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INEQUALITIES FOR ONE-STEP PRODUCTS

MÁRIO J. J. BRANCO AND JEAN-ÉRIC PIN

Abstract. Let a be a letter of an alphabet A. Given a lattice of lan-
guages L, we describe the set of ultrafilter inequalities satisfied by the
lattice La generated by the languages of the form L or LaA∗, where L

is a language of L. We also describe the ultrafilter inequalities satisfied
by the lattice L1 generated by the lattices La, for a ∈ A. When L is
a lattice of regular languages, we first describe the profinite inequalities
satisfied by La and L1 and then provide a small basis of inequalities
defining L1 when L is a Boolean algebra of regular languages closed
under quotient.

The concatenation product of languages and its connection with algebra
and logic has been a very active research area over the past fifty years. It is
often sufficient to consider one-step products of the form L → LaA∗ where a
is a letter of the alphabet A, or their dual forms L → A∗aL. For instance, it
has been shown [18, 39, 40] that a variety of regular languages closed under
these two operations is also closed under product. It is also known that a
regular language belongs to the smallest variety of languages closed under
one-step products if and only if its syntactic monoid is R-trivial. One step
products were also used in [37] to describe the languages whose syntactic
monoid is idempotent (see also [9, 11]) and in [10] to get the expressive
power of linear temporal logic without until.

The purpose of this article is to conduct a comprehensive study of one-
step products, first for arbitrary languages, then for regular languages, using
the so called equational approach.

Historical background. In the regular case, the equational approach goes
back to Schützenberger’s characterization of star-free languages by the profi-
nite equation xω+1 = xω [32]. Two results make it possible to account for
similar situations: Eilenberg’s variety theorem [11], which gives a bijection
between varieties of regular languages and varieties of finite monoids and
Reiterman’s theorem [29] which provides a description of varieties of finite
monoids by profinite equations.

During the years 1975–2000, much effort was devoted to operations on
regular languages, notably concatenation product [35, 26]. One-step prod-
ucts were first considered as an exercise in Eilenberg’s book [11, Exercise
IX. 2.1] and a deep result of [4] led to an equational characterization of this
operation in the variety setting.
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ing from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 670624) and is supported
by the DeLTA project (ANR-16-CE40-0007).
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However, varieties of languages soon proved to be an overly constrained
concept and a series of generalizations were successively introduced [19, 12,
36, 25, 13], each of them leading to an update of the equational approach.
The first of these updates [19] consisted in replacing profinite equations by
profinite inequalities and the last one led to a very concise statement: every
lattice of regular languages can be defined by a set of profinite inequalities.

On the other hand, an even more ambitious generalization was proposed
in [14]. It applies to arbitrary languages, but the price to pay is to replace
profinite words by ultrafilters. Still, a similar result holds: every lattice of
languages can be defined by a set of ultrafilters inequalities.

Main results. Let A be a finite alphabet, let L be a lattice of languages
of A∗ and let a be a letter of A. Let La be the lattice generated by the
languages of the form L or LaA∗, where L ∈ L. Let also L1 be the lattice
generated by the union of all lattices La, for a ∈ A.

Our first main result (Theorem 4.1 and Corollary 4.2) gives ultrafilter
inequalities defining La and L1, given the ultrafilter inequalities defining L.
A similar result was given in [16] but our inequalities are simpler and have
the advantage to give immediately profinite inequalities in the regular case
(Theorem 4.3 and Corollary 4.4). Moreover, our approach is quite generic
and could easily be transposed to other settings than one-step products.

Our second main result gives a much smaller basis of profinite inequali-
ties when L is a Boolean algebra of regular languages closed under quotients
(Theorem 5.2): The lattice L1 admits as a base the set of profinite inequal-
ities of the form zx = zx2, zxy = zyx and z 6 zx, where x, y and z are
profinite words such that the profinite equations z = zx = zy hold in L. The
proof relies on the conjunction of two advanced tools, the derived category
of a relational morphism and Simon’s theorem on the free category on a
finite graph, supplemented by a compactness argument.

Our paper is organized as follows. Section 1 gathers the needed topological
notions. Section 2 presents the inequality theory for languages. One step
products are introduced in Section 3, and Section 4 provides ultrafilter in-
equalities for La and L1. Section 5 gives a base of profinite inequalities for
L1 when L is a Boolean algebra closed under quotients.

1. Stone duality and inequalities

In this paper, we denote by Sc the complement of a subset S of a set
E. We also denote L the topological closure of a subset L of a topological
space.

Let A be a finite alphabet. A lattice of languages is a set L of languages
of A∗ closed under finite unions and finite intersections. A lattice closed
under complement is a Boolean algebra. It is closed under quotients if, for
each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also in L. Recall
that u−1L = {x ∈ A∗ | ux ∈ L} and Lu−1 = {x ∈ A∗ | xu ∈ L}.

Let B be a Boolean algebra of languages of A∗. An ultrafilter of B is a
non-empty subset γ of B such that:

(1) the empty set does not belong to γ,

(2) if K ∈ γ and K ⊆ L, then L ∈ γ (closure under extension)
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(3) if K,L ∈ γ, then K ∩ L ∈ γ (closure under intersection),

(4) for every L ∈ B, either L ∈ γ or Lc ∈ γ (ultrafilter condition).

Stone duality tells us that B has an associated compact Hausdorff space
S(B), called its Stone space. This space is given by the set of ultrafilters
of B with the topology generated by the basis of clopen sets of the form
{γ ∈ S(B) | L ∈ γ}, where L ∈ B.

Only two Stone spaces are considered in this paper. The first one is
the Stone space of the Boolean algebra of all the subsets of A∗, known as
the Stone-Čech compactification of A∗ and denoted by βA∗. An important
property of βA∗ is that every map f from A∗ to a compact space K has a
unique continuous extension βf : βX → K.

The second one is the Stone space of the Boolean algebra of all regular
subsets of A∗. It was proved by Almeida [1] to be equal to the free profinite

monoid on A, denoted by Â∗. Its elements are called profinite words. We
refer to [2, 20, 21] for more information on this space, which can also be
seen as the completion of the metric space (A∗, d), where d is the profinite
metric on A∗.

Two other facts will be used in this paper. First, if X,Y ⊆ Â∗, then

XY = X Y . Secondly, the monoid Â∗ is equidivisible [3]. A monoid M is
equidivisible if for every u, v, x, y ∈ M , the equality uv = xy implies that
there is t ∈ M such that ut = x and v = ty, or such that xt = u and y = tv.
Consequently, usual definitions on words (prefixes, suffixes, factors) extend
to profinite words. This is a crucial difference with βA∗, which is not even
a monoid.

Hyperspace. Let X be a Hausdorff space and let C(X) be the set of its
closed subsets1, called the hyperspace of X. For each open set U , let us set

U− = {C ∈ C(X) | C ∩ U 6= ∅} U+ = {C ∈ C(X) | C ⊆ U}.

The Vietoris topology on C(X) has as a subbase all the sets of the form U+

or U−, where U is open [5, p. 47]. It is known that, equipped with the
Vietoris topology, C(X) is always a compact space.

When X is a metric space, then C(X) is also a metric space. The metric

defining the Vietoris topology of the C(Â∗) was explicitly given in [24].

2. Inequalities on languages

The inequality theory for languages was first introduced in [14] and later
used in [15, 16, 22]. It is based on the following definitions.

Let B be a Boolean algebra of languages of A∗, which, in this paper, will
either be the set of all languages or the set of all regular languages of A∗.

Definition 2.1. Let µ0, µ1 be ultrafilters of B. A language L of B satisfies
the ultrafilter inequality µ0 6 µ1 if the condition L ∈ µ0 implies L ∈ µ1, or,
equivalently, if the condition µ0 ∈ L implies µ1 ∈ L.

When B is the lattice of all regular languages, ultrafilters are profinite
words and we use the terms profinite inequality and profinite equation.

1Contrary to a frequent convention, we do include the empty set in C(X).
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Definition 2.1 can be extended to sets of languages and to sets of inequal-
ities. Given a subset S of B and an ultrafilter inequality µ0 6 µ1, we say
that S satisfies the ultrafilter inequality µ0 6 µ1 (notation µ0 6S µ1) to
mean that every language of S satisfies µ0 6 µ1. Thus µ0 6S µ1 if and only
if µ0 ∩ S ⊆ µ1 ∩ S.

Definition 2.2. Let E be a set of ultrafilter inequalities. A subset of B
satisfies E if it satisfies every inequality of E. The set of languages defined
by E is the set of all languages satisfying E.

The following result is a consequence of Stone duality, see [14, Theorem 5.1]
or [22, Theorem 8.3].

Theorem 2.3. A subset L of B is a sublattice of B if and only if it can be
defined by a set of ultrafilter inequalities of the form µ0 6 µ1, where µ0 and
µ1 are ultrafilters of B.

It is convenient to write µ0 = µ1 as a shortcut for µ0 6 µ1 and µ1 6 µ0. It is
easy to see that a language L of B satisfies the ultrafilter equation µ0 = µ1

if and only if L and Lc satisfy the ultrafilter inequality µ0 6 µ1.

3. The operation L → LaA∗

Let a be a letter of A and let u be a word of A∗. A word v is said to be
an a-prefix of u if va is a prefix of u. Let pa(u) be the set of a-prefixes of u,
that is,

pa(u) = {v ∈ A∗ | va is a prefix of u}.

We view pa as a transduction from A∗ into itself. Following the notation
introduced in [6], we set, for L ⊆ A∗,

p−a (L) = {u ∈ A∗ | pa(u) ∩ L 6= ∅} p+a (L) = {u ∈ A∗ | pa(u) ⊆ L}

The link with the operation L → LaA∗ comes from the following observation:

Proposition 3.1. One has p−a (L) = LaA∗ and p+a (L) = (LcaA∗)c.

We now extend the definition of the set of a-prefixes to βA∗ and to Â∗.

a-prefixes in βA∗. After explaining that βA∗ is not a monoid, it may seem
contradictory to define the set of a-prefixes of an ultrafilter. The key point
is that since C(βA∗) is a compact space, any transduction of finite range
from A∗ to itself admits a unique continuous extension from βA∗ to C(βA∗).
This applies in particular to the map pa. Thus if µ is an ultrafilter on A∗,
we say that βpa(µ) is the set of a-prefixes of µ and by abuse of language,
we call a-prefixes of µ an element of βpa(µ).

a-prefixes in Â∗. It follows from [24, Theorem 4.1] that a map f : A∗ →

C(Â∗) is uniformly continuous if and only if, for every regular language L,
f−1(L) is a regular language2. Since p−a (L) = LaA∗ by Proposition 3.1,
this condition is trivially satisfied by pa and hence pa extends uniquely to a

(uniformly) continuous map p̂a : Â∗ → C(Â∗). The next proposition gives a
direct definition of p̂a.

2This is actually a variation on some general results of [17] and [33, Theorem 1]. See
also [7] for a nice survey.
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Proposition 3.2. For each u ∈ Â∗,

p̂a(u) = {v ∈ Â∗ | there exists w ∈ Â∗ such that u = vaw}.

4. Inequalities for La, and L1

Let a be a letter of A and let L be a lattice of languages. The aim of this
section is to find out the ultrafilter inequalities satisfied by La and L1, and,
when L is a lattice of regular languages, the profinite inequalities satisfied
by these lattices.

4.1. Ultrafilters inequalities. The ultrafilter inequalities satisfied by La

are described in the following theorem. A different description was given in
[16].

Theorem 4.1. Let µ0, µ1 ∈ βA∗. The following conditions are equivalent:

(1) The lattice La satisfies the inequality µ0 6 µ1,

(2) The lattice L satisfies the inequality µ0 6 µ1 and, for each a-prefix
γ0 of µ0, there exists an a-prefix γ1 of µ1 such that L satisfies the
inequality γ0 6 γ1.

Proof. In this proof, S denotes the closure in βA∗ of a subset S of A∗.
Let K0 = βpa(µ0) and K1 = βpa(µ1). One can show that, for i = 0, 1, Ki

is the unique compact subset of βA∗ such that, for each S ⊆ A∗,

Ki ∩ S 6= ∅ if and only if SaA∗ ∈ µi. (4.1)

(1) =⇒ (2). If µ0 6La
µ1, then, µ0 6L µ1 since L ⊆ La. The second part

of (2) is trivially satisfied if K0 = ∅. Thus we will now assume that K0 is
nonempty. Then since A∗ = βA∗, K0∩A∗ is also nonempty and (4.1) shows
that A∗aA∗ ∈ µ0. Since µ0 6La

µ1, one also gets A∗aA∗ ∈ µ1 and again by
(4.1), K1, which is equal to K1 ∩A∗, is nonempty.
Let γ0 ∈ K0. We claim that the set

S = {K1 ∩ L | L ∈ γ0 ∩ L}

has the finite intersection property. Since, for L1, L2 ∈ L, L1 ∩ L2 =
L1 ∩ L2, S is closed under finite intersection and it suffices to prove that
S does not contain the empty set. But if L ∈ γ0 ∩ L, then γ0 ∈ L and thus
K0 ∩ L 6= ∅. It follows by (4.1) that LaA∗ ∈ µ0. Now since µ0 6La

µ1, one
also gets LaA∗ ∈ µ1 and again by (4.1), K1 ∩ L 6= ∅. It follows that the
elements of S are all nonempty, which proves the claim.

Since C(βA∗) is compact, the intersection of all elements of S is nonempty.
Let γ1 be an element of this intersection. Then since A∗ ∈ γ0 ∩ L, one gets
in particular γ1 ∈ K1 ∩A∗ = K1.

It just remains to show that γ0 6L γ1. Let L ∈ L. If L ∈ γ0, then
L ∈ γ0 ∩ L and thus K1 ∩ L ∈ S by definition of S. Since γ1 belongs to all
elements of S, we get in particular γ1 ∈ K1 ∩ L. It follows that γ1 ∈ L and
thus L ∈ γ1 as required.

(2) =⇒ (1). Suppose that (2) holds. Since µ0 6L µ1, it just remains to
prove that, if L ∈ L and LaA∗ ∈ µ0, then LaA∗ ∈ µ1. Since LaA∗ ∈ µ0, it
follows from (4.1) that K0 ∩ L is nonempty. Let γ0 ∈ K0 ∩ L. Now, by (2)
there exists γ1 ∈ K1 such that γ0 6L γ1. Since γ0 ∈ L, one gets γ1 ∈ L and
hence γ1 ∈ K1 ∩ L. It follows by (4.1) that LaA∗ ∈ µ1 as required. �
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Since L1 is the join of the lattices La, for a ∈ A, one gets the following
corollary.

Corollary 4.2. Let µ0, µ1 ∈ βA∗. The following conditions are equivalent:

(1) The lattice L1 satisfies the inequality µ0 6 µ1,

(2) The lattice L satisfies the inequality µ0 6 µ1 and, for each letter a and
for each a-prefix γ0 of µ0, there exists an a-prefix γ1 of µ1 such that
L satisfies the inequality γ0 6 γ1.

4.2. Profinite inequalities. The counterparts of Theorem 4.1 and Corol-
lary 4.2 for a lattice L of regular languages are stated below.

Theorem 4.3. Let u0, u1 ∈ Â∗. The following conditions are equivalent:

(1) The lattice La satisfies the inequality u0 6 u1,

(2) The lattice L satisfies the inequality u0 6 u1 and, for each a-prefix
v0 of u0, there exists an a-prefix v1 of u1 such that L satisfies the
inequality v0 6 v1.

Corollary 4.4. Let u0, u1 ∈ Â∗. The following conditions are equivalent:

(1) The lattice L1 satisfies the inequality u0 6 u1,

(2) The lattice L satisfies the inequality u0 6 u1 and, for each letter a

and each a-prefix v0 of u0, there exists an a-prefix v1 of u1 such that
L satisfies the inequality v0 6 v1.

5. A base of profinite inequalities for L1

In this section, we assume that L is a Boolean algebra of regular languages
closed under quotients. In this case, L1 is a lattice of regular languages closed
under quotients. It follows that the set of profinite inequalities satisfied by
L1 is closed under translations: if u0 6 u1 is satisfied by L1, then, for all

x, y ∈ Â∗, the inequality xu0y 6 xu1y is also satisfied by L1.
A set E of profinite inequalities is a base for L1 if L1 is the smallest lattice

of regular languages closed under quotients satisfying the inequalities of E.
The aim of this section is to produce such a base of profinite inequalities.

As a Boolean algebra, L satisfies the profinite inequality u0 6 u1 if and
only if it satisfies u0 = u1. The profinite inequalities satisfied by L1 are
described by Corollary 4.4: u0 6L1

u1 if and only if (u0, u1) satisfies the
following conditions:

(C1) u0 =L u1

(C2) for each letter a and each a-prefix v0 of u0, there exists an a-prefix
v1 of u1 such that v0 6L v1.

Let us consider the following subsets of Â∗ × Â∗:

E1(L) = {(zx2, zx) | x, z ∈ Â∗ and z =L zx}

E2(L) = {(z, zx) | x, z ∈ Â∗ and z =L zx}

E3(L) = {(zx0x1, zx1x0) | x0, x1, z ∈ Â∗ and z =L zx0 =L zx1}

E(L) = E1(L) ∪ E2(L) ∪ E3(L)

Let us first verify that the inequalities defined by E(L) are all satisfied by
L1.
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Proposition 5.1. Each profinite inequality u0 6 u1 such that (u0, u1) ∈
E(L) satisfies Conditions (C1) and (C2) and hence is satisfied by L1.

This is mainly a consequence of the equidivisibility of Â∗.

Proof. (1) Suppose that (u0, u1) ∈ E1(L). Then there exist x, z ∈ Â∗ such
that u0 = zx2, u1 = zx and z =L zx. It follows zx2 =L zx and thus
u0 =L u1.

Let a be a letter of A. If v0a is a prefix of zx2, then either v0a is a prefix
of zx or zx is a prefix of v0.

z x x z x

p

x

v0 a v0 a

First case. Second case.

In the first case, it suffices to take v1 = v0 to get an a-prefix of zx such that
v0 =L v1. In the second case, v0 = zxp for some p such that pa is a prefix
of x. Let v1 = zp. Then v1a = zpa is a prefix of zx and since z =L zx,
v0 =L v1.

(2) Suppose that (u0, u1) ∈ E2(L). Then there exist x, z ∈ Â∗ such that
u0 = z, u1 = zx and z =L zx. Thus the condition u0 =L u1 is trivially
satisfied.

Let a be a letter of A. If v0a is a prefix of z, then v0a is also a prefix of
zx and it suffices to take v1 = v0 to satisfy (C2).

(3) Suppose that (u0, u1) ∈ E3(L). Then there exist x0, x1, z ∈ Â∗ such that
u0 = zx0x1, u1 = zx1x0 and z =L zx0 =L zx1. It follows zx0x1 =L zx1 =L

z =L zx0 =L zx1x0 and thus u0 =L u1.
Let a be a letter of A. If v0a is a prefix of zx0x1, then either v0a is a

prefix of zx0 or zx0 is a prefix of v0.

z x0

p

x1 z x0

p

x1

v0 a v0 a

First case. Second case.

In the first case, v0 = zp for some p such that pa is a prefix of x0. Let
v1 = zx1p. Then v1a = zx1pa is a prefix of zx1x0 and since z =L zx1,
v0 =L v1. In the second case, v0 = zx0p for some p such that pa is a prefix
of x1. Let v1 = zp. Then v1a = zpa is a prefix of zx1x0 and since z =L zx0,
v0 =L v1. �

We can now state the main result of this section.

Theorem 5.2. The inequalities of the form u0 6 u1 such that (u0, u1) ∈
E(L) form a base of profinite inequalities for L1. Alternatively, the equalities
u0 = u1 such that (u0, u1) ∈ E1(L) ∪ E3(L) and the inequalities u0 6 u1 such
that (u0, u1) ∈ E2(L) form another base for L1.
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We first show that the two sets of inequalities proposed in the statement
define the same lattice of regular languages (Proposition 5.3).

Proposition 5.3. The two sets of inequalities proposed in the statement of
Theorem 5.2 define the same lattice of regular languages.

Proof. Since the second set is larger than the first one, it suffices to show
that the inequalities of the second set can be deduced from those of the first
set.

The equation zx = zx2 is equivalent to zx2 6 zx and zx 6 zx2. The
inequality zx2 6 zx is given by E1(L) and the other one is a consequence of
z 6 zx, an inequality given by E2(L). Finally, the equation zx0x1 = zx1x0
follows from the inequalities zx0x1 6 zx1x0 and zx1x0 6 zx0x1, both given
by E3(L). �

The end of the proof relies on a technical tool, the derived category of
a relational morphims, and on Simon’s theorem on free categories over a
graph, or more precisely, its ordered version.

Derived category of a relational morphism. We refer to [31, 30, 34, 38]
for more details on this topic. The ordered version was first introduced in
[23].

Let M and N be finite ordered monoids and let τ : M → N be a relational
morphism. We define a category Cτ as follows: its objects are the elements
of N and its arrows are of the form

n0 n1

(m,n)

where n ∈ τ(m) and n1 = n0n. Composition of arrows is obtained by
multiplying their labels:

n0 n1 n2 n0 n2

(m,n) (m′, n′) (mm′, nn′)
=

The identity at the object n, denoted by 1n, is the arrow

n (1, 1)

Two arrows are coterminal if they have same origin and same end. Given
two coterminal arrows from n0 to n1, we write

n0 n1

(m,n)
n0 n14

(m′, n′)

if, for every m0 ∈ τ−1(n0), one has m0m 6 m0m
′. This defines a preorder

on the set of arrows of Cτ which is compatible with the product in Cτ .
Let ∼ be the congruence associated with 4. Thus

n0 n1

(m,n)
n0 n1∼

(m′, n′)

if, for all m0 ∈ τ−1(n0), one has m0m = m0m
′. The derived category of τ ,

denoted Dτ , is the quotient of Cτ by ∼. The ordered derived category of τ
is the derived category equipped with the order induced by the preorder 4
in Cτ .

A result on finite ordered categories Let C be a category and let p be
an arrow of the free category over C (that is, a path in the directed graph
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C). We denote by c(p) the content of p, that is, the set of arrows occurring
in p. The following statement [23, Prop. 4.2] is the counterpart for ordered
categories of a celebrated theorem of I. Simon on categories.

Proposition 5.4. Let C be a finite ordered category. The following condi-
tions are equivalent:

(1) The local monoids of C satisfy the monoid identities x2 = x, xy = yx

and 1 6 x.

(2) C satisfies the inequality x 6 y for any coterminal arrows x and y of
the free category over C such that c(x) ⊆ c(y).

Sketch of the proof of Theorem 5.2. We first give a slightly more precise
result when L is a finite Boolean algebra (Proposition 5.5). The general case
follows by a compactness argument (omitted).

Proposition 5.5. Let L be a finite Boolean algebra of regular languages
of A∗ closed under quotients. Then L1 is defined by the set of inequalities
u0 6 u1 such that (u0, u1) ∈ E(L) ∩ (A∗ ×A∗).

Proof. Let E′(L) = E(L) ∩ (A∗ ×A∗). Let L be a regular language of A∗

satisfying the inequalities defined by E′(L). Let us show that L satisfies all
the inequalities u0 6 u1 such that Conditions (C1) and (C2) are satisfied.

Let L = {L1, · · · , Ln}. For 1 6 i 6 n, let ηi : A
∗ → Mi be the syntactic

morphism of Li and let η : A∗ → M1 × · · · ×Mn be the diagonal morphism
defined by η(u) = (η1(u), . . . , ηn(u)). Let µ : A∗ → M be the syntactic
morphism of L. Finally, let N = η(A∗) and let τ be the relational morphism
η ◦ µ−1 : M → N . We claim that every local monoid of Dτ satisfies the
inequalities x2 = x, xy = yx and x 6 1. Let n ∈ N and consider two loops
r = (n, (m0, n0), n) and s = (n, (m1, n1), n) around n.

n(m0, n0) (m1, n1)

Then n0 ∈ τ(m0), n1 ∈ τ(m1) and n = nn0 = nn1. Let z, x0 and x1
be words of A∗ such that η(z) = n, η(x0) = n0, µ(x0) = m0, η(x1) =
n1 and µ(x1) = m1. Then η(zx0) = η(zx1) = η(z), which means that
zx0 =L zx1 =L z. Since L satisfies the inequalities defined by E′(L), one
has µ(z) 6 µ(zx0) = µ(zx20) and µ(zx0x1) = µ(zx1x0). Consequently,
1n 4 r, r2 ∼ r and rs ∼ sr, which proves the claim. We can now apply
Proposition 5.4 to the ordered derived category of τ . Let (u0, u1) ∈ A∗×A∗

satisfying Conditions (C1) and (C2).
With each w = a1 · · · an ∈ A∗, where a1, . . . , an ∈ A, we associate a path

p(w) in Dτ as follows:

1
[(1,a1)]∼
−−−−−→ η(a1)

[(η(a1),a2)]∼
−−−−−−−−→ η(a1a2) · · ·

[(η(a1···an−1),an)]∼
−−−−−−−−−−−−→ η(w).

Now u0 =L u1 if and only if η(u0) = η(u1), Condition (C1) is equivalent to
p(u0) and p(u1) be coterminal, and (C2) is equivalent to c(p(u0)) ⊆ c(p(u1)).
It follows now from Proposition 5.4 that p(u0) 4 p(u1). This means that
µ(zu0) 6 µ(zu1) for any z ∈ η−1(1) and hence µ(u0) 6 µ(u1). Thus L

satisfies u0 6 u1. �
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Conclusion. The programme would now be to extend the known results on
operations on regular languages to the framework of lattices. So far, only
the polynomial closure was understood [8]. This paper solves the case of
one-step products, but a challenging problem would be to extend the results
of [26, 35] to lattices.

Classes of languages → (Positive) Lattices of

↓ Operations Varieties regular languages

Lattice generated by
[28, Th. 4.6] This paper

one step products

Polynomial closure [27] [8]

Closure under product
[35, 26] Open

and Boolean operations
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[23] J.-É. Pin, A. Pinguet and P. Weil, Ordered categories and ordered semigroups,
Communications in Algebra 30 (2002), 5651–5675.
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[27] J.-É. Pin and P. Weil, Polynomial closure and unambiguous product, Theory Com-
put. Systems 30 (1997), 1–39.
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