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Secondary refrigeration and thermal energy storage are promising solutions to enhance the performance of
refrigeration systems and reduce the impact of refrigerants on the environment. To improve the energy
efficiency of secondary refrigeration loops, phase change material (PCM) slurries with a high energy density,
such as CO2 hydrate slurries, can be used as a secondary refrigerant. In addition, hydrate based processes could
be an innovative option to capture CO2 from flue gas. In both applications, the rheological properties of the CO2

hydrate slurry have to be controlled. In the present study, CO2 hydrate slurry in the presence of Sodium Dodecyl
Sulfate (SDS) was studied in a dynamic flow loop. The results show that SDS used at concentrations of 1500
2000 ppm significantly decreases agglomeration and improves the flow properties of the slurry. Moreover, SDS
helps decrease the viscosity of the CO2 hydrate slurry at high fraction ( > 10 vol%) and therefore could be
suitable for use in industrial applications such as secondary refrigeration, in which hydrate slurries must be easy
to handle.

1. Introduction

Over the past decade, gas hydrates have been the focus of attention
in various fields such as refrigeration, gas transportation, water
treatment and gas separation. Nowadays, refrigeration has a substan
tial impact on the environment and accounts for 8% of greenhouse gas
(GHG) emissions: 80% of this impact is due to energy consumption and
the remaining 20% is caused by refrigerant leakage, mainly
Hydrofluorocarbon (HFC) fluids.

A number of international protocols have already begun to limit or
prohibit the use of primary refrigerant fluids (Kyoto, 1997 or Montreal,
1985).

Due to the uncertainty surrounding the cost and availability of new
refrigerants, secondary refrigeration could be considered as an alter
native solution. This technology is effectively based on the use of an
environmentally friendly secondary fluid whose role is to transport
cold energy from the place of production (engine room) to places of use
(Guilpart et al., 2006). Thus, secondary refrigeration makes it possible
to limit the amount of primary refrigerant used and to confine it.
However, secondary refrigeration systems, unlike direct expansion

ones (primary refrigeration), require additional heat exchangers and
circulating pumps connected to the secondary loop that are responsible
for exergy losses.

To overcome this problem, it is possible to use high energy density
secondary fluids, such as phase change material (PCM) slurry (Zhang
and Ma, 2012; Youssef et al., 2013), also called phase change slurry
(PCS). In slurry systems, such as ice slurry (Ayel et al., 2003) or hydrate
slurry (Fukushima et al., 1999; Fournaison et al., 2004), energy is
stored during the phase change of the storage material (ice or hydrates)
dispersed in a carrier liquid (continuous phase). PCM slurries have a
higher energy density than single phase secondary refrigerants due to
both the sensible and latent heat capacities of the PCM.

Clathrate hydrates are crystalline structures that form by trapping
guest molecules (e.g. CO2, CH4) (Sloan, 1998; Sloan and Koh, 2008).
Some gas hydrates have a high dissociation enthalpy around
500 kJ kgwater

−1 (Marinhas et al., 2006) higher than that of ice
(333 kJ kg−1). In the present work, the PCS is composed of CO2

hydrate particles dispersed in an aqueous solution of Sodium
Dodecyl Sulfate (SDS). One of the advantages of CO2 hydrate slurry
is that mechanical processes such as scraped or brushed surface heat
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exchangers are not required to produce it, unlike ice slurry. It also
forms at temperatures higher than 273 K which makes it suitable for
air conditioning applications (Zhang and Ma, 2012). But whatever the
type of secondary refrigeration application, slurry flow properties are of
paramount importance to assess the overall feasibility of the process.

Previous studies performed at Irstea have shown that CO2 hydrate
slurry in the aqueous phase can agglomerate in a dynamic loop
(Delahaye et al., 2008, 2011; Jerbi et al., 2013), and even form plugs
as in pipelines (Sum et al., 2011). Depending on whether the loop
system studied does or does not have a stirred tank reactor, hydrates
can agglomerate and form plugs as from a high hydrate fraction of
20 vol% (with a stirred tank reactor) (Jerbi et al., 2013) or from a small
hydrate fraction of 5 10 vol% (Delahaye et al., 2008; Jerbi et al.,
2010).

Adding various chemical additives to the water before gas hydrate
formation can substantially impact the thermodynamic equilibrium
(Mohammadi and Richon, 2009; Trueba et al., 2011), the formation/
dissociation kinetics (Ribeiro Jr and Lage 2008; Yoslim et al., 2010)
and the physico chemical properties such as wettability or adhesion
force on hydrate particles (Zerpa et al., 2011, Aman et al., 2013).
Among the additives tested on gas hydrates, SDS, along with tetra
hydrofuran (THF), is one of the most studied and cited in the literature
(Kumar et al., 2015). This anionic surfactant, SDS, has been found to
enhance hydrate formation kinetics and the amount of hydrate formed
with pure gas or gas mixtures (Ricaurte et al., 2014) in bulk or in
porous media (Dicharry et al., 2013), even at very low dosage such as a
few hundred ppm (Gayet et al., 2005). However, the action mechanism
of SDS is not yet fully understood and has been debated in the
literature for hardly more than 15 years. Interestingly, it has been
suggested that SDS may have anti agglomerant properties on hydrate
particles (Zhang et al., 2007b; Torre et al., 2012), but no direct
evidence of the “anti agglomerant effect of SDS” has been provided
to date in the literature for CO2 hydrates.

This work presents a rheological study of CO2 hydrate slurry in the
presence of SDS carried out in a dynamic flow loop in order to observe
the influence of SDS on slurry viscosity and agglomeration. The
rheological behavior of CO2 hydrate slurry with SDS has not yet been
studied in the literature (see Table 3). This behavior is characterized in
the present work by applying the capillary viscometer method (based
on pressure drop vs. flow measurements), and the Herschel Bulkley
model is used in a first approach to represent the apparent viscosity of
the slurry.

2. Materials and methods

2.1. The dynamic loop

A dynamic loop, described in previous works (Delahaye et al., 2008,
2011; Clain et al., 2012), is used to produce CO2 hydrate slurry and to
characterize its rheological properties. The loop is mainly composed of
stainless steel pipes with an internal diameter of 8 mm (external
diameter of 10 mm) and a total length of 2 m. A scheme of the
apparatus is shown in Fig. 1. The total volume of the loop is 2.65
10−4 m3. The loop is located in a cold room (6 m3) whose temperature
is controlled by PID. Temperature and pressure are maintained within

the range of 268 293 K and up to 3.5 MPa respectively. The dynamic
loop is also composed of a glass tube (with an inner volume of around 3
10−5 m3) for detecting the formation of hydrate particles and visualiz
ing hydrate slurry flow. The loop is equipped with a differential
pressure gauge (ABB 265 DS, up to 0.02 MPa, ± 0.04%) to measure
the pressure drops caused by fluid flow on a straight line of the loop
(0.5 m), and with a pump (AxFlow GC M25, maximum flow
rate=0.17 m3 h−1) and an electromagnetic flowmeter (IFM6080K type
Variflux, ± 0.5%) to control and measure fluid flow. The device is
equipped with 6 T type thermocouples ( ± 0.3 K) and 2 pressure gauges
(range: 0 5.0 MPa, accuracy 0.05%) (cf. Table 1).

2.2. Gas injection

A syringe pump (1000D ISCO) is used to control the CO2 injected
into the dynamic loop to form the CO2 hydrate. Initially, gas is directly
injected into the syringe pump which consists of a cylinder with a total
volume of around 1000 cm3. Pressure, volume and temperature are
then used to calculate the number of moles of gas inside the syringe
pump, Ngas

pump i, , based on a real gas equation. Afterwards, when gas is
injected into the dynamic loop, the pressure in the syringe pump
decreases (at a constant volume) and the number of moles of gas
remaining in the syringe pump, Ngas

pump f, , can also be determined. The
number of moles of gas injected into the loop, Ngas

i , is the difference
between the initial and the final number of moles of gas in the syringe
pump.

N N N= −gas
i

gas
pump i

gas
pump f

(1)

Table 1
Detailed information on the equipment.

Name Description Range Uncertainty

Pressure gauge ABB 265 DS 0 0.02 MPa ± 0.04%
Pump AxFlow GC-M25 0 0.17 m3 h 1 ( )
Electromagnetic

flowmeter
IFM6080K-type
Variflux

0.01
220 m3 h 1

± 0.5%

Thermocouples T-type 3 673 K ± 0.3 K
Pressure gauges ( ) 0 5.0 MPa ± 0.05%

Nomenclature

N Number of moles of gas, mol
τ Shear stress, Pa
τ0 Yield stress, Pa
γ ̇ Shear rate, s−1

n Behavior index, ( )
k Consistency index, (Pa sn)

μ Viscosity, Pa s
Q Volumetric flow rate, l h−1

R Radius, m
L Length, m
u Flow velocity, m s−1

ΔP Pressure drop, Pa
ϕs Hydrate volume fraction, ( )

Fig. 1. Scheme of the dynamic loop.
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2.4. Materials used

SDS and CO2 were used for the experiments presented below.
Information on these materials is provided in Table 2.

2.5. SDS properties

SDS is an anionic surfactant that commonly has many practical
applications such as detergency, cosmetics, and cleaning. It is an
organic compound of formula CH3(CH2)11OSO3Na (shown in Fig. 2),
with a molar mass of 288.4 g mol−1 and a density of 1.01 g cm-³. More
detailed information about this product can be found in the literature
(van Os et al., 1993).

An important physico chemical characteristic of an ionic surfactant
is its Krafft point (or Krafft temperature, usually noted TK), where the
solubility of the surfactant is equal to its critical micelle concentration
(CMC). The CMC of SDS in water is known to be around 2400 ppm (wt)
at ambient conditions (Rosen and Kunjappu, 2012). TK is the
temperature below which the surfactant remains in crystalline form,
and above which the solubility of the surfactant increases sharply. SDS
has a Krafft point of around 285± 4 K (Watanabe et al., 2005) and this
value does not drop to a lower temperature in CO2 hydrate forming
conditions (Zhang et al., 2007c). It is important to note that under the
temperature conditions used here to form the CO2 hydrates (i.e. 274
275 K), SDS precipitates and forms a turbid suspension when its
concentration is higher than the CMC (Ricaurte et al., 2012).

As regards the use of SDS in hydrate based applications, the
additive is usually qualified as a “kinetic hydrate promoter”. At the
concentrations used in this study, it was demonstrated that it has no
impact on gas hydrate equilibrium (Gayet et al., 2005; Torre et al.,
2012). Some authors used SDS to increase storage capacity and
induction temperature, and to reduce the induction time for methane
(CH4) hydrates (Sun et al., 2003; Ganji et al., 2007). Zhong and Rogers
(2000) claimed first of all that the nucleation sites formed by surfactant
micelles enhance hydrate formation kinetics. Moreover, they showed
that SDS, above its CMC, increases the ethane hydrate formation rate
in a quiescent system by a factor greater than 700. Ganji et al. (2007)
reported that only a small amount of SDS (between 300 and 1000 ppm)
was necessary to efficiently increase the CH4 hydrate formation rate.
Han et al. (2002) studied the impact of SDS on natural gas composed of
90% of CH4, and found that the hydrate gas content was maximized for
an SDS concentration of 300 ppm. Yoslim and Englezos (2008)
indicated that the addition of 2200 ppm of SDS on a methane
(90.5%) propane (9.5%) system increased the gas consumption for
hydrate formation by a factor of 4.4. The observations made for CO2

hydrates were different however. In this case, several authors (Torre
et al., 2011; Lirio et al., 2012) showed that the presence of an
additional thermodynamic promoter, such as THF, was needed to
observe the effect of SDS on hydrate formation kinetics. In order to
have a high rate of CO2 enclathration when SDS is combined with
thermodynamic promoters, Torre et al. (2011) and Ricaurte et al.
(2014) stated that the concentration of SDS should be above 1500 ppm.
However, the reason why the effect of SDS was different using CO2 and
CH4 as a hydrate former is not clear to date. It may be due to a different
conformation of SDS molecules interacting in solution with CO2 or
CH4, thus impacting the pre structuration of water molecules to form
hydrate cages (Albertí et al., 2013), or to a competitive adsorption
between the surfactant anions (DS−) and bicarbonate (HCO3

−) on the

hydrate surface (Zhang et al., 2007c).
As mentioned in the introduction, the mechanism of hydrate

formation in the presence of SDS is not thoroughly understood.
However, it has been demonstrated both experimentally and numeri
cally that SDS micelles are not present under the conditions of hydrate
promotion reported in the literature (Di Profio et al., 2005; Zhang
et al., 2007a; Albertí et al., 2012). Hydrate nucleation could possibly be
promoted by a suitable arrangement of water molecules interacting
with the SDS molecules in solution (Lo et al., 2010a). Through
observation and experiments carried out on THF and cyclopentane
hydrates respectively, it has been found that the DS− anions are
adsorbed onto the hydrate surface (Lo et al., 2008; Zhang et al.,
2008; Lo et al., 2010b). Several authors (Zhang et al., 2007c; Anklam
et al., 2008, Torre et al., 2012) have suggested that SDS could have an
anti agglomerant effect on hydrate slurries, which probably results
from both the adsorption of DS− on the hydrate surface and electro
static repulsions between the adsorbed anions. Kelland (2006) reported
that anti agglomerants prevent capillary adhesion by reducing inter
facial tension enough to modify the contact angle between hydrate and
water. Gayet et al. (2005), Okutani et al. (2008), and Torre et al. (2012)
observed that in the presence of SDS, hydrates grow on the inner
sidewalls of the hydrate formation reactor, and suggested that this
porous hydrate structure could pump the aqueous phase by capillarity
(“capillarity driven mechanism”). Fernandez (2012) indicated that
such a mechanism is promoted when SDS concentration is below the
CMC. However, although the anti agglomerant effect of SDS has been
suggested in many studies, no direct evidence demonstrating this effect
on CO2 hydrates has been published in the literature to date, even
though it has been observed with other surfactants like Span 80 in the
rheology of cyclopentane hydrate (Karanjkar et al., 2016).

3. Experimental results

3.1. Liquid water at atmospheric pressure

The first viscosity measurement tests were carried out on liquid
water, a known Newtonian fluid, at 274.5 K under atmospheric
pressure. These measurements were performed to verify the accuracy
of the method.

Pressure drops were measured at different flow rates. Based on
these experimental data, the behavior index n obtained was close to 1
(0.98), while the yield stress τ0 was equal to zero, reflecting the
Newtonian behavior of water. These two parameters n and τ0 were
determined by the same method as described below for CO2 hydrate
slurry. Finally, the apparent viscosity was around 2 mPa.s (close to the
theoretical value of 1.8 mPa s for liquid water at 273.15 K). The same
tests were performed on another liquid system composed of water and
SDS (1500 2000 ppm), without hydrates. The apparent viscosity
deduced from these experiments was around 8 mPa s.

3.2. CO2 hydrate slurry without additives

The rheological studies carried out on several types of hydrate
slurry (CO2, CH4, HC hydrocarbon clathrate hydrates or salt such
as tetrabutylammonium bromide, TBAB semiclathrate hydrates) in
different fields of application (oil and gas i.e. agglomeration in
pipelines or natural gas transportability and refrigeration and air
conditioning) (Pinder, 1964; Austvik and Bjorn, 1992; Andersson and
Gudmundsson, 1999; Fukushima et al., 1999; Andersson and
Gudmundsson, 2000; Camargo et al., 2000; Fidel Dufour and Herri,
2002; Oyama et al., 2002; Peysson et al., 2003; Darbouret et al., 2005;
Fidel Dufour et al., 2006; Xiao et al., 2006; Delahaye et al., 2008; Wang
et al., 2008; Ma et al., 2010; Cameirao et al., 2011; Delahaye et al.,
2011; Gainville et al., 2011; Hashimoto et al., 2011; Kumano et al.
,2011; Waycuilis et al., 2011; Clain et al., 2012; Peng et al., 2012; Webb
et al., 2012; Jerbi et al., 2013; Webb et al., 2013; Zylyftari et al., 2013;

The apparent viscosity, μapp, was thus deduced by dividing the wall 
shear stress by the wall shear rate (Andersson and Gudmundsson, 
2000).



• Several methods are used, such as rotating, magnetic or plate
viscometers, but the most common method applied to hydrate
slurries is the capillary viscometer.

• HC hydrates are studied in the organic phase whereas studies on
CO2 and CH4 hydrates and salt (such as TBAB) semiclathrate
hydrates are carried out in the aqueous phase.

• Hydrate slurry viscosity increases with solid particle fraction, as is
the case for most types of slurry (ice, paraffin…).

• Several rheological behaviors can be observed, but hydrate slurries
are usually shear thinning/pseudoplastic (viscosity decreases as
shear rate increases: Ostwald de Waele or Herschel Bulkley), and
sometimes Bingham, which is similar to Herschel Bulkley shear
thinning behavior but over a limited shear rate range, as reported on
ice slurry (Ayel et al., 2003).

As shown in Table 3, some studies were carried out on CO2 hydrate
slurries (Delahaye et al., 2008, Jerbi et al., 2013). Experiments were
performed in two different experimental systems: in the same loop as
the one described in Fig. 1 (Delahaye et al., 2008) or in a loop
associated with a stirred tank reactor (Jerbi et al., 2013). In both
systems, the authors drew on the same assumptions as those of the
present study. In these experiments, it was pointed out that CO2

hydrates have a tendency to agglomerate as the hydrate fraction
increases, which results in a lack of control of the flow rate. In addition,
the behavior of the CO2 hydrate slurry flow was classified into three
categories according to the hydrate fraction (Jerbi et al., 2013),
(Delahaye et al., 2008). A summary of these studies is shown in
Table 4. The rheological behavior of CO2 hydrate slurry can be
described using Herschel Bulkley or Ostwald de Waele models.
According to Table 4, CO2 hydrate slurry has a pseudoplastic trend
for a hydrate volume fraction above 10%.

3.3. CO2 hydrate slurry in the presence of SDS

In order to carry out the experiments with CO2 hydrate slurries in
the presence of SDS, it was first of all necessary to determine the right
amount of additive to be used in the aqueous phase. As quoted
previously from Torre et al. (2011) and Ricaurte et al. (2014), the
SDS concentration should be above 1500 ppm. However, an excessive
SDS concentration (i.e. 3500 ppm and above) can decrease the
promoting effect of this additive (Watanabe et al., 2005; Ricaurte
et al., 2014). In addition, an SDS concentration lower than the CMC at
ambient conditions (i.e. < 2400 ppm) should be chosen to avoid the
crystallization of the surfactant at a temperature below the Krafft point
(Dicharry et al., 2016) Consequently, an SDS concentration between
1500 and 2000 ppm was chosen for the present study.

These experiments had two objectives:
First, verify that the presence of SDS decreases CO2 hydrate

agglomeration and thereby improves the flowing conditions of CO2

hydrate slurries.
If the first goal is achieved, then the rheological behavior of CO2

hydrate slurries can be investigated in the presence of SDS.
The water SDS aqueous solution was prepared at 293.2 K. In

Fig. 3a, before gas injection, the liquid phase is transparent: the

injection tube and part of the stainless steel loop are clearly visible
below the water surface. The solution contains some foam, which is
usual in the presence of SDS. In Fig. 3b, the gas is injected into the
experimental device at 283.2 K. Once P T equilibrium was reached
(corresponding to CO2 solubility equilibrium, from Diamond and
Akinfiev (2003)), the temperature was decreased to 274 275 K allow
ing CO2 hydrates to form. As shown in Fig. 3a and b, it was possible to
visually distinguish the formation of the CO2 hydrate. Indeed, in Fig. 3b
(with hydrates) the fluid is more opaque (milky) than in Fig. 3a
(without hydrates) and the injection tube is no longer visible.

In all the experiments, CO2 hydrate formation was detected in three
different ways:

(i) Observation of hydrate particles in the liquid phase as shown in
Fig. 3b: the fluid becomes milky after hydrate formation.

(ii) Pressure decreases and temperature increases as seen in Fig. 4:
these changes are due to the exothermic and gas consuming
reaction of hydrate formation.

(iii) Significant variation in pressure drops before and after hydrate
formation, for example between 13 and 19 mbar as shown in
Fig. 5: this greater pressure drop is due to an increase in viscosity
during hydrate slurry formation (appearance of CO2 hydrate
particles in the liquid phase). The greater pressure drop is
associated with a local disturbance in the flow rate (slight increase
then decrease).

In each experiment, it was noted that the slurry flow significantly
improved in the presence of the additive. In fact, there was no visual
evidence of any significant agglomeration in the first 48 h after CO2

hydrate formation in the presence of SDS, in contrast to the tests
without any additive where agglomeration occurred just a few hours
after hydrate formation. After this 48 h period, hydrate agglomeration
was observed in some experiments, but in others no agglomeration was
observed for several hours after. This behavior confirms the anti
agglomerant effect of SDS on hydrate slurries, as assumed in the
literature (Zhang et al., 2007c; Anklam et al., 2008; Lo et al., 2008;
Zhang et al., 2008; Lo et al., 2010b; Torre et al., 2012), particularly the
fact that DS− anions could be adsorbed onto the hydrate surface, which
could promote electrostatic repulsions between hydrate particles.

When CO2 hydrates had formed in the loop and liquid vapor
hydrate (L V H) equilibrium had been reached (steady temperature
and pressure), different flow rates were applied and the resulting
pressures were measured as function of time, as shown in Fig. 6. It can
be noted that the pressure drops were almost stable, which confirms
that the CO2 hydrate slurry did not strongly agglomerate in the
presence of SDS.

In the present experiments, hydrate fractions were set between 0
and 15.5 vol%. The hydrate volume fraction was calculated based on a
previous study on hydrate fraction modeling (Marinhas et al., 2007)
using P T data at equilibrium and a mass balance of CO2 in its different
phases: in vapor phase, dissolved in liquid (corresponding to CO2

solubility equilibrium, from Diamond and Akinfiev (2003)), and in
hydrate phase. The behavior index for each hydrate fraction was
determined by using the experimental data described in previous work
(Jerbi et al., 2010). In short, for each couple (ΔP, u), it was possible to
deduce the curve vsln( ) . ln( )D P

L
u

D
Δ
4

8 : the behavior index n corresponds
to the slope of this curve, according to Eq. (6). The evolution of the

Table 4
Rheological behavior of CO2 hydrate slurries.

Author Flow behavior index Apparent viscosity Slurry behavior

Delahaye et al. (2008) φ−0.77(1 + ln )s φ γ3800 + 1900 ̇
φs
γw s w

φs
3.6

̇
5.4 −1−0.77(1+ ln ) φ > 10 %s HB type with a pseudoplastic trend

Jerbi et al. (2013) φ−1.82 + 1s φ γ0.0018 exp(17.976 ) ̇s w
φs(−1.85 +1) Pseudoplastic

Webb et al., 2014; Yan et al., 2014) are summarized in Table 3. The 
table shows several key features of hydrate rheology:



behavior index n as a function of the hydrate fraction is represented in
Fig. 7. It can be noted that the behavior index n is less than 1,
suggesting a pseudoplastic behavior. The behavior index n can be
expressed by a linear curve as a function of the hydrate fraction, as
shown in Eq. (8):

n ϕ= −1.077 + 0.931s (8)

Measurement uncertainty calculations were determined for the
behavior index n at ± 8% (Fig. 7), based on the guide to the expression
of uncertainty in measurement (GUM) method, from sensor accuracies
and the uncertainties related to linear regressions.

The next step consisted in simultaneously determining the other
parameters of the general Herschel Bulkley model, Eq. (2), i.e. the
consistency index k and the yield stress τ0. Fig. 8 shows the evolution of
the shear stress τw (deduced from Eq. (4)) as function of γẇ

n (deduced
from Eqs. (5) and (6)) for hydrate fractions between 0 and 15.5 vol%.
According to the Herschel Bulkley model, for each hydrate fraction, the
slope of each linear curve represents the consistency index k, while the
yield stress τ0 corresponds to the ordinate at the origin.

In Fig. 8, the linear curves pass through the origin. Hence, the yield
stress, τ0, for CO2 hydrate slurry in the presence of SDS can be
neglected in a first approach. At this stage, the rheological model can
be represented using the Ostwald de Waele model for hydrate fractions
between 0 and 15.5 vol%. It is then possible to represent the evolution
of the consistency index k (corresponding to the slope of the curves in
Fig. 8) as a function of the hydrate fraction, as shown in Fig. 9.

The empirical equation governing the evolution of the consistency
index k can then be expressed as a function of the hydrate fraction in
Eq. (9):

k = 0.0125 exp( 18.65 )ϕs
1,315

(9)

where k is expressed in mPa sn.
An exponential was used as a function of the hydrate fraction for

Fig. 3. a: Water and SDS before CO2 hydrate formation. b: Water and SDS after CO2 hydrate formation.

Fig. 4. Temperature and pressure evolution during CO2 hydrate formation in the presence of SDS.

Fig. 5. Flow rate and pressure drop evolution during CO2 hydrate formation in the
presence of SDS.



the consistency index k because it provided the most accurate correla
tion for the experimental data. Measurement uncertainty calculations
were determined for the consistency index k at ± 9% (Fig. 9).

The rheological model can be expressed by integrating the correla
tions of n and k into the Ostwald de Waele model for hydrate fractions
between 0 and 15.5 vol%:

τ kγ γ= ̇ = 0.0125 exp ( 18.65 ) ̇w w
n ϕ

w
ϕ−1.077 +0.931s s

1 315
(10)

Finally, the experimental values of shear stress and viscosity as a
function of the shear rate were compared with those obtained by the

semi empirical equation models (10) and (7), as shown in Figs. 10 and
11 respectively.

In Fig. 10, the model is consistent with the experimental data. For
the hydrate fraction of 15.5 vol%, the gap is more significant for the
highest shear rates. This can be explained in part by differences
between the model and the experimental data, in particular for the

Fig. 6. Variation of the pressure drop and flow as a function of time, for a hydrate
formation temperature of 274.5 K.

Fig. 7. Variation of the behavior index n as a function of CO2 hydrate volume fraction in
the presence of SDS.

Fig. 8. τw as a function of γẇ
n for hydrate fractions between 0 and 15.5 vol%.

Fig. 9. Variation of the consistency index k as a function of the CO2 hydrate volume
fraction in the presence of SDS.

Fig. 10. Comparison of experimental and modeled rheograms of CO2 hydrate slurries
for hydrate fractions between 0 and15 vol% in the presence of SDS.

Fig. 11. Comparison of experimental and model values for CO2 hydrate fractions
between 0 and 15.5 vol% with SDS.



consistency index k (Fig. 9).
Concerning the evolution of the apparent viscosity as a function of

the shear rate (Fig. 11), CO2 hydrate slurry in the presence of SDS has a
pseudoplastic behavior. Moreover, as shown in the literature, the
apparent viscosity increases with the hydrate fraction for hydrate
slurries. Indeed, for a shear rate of 400 s−1, viscosity is multiplied by
approximately a factor of 2 between the liquid phase without hydrate
and the slurry at a hydrate fraction of 15 vol%.

3.4. Comparison of the rheological model of CO2 hydrate slurry with
the literature

To verify the relevance of the present results, they were compared
with data from the literature. Fig. 12 compares viscosity data obtained
for hydrate slurries in the aqueous phase: CO2 hydrate slurries, with or
without a stirred tank reactor, as described in previous work (Delahaye
et al., 2008; Jerbi et al., 2013), and CH4 hydrate slurries with a stirred
tank reactor calculated from a Bingham model (Andersson and
Gudmundsson, 2000). Fig. 12 also shows hydrate slurry rheology data
from Webb et al. (2014) obtained in the organic phase with a rotating
rheometer, and finally the theoretical correlations of Thomas (1965)
and Einstein (1906).

As shown in Fig. 12, hydrate slurry viscosity increases with the
hydrate fraction, which is a standard result. Moreover, as pointed out
by Kauffeld et al. (2005) in a previous study on ice slurry, the relative
apparent viscosity (μapp/μwater) calculated according to Thomas (1965)
or Einstein (1906) underestimates the viscosity determined on slurries
in the aqueous phase. However, the viscosity values differ according to
the system. Indeed, for low hydrate fractions ( < 10 vol%), the viscosity
of CO2 hydrate slurry with SDS is slightly higher than that of other
types of slurry. This is because the initial viscosity values before CO2

hydrate formation are higher with SDS, respectively 4.9 mPa s with
SDS (μapp=8.34 mPa s and μwater=1.67 mPa s at 275 K) and 1 mPa s
(μapp=2 mPa s) for other types of slurry without SDS. However, above a
hydrate fraction of 10 vol% in the case of a simple loop without a
stirred tank reactor, the viscosity of the CO2 hydrate slurry with SDS
becomes lower than that without SDS. For example, for a hydrate
fraction of 15 vol%, the relative apparent viscosity of CO2 hydrate
slurry with SDS is 8.9 mPa.s (μapp=15 mPa s) while it is 14.4 mPa s
(μapp=23 mPa s) without SDS. This reduction in viscosity at a higher
hydrate fraction ( > 10 vol%) could be due to the anti agglomerant
property of SDS, which could limit formation of hydrate agglomerates
and facilitate hydrate slurry flow. This may also explain why SDS could
improve the stability of the CO2 hydrate slurry over time, as pointed
out previously in the present paper (no visual evidence of agglomera
tion in the first 48 h after CO2 hydrate formation in the presence of

SDS, contrary to tests without the additive).
It is also important to note that when a stirred tank reactor is

associated with the loop, hydrate slurry viscosity is drastically lowered
(close to the theoretical Thomas correlation). This result can be
explained by the rheological behavior of hydrate slurries. Indeed, the
stirring action in the tank increases the shear rate, which consequently
may result in a decrease in the viscosity of the slurry in the loop due to
its pseudoplastic behavior (viscosity decreasing with increasing shear
rate). This assumption is supported by the results of Andersson and
Gudmundsson (2000) on a CH4 hydrate slurry circulating in a loop
equipped with a stirred tank reactor that are close to those obtained in
the present work in the same kind of experimental device (loop
+reactor), but with CO2 hydrate. The results of Webb et al. (2014) in
the organic phase also show low viscosity values: these data were
obtained in a rotating rheometer.

So, the mode of production and use of gas hydrate slurry (with vs.
without a stirred tank reactor) seems to have more influence on
viscosity than the nature of the guest molecule (CO2 vs. CH4) or the
presence of additive in the liquid phase (with vs. without SDS).

4. Conclusion

In the present work, the influence of SDS on the flow and
rheological properties of CO2 hydrate slurry were studied for the first
time in a dynamic loop. The results obtained have shown that CO2

hydrate slurries with an SDS concentration of 1500 2000 ppm (below
the CMC level) has a pseudoplastic behavior for hydrate fractions
between 0 and 15.5 vol%. Moreover, the presence of SDS facilitates the
slurry flow for high solid fractions above 10 vol%: in this case the
viscosity of CO2 hydrate slurry with SDS becomes lower than that
without SDS (decrease in viscosity of about 20% for a hydrate fraction
of 15.5 vol%). In addition, comparisons with previous studies showed
that the presence of a stirred tank reactor associated with the loop
allows hydrate slurry viscosity to be drastically lowered (decrease in
viscosity of about 73% for a hydrate fraction of 15 vol%). So, in order of
importance, the mode of production of a gas hydrate slurry (with vs.
without a stirred tank reactor) seems to have more influence on
viscosity than the presence of the additive (with vs. without SDS),
while the nature of the guest gas molecule (CO2 vs. CH4) seems to have
no effect on viscosity.

Another important point is that SDS has an anti agglomerant effect
on CO2 hydrate slurry. Indeed, the use of SDS improves CO2 hydrate
slurry stability over time: there was no visual evidence of any
significant agglomeration in the first 48 h after CO2 hydrate formation
in the presence of SDS, contrary to previous tests without additives
where agglomeration occurred just a few hours after hydrate formation.
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