ/σX) and that
∥S∥2 > δ otherwise, where ηα(δ/σX) is the unique solution in
x to the equation QN/2(δ/σX , x) = α, where QN/2(·, ·) stands
for the Generalized Marcum function [21] . According to [21,
Proposition 2], this thresholding test satisfies several optimality
properties for testing whether ∥S∥2 ⩽ δ or not when the obser-
vation is Y given by (10). In particular, it is Uniformly Most
Powerful Invariant (UMPI) with size α among all of the tests
with level α that are invariant by orthogonal transforms. The
reader is invited to refer to [21] for further details.

According to these properties, the threshold ηα(δ/σX) makes
it possible to control the false alarm probability via α and guar-
antees optimal power or correct decision probability without
prior knowledge on the signal of interest, an appealing fea-
ture for speech enhancement. For homogeneity of the physical
quantities in Eq. (8), we choose

λ = ηα(δ/σX)/
√

N. (15)
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Figure 1: A typical division of the time-frequency domain into boxes and blocks inside boxes shown in the upper figure. This division is obtained by risk
minimization for noisy white speech at SNR = 5dB. The time-frequency domain is first divided into non-overlapping rectangular boxes of size 23 × 24. Then, each
box is split into blocks whose size is determined by minimizing the overall risk (13) via the SURE approach. We can see that this division matches rather well to
the DCT spectrogram displayed in the lower figure.

Choice of τ. The SURE approach is particularly relevant to
estimate local parameters. However, the authors’ experience
with speech and images [33] suggest that τ can be adjusted as
a global parameter. Indeed, although τ is a slope that may vary
from one signal to another, a global or average value for this
parameter is not really detrimental. Some informal tests then
led to choose

τ ≈ 4/λ, (16)

as recommended in [11] for images.
To clarify the use of RDT theory in speech denoising and

the choice for τ, Fig. 2 shows spectrograms when denoising
is performed by SSBS on blocks and two different levels α are
tested. The smaller α, the smaller the background noise. How-
ever, with α = 0.05, some important frequency-time atoms are
ignored (for instance, see the rectangle in Fig.2 (c).

3.3. STSA-MMSE in the DCT domain

Similarly to standard Bayesian MMSE-based methods in the
DFT domain [34], we compute the MMSE Bayesian estimator
of the absolute value of the DCT clean signal coefficients. To
this end, we need a model for the clean speech distribution.
Motivated by the central limit theorem when the frame length is
large enough, we assume that the DCT coefficients of the clean
signal have Gaussian prior density. Based on this assumption,
the probability of each event ΦS = 1 or ΦS = −1 is equal to
1/2. Thus, the probability density function of the amplitude
of a given clean speech DCT coefficient AS has half-normal
distribution:

fAS (a) =

√
2

σS
√
π

exp
− a2

2σ2
S

 1[0,∞)(a), (17)

where 1[0,∞) is the indicator function 1[0,∞)(x) = 1 if x ≥ 0
and 1[0,∞)(x) = 0 otherwise. Moreover, noise is assumed to be
Gaussian. Thus, we can write

fY |AS (y|a) =P(ΦS = 1) fY |AS ,ΦS (y|a, 1)
+P(ΦS = −1) fY |AS ,ΦS (y|a,−1)

(18)

where fY |AS (y|a) (resp. fY |AS ,ΦS (y|a, ϕS )) is the conditional prob-
ability density function of Y at y given AS = a (resp. AS = a
and ΦS = ϕS ). It follows that fY |AS can be rewritten as:

fY |AS (y|a) =
1

2σX
√

2π
×exp

− (y − a)2

2σ2
X

 + exp
− (y + a)2

2σ2
X

 . (19)

The Bayesian estimator of the speech short-time spectral ampli-
tude (STSA) is a map ψ of R into [0,∞) aimed at minimizing
the mean-square error between the estimated and the true am-
plitude. According to [35] (among others), it is known to be the
conditional mean E[AS |Y = y] and is given for every y ∈ R by :

ψ(y) =

∫ ∞
0

a fY |As (y|a) fAs (a)da∫ ∞
0

fY |As (y|a) fAs (a)da
. (20)

Given the DCT coefficient Y , the estimate ÂS of AS is then:

ÂS = ψ(Y), (21)
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(a) Clean signal (b) Noisy signal at 5dB

(c) α = 0.05 (d) α = 0.15

(e) α = 0.05 (f) α = 0.15

Figure 2: Spectrogram of clean speech (a), corresponding noisy car speech (b), denoised speech by Block-SSBS with two different levels: level = 0.05 (c) and level
= 0.15 (d) and denoised speech by BSSBS-MMSE with two different levels: level = 0.05 (e) and level = 0.15 (f).
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Injecting (17) and (19) into (20) yields:

ψ(y)=

∫ ∞
0 a
[
exp
(

ay
σ2

X
− a2

2σ2

)
+ exp

(
−

ya
σ2

X
− a2

2σ2

)]
da∫ ∞

0

[
exp
(

ay
σ2

X
− a2

2σ2

)
+ exp

(
−

ya
σ2

X
− a2

2σ2

)]
da

, (22)

where σ = σSσX/
√
σ2

X + σ
2
S . As in [34], we can obtain a

closed-form expression of the gain function. By direct compu-
tation from (22) or by using [36, Eqs. 3.462.1, 9.254.1, 9.254.2]
successively, the map function ψ(y) is given by:

ψ(y) = G(ξ, γ)|y|, (23)

where G(ξ, γ) is the gain function of the STSA-MMSE in the
DCT domain defined as

G(ξ, γ) =
√
ν

γ

√
2 +
√
πν erf(

√
ν/2) exp(ν/2)

√
π exp(ν/2)

, (24)

where
ν =

ξ

1 + ξ
γ. (25)

and erf(·) is the error function. This gain function depends on
the a priori SNR ξ and the a posteriori SNR γ. The a poste-
riori SNR is directly given by the observed amplitude AY . In
contrast, the a priori SNR is unknown. This variable ξ can be
estimated via the decision directed approach [34]:

ξ[m, k] = β
Â2

S [m − 1, k]

σ2
X[m − 1, k]

+ (1 − β)(γ[m, k] − 1)+, (26)

where 0 < β < 1 is the smoothing parameter, ÂS [m − 1, k] is
the estimated STSA at the previous frame and (x)+ is x if x ⩾ 0
and 0 otherwise.

For comparative purpose, Fig. 3 (a) displays both the STSA-
MMSE in the DCT domain (24) and the STSA-MMSE in the
DFT domain [34] as functions of the a posteriori SNR γ for
fixed values of ξ = 5,−5,−10 dB. Alternatively, in Fig 3 (b),
these same gain functions are plotted as functions of ξ for fixed
values of γ = 5,−5,−10 dB. In the two cases, the gain function
of the STSA estimator in the DCT domain is shifted down by
2 dB with respect to the gain function of the STSA estimator
in the DFT domain. This suggests that denoising in the DCT
domain tends to reduce more the background noise.

3.4. Combination method

After Block-SSBS, the transformed signal and noise are as-
sumed to be Gaussian distributed. We then apply the Bayesian
STSA-MMSE in the DCT domain established in the preceding
section. By doing so, prior knowledge on speech is incorpo-
rated to improve speech quality beyond speech intelligibility
improvement achieved by Block-SSBS. Whence the following
combination of these parametric and non-parametric methods,
which is summarized by Fig 4.

(i) Signal decomposition: The observed signal is segmented
and transformed using DCT.

(ii) Noise reduction: The transformed coefficients are shrunk
by the block SSBS gain function GB

τ,λ (̂γ) in each block B. Given
a DCT coefficient Y in this block, the estimate Â∗S of the ampli-
tude AS of the clean signal is calculated by:

Â∗S = GB
τ,λ (̂γ)AY (27)

(iii) Refined Estimation: The Bayesian MMSE statistical es-
timator is applied to the coefficients shrunk by Block-SSBS so
that the final estimate of the clean signal amplitude is:

ÂS = G(ξ, |Â∗S |
2/σ2

X)Â∗S , (28)

where G is the gain function of the STSA-MMSE Bayes esti-
mator given by (24) and ξ is calculated by the decision-directed
approach (26).

(iv) Signal reconstruction: The enhanced signal is finally ob-
tained from the estimated STSA ÂS and the noisy phase ϕY by
the overlap-add method [16].

Figs. 2 (e) & (f) illustrate the gain brought by the combi-
nation. More precisely, the reader will notice that components
erased by Block-SSBS in the rectangles enhanced in Figs. 2 (c)
& (d) have been recovered in Figs. 2 (e) & (f).

4. Experimental Results

4.1. Experimental setting and parameter adjustment

Experiments have been conducted on the NOIZEUS database
to evaluate the performance of the proposed methods for speech
enhancement. The NOIZEUS database contains speech sen-
tences degraded by noise environments from the AURORA
database at various levels, namely 0, 5, 10 and 15 dB. The
speech signals are sampled at 8 kHz. In our experiments,
the noisy signals were Hamming-windowed into 32-ms frames
with 50% overlap, and then transformed by DCT or DFT. The
methods under test are:

• STSA-MMSE(DCT): STSA-MMSE in the DCT domain,

• STSA-MMSE(DFT): STSA-MMSE in the DFT domain,

• Block-SSBS

• BSSBS-MMSE: the combination of Block-SSBS and
STSA-MMSE(DCT)

With respect to the theorical framework, the purpose of
the experiments is threefold. first, we want to assess the
non-parametric method Block-SSBS in the DCT domain to
its Bayesian — and thus parametric — counterpart STSA-
MMSE(DCT) calculated in the Section 3.3. Second, we aim to
evaluate the gain brought by the combination BSSBS-MMSE
in the DCT domain, in comparison to the Bayesian reference
STSA-MMSE(DCT). Third, we want to assess the interest of
working in the DCT domain and therfore, benchmark Block-
SSBS and BSSBS-MMSE to the standard baseline STSA-
MMSE(DFT) [34].
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Figure 3: Gain functions of the STSA-MMSE estimators in the DCT and DFT domains as functions of ξ and γ. In Fig. 3 (a) the gain functions vary with γ at fixed
values of ξ whereas, in Fig. 3 (b), the gain functions vary with ξ at fixed values of γ.
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Figure 4: Block overview of the combination method, where y[n] is the input and ∆T , ∆F, δ and α are the parameters of the proposed combination method.

For Block-SSBS, the tolerance δ and the level α were chosen
by maximizing the segmental SNR (SSNR) on a small set of
sentences randomly chosen and corrupted by car noise at SNR
level of 5 dB. These preliminary tests led to choose α = 0.05
and δ = 4 dB for Block-SSBS.

The performance of all methods were evaluated in two sce-
narios. In the first one, denoising is performed by using the
reference noise power spectrum. This one is simply the the-
oretical power spectrum if noise is stationary. Otherwise, the
reference noise power spectrum in a given bin m is estimated as
in [37] by:

σ2
X[m, k] = µσ2

X[m − 1, k] + (1 − µ)A2
X[m, k], (29)

where µ = 0.9 and σ2
X[0, k] = A2

X[0, k]. In the second scenario,
the noise power spectrum was estimated for all methods using
the B-E-DATE algorithm recently introduced in [38].

4.2. Speech objective Test

Speech quality and intelligibility were evaluated via objec-
tive quality and intelligibility criteria. Speech quality was as-
sessed using the standard segmental SNR (SSNR) and the over-
all quality of speech criteria. SSNR values were trimmed so
as to remain within the range [−10,35 dB] and avoid the use
of a silence/speech detector [16]. The overall speech quality
was measured by the multivariate adaptive regression spline
(MARS ovl) criterion. This metric combines the Itakura-Saito
distance (IS) and the perceptual evaluation of speech quality
(PESQ) [39]. It has been shown to strongly correlate with sub-
jective assessments [39].

Speech intelligibility was first estimated by the short-time
objective intelligibility (STOI) criterion. Basically, the STOI
criterion computes the mean correlation between clean and es-
timated speech [40]. It is known to be highly correlated with
intelligibility scores obtained by listening tests. We applied the
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logistic function [40, Eq. (8)] to map the STOI measure to a
meaningful intelligibility score.

The results are displayed in Figures 5 to7. Each figure has the
same legend where STSA-MMSE(DFT), STSA-MMSE(DCT),
Block-SSBS, and BSSBS-MMSE are designated by the red,
green, black and blue lines with the circle, x-mark, plus and
star makers, respectively, as specified once for all in Fig. 5a.
Moreover, all measures obtained with the reference noise power
spectrum and with B-E-DATE are drawn by dashed and solid
lines, correspondingly. All algorithms have been benchmarked
at four SNR levels and against various noise models, namely
white Gaussian noise (White), 2nd-order auto-regressive (AR)
noise, 4 usual types of quasi-stationary noise (car, train, station
and street) and 4 kinds of non-stationary noise (airport, exhibi-
tion, restaurant and babble). AR noise was obtained by filtering
white Gaussian noise by the discrete filter with transfer function
1/(1 + az−1) and a = 0.5.

Fig. 5 shows the segmental SNR improvement obtained
with the different denoising methods employing the reference
noise power spectrum (dashed lines) as well as the noise power
spectrum estimated by B-E-DATE (solid lines). We first con-
sider the scenario where the reference noise power spectrum
is used. The results for white and AR noise are given in Fig.
5a and 5b, respectively. The proposed BSSBS-MMSE method
yields the highest segmental SNR improvement at 0, 5 and 10
dB, whereas the non-parametric Block-SSBS method achieves
the best SSNR at 15dB. For non-stationary environment with
slowly-varying noise spectrum like car, train, station and street
noises, similar results are obtained: BSSBS-MMSE provides
the largest SSNR improvement at low and medium SNRs, but
Block-SSBS performs better than BSSBS-MMSE at 15 dB. Yet
the difference is small, as shown by Figures 5c to 5f. Figures
5g to 5j present SSNR improvement for non-stationary noises.
In this case, BSSBS-MMSE yields the best score at low and
medium SNRs. At high SNR level, Block-SSBS and BSSBS-
MMSE both lead to the same best measure. Remarkably, in
comparison to STSA-MMSE in the DFT domain, the BSSBS-
MMSE method has a gain of around 2.5 − 3dB in this case.

The SSNR improvement, obtained in the more realistic case
where the noise power spectrum is estimated by B-E-DATE, is
also shown in Fig. 5 by solid lines. In this case, the BSSBS-
MMSE method still yields the best score for all noise types
from 0 dB to 10 dB, whereas Block-SSBS achieves the high-
est score at 15 dB. The gain now is about 0.5 − 1 dB. Such
results basically relate to the sensitivity of STSA-MMSE and
Block-SSBS in the DCT domain to noise estimation errors. In
comparison with Fig. 5, STSA-MMSE(DCT), Block-SSBS and
BSSBS-MMSE undergo performance loss by using B-E-DATE
for noise power spectrum estimation. This loss is negligible
for white and AR Gaussian noise and around 3 dB for other
types of noise. Generally, although BSSBS-MMSE is sensitive
to noise estimation errors, it keeps on yielding the best SSNR
improvement.

In term of speech quality estimated by the MARS overall cri-
terion, Fig. 6 (dashed lines) shows the score improvement when
the reference noise power spectrum is used. With small a pri-
ori information about speech, the Block-SSBS method yields
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(j) Babble

Figure 5: Speech quality evaluation after speech denoising: improvement of
segmental SNR criterion. The result is displayed first for synthetic noise
(White,AR) then quasi-stationary noise (train, car, station and street) and finally
non-stationary noise (restaurant, exhibition, babble and airport). The legend is
the same for all sub-figure like Fig. 5a.
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Figure 6: Speech quality evaluation after speech denoising: improvement of
MARS OVL composite criterion. The legend is also the same for all sub-figure
like Fig. 6a.
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Figure 7: Speech intelligibility evaluation after speech denoising: Intelligibility
score obtained by mapping STOI criterion.
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the lowest score in all situations except for AR noise. This re-
mains true when B-E-DATE is employed to estimate the noise
power spectrum (see the solid lines in Fig. 6). By taking into
account the speech distribution at the refined estimation step,
the good performance of the BSSBS-MMSE method is con-
firmed by the MARS improvement measured in the case of
white Gaussian noise and AR noise (see Figs. 6a and 6b). For
all types and levels of noises, BSSBS-MMSE provides the best
MARS scores, except for babble and restaurant noises at low
noise levels. However, in these cases, the MARS scores of the
BSSBS-MMSE method is not significantly different from the
best ones obtained by STSA-MMSE(DCT) (see Fig. 6c-6j).

When combining denoising with B-E-DATE noise estima-
tion, the MARS overall improvement is presented in Fig. 6
by solid lines. It turns out that the speech quality obtained by
STSA-MMSE(DFT) is not really affected by errors in the noise
spectrum estimation (compare the dashed lines to the solid ones
in Fig. 6). In contrast, for non-stationary noise, methods per-
forming in the DCT domain are more sensitive to noise esti-
mation errors, as mentioned earlier. Thereby, BSSBS-MMSE,
STSA-MMSE(DCT) and STSA-MMSE(DFT) yield very simi-
lar results for this type of noise, especially at low and medium
SNR levels (see Figs. 6d-6j). For stationary noise, Figs. 6a and
6b show that the BSSBS-MMSE method remains better than
the other methods, without real performance loss due to noise
spectrum estimation by B-E-DATE.

In terms of speech intelligibility, the intelligibility score (IS)
obtained by mapping the STOI measure is shown in Figs. 7. At
high SNR, the scores obtained by all the methods are not signif-
icantly different. At low SNR and in presence of AR and white
Gaussian noise, Block-SSBS and BSSSBS-MMSE behave sim-
ilarly in the two scenarios (with and without reference noise
power spectrum). For non-stationary noises and when using
the reference noise spectrum, BSSBS-MMSE yields the highest
scores. In comparison with the worst results, the gain is around
10−15%. When noise spectrum is estimated by B-E-DATE, the
best performance is attained by Block-SSBS. In comparison to
the STSA-MMSE(DFT) method, BSSBS-MMSE provides of-
ten better score in the case of non-stationary noise with a gain
between 5 and 15%, whereas Block-SSBS method leads to an
improvement of 10 − 20% (see Figs. 7h, 7i and 7j).

In a nutshell, the proposed BSSBS-MMSE combination
achieves a better overall trade-off between speech quality and
intelligibility than the other methods under consideration.

5. Conclusion

In this paper, we have introduced several speech denoising
methods. All have in common to operate in the DCT do-
main, which makes it possible in particular to get rid of the
phase estimation problem. These methods are Block-SSBS,
STSA-MMSE(DCT) and BSSBS-MMSE. Block-SSBS is non-
parametric and can be seen as a smooth shrinkage of DCT
coefficients. Its parameters are optimized by the SURE and
RDT approaches, which are also non-parametric methods for
statistical inference. STSA-MMSE(DCT) is a Bayesian es-
timator. BSSBS-MMSE combines Block-SSBS and STSA-

MMSE(DCT) so as to benefit from the advantages of each of
these methods. Namely, Block-SSBS achieves good perfor-
mance in terms of speech intelligibility by background noise
reduction; STSA-MMSE improves speech quality by enhanc-
ing speech contained in small coefficients after shrinkage.

The performance evaluation was conducted on the
NOIZEUS database, with and without noise power spec-
trum reference. Various types of stationary and non-stationary
noises were considered. When the noise spectrum is unknown,
it is estimated by an up-to-date method. In addition, objective
and subjective tests were used to assess the speech estimators,
in comparison to the reference approach STSA-MMSE [34].
The experimental results show that BSSBS-MMSE performs
better than the other methods in most situations. These
experiments also confirm the relevance of working in the DCT
domain. In this respect, transposition to the DCT domain of
Bayesian frameworks such as that considered in [31, 32] could
be investigated.

As specified in the introduction, the approach proposed
in this paper concerns applications where sufficiently large
databases are not available for designing deep and recurrent
neural networks. However, in the case where large databases
are available for more or less specific applications, it would
be relevant to benchmark deep and recurrent neural networks
to Block-SSBS and BSSBS-MMSE in terms of development
costs, complexity, robustness and denoising performance in
various contexts.

The approach proposed in this paper could apply to trans-
forms other than DCT. For instance, although the phase spec-
trum estimation remains an issue for STFT-based transforms,
combining Block-SSBS and BSSBS-MMSE with Mel or Bark
transforms could be addressed. For instance, Bayesian speech
estimation in the Mel domain as proposed in [41] yields good
performance for Automatic Speech Recognition (ASR). It can
thus be wondered whether Block-SSBS and BSSBS-MMSE
can be used in such domains for speech enhancement in au-
dio applications. In the same way, denoising by Block-SSBS
and BSSBS-MMSE after cochlear transforms [42] could also
be considered.

The STSA-MMSE used in BSSBS-MMSE is devised un-
der the Gaussian assumption for the Block-SSBS outcome.
Asymptotic statistics could perhaps help justify this assump-
tion. However, the task seems rather difficult and, in any case,
the experimental results provide evidence that such a Gaussian
assumption leads to an STSA-MMSE estimator good enough
to retrieve relevant speech contents, even in small DCT coeffi-
cients as emphasized by Figs. 2 (e) & (f). However, extensions
to super-Gaussian [43] or Gamma distributions [44] in the DCT
domain could be envisaged. B-E-DATE could still be used since
it performs noise estimation regardless of the signal and its dis-
tribution, even in presence of non-stationary and non-Gaussian
noise [38].

All these results have been obtained for speech signals. How-
ever, the underlying theoretical framework is based on very
general assumptions. Therefore, it can be wondered whether
the proposed methods could not be used to denoise other types
of signals as well. On-going work could involve a study ded-
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icated to audio denoising solely via the methods introduced in
this paper. Moreover, in comparison with the performance mea-
surements obtained when the noise spectrum reference is given,
all the methods tested in the DCT domain undergo a loss in
speech quality when the noise power spectrum is estimated by
B-E-DATE. Thus, the design of efficient noise power spectrum
estimation in the DCT domain must be further investigated.
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