
HAL Id: hal-01816861
https://hal.science/hal-01816861v1

Submitted on 11 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An exact column generation-based algorithm for
Bi-Objective Vehicle Routing Problems

Estèle Glize, Nicolas Jozefowiez, Sandra Ulrich Ngueveu

To cite this version:
Estèle Glize, Nicolas Jozefowiez, Sandra Ulrich Ngueveu. An exact column generation-based algorithm
for Bi-Objective Vehicle Routing Problems. International Symposium on Combinatorial Optimization
(ISCO) 2018, Apr 2018, Marrakesh, Morocco. pp.208-218, �10.1007/978-3-319-96151-4_18�. �hal-
01816861�

https://hal.science/hal-01816861v1
https://hal.archives-ouvertes.fr

ISCO 2028
An exact column generation-based algorithm for

Bi-Objective Vehicle Routing Problems

Estèle Glize1(�), Nicolas Jozefowiez2, and Sandra Ulrich Ngueveu1

1 CNRS, LAAS, INSA, INP Toulouse, Toulouse, France,
glize,ngueveu@laas.fr,

2 LCOMS, Université de Lorraine, Metz, France,
nicolas.jozefowiez@univ-lorraine.fr

Abstract. We propose a new exact method for bi-objective vehicle rout-
ing problems where edges are associated with two costs. The method gen-
erates the minimum complete Pareto front of the problem by combining
the scalarization of the objective function and the column generation
technique. The aggregated objective allows to apply the exact algorithm
for the mono-objective vehicle routing problem of Baldacci et al. (2008).
The algorithm is applied to a bi-objective VRP with time-windows. Com-
putational results are compared with a classical bi-objective technique.
The results show the pertinence of the new method, especially for clus-
tered instances.

Keywords: Combinatorial MOP, vehicle routing problem, exact method,
column generation

1 Introduction

This paper proposes a competitive method for solving to optimality a variant of
the vehicle routing problem (VRP) [1]: the bi-objective VRP (BOVRP) where
edges are associated with two costs. These objectives can be conflictive: in motor
vehicle, the travel time differs from the distance. In this case, solving to opti-
mality means finding the non-dominated set. Many industrials are interested in
finding a good compromise.

Multi-objective VRPs (MOVRPs) are more and more studied. A complete
survey of MOVRP can be found in Jozefowiez et al. [2]. In addition to the
minimization of travel distance, most MOVRPs aim to minimize the number of
vehicles or to maximize the fairness of routes.

In the larger scope of multi-objective integer programming (MOIP), exact
methods are divided into two classes: methods working on the feasible solution
space [3] and those working on the objective space [4]. These last methods solve
a sequence of mono-objective problems and so, rely on the efficiency of single-
objective integer programming solvers. The ϵ-constraint method is the most com-
monly used objective space search algorithm [5–7] as its efficiency is verified. The

II

balanced box method of Boland et al. [8] shows significant improvements for so-
lution of MOIPs by exploring the decision space smartly. Recently, the efficient
method of Dai and Charkhgard [9] which combines the balanced box method
and the ϵ-constraint technique, has been applied to a 2-Dimensional Knapsack
Problem and to the bi-objective Assignment Problem.

Section 2 gives preliminaries about bi-objective optimization and an intro-
duction of an algorithm to solve the mono-objective VRP. It also defines a for-
mulation of the BOVRP. The branch-and-price method is presented in Section
3. Then, Section 4 introduces a classical bi-objective technique and computa-
tionally compares the two methods. Finally, Section 5 concludes about this new
method.

2 Preliminaries

2.1 Problem Definition

Let G = (V,E) be a non-oriented graph. A node i ∈ V \v0 is called a customer
and has a demand qi. These demands are satisfied by a fleet of K vehicles of
capacity Q. A vehicle k starts and returns at a node v0 called the depot and
performs a route rk by passing through a set of customers. The route rk is said
to be feasible if the total capacity of a vehicle is not exceeded by the demands.

An edge e ∈ E of the graph has two costs c1e and c2e. Each route rk provides
two costs c1k and c2k representing the sum of the two costs on the used edges. The
aim of the studied BOVRP is to minimize the sum of each cost of the routes used.

Let Ω be the set of feasible routes rk and aik be equal to 1 if the customer i
belongs to the route rk. The Set Partitioning formulation of the BOVRPR [10]
is stated in the model (1).

minimize (
∑

rk∈Ω

c1kθk,
∑

rk∈Ω

c2kθk)∑
rk∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}),∑
rk∈Ω

θk ≤ K,

θk ∈ {0, 1} (rk ∈ Ω).

(1)

where θk is a variable that indicates if the route rk ∈ Ω is selected in the
solution (θk = 1) or not (θk = 0).

2.2 Single objective algorithm for the VRP

The method presented in this paper works on the objective space and is based
on the exact algorithm for the single objective VRP of Baldacci et al. [12].

III

This state-of-the-art method considers the set partitioning formulation of
the VRP as a master problem MP . As this formulation contains an exponential
number of variables θk, rk ∈ Ω, MP needs to be solved optimally on a reduced
set of columns. This set is obtained with a three steps algorithm:

1. Compute a good lower bound LB by column generation algorithm and a
good upper bound UB . Compute the gap γ = UB − LB .

2. Generate all routes with a reduced cost lower than γ. Indeed, it can be proven
that routes with a reduced cost higher than γ cannot be in the optimal integer
solution. Let Ω be this reduced set of routes.

3. Solve the initial integer problem on Ω to obtain the optimal (integer) solu-
tion.

The second step uses dynamic programming to generate the lower bounds on
reduced cost necessary to go from the depot to the node i with a load lower than
q in non-elementary paths. Then, it solves an elementary shortest path problem
with resource constraints (ESPPRC) with a bi-directional labeling algorithm to
produce interesting paths. Finally, feasible routes are produced by combining
pairs of these paths.

As previously mentioned, this method will be used to solve the BOVRP. In
the following, we will refer to the second step by GENROUTE (UB ,LB) with
UB and LB the upper bound and the lower bound previously computed.

2.3 Multi-objective optimization

The main purpose of this work is to obtain, in a-posteriori fashion, the minimum
complete Pareto front of the BOVRP. All concepts of multi-objective optimiza-
tion are detailed in [11], but an introduction is given in the following of the
paper.

Let denote Θ the set of combinations of θk, rk ∈ Ω, which lead to a feasible
solution. An element θ ∈ Θ is a binary vector of size card(Ω) with card(Ω)
the size of the set Ω indicating which routes are in the solution θ. For θ ∈
Θ, let F (θ) = (c1 (θ), c2 (θ)) = (

∑
rk∈Ω

c1k θk ,
∑

rk∈Ω

c2k θk) be the function vector to

minimize. Y = F (Θ) represents the objective space and y = F (θ) ∈ Y a point in
the objective space. The following definitions are only valid for a minimization
problem and specify the output of the method.

Definition 1. (a, b) ∈ Θ2.

a is Pareto dominant with respect to b ⇔

{
fi(a) ≤ fi(b) ∀i ∈ {1, 2}
fi(a) < fi(b) ∃i ∈ {1, 2}

Definition 2. A solution a ∈ Θ is said to be an efficient (or a Pareto-optimal)
solution if ̸ ∃b ∈ Θ, b ̸= a, such that b is Pareto dominant with respect to a.

Definition 3. A point y ∈ Y is said to be a non-dominated point if the solution
a ∈ Θ\F (a) = y is an efficient solution.

IV

Definition 4. A non-dominated point y ∈ Y is said to be supported if it is
located on the boundary of the convex hull of Y. A non-dominated point y ∈ Y
is said to be non-supported if it is located on the interior of the convex hull of Y.

A complete Pareto front is the set of all non-dominated points of the problem.
Furthermore, as the same point y ∈ Y can be associated with several different
solutions in Θ, the number of efficient solutions can be larger than the number of
non-dominated points. In this paper, the method provides the minimum Pareto
front that-is-to-say that only one efficient solution per non-dominated point is
provided.

To lighten the notation, we will refer to the costs of a point y ∈ Y associated
to a solution θ ∈ Θ, by c1(y) and c2(y) instead of the cost of the solution c1(θ)
and c2(θ).

3 Two-step Method

3.1 Global Algorithm

The two-step method is an objective space search method, that is to say that
the algorithm determines areas in the objective space in which non-dominated
points could be present. Once the areas are delimited, the method scalarizes the
objectives to apply a single objective method to go through them. The scalar-
ization we use is a weighted-sum of the two objectives [13]. The set partitioning
formulation in this case is Model (2), where all notations are the same for the
formulation (1). It is called the master problem MPλ and its linear relaxation is
denoted LMPλ.

minimize λ
∑

rk∈Ω

c1kθk + (1− λ)
∑

rk∈Ω

c2kθk∑
rk∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}),∑
rk∈Ω

θk ≤ K,

θk ∈ {0, 1} (rk ∈ Ω).

(2)

Let introduce the call of the second step of Baldacci et al. method for the
weight λ: GENROUTE (UB , LB , λ). In this algorithm, the gap γ is computed
with respect to λ: γ = λ(c1(UB) − c1(LB)) + (1 − λ)(c2(UB) − c2(LB)). We
also denote c(S)λ as the weighted cost of a point S for the weight λ such that
c(S)λ = λc1(S) + (1− λ)c2(S).

The algorithm of the two-step method returns the set Θ of all non-dominated
points of the BOVRP and is described in Algorithm 1. It is decomposed in two
steps as the algorithm of Ulungu and Teghem [13]. First, the supported points
are computed thanks to the function findSupportedPoint described in Section

V

x

x

x

x

x

x

c1

c2

λ1

λ2

λ3

λ4

λ5
λ6

λsupp

s1

s3

s4

s5

s2

N1

N2

N3

N4

LBsupp

non dominated points
convex hull of
nadir points
lower bound

Fig. 1. Example front with supported points and their nadir points.

3.2. Let S1 and S2 denote the optimal solutions that minimize the costs c1

and c2 respectively. The aim of the first step is to generate all routes that can
conduct to a non-dominated point in the triangle defined by S1, S2 and their
ideal point I = (c1(S1), c

2(S2)). These set of routes are returned as Ωsupp. All
supported points are also returned as they are optimal solutions of MPλ, for
some λ [14]. Figure 1 represents a Pareto front with only supported points S1

to S5. S1 minimizes the first cost c1 (λ1 = 1) and S2 minimizes the second cost
c2 (λ6 = 0). For instance, ∀λ ∈ [λ2;λ3], S3 is the optimal solution of MPλ.

Then, the non-supported points are found in areas not explored yet. These
areas are triangles defined by two consecutive supported points and their nadir
point N = (c1(S2), c

2(S1)). The search in a triangle is performed by the function
findAllPoint detailed in Section 3.3.

The intermediate functions getOptimalSolution and gradient are used in the
global algorithm and are described in Algorithm 2 and 3 respectively. The first
one takes a direction λ in input and aims to return the optimal solution of
MPλ using the GENROUTE algorithm. The other gives the gradient of the line
between the two points it receives in input.

3.2 First step

The first step is defined by the function findSupportedPoint(S1, S2, λsupp) in Al-
gorithm 4. It needs as input the non-dominated points S1 and S2 and a direction
λsupp. It generates all routes that can conduct to a non-dominated point situated
below the line (S1S2).

To do so, we compute the optimal solution LBsupp of LMPλsupp . Then, we ap-

ply GENROUTE (UB=S1,LBsupp ,λsupp) to have a reduced set of routes Ωsupp.

VI

Algorithm 1 Two-step method

Input: A graph G representing the BOVRP
Output: A set Θ of all non-dominated points

1: Set Θ = ∅;
2: S1 ← getOptimalSolution(1); // S1 the optimal solution minimizing c1
3: S2 ← getOptimalSolution(0); // S2 the optimal solution minimizing c2
4: Θ = Θ ∪ {S1} ∪ {S2};
5: λsupp ← gradient(S1,S2);
6: (Θ,Ωsupp) ← findSupportedPoint(S1,S2,λsupp); // return all supported points and

a set of routes
7: Compute c(S1)λsupp = λsuppc

1(S1) + (1− λsupp)c
2(S2);

8: for Si and Sj two consecutive points in Θ such that c1(Si) < c1(Sj) do
9: Θ ← findAllPoint(Si,Sj,c(S1)λsupp , λsupp,Ωsupp);
10: end for
11: return Θ

Algorithm 2 getOptimalSolution(λ)

Input: A value λ
Output: The optimal solution S of MPλ

1: Solve LMPλ to obtain a lower bound LB;
2: Solve MPλ to obtain an upper bound UB;
3: Ω ← GENROUTE(UB,LB, λ);
4: Solve MPλ on Ω to obtain the optimal solution S;
5: return S;

Algorithm 3 gradient(Si,Sj)

Input: Two points Si and Sj

Output: The gradient of (SiSj)

1: λ =
abs(c1(Sj)−c1(Si))

abs(c2(Si)−c1(Si)−c2(Sj)+c1(Sj))
;

2: return λ;

VII

By taking the point S1 as upper bound and the direction λsupp, we ensure that
all non-dominated points situated below the line (S1 S2) is represented by a
combination of routes in Ωsupp

Algorithm 4 findSupportedPoint(S1,S2,λsupp)

Input: Points S1 and S2 and the direction λsupp

Output: Set Θsupp of supported points. Set of routesΩsupp

1: Set Θsupp = ∅ and Ωsupp = ∅;
2: Solve LMPλsupp to obtain LBsupp;

3: Ωsupp ← GENROUTE(UB=S1,LBsupp,λsupp);
4: dichotomicSearch(Θsupp,S1,S2,Ωsupp);
5: return (Θsupp,Ωsupp);

Algorithm 5 dichotomicSearch(Θsupp,Si,Sj ,Ωsupp)

Input: Set Θsupp. 2 points Si and Sj . Set of routes Ωsupp.

1: λi ← gradient(Si,Sj);
2: Solve MPλi on Ωsupp to obtain the optimal solution Sk;
3: if Sk ̸= Si and Sk ̸= Sj then
4: Θsupp = Θsupp ∪ {Sk};
5: if c1(Si) + 1 < c1(Sk) and c2(Si)− 1 > c2(Sk) then
6: dichotomicSearch(Θsupp,Si,Sk,Ωsupp);
7: end if
8: if c2(Sj) + 1 < c2(Sk) and c1(Sk)− 1 > c1(Sk) then
9: dichotomicSearch(Θsupp,Sk,Sj ,Ωsupp);
10: end if
11: end if

Finally, we search all supported points in Ωsupp in a dichotomic approach
summarized in Algorithm 5.

After the first step, all supported non-dominated points are already found.
It calls the algorithm GENROUTE only once and solves the integer problem
for each supported points. However, the set of routes Ωsupp contains important
information and has to be returned to be used in the second step.

3.3 Second step

The second step aims to explore each upper right triangle defined by two con-
secutive non-dominated points computed in the first step and their nadir point.
In practice, input data are integers, therefore we substract one to each coor-
dinate of the nadir because non-dominated points having a same coordinate
than the nadir are weakly dominated. For instance, in Figure 1, if a point is

VIII

Algorithm 6 findAllPoint(Si,Sj ,c(S1)λsupp
,λsupp,Ωsupp)

Input: Points Si and Sj . The cost c(S1)λsupp , the direction λsupp and set Ωsupp of the
first step
Output: The set Θnd of non-dominated points

Set N = (c1(Sj)− 1, c2(Si)− 1); Set Θnd = ∅
if c(N)λsupp ≤ c(S1)λsupp then

findInTriangle(Θnd,Si,Sj,Ωsupp);
else

λi ← Gradient(Si,Sj);
Solve LMPλi to obtain LBi ;
Ωi ← GENROUTE(N ,LBi ,λi);
findInTriangle(Θnd,Si,Sj,Ωi)

end if
return Θnd;

located on the segment [N1S3] (resp. [S1N1]), it is strictly dominated by S3

(resp. S1). The search is performed as explained in Algorithm 6. It requires in
input two non-dominated points Si and Sj such that c1(Si) < c1(Sj). First, a
condition has to be checked: if the nadir N = (c1(Sj)−1, c2(Si)−1) is such that
c(N)λsupp

≤ c(S1)λsupp
, then directly apply the function findInTriangle to search

on the set of known routes Ωsupp. Indeed, if c(N)λ1
≤ c(S1)λ1

, we already have
generated all routes that can conduct to a non-dominated point in this triangle
in the first step. Otherwise, some routes has to be generated before applying
findInTriangle because the nadir point is upside the line (S1S2).

Figure 1 represents a partial front obtained after the first step. The second
step explores the triangles defined by two consecutive points S and their nadir
N like S3S4N2 or S4S5N3. We already have generated in the first phase all
routes that can conduct to a non-dominated point below the dotted line passing
through S1 and S2. So, all interesting routes for non-dominated points in S3S4N2

are already generated because the nadir N2 is under this line. The condition
c(N2)λsupp

≤ c(S1)λsupp
is satisfied. On the contrary, we don’t have all the routes

that can conduct to a non-dominated point in S4S5N3 as the dotted line passing
through N3 is above the dotted line passing through S1 and S2. So, we have the
condition c(N3)λsupp > c(S1)λsupp .

The algorithm findInTriangle(Θnd,Si,Sj ,Ω) is similar to DichotomicSearch.
It works on the computed set Ω given in input and requires two non-dominated
points Si and Sj and their gradient λi. It solves the integer problem MPλi

on
Ω with two additional constraints:

∑
rk∈Ω

c1kθk ≤ c1(N) and
∑

rk∈Ω

c2kθk ≤ c2(N). If

there is no optimal solution, it means that there is no non-dominated points in
the area and the function stops. Otherwise, if there is an optimal solution Sk,
Sk is added to Θnd and the function findInTriangle is called again for (Si,Sk)
and (Sk,Sj).

IX

4 Computational Experiments

To compare proposed the two-step method to the state-of-the-art, we have im-
plemented a reference method. It is the more direct way to use the Baldacci
et al. method in an ϵ-constraint technique as it is classically done in the liter-
ature. The algorithm, summarized in Algorithm 7, is based on the ϵ-constraint
formulation that aims to minimize the first cost c1 under the constraint that the
second cost has to be lower than a certain value ϵ.

At the beginning, ϵ is set to +∞. At each iteration, the reference method
consists in finding a lower bound LB and an upper bound UB. Then, it applies
the mono-objective algorithm GENROUTE (UB ,LB) to obtain Ω, the restricted
set of routes with (i) their reduced cost within the gap γ = UB − LB and
(ii) below the constraints that the second cost is lower than ϵ. The algorithm
optimally solves the integer problem restricted to Ω. If a new integer solution
is found, ϵ is set to the value of the second objective of the solution minus one
and the process is repeated. If no new optimal solution is found, the algorithm
stops.

Algorithm 7 Algorithm of the reference method
ϵ← +∞
while ∃ a solution do

Solve the linear relaxation of the problem for ϵ to obtain LB
Find a feasible solution UB of the integer problem for ϵ
Ω ← GENROUTE(UB ,LB)
Solve the integer problem on Ω to obtain SOPT

if ∃SOPT then
Set ϵ← SOPT

2 − 1
end if

end while

Results. To the best of our knowledge, there is no benchmark for multi-
objective vehicle routing problems with different costs on edges. Therefore we
propose new instances for the BOVRP with time windows (BOVRPTW) which
minimizes two different route costs. Each instance is a combination of two
Solomon’s instances. The first instance provides the first edge costs, the time
windows, the charges and the capacities. The second instance only provides the
second edge costs. We have tested the algorithm on 20 instances of 25 customers
and 20 instances of 50 customers, which correspond to the 25 and 50 first cus-
tomers of Solomon’s instances. Each method returns the minimum complete
Pareto Front of the BOVRPTW.

The experiments have been conducted on a Xeon E5-2695 processor with a
2.30GHz CPU and 3.5Go in a single thread. The implementation is in C++ and
the linear problems and the integer problems are solved with Gurobi 7.1. The

X

time limit for all experiments is 6 hours. Results are reported in Table 1 for the
27 instances for which at least one of the method tested converged.

Table 1 presents the features of the instances like the number of customers, if
it is a clustered instance or not, the number of strict non-dominated points and
the number of non-supported non-dominated points in the final Pareto front.
It also shows the mean CPU time in seconds on 10 executions as well as their
standard deviations for each method. We can notice that the reference method
dominates the two-step method on instances easily solved - inferior to 49 sec-
onds for the two methods. On the contrary, the two-step method dominates the
other on harder instances. Furthermore, the instances noted 9, 21, 22 and 23 of
25 customers are only solved by the two-step method. 3 of them are clustered
instances with very few non-dominated points in the final exact Pareto front. It
suggests that the two-step method outperforms the state-of-the-art method for
graphs with clustered structure.

Table 1 also exhibits the execution time in seconds for the methods in graphs
with 50 customers (instances from 24 to 30). The number of non-dominated
points is, as expected, larger than for the graphs with 25 clients. The execution
of the algorithms is more time consuming and only converges for 2 instances in
the reference method and for 7 in the two-step methods over 20 tested instances.

5 Conclusion

In this paper, we proposed an exact method to solve the bi-objective vehicle
routing problem : the two-step method. It scalarizes the objective function and
uses column generation to find all non-dominated points, supported and non-
supported points. The method is also generic for all classes of BOVRP as it
doesn’t exploit any specific property.

To show the efficiency of the scheme proposed we have implemented the
ϵ-constraint method combined with the GENROUTE component. Computa-
tional experiments showed that the two-step method outperforms this reference
method, especially for clustered graphs.

References

1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management science
6, 80–91 (1959)

2. Jozefowiez, N., Semet, F., Talbi, E.-G.: Multi-objective vehicle routing problems.
European journal of operations research 189, 293–309 (2008)

3. Parragh, S.N., Tricoire, F.: Branch-and-bound for bi-objective integer programming.
Optimization online (2015)

4. Boland, N., Charkhgard, H., Savelsbergh, M.: The triangle splitting method for
bi-objective mixed integer programming. International Conference on Integer Pro-
gramming and Combinatorial Optimization, 162–173 (2014)

5. Moradi, S. , Raith, A., Ehrgott, M.: A bi-objective column generation algorithm for
the multi-commodity minimum cost flow problem. European Journal of Operational
Research 244, 369–378 (2015)

XI

In
st
a
n
ce

F
ea
tu
re
s

R
ef
er
en

ce
m
et
h
o
d
T
h
e
tw

o
-s
te
p
m
et
h
o
d

#
In
st
a
n
ce

N
u
m
b
er

o
f
C
lu
st
er
ed

?
N
u
m
b
er

o
f

N
u
m
b
er

o
f

m
ea
n

σ
(s
)

m
ea
n

σ
(s
)

cu
st
o
m
er
s

n
o
n
-d
o
m
in
a
te
d
p
o
in
ts

n
o
n
-s
u
p
p
o
rt
ed

p
o
in
ts

ti
m
e
(s
)

ti
m
e
(s
)

1
R
1
0
5
C
1

2
5

n
o

3
3

2
8

3
1

1
3
2

1
2

R
1
0
5
C
2

2
5

n
o

3
2

2
5

2
4

1
4
9

2
3

R
1
0
9
C
1

2
5

n
o

2
6

1
4

1
0
5
5

1
3
0

2
8
9

3
0

4
R
1
0
9
C
2

2
5

n
o

2
8

1
7

1
0
2
8

1
2
0

4
6
4

4
1

5
R
1
0
2
R
C
1

2
5

n
o

6
8

5
5

-
-

2
1
1
3

1
5
2

6
R
1
0
5
R
C
1

2
5

n
o

3
4

2
8

2
4

1
4
4

2
7

R
1
0
9
R
C
1

2
5

n
o

4
5

3
4

1
7
9
4

1
8
7

6
6
0

5
1

8
R
C
1
0
1
R
1

2
5

n
o

2
7

1
6

1
8

1
4
2

1
9

R
C
1
0
5
R
1

2
5

n
o

1
9

1
3

1
9
3

1
9

1
3
9

1
0

1
0

R
C
1
0
6
R
1

2
5

n
o

2
3

1
4

4
4
5

5
7

2
5
3

4
2

1
1

R
C
1
0
1
C
1

2
5

n
o

9
3

8
0

8
0

1
2

R
C
1
0
2
C
1

2
5

n
o

1
8

1
2

3
8
2
3

3
8
2

4
7
3

3
7

1
3

R
C
1
0
5
C
1

2
5

n
o

2
1

1
4

1
9
1

1
4

4
9

2
1
4

R
C
1
0
5
C
2

2
5

n
o

2
2

1
3

2
0
4

1
6

3
8

2
1
5

R
C
1
0
6
C
1

2
5

n
o

1
4

8
2
3
3

1
8

1
2
1

1
2

1
6

R
C
1
0
6
C
2

2
5

n
o

2
8

1
9

4
5
6

5
4

1
9
8

1
0

1
7

C
1
0
1
C
2

2
5

y
es

5
1

1
0
0
5
9

7
8
2

6
3
2
1

8
5
6

1
8

C
1
0
6
R
1

2
5

y
es

2
2

1
4

-
-

1
6
1
0
8

2
2
2
7

1
9

C
1
0
6
R
C
1

2
5

y
es

6
4

-
-

3
8
5
0

4
8
8

2
0

C
1
0
6
C
2

2
5

y
es

5
1

-
-

9
3
8
9

1
4
0
3

2
1

R
1
0
1
R
C
2

5
0

n
o

1
7
6

1
5
5

7
6
2

9
6

4
2
4

2
8

2
2

R
1
0
5
R
C
2

5
0

n
o

1
3
9

1
1
8

-
-

1
1
6
5
4

1
2
2
0

2
3

R
1
0
1
C
2

5
0

n
o

1
1
4

9
3

4
7
6

5
7

3
0
1

2
1

2
4

R
1
0
5
C
1

5
0

n
o

1
5
4

1
3
4

-
-

1
2
2
7
8

1
2
2
6

2
5

R
1
0
5
C
2

5
0

n
o

1
6
9

1
4
5

-
-

1
1
8
9
7

1
3
4
0

2
6

R
C
1
0
1
R
1

5
0

n
o

1
3
2

1
1
6

3
6
5
1

3
7
0

1
9
8
2

6
5

2
7

R
C
1
0
5
C
2

5
0

n
o

7
9

5
8

-
-

1
7
5
1
9

2
1
0
5

Table 1. Execution time of the methods for some graphs

XII

6. Bérubé, J.-F., Gendreau, M., Potvin, J.-Y.: An exact ϵ-constraint method for bi-
objective combinatorial optimization problems: Application to the Traveling Sales-
man Problem with Profits. European Journal of Operational Research 194, 39–50
(2009)

7. Özlen, M., Azizoğlu, M.: Multi-objective integer programming: a general approach
for generating all non-dominated solutions. European Journal of Operational Re-
search 199, 25–35 (2009)

8. Boland, N., Charkhgard, H., Savelsberg, M.: A criterion space search algorithm for
biobjective integer programming: The balanced box method. INFORMS Journal on
Computing 27, 735–754 (2015)

9. Dai, R., Charkhgard, H.: A two-stage approach for bi-objective integer linear pro-
gramming. Operations Research Letters 46, 81–87 (2018)

10. Balinski, M.L., Quandt, R.E.: On an integer program for a delivery problem. Op-
erations Research 12, 300–304 (1964)

11. Ehrgott, M.: Multicriteria optimization. Springer Science & Business Media (2006)
12. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle

routing problem based on the set partitioning formulation with additional cuts.
Mathematical Programming 115, 351–385 (2008)

13. Ulungu, E.L., Teghem, J., Fortemps, P.H., Van Nieuwenhuyze, K.: The two phases
method: An efficient procedure to solve bi-objective combinatorial optimization
problems. Foundations of Computing and Decision Sciences 20, 149–165 (1995)

14. Geoffrion, A. M.: Proper efficiency and the theory of vector maximization. Journal
of Mathematical Analysis and Applications 22, 618–630 (1968)

