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HOMOLOGICAL PROJECTIVE DUALITY FOR

DETERMINANTAL VARIETIES

MARCELLO BERNARDARA, MICHELE BOLOGNESI, AND DANIELE FAENZI

Abstract. In this paper we prove Homological Projective Duality for cate-
gorical resolutions of several classes of linear determinantal varieties. By this
we mean varieties that are cut out by the minors of a given rank of a m × n

matrix of linear forms on a given projective space. As applications, we obtain
pairs of derived-equivalent Calabi-Yau manifolds, and address a question by
A. Bondal asking whether the derived category of any smooth projective vari-
ety can be fully faithfully embedded in the derived category of a smooth Fano
variety. Moreover we discuss the relation between rationality and categorical
representability in codimension two for determinantal varieties.

1. Introduction

Homological Projective Duality (HPD) is one of the most exciting recent break-
throughs in homological algebra and algebraic geometry. It was introduced by A.
Kuznetsov in [26] and its goal is to generalize classical projective duality to a ho-
mological framework. One of the important features of HPD is that it offers a very
important tool to study the bounded derived category of a projective variety to-
gether with its linear sections, providing interesting semiorthogonal decompositions
as well as derived equivalences, cf. [22, 23, 28, 3, 27].

Roughly speaking, two (smooth) varieties X and Y are HP-dual if X has an am-
ple line bundle OX(1) giving a map X → PW , Y has an ample line bundle OY (1)
giving a map Y → PW∨, and X and Y have dual semiorthogonal decompositions
(called Lefschetz decompositions) compatible with the projective embedding. In
this case, given a generic linear subspace L ⊂W and its orthogonal L⊥ ⊂W∨, one
can consider the linear sections XL and YL of X and Y respectively. Kuznetsov
shows the existence of a category CL which is admissible both in Db(XL) and in
Db(YL), and whose orthogonal complement is given by some of the components
of the Lefschetz decompositions of Db(X) and Db(Y ) respectively. That is, both
Db(XL) and Db(YL) admit a semiorthogonal decomposition by a “Lefschetz” com-
ponent, obtained via iterated hyperplane sections, and a common “nontrivial” or
“primitive” component.

HPD is closely related to classical projective duality: [26, Theorem 7.9] states
that the critical locus of the map Y → PW∨ coincides with the classical projective
dual of X . The main technical issue of this fact is that one has to take into account
singular varieties, since the projective dual of a smooth variety is seldom smooth -
e.g. the dual of certain Grassmannians are singular Pfaffian varieties [12]. On the
other hand, derived (dg-enhanced) categories should provide a so-called categorical
or non-commutative resolution of singularities ([30, 37]). Roughly speaking, one
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needs to find a sheaf of OY -(dg)-algebras R such that the category Db(Y,R) of
bounded complexes of coherent R-modules is proper, smooth and R is locally
Morita-equivalent to some matrix algebra over OY (this latter condition translates
the fact that the resolution is birational). In the case where Y is singular, one of the
most difficult tasks in proving HPD is to provide such a resolution with the required
Lefschetz decomposition (for example, see [27, §4.7]). On the other hand, given a
non-smooth variety, it is a very interesting question to provide such resolutions and
study their properties such as crepancy, minimality and so forth.

The main application of HPD is that it is a direct method to produce semiorthog-
onal decompositions for projective varieties with non-trivial canonical sheaf, and
derived equivalences for Calabi-Yau varieties. The importance of this application is
due to the fact that determining whether a given variety admits or not a semiorthog-
onal decomposition is a very hard problem in general. Notice that there are cases
where it is known that the answer to this question is negative, for example if X has
trivial canonical bundle [13, Ex. 3.2], or if X is a curve of positive genus [34]. On
the other hand, if X is Fano, then any line bundle is exceptional and gives then a
semiorthogonal decomposition. Almost all the known cases of semiorthogonal de-
compositions of Fano varieties described in the literature (see, e.g., [22, 29, 23, 6, 3])
can be obtained via HPD or its relative version.

Derived equivalences of Calabi-Yau (CY for short) varieties have deep geometri-
cal insight. First of all, it was shown by Bridgeland that birational CY-threefolds
are derived equivalent [14]. The converse in not true: the first example - that has
been shown to be also a consequence of HPD in [25] - was displayed by Borisov and
Caldararu in [12].

Besides their geometric relevance, derived equivalences between CY varieties
play an important role in theoretical physics. First of all, Kontsevich’s homological
mirror symmetry conjectures an equivalence between the bounded derived category
of a CY-threefold X and the Fukaya category of its mirror. More recently, it has
been conjectured that homological projective duality should be realized physically
as phases of abelian gauged linear sigma models (GLSM) (see [17] and [2]).

As an example, denote by X and Y the pair of equivalent CY–threefolds consid-
ered by Borisov and Caldararu. Rødland [36] argued that the families of X ’s and
Y ’s (letting the linear section move in the ambient space) seem to have the same
mirror variety Z (a more string theoretical argument has been given recently by
Hori and Tong [18]). The equivalence between X and Y would then fit Kontsevich’s
Homological Mirror Symmetry conjecture via the Fukaya category of Z. It is thus
fair to say that HPD plays an important role in understanding these questions and
potentially providing new examples. Notice in particular that some determinantal
cases were considered in [20].

In this paper, we describe new families of HP Dual varieties. We consider two
vector spaces U and V of dimension m and n respectively with m ≤ n. Let
G = G(U, r) denote the Grassmannian of r-dimensional quotients of U , set Q and
U for the universal quotient and sub-bundle respectively. Let X := P(V ⊗Q) and
Y := P(V ∨ ⊗ U ∨), for any 0 < r < m. Let p : X → G and q : Y → G be the
natural projections. Set HX and HY for the relatively ample tautological divisors
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on X and Y . Orlov’s result [35] provides semiorthogonal decompositions

(1.1)
Db(X ) = 〈p∗Db(G), . . . , p∗Db(G)⊗ OX ((rn − 1)HX)〉,

Db(Y ) = 〈q∗Db(G)⊗ OY (((r −m)n+ 1)HY ), . . . , q
∗Db(G)〉.

Theorem 3.5. In the previous notation, X and Y with Lefschetz decompositions
(1.1) are HP-dual.

The proof of the previous result is a consequence of Kuznetsov’s HPD for pro-
jective bundles generated by global sections (see [26, §8]). Here, the spaces of
global sections of OX (HX) and OY (HY ) sheaves are, respectively, W = V ⊗U and
W∨ = V ∨ ⊗ U∨.

The main interest of Theorem 3.5 is that X is known to be the resolution of
the variety Z r of m × n matrices of rank at most r. Write such a matrix as M :
U → V ∨. Then Z r is naturally a subvariety of PW , which is singular in general,
with resolution f : X → Z r. Dually, g : Y → Z m−r is a desingularization of the
variety of m×n matrices of corank at least r. Theorem 3.5 provides the categorical
framework to describe HPD between the classical projectively dual varieties Z r

and Z m−r (see, e.g., [39]).
In the affine case, categorical resolutions for determinantal varieties have been

constructed by Buchweitz, Leuschke and van den Bergh [15, 16]. Such resolution
is crepant if m = n (that is, in the case where Z r has Gorenstein singularities).
The starting point is Kapranov’s construction of a full strong exceptional collection
on Grassmannians [21]. One can use the decompositions in exceptional objects
(1.1) to produce a sheaf of algebras R′ and a categorical resolution of singularities
Db(Z r,R′) ≃ Db(X ). For simplicity, we will denote by R′ the algebra on any of
the determinantal varieties Z r (forgetting about the dependence of R′ on the rank
r). This gives a geometrically deeper version of Theorem 3.5.

Theorem 3.6. In the previous notations, Z r admits a categorical resolution of
singularities Db(Z r,R′), which is crepant if m = n. Moreover, Db(Z r,R′) and
Db(Z m−r,R′) are HP-dual.

Once the equivalence Db(Z r,R′) ≃ Db(X ) constructed, Theorem 3.6 is proved
by applying directly Theorem 3.5. However, the geometric relevance of Theorem
3.6, and its difference with Theorem 3.5, is that it shows HPD directly on noncom-
mutative structures over the determinantal varieties Z r and Z m−r with respect
to their natural embedding in PW and PW∨ respectively. That is, these natural
smooth and proper noncommutative scheme structures are well-behaved with re-
spect to projective duality and hyperplane sections. Finally, notice that whenever
we pick a smooth linear section ZL of Z r (or a smooth section ZL of Z m−r), the
restriction to ZL of the sheaf R′ is Morita-equivalent to OZL

, so that we get the
derived category Db(ZL) of the section itself.

As a consequence, given a matrix of linear forms on some projective space, one
can see the locus Z where the matrix has rank at most r as a linear section of Z r.
Assuming Z to have expected dimension, Theorem 3.6 gives a categorical resolution
of singularities Db(Z,R′) of Z and a semiorthogonal decomposition of this category
involving the dual linear section of Z m−r.

Our construction of Homological Projective Duality allows us to recover some
Calabi-Yau equivalences appeared in [20] and many more (see Corollary 3.7).
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A special case is obtained by setting r = 1. In this case X is a Segre variety
and Y is the variety of degenerate matrices rank.

As an application of this new instance of Homological Projective Duality, we try
to address a fascinating question, asked by A. Bondal in Tokyo in 2011. Since any
Fano variety admits semiorthogonal decompositions, it is natural to ask whether the
derived category of any variety can be realized as a component of a semiorthogonal
decomposition of a Fano variety. Under this perspective, considering Fano varieties
will be enough to study all “geometric” triangulated categories.

Bondal’s Question 1.1. Let X be a smooth and projective variety. Is there any
smooth Fano variety Y together with a full and faithful functor Db(X) → Db(Y )?

We will say that X is Fano-visitor if Question 1.1 has a positive answer (see
Definition 2.9).

On the other hand, an interesting geometrical insight of semiorthogonal decom-
positions is to provide a conjectural obstruction to rationality of a given variety
X . In [5], the first and second named authors introduced , based on existence of
semiorthogonal decompositions, the notion of categorical representability of a va-
riety X (see Definition 2.8). This notion allows to formulate a natural question
about categorical obstructions to rationality.

Question 1.2. Is a rational projective variety always categorically representable
in codimension at least 2?

The motivating ideas of question 1.2 can be traced back to the work of Bondal
and Orlov, and to their address at the 2002 ICM [11], and to Kuznetsov’s remarkable
contributions (e.g. [23] or [31]). Notice that a projective space is representable in
dimension 0. Roughly speaking, the idea supporting Question 1.2 is based on a
motivic argument which let us suppose that birational transformations should not
add components representable codimension 1 or less (see also [5]).

Several examples seem to suggest that Question 1.2 may have a positive answer.
Let us mention conic bundles over minimal surfaces [6], fibrations in intersections
of quadrics [3], or some classes of cubic fourfolds [23]. Moreover, Question 1.2 is
equivalent to one implication of Kuznetsov Conjecture on the rationality of a cubic
fourfold [23], which was proved to coincide with Hodge theoretical expectations for
a general cubic fourfold by Addington and Thomas [1].

As consequences of Theorems 3.5 and 3.6, we can show that (the categorical
resolution of singularities of) any determinantal hypersurface of general type is
Fano visitor (§5), and that (the categorical resolution of singularities of) a rational
determinantal variety is categorically representable in codimension at least two (§6).
Hence we provide a large family of varieties for which Questions 1.1 and 1.2 have
positive answer. As an example, we easily get the following corollary (compare with
Example 6.3).

Corollary 1.3. A smooth plane curve is Fano visitor.

Acknowledgments. We acknowledge A. Bondal for asking Question 1.1 at the
conference “Derived Categories 2011” in Tokyo, which has been a source of inspi-
ration for this work. We thank J. Rennemo for pointing out a mistake in the first
version of this paper, and the anonymous referee for useful suggestions and ques-
tioning. We are grateful to A. Kuznetsov, N. Addington and E. Segal for useful
advises and exchange of ideas.
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2. Preliminaries

2.1. Notation. We work over an algebraically closed field of characteristic zero
k. A vector space will be denoted by a capital letter W ; the dual vector space is
denoted by W∨. Suppose dim (W ) = N , then the projective space of W is denoted
by PW or simply by PN−1. We follow Grothendieck’s convention, so that PW is the
set of hyperplanes through the origin of W . The dual projective space is denoted
by PW∨ or by (PN−1)∨.

We assume the reader to be familiar with the theory of semiorthogonal decom-
positions and exceptional objects (see [10, 19, 27]). Recall that the summands of a
semiorthogonal decomposition of a triangulated category T, by definition are full
triangulated subcategories of T which are admissible, i. e. such that the inclusion
admits a left and right adjoint.

2.2. Categorical resolutions of singularities. By a noncommutative scheme we
mean (following Kuznetsov [28, §2.1]) a scheme X together with a coherent OX -
algebra A . Morphisms are defined accordingly. By definition, a noncommutative
scheme (X,A ) has Coh(X,A ), the category of coherent A -modules, as category
of coherent sheaves and Db(X,A ) as bounded derived category.

Following Bondal–Orlov [11, §5], a categorical (or noncommutative) resolution
of singularities (X,A ) of a possibly singular proper scheme X is a torsion free
OX -algebra A of finite rank such that Coh(X,A ) has finite homological dimension
(i.e., is smooth in the noncommutative sense).

Definition 2.1. Let X be a scheme. An object T of Db(X) is called a compact
generator if T is perfect and, for any object S of Db(X), we have that the fact that
HomDb(X)(S, T [i]) = 0 for all integers i is equivalent to S = 0. Notice that, if X is

smooth and proper, the natural inclusion Perf(X) ⊂ Db(X) of perfect complexes
into Db(X) is an equivalence. Hence any object in Db(X) is perfect.

In the case where X admits a full exceptional collection, there is an explicit
compact generator T .

Proposition 2.2 ([9]). Suppose that X is smooth and proper, and that Db(X) is
generated by a full exceptional sequence Db(X) = 〈E1, . . . , Es〉. Then E = ⊕si=1Ei
is a compact generator. In particular, consider the dg-k-algebra End(E). Then
there is an equivalence of triangulated categories Db(X) ≃ Db(End(E)).

2.3. Homological Projective Duality. Homological Projective Duality (HPD)
was introduced by Kuznetsov [26] in order to study derived categories of hyperplane
sections (see also [24]).

Let us first recall the basic notion of HPD from [26]. Let X be a projective
scheme together with a base-point-free line bundle OX(H).

Definition 2.3. A Lefschetz decomposition of Db(X) with respect to OX(H) is a
semiorthogonal decomposition

(2.1) Db(X) = 〈A0,A1(H), . . . ,Ai−1((i − 1)H)〉,

with

0 ⊂ Ai−1 ⊂ . . . ⊂ A0,

Such a decomposition is said to be rectangular if A0 = . . . = Ai−1.
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Let W := H0(X,OX(H)), and f : X → PW the map given by the linear system
associated with OX(H), so that f∗OPW (1) ∼= OX(H). We denote by X ⊂ X×PW∨

the universal hyperplane section of X

X := {(x,H) ∈ X × PW∨|x ∈ H}.

Definition 2.4. Let f : X → PW be a smooth projective scheme with a base-point-
free line bundle OX(H) and a Lefschetz decomposition as above. A scheme Y with
a map g : Y → PW∨ is called homologically projectively dual (or the HP-dual) to
f : X → PW with respect to the Lefschetz decomposition (2.1), if there exists a
fully faithful functor Φ : Db(Y ) → Db(X ) giving the semiorthogonal decomposition

Db(X ) = 〈Φ(Db(Y ),A1(1)⊠Db(PW∨), . . . ,Ai−1(i− 1)⊠Db(PW∨)〉.

Let N = dim (W ) and let c ≤ N be an integer. Given a c-codimensional linear
subspace L ⊂ W , we define the linear subspace PL ⊂ PW of codimension c as
P(W/L). Dually, we have a linear subspace PL = PL⊥ of dimension c− 1 in PW∨,
whose defining equations are the elements of L⊥ ⊂W∨. We define the varieties:

XL = X ×PW PL, YL = Y ×PW∨ P
L.

Theorem 2.5 ([26, Theorem 1.1]). Let X be a smooth projective variety with a
map f : X → PW , and a Lefschetz decomposition with respect to OX(H). If Y is
HP-dual to X, then:

(i) Y is smooth projective and admits a dual Lefschetz decomposition

Db(Y ) = 〈Bj−1(1− j), . . . ,B1(−1),B0〉, Bj−1 ⊂ . . . ⊂ B1 ⊂ B0

with respect to the line bundle OY (H) = g∗OPW∨(1).
(ii) if L is admissible, i.e. if

dimXL = dimX − c, and dimYL = dimY + c−N,

then there exist a triangulated category CL and semiorthogonal decomposi-
tions:

Db(XL) = 〈CL,Ac(1), . . . ,Ai−1(i− c)〉,

Db(YL) = 〈Bj−1(N − c− j), . . . ,BN−c(−1),CL〉.

Remark 2.6. In general, HPD involves non smooth varieties. Indeed, as shown by
Kuznetsov [26, Theorem 7.9] the critical locus of the map g : Y → PW∨ is the
classical projective dual X∨ of X , which is rarely smooth even if X is smooth. If X
(resp. Y ) is singular, then we have to replace Db(X) (resp. Db(Y )) by a categorical
resolution of singularities Db(X,A ) (resp. Db(Y,B)) in all the statements and
definitions of this section. Theorem 2.5 holds in this more general framework,
where we have to consider Db(XL,AL) (resp. D

b(YL,BL)) for AL (resp. BL) the
restriction of A to XL (resp. of B to YL) in item (ii).

2.4. Categorical representability and Fano visitors. First, let us recall the
definition of categorical representability for a variety.

Definition 2.7 ([5]). A triangulated category T is representable in dimension j if
it admits a semiorthogonal decomposition

T = 〈A1, . . . ,Al〉,

and for all i = 1, . . . , l there exists a smooth projective connected variety Yi with
dimYi ≤ j, such that Ai is equivalent to an admissible subcategory of Db(Yi).
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Definition 2.8 ([5]). Let X be a projective variety. We say that X is categorically
representable in dimension j (or equivalently in codimension dim (X)− j) if there
exists a categorical resolution of singularities of Db(X) representable in dimension
j.

Based on Bondal’s Question 1.1, we introduce the following definition.

Definition 2.9. A triangulated category T is Fano-visitor if there exists a smooth
Fano variety F and a fully faithful functor T → Db(F ) such that Db(F ) = 〈T,T⊥〉.
A smooth projective variety X is said to be a Fano-visitor if its derived category
Db(X) is Fano-visitor.

We remark that, having a fully faithful functor Db(X) → Db(F ) is enough to
have the required semiorthogonal decomposition [8]. Relaxing slightly the hypothe-
ses on the smoothness of the Fano variety we get the following weaker definition.

Definition 2.10. A triangulated category T is weakly Fano-visitor if there exists a
(possibly singular) Fano variety F , a categorical crepant resolution of singularities
DF of F and a fully faithful functor T → DF such that DF = 〈T,T⊥〉. Notice
that this implies that the functor T → DF has a right and left adjoint by definition
of semiorthogonal decomposition. As before, if T ∼= Db(X) for a smooth projective
variety X , then X itself is said to be weakly Fano-visitor .

3. Homological Projective Duality for determinantal varieties

We describe here homological projective duality for determinantal varieties in
terms of the Springer resolution of the space of n ×m matrices of rank at most r
and in terms of categorical resolution of singularities.

3.1. The Springer resolution of the space of matrices of bounded rank.

Let us introduce the variety Z r
m,n of n×mmatrices over our base field, having rank

at most r. Let U , V be vector spaces, with dimU = m, dimV = n, and assume
n ≥ m. Set W = U ⊗V . Let r be an integer in the range 1 ≤ r ≤ m− 1. We define
Z r = Z r

m,n to be the variety of matrices M : V → U∨ in PW cut by the minors of
size r + 1 of the matrix of indeterminates:

ψ =



x1,1 . . . xm,1
...

. . .
...

xm,n . . . xm,n




3.1.1. Springer resolution and projective bundles. Consider the Grassmann variety
G(U, r) of r-dimensional quotient spaces of U , the tautological sub-bundle and the
quotient bundle over G(U, r), denoted respectively by U and Q, respectively of
rank m− r and r. We will write G for G(U, r).

The tautological (or Euler) exact sequence reads:

(3.1) 0 → U → U ⊗ OG → Q → 0.

We will use the following notation:

X
r
m,n = P(V ⊗ Q).

However, the dependency on m,n, r will often be omitted.
The manifold X = X r

m,n has dimension r(n+m− r)− 1. It is the resolution of
singularities of the variety of m× n matrices of rank at most r, in a sense that we
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will now review. Denote by p the natural projection X → G. The space H0(G,Q)
is naturally identified with U .

Let us denote by OX (HX) the relatively ample tautological line bundle on X .
We will often write simply H for HX . We get natural isomorphisms:

H0(G, V ⊗ Q) ≃ H0(X ,OX (H)) ≃W = U ⊗ V.

Therefore, the map f associated with the linear system OX (H) maps X to PW ,
and clearly OX (H) ≃ f∗(OPW (1)). This is summarized by the diagram:

X
f
//

p
��

PW = P(U ⊗ V )

G

On the other hand, we will denote by P the pull-back to P(V ⊗ Q) of the first
Chern class c1(Q) on G. Hence we have that c1(V ⊗ Q) pulls-back to nP and ωG

to −mP . The Picard group of X is generated by P and H .

Notice that giving a rank-1 quotient of W = U ⊗ V corresponds to the choice
of a linear map M : V → U∨, so an element of PW can be considered as (the
proportionality class of) the linear map M . On the other hand, the map f sends
a rank-1 quotient of V ⊗ Q over a point λ ∈ G to the quotient of W obtained by
composition with the obvious quotient U → Qλ.

Therefore, the matrix M lies in the image of f if and only if M factors through
V → Q∨

λ , for some λ ∈ G, i.e., if and only if rk(M) ≤ r. Clearly, if M has precisely
rank r then it determines λ and the associated quotient of U → Qλ. Since this
happens for a general matrixM of Z r = Z r

m,n, the map f : X → Z r is birational.
This map is in fact a desingularization, called the Springer resolution, of Z r. It is
an isomorphism above the locus of matrices of rank exactly r.

In a more concrete way, given λ ∈ G we let πλ be the linear projection from U∨

to U∨/Q∨
λ . Then, the variety X can be thought of as:

X = {(λ,M) ∈ G× Z
r | πλ ◦M = 0}.

This way, the maps p and f are just the projections from X onto the two factors.

Let us now look at the dual picture. We consider the projective bundle:

Y
r
m,n = P(V ∨ ⊗ U

∨).

Write Y = Y r
m,n for short. Denote by q the projection Y → G. We will denote

by HY (or sometimes just by H) the tautological ample line bundle on Y . This
time, since H0(G,U ∨) ≃ U∨, the linear system associated with OY (H) sends Y

to PW∨ ≃ P(V ∨ ⊗U∨) via a map that we call g. By the same argument as above,
g is a desingularization of the variety W r of matrices V ∨ → U in PW∨ of corank
at least r. There exists an obvious isomorphism Z m−r ∼= W r, which we will use
without further mention.

The spaces PW and PW∨ are equipped with tautological morphisms of sheaves,
which are both identified by the the matrix ψ, corresponding to the identity in
W ⊗W∨ = U ⊗ V ⊗ U∨ ⊗ V ∨:

V ⊗ OPW (−1)
ψ
→ U∨ ⊗ OPW ,(3.2)

V ∨ ⊗ OPW∨(−1)
ψ
→ U ⊗ OPW∨ .(3.3)
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Definition 3.1. We will denote by F and E , the cokernel of the tautological map
appearing in Eq. (3.2), respectively Eq. (3.3).

Lemma 3.2. We have isomorphisms X ≃ G(F ,m− r) and Y ≃ G(E , r).

Proof. We work out the proof for Y , the argument for X being identical. Given
a scheme S over our field, an S-valued point [e] of G(E , r) is given by a morphism
s : S → PW∨ and the equivalence class of an epimorphism e : s∗E → V , where V

is locally free of rank r on S. On the other hand, an S-point [y] of Y corresponds
to a morphism t : S → G together with the class of a quotient y : V ∨⊗ t∗U ∨ → L ,
with L invertible on S. In turn, t is given by a locally free sheaf of rank r on S
and a surjection from U ⊗ OS onto this sheaf.

Given the point [e], we compose e with the surjection U ⊗OS → s∗E and denote
by te the resulting map U ⊗OS → V . This way, te provides the required morphism
t : S → G, and clearly t∗Q ≃ V , so the kernel of U ⊗OS → V is just t∗U . Clearly,
we have te ◦ s∗ψ = 0 so that s∗ψ factors through a map V ∨ ⊗ OS(−1) → t∗U .
Giving this last map is equivalent to the choice of a map V ∨ ⊗ t∗U ∨ → OS(1),
which we define to be the point [y] associated with [e].

Conversely, let t be represented by a locally free sheaf V = t∗Q of rank r on S
and by a quotient U ⊗ OS → V , whose kernel is t∗U . Then, given point [y] and
the quotient y, we consider the composition of y and U∨ ⊗ OS → U ∨ to obtain
a quotient sy : V ∨ ⊗ U∨ → L . This gives the desired morphism s : S → PW∨.
Moreover, the map V ∨ ⊗OS → t∗U ⊗L associated with y can be composed with
the injection t∗U ⊗L → U ⊗L to get a map V ∨ ⊗OS → U ⊗L , or equivalently
V ∨ ⊗ L ∨ → U ⊗ OS , and this map is nothing but s∗ψ. Of course, composing this
map with the projection U ⊗ OS → t∗Q = V we get zero, so there is an induced
surjective map s∗E → V . We define the class of this map to be the point [e]
associated with [y].

We have defined two maps from the sets of S-valued points of our two schemes,
which are inverse to each other by construction. The lemma is thus proved. �

3.1.2. Linear sections and projectivized sheaves. Let now c be an integer in the
range 1 ≤ c ≤ mn, and suppose we a have c-dimensional vector subspace L of W :

L ⊂ U ⊗ V =W.

We have thus the linear subspace PL ⊂ PW of codimension c, defined by PL =
P(W/L). Dually, we have a linear subspace PL = PL⊥ of dimension c− 1 in PW∨,
whose defining equations are the elements of L⊥ ⊂W∨. We define the varieties:

Xr
L = X

r
m,n ×PW PL, Y rL = Y

r
m,n ×PW∨ P

L.

We also write:

ZrL = Z
r
m,n ∩ PL, ZLr = Z

m−r
m,n ∩ P

L.

We will drop r, n and/or m from the notation when no confusion is possible. We
will always assume that L ⊂W is an admissible subspace in the sense of [26], which
amounts to ask that XL and YL have expected dimension. This means that we
have:

dimZL = dimXL = dimX
r
m,n − c = r(n +m− r) − c− 1

dimZL = dimYL = dimY
r
m,n − (mn− c) = r(m− n− r) + c− 1.
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Let us now give another interpretation of the choice of our linear subspace
L ⊂ W . To this purpose we consider the Grassmann variety G(V, r) with the
its tautological rank-r quotient bundle which we denote by T . Dually, we consider
G(V ∨,m − r) and denote by S ∨ the tautological quotient bundle of rank m − r.
Observe that there are natural isomorphisms:

L∨ ⊗W = L∨ ⊗ U ⊗ V ≃ Hom(L ⊗ OG, V ⊗ Q) ≃

≃ L∨ ⊗H0(X ,OX (H)) ≃

≃ Hom(L ⊗ OG(V,r), U ⊗ T ).

There are similar isomorphisms for G(V ∨,m− r). We denote by sL the global sec-
tion of L∨⊗H0(X ,OX (H)) corresponding to L ⊂W via these isomorphisms. The
subspace L corresponds also to morphisms of bundles on the Grassmann varieties,
which we write as:

ML : L⊗ OG → V ⊗ Q, NL : L⊗ OG(V,r) → U ⊗ T

We also write:

ML : L⊥ ⊗ OG → V ∨ ⊗ U
∨, NL : L⊥ ⊗ OG(V ∨,m−r) → U∨ ⊗ S

∨

for the morphisms corresponding to L⊥ ⊂ U∨ ⊗ V ∨.

Proposition 3.3. We have the following equivalent descriptions of XL:

(i) the vanishing locus V(sL) of the section sL ∈ L∨ ⊗H0(X ,OX (H));
(ii) the projectivization of coker(ML);
(iii) the projectivization of coker(NL);
(iv) the Grassmann bundle G(F |PL

,m− r).

Dually, the variety YL is:

(i) the vanishing locus of the section sL ∈ (W/L)⊗H0(X ,OX (H));
(ii) the projectivization of coker(ML);
(iii) the projectivization of coker(NL);
(iv) the Grassmann bundle G(E |PL , r).

Proof. We work out the proof forXL, the dual case YL being analogous. First recall
that the map X → PW is defined by the linear system OX (H), while the inclusion
PL ⊂ PW corresponds to the projection W → W/L. Hence the fibre product
defining XL is given by the vanishing of the global sections in H0(X ,OX (H))
which actually lie in L, i.e. by the vanishing of sL, so (i) is clear.

For (ii) we use essentially the same proof of Lemma 3.2. Indeed, given a scheme
S over our field, an S-valued point of P(coker(ML)) is defined by a morphism t :
S → G together with the isomorphism class of a quotient y : t∗(coker(ML)) → L ,
with L invertible on S. On the other hand, an S-valued point of XL is given
by a morphism s : S → XL. Once given s, composing with XL → X → G we
obtain the morphism t. By the definition of X as projective bundle, together with
t we get a map V ⊗ t∗Q → L with L invertible on S. This map composes to
zero with t∗(ML) : L ⊗ OS → V ⊗ t∗Q since the image of s is contained in XL,
hence in the vanishing locus of the linear section sL. Therefore this map factors
through t∗(coker(ML)) and provides the quotient y. It is not hard to check that
this procedure can be reversed, which finally proves (ii).

The statement (iii) is proved in a similar fashion, while (iv) is just Lemma 3.2,
restricted to PL. �
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3.2. The noncommutative desingularization. In [15, 16], noncommutative res-
olutions of singularities for the affine cone over Z r = Z r

m,n are constructed. This is
done by considering the vector bundles V ⊗Q instead of their projectivization, and
Kapranov’s strong exceptional collection on the Grassmannian [21] (for the details
see [16]). Here we carry on this construction to the projectivized determinantal
varieties.

Consider X = X r
m,n as rank−(rn− 1) projective bundle p : X → G. Orlov [35]

gives a semiorthogonal decomposition

(3.4) Db(X ) = 〈p∗Db(G), . . . , p∗Db(G)((rn − 1)H)〉.

On the other hand, Kapranov shows that G has a full strong exceptional collection
[21] consisting of vector bundles. We obtain then an exceptional collection on X

consisting of vector bundles, and hence a tilting bundle E as the direct sum of the
bundles from the exceptional collection. Let us consider M := Rf∗E, and let R :=
E nd(E) and R′ := E nd(M) (where E nd denotes the sheaf of endomorphisms).

Proposition 3.4. The endomorphism algebra E nd(M) is a coherent OZ r -algebra
Morita-equivalent to R. In particular, Db(Z r,R) ≃ Db(X ) is a categorical reso-
lution of singularities, which is crepant if m = n.

Proof. First of all, since G has a strong full exceptional collection, we have a tilting
bundle G over it. A cohomological calculation, together with the semiorthogonal

decomposition (3.4) provides a tilting bundle E =
⊕nr−1

i=0 p∗G⊗ OX (iH) over X .
We have thus:

Db(X ) ≃ Db(End(E)).

Since the exceptional locus of f has codimension greater than one, [38, Lemma
4.2.1] implies that f∗R is reflexive. There is a natural map f∗R → R′ of reflexive
sheaves which explicitly reads:

f∗R =

nr−1⊕

i,j=0

f∗E nd(p
∗G)(i− j) →

nr−1⊕

i,j=0

E nd(f∗p
∗G)(i − j) = R

′.

Again, since the exceptional locus of f has codimension greater than one the locus
where f∗R and R′ may be non-isomorphic has codimension at least 2. Since both
sheaves are reflexive, we obtain f∗R ∼= R′ (compare with [15, Proposition 6.5]).
Moreover we know from [16, Proposition 3.4] that Rkf∗R = 0 for k > 0 so we
actually have:

Rf∗R ∼= R
′.

Therefore:

End(E) ≃ H•(R) ≃ H•(Rf∗R) ≃ H•(R′).

We have now proved:

Db(X ) ≃ Db(End(E)) ≃ Db(H•(R′)) ≃ Db(Z r,R′).

Finally, R′ is maximally Cohen-Macaulay by [16, Proposition 3.4] (as this prop-
erty is local) and has finite global dimension since it is Morita-equivalent to the
endomorphism algebra R, which is defined over a smooth variety. If m = n, the
variety Z r has Gorenstein singularities and f is a crepant resolution, so that the
noncommutative resolution is also crepant (compare with [15]). �
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3.3. Homological projective duality for matrices of bounded rank. With
this in mind, we can prove our main result directly from Kuznetsov’s HPD for
the projective bundles X r

m,n = X and Y r
m,n = Y . We consider the rectangular

Lefschetz decomposition (3.4) for X with respect to OX (H).

Theorem 3.5. The morphism g : Y → PW∨ is the homological projective dual of
f : X → PW , relatively over G, with respect to the rectangular Lefschetz decompo-
sition (3.4) induced by OX (H), generated by nr

(
m

r

)
exceptional bundles.

Proof. Given the setup of §3.1, we consider the vector bundles V ⊗Q and V ∨⊗U ∨

over G and recall that X = P(V ⊗ Q) and Y = P(V ∨ ⊗ U ∨).
Set A = p∗(Db(G)). The decomposition (3.4) of the projective bundle X → G

then reads:
Db(X ) = 〈A,A(H), . . . ,A((rn− 1)H)〉.

This is a rectangular Lefschetz decomposition with respect to OX (H), generated
by nr copies of Kapranov’s exceptional collection on G, hence by nr

(
m

r

)
exceptional

bundles.
Clearly the vector bundles V ⊗ Q and V ∨ ⊗ U ∨ are generated by their global

sections, so we may apply apply [26, Corollary 8.3] to their projectivization (actually
we use the Grothendieck’s notation for projectivized bundles rather than the usual
notation as in [26], but this does affect the result). The evaluation map of global
sections of V ⊗ Q gives (3.1) tensored with the identity over V i.e.:

0 → V ⊗ U →W → V ⊗ Q → 0.

This says that V ∨ ⊗U ∨ is the orthogonal in Kuznetsov’s sense of V ⊗Q. Also,
the morphism associated with the tautological line bundle HX over X is f , while
g is associated with HY over Y . Therefore [26, Corollary 8.3] applies and gives the
result.

Note that Db(Y ) is generated by n(m− r)
(
m
r

)
exceptional vector bundles. �

We can rephrase this in terms of categorical resolutions, as a consequence of
Proposition 3.4. In this way, one can state HPD as a duality between categorical
resolutions of determinantal varieties given by matrices of fixed rank and corank.
This leads us to prove our second main Theorem.

Theorem 3.6. There is a OZ r -algebra R′ such that (Z r,R′) is a categorical res-
olution of singularities of Z r. Moreover, Db(Z r,R′) ≃ Db(X ) so that (Z r,R′)
is HP-dual to (Z m−r,R′).

Proof. Recall that X is a projective bundle over a Grassmann variety, and hence
has a full exceptional sequence. By applying Proposition 3.4 to the full exceptional
sequence on X , we get the first statement. The second statement is now straight-
forward from Theorem 3.5, together with the isomorphism X m−r ≃ Y r. �

3.4. Semiorthogonal decompositions for linear sections. Let L be a dimen-
sion c subspace of U ⊗ V = W , given by the choice of an element t ∈ L∨ ⊗W .
Recall that we assume that the subspace L ⊂ W is admissible in the sense of [26].
This happens if L is general enough in W .

Moreover, again if L is general enough, the singularities of ZL = ZrL appear

precisely along Zr−1
L . Also, the map f , for the rank r locus, is an isomorphism

when restricted to ZL \ Zr−1
L . Furthermore, we recall from the preceding section

that ZL is a determinantal variety inside Pmn−c−1 given by a m×n matrix of linear
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forms and Db(ZL,R
′
PL
) is a categorical resolution of singularities of ZL, where R′

PL

is the pull-back of R′ from Z r
m,n to ZL under the natural restriction map.

Notice that if ZL is smooth, then Db(ZL) ≃ Db(XL), in fact, ZL ≃ XL in this
case. Similarly, if ZL = ZLr is smooth, then Db(ZL) ≃ Db(YL) as again ZL ≃ YL
in this case. In particular, in the smooth case, the sheaves of algebras R′

PL
are

Morita-equivalent to the structure sheaf.
Our goal now is to draw consequences from the homological projective duality

that we have displayed. Notably we will give in several examples a positive answer
to the questions asked in the introduction, i.e. Bondal’s Question 1.1 and question
1.2 concerning rationality and categorical representability. Remember that X (re-
spectively Y ) is the projectivization of a vector bundle of rank nr (resp. n(m− r))
over G. Hence, by Orlov’s result ([35]) on the semiorthogonal decompositions for
projective bundles we have:

Db(X ) = 〈A,A(H), . . . ,A((nr − 1)(H)〉;

Db(Y ) = 〈B((1 − nm+ nr)H), . . . ,B(−H),B〉,

where A and B are the respective pull-backs of Db(G) to the projective bundles.
This in turn implies that, via HPD, when we intersect X with PL and Y with PL,
we have the following

Db(XL) = 〈CL,A(H), . . . ,A(nr − c)(H)〉;

Db(YL) = 〈B((−c+ nr)H), . . . ,B(−H),CL〉.

Recalling that Db(XL) ≃ Db(ZrL,R
′
PL
) and Db(YL) = Db(ZLr ,R

′
PL) are categor-

ical resolutions of singularities of dual determinantal varieties, we get:

Db(ZrL,R
′
PL
) = 〈CL,A(H), . . . ,A(nr − c)(H)〉;

Db(ZLr ,R
′
PL) = 〈B((−c+ nr)H), . . . ,B(−H),CL〉.

Finally, the categories A and B are both generated by
(
m

r

)
exceptional objects.

Corollary 3.7. Suppose that L ⊂W is admissible of dimension c.

(i) If c > nr, there is a fully faithful functor

Db(ZL,R
′
PL
) ≃ Db(XL) −→ Db(YL) ≃ Db(ZLr ,R

′
PL)

whose orthogonal complement is given by c− nr copies of Db(G), and is then
generated by (c− nr)

(
m
r

)
exceptional objects.

(ii) If nr = c, there is an equivalence

Db(ZL,R
′
PL
) ≃ Db(XL) ≃ Db(YL) ≃ Db(ZLr ,R

′
PL)

(iii) If c < nr, there is a fully faithful functor

Db(ZLr ,R
′
PL) ≃ Db(YL) −→ Db(XL) ≃ Db(ZL,R

′
PL
)

whose orthogonal complement is given by nr− c copies of Db(G), and is then
generated by

(
m
r

)
(nr − c) exceptional objects.

Proof. The statement is obtained applying Kuznetsov’s Theorem 2.5 to the pair
of HPDual varieties from Theorem 3.5, and using the resolutions of singularities
described in Theorem 3.6. The functors involved can be explicitly described as
Fourier–Mukai with kernels in Db(XL × YL) (see the detailed description in the
original Kuznetsov’s paper [26, §5]). �
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Using the notation introduced in Section 3.1 for the generators of the Picard
group, we have the following formula for the canonical bundle of X :

ωX ≃ OX (−nrH + (n−m)P ).

A consequence of this formula is the following lemma. Call φK the canonical
map of XL, i. e. the rational map associated with the linear system |ωXL

|. Write
also φ−K for the map associated with |ω∨

XL
| (i.e. the anticanonical map).

Lemma 3.8. The canonical bundle of the linear section XL is:

ωXL
≃ OXL

((c− nr)H + (n−m)P ).

i) The variety XL is Calabi-Yau if and only if m = n and c = nr.
ii) If c > nr, or if c = nr and n > m, φK is a birational morphism onto its image.
iii) If c < nr and m = n, φ−K is a birational morphism onto its image. If moreover

Xr−1
L = ∅, φ−K is an embedding and XL is Fano.

Proof. The formula for ωXL
is obvious by adjunction. By this formula, ωXL

≃ OXL

whenever m = n and c = nr. Conversely, remark that XL is connected, so if XL is
CY, then there is no nontrivial semiorthogonal decomposition of Db(XL). Corollary
3.7 forces then c ≥ nr.

Suppose c > nr, or c = nr and n > m. Notice first that both P and H are
nef. Then canonical divisor is a linear combination of nef divisors with positive
coefficients, which is in turn nef. On the other hand, we have that ωXL

is OXL
if

c = nr and m = n, so using c ≥ nr we conclude the proof of (i).
For (ii), by definition H and P are base-point-free and H is very ample away

from the exceptional locus of f , so the statement follows directly from the formula
for ωXL

. A similar argument proves (iii). �

Corollary 3.9. We have the following formulas for the canonical bundles

ωY ≃ OY (−n(m− r)H + (n−m)Q),

ωYL
≃ OYL

((nr − c)H + (n−m)Q).

In particular, YL is Calabi-Yau if and only if m = n and c = nr. If c < nr, or
if c = nr and n > m, then the canonical map of YL is a birational morphism onto
its image. If c > nr, m = n and Y r−1

L = ∅ then YL is Fano.

Proof. Everything follows from the isomorphism Y r ≃ X m−r. Indeed, we find
Y rL ≃ Xm−r

L⊥ : and, since dimL⊥ + dimL = dim (W ) = nm, we get the formula
for ωYL

from Lemma 3.8, recalling that the relative hyperplane section is identified
with Q in this case. The other statements follow as in Lemma 3.8. �

We resume in Table 1 the results of this section. The functor mentioned there
is the HPD functor.

4. Birational and equivalent linear sections

As explained in Corollary 3.7 and then displayed in Table 1, the condition c = nr
guarantees that HPD gives an equivalence of categories. Hence our construction
gives examples of derived equivalences of Calabi-Yau manifolds for any n = m. One
first example was produced in [20]. In fact the authors of [20] take n = m = 4,
r = 2, the self dual orbit of rank 2, 4 × 4 matrices and consider the codimension
eight threefolds obtained by taking orthogonal linear sections in P

15. In fact, our
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c < nr c = nr c > nr

HPD Functor Db(YL) → Db(XL) equivalence Db(XL) → Db(YL)

YL → Z
L nef canonical nef canonical if n 6= m

Fano visitor if n = m CY if n = m Fano if n = m

XL → ZL

nef canonical if n 6= m nef canonical
Fano if n = m CY if n = m Fano visitor if n = m

Table 1. Behaviour of HPD functors according on c and nr.

construction shows that these two Calabi-Yau are derived equivalent. On the other
hand it is very likely that they are one the flop of the other. We can show indeed
that XL and YL are birational whenever c = nr.

Assume now that c = nr. Remark that the two vector bundles appearing in the
map ML of Proposition 3.3 have the same rank, namely nr. Let us denote by DL

the hypersurface in G defined by the vanishing of determinant of ML:

ML : L⊗ OG → V ⊗ Q.

The degree ofDL is n. Dually, we writeDL the hypersurface inG whose equation
is the determinant of:

ML : L⊥ ⊗ OG → V ∨ ⊗ U
∨.

Proposition 4.1. If c = nr then DL = DL, and XL is birational to YL.

Proof. To see this, we write the following exact commutative diagram:

0

��

0

��

V ∨ ⊗ Q∨

��

V ∨ ⊗ Q∨

(ML)∗
��

0 // L⊥ ⊗ OG
// U∨ ⊗ V ∨ ⊗ OG

��

// L∨ ⊗ OG
//

��

0

L⊥ ⊗ OG

ML

// V ∨ ⊗ U ∨

��

// K

��

// 0

0 0

Here, K is the cokernel both of ML and of (ML)
∗. This says that:

DL = V(det(ML)) = V(det(M∨
L )) = V(det(ML)) = DL.

Now let us look at XL and YL. The sheaf K is supported on D = DL, and
is actually of the form ι∗(Kr), where Kr is a reflexive sheaf of rank 1 on D and
ι : D → G is the natural embedding. The cokernel of ML is also of the form
ι∗(K

r), with K r reflexive of rank 1 on D. By Grothendieck duality, since D has
degree n, the previous diagram says that K r ≃ K ∨

r (n). On the (open and dense)
locus of D where K r and Kr are locally free, the variety D coincides with XL and
YL. Therefore, by Proposition 3.3, these varieties are both birational to D. �

A priori, XL is not isomorphic to YL, as the projectivization of the two sheaves
Kr and K ∨

r gives in principle non-isomorphic varieties (cf. Example 4.3 below).
This does not happen if Kr is locally free of rank 1 on D, which in turn is the case
if D is smooth. Also, when the singularities of D are isolated points, then in order
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for P(Kr) to be isomorphic to P(K ∨
r ), it suffices to check that the rank of K ∨

r and
Kr is the same at those points, and this is of course true. Then we have:

Remark 4.2. Suppose that D is smooth or has isolated singularities, then XL is
isomorphic to YL.

If we assume that XL is Calabi-Yau, then m = n and c = nr so we are in a
sub-case of our description above, and birationality still holds. Thus, in dimension
3, the derived equivalences would follow also from the work of Bridgeland [14].

Example 4.3. Let us describe an example of two determinantal varieties XL and
YL which are derived equivalent, birational, but not isomorphic. Actually one can
describe infinitely many examples this way, all of dimension at least 5. In all of
them the canonical system is birational onto a hypersurface of general type in G.

Take (r,m, n) = (3, 5, 7), c = 21 and consider a general subspace L ⊂ W .
Then XL and YL are both smooth projective 5-folds. The Picard group Pic(XL)
is isomorphic to Z

2, generated by (the restriction of) HX and P , while Pic(YL) is
also isomorphic to Z2, generated by HY and Q. Note that ωXL

≃ OXL
(2P ) while

ωYL
≃ OYL

(2Q).
We claim that XL and YL are not isomorphic. Indeed, if there was an isomor-

phism f : XL → YL, we should have f∗(Q) = P because of the expression of the
canonical bundle. Since (f∗(Q), f∗(HYL

)) should form a Z-basis of Pic(XL), we
have f∗(HYL

) = HXL
+ aP , for some a ∈ Z. But a straightforward computation

shows that (HXL
+ aP )5 is never equal to H5

YL
, for any choice of a.

So the 5-folds XL and YL are not isomorphic. They are however derived equiv-
alent via HPD and both birational by projection to a determinantal hypersurface
D of degree 7 in G(5, 3). The canonical bundle of this hypersurface is OD(2). The
determinantal model of XL (respectively, of YL) is the fivefold of degree 490 (re-
spectively, 1176) cut in P13 (respectively, in P20) by the 4× 4 minors (respectively,
the 3× 3 minors) of a sufficiently general 5× 7 matrix of linear forms.

Concerning rationality of determinantal varieties, we have the following result.

Proposition 4.4. The variety XL is rational if nr > c; YL is rational if c > nr.

Proof. By Proposition 3.3, YL is the projectivization of the cokernel sheaf of the
map ML. Recall that dim (L⊥) = nm− c and that V ∨ ⊗ U ∨ has rank n(m− r).

So if c > nr, i.e. if n(m − r) > nm − c, there is a Zariski dense open subset of
G(U, r) where ML has constant rank mn − c. Hence an open piece of YL is the
projectivization of a locally free sheaf over a rational variety, so YL is rational.

The same argument works for XL. �

A side remark is that, using NL instead of ML we would rationality of YL if
c > m(n−m+ r). However, one immediately proves that m(n−m+ r) ≥ nr.

5. The Segre-determinantal duality

In this section, we give a more detailed description of the case r = 1 (we suppress
r from our notation for this section). In this case X ≃ Pn−1×Pm−1 is just a product
of two projective spaces and XL is a linear section of a Segre variety. On the other
hand, Y is the Springer desingularization of the space of degenerate matrices.

For this section and the following ones, we make use of the standard notation
OXL

(a, b) for the restriction to XL of OPn−1(a) ⊠ OPm−1(b), so that OXL
(1, 1) =

OXL
(H) and OXL

(0, 1) = OXL
(P ). Proposition 3.3 and Lemma 3.8 become:



HPD FOR DETERMINANTAL VARIETIES 17

Corollary 5.1. The variety XL can be described in two following ways:

(i) as the projectivization of the cokernel of:

L⊗ OPU (−1) → V ⊗ OPU ;

(ii) as the projectivization of the cokernel of:

L⊗ OPV (−1) → U ⊗ OPV .

Also, we have the formulas for the canonical bundle:

ωXL
= OXL

(c− n, c−m),

In particular XL is Fano if and only if c < m, and rational for c < n.

Proof. Since X0
L = ∅ the condition for XL to be Fano descends directly for the

formula for the canonical bundle. The statement on rationality is Proposition
4.4. �

The variety YL is itself a linear section of a Segre variety, by Proposition 3.3, as
the folloing Lemma shows.

Lemma 5.2. The variety YL is isomorphic to the complete intersection of n hy-
perplanes in PU × PL determined by L ⊂ W . So the canonical bundle ωYL

equals
OYL

(n−m,n− c). Moreover, for generic L ⊂W , the determinantal variety ZL is
smooth if and only if c < 2n− 2m+ 5.

Proof. The first statement follows from the very last item of Proposition 3.3. In-
deed, since r = 1, YL the projectivization of the sheaf E , restricted to PL. Therefore,
just as in the proof of Proposition 3.3, YL is the vanishing locus of the global section
of OPU×PL(1, 1) determined by the subspace L⊥ ⊂W∨, i.e. by L ⊂W .

Note that OYL
(0, 1) ≃ OYL

(H) and OYL
(1, 0) = OYL

(Q). The canonical bundle
formula follows by adjunction and agrees with Corollary 3.9.

The codimension in PL of the singular locus of ZL is 2n− 2m+ 4 for a general
choice of L ⊂W . So ZL is smooth if and only if c < 2n− 2m+ 5, which gives the
last statement. �

Remark 5.3. Here, since U ∨ = TPU (−1). By Proposition 3.3, the variety YL can
also be described as the projectivization of the cokernel sheaf of

(5.1) L⊥ ⊗ OPU → V ∨ ⊗ TPU(−1),

The map appearing in (5.1) in the remark above, corresponds once again to the
choice of L ⊂W . Dually, for YL, Proposition 4.4 gives:

Lemma 5.4. The variety YL is rational if c > n.

Proof. This is just Proposition 4.4. �

Thanks to the constructions of section 4, we obtain the following corollary.

Corollary 5.5. If c = n, then XL and YL are birational (m − 2)-folds. If m = n
they are Calabi-Yau and have nef canonical divisor otherwise.

We resume the results of this section in Table 2.
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c < m m ≤ c < n c = n n < c

HPD Functor Db(YL) → Db(XL) equivalence Db(XL) → Db(YL)

YL Fano visitor CY if n = m
Rational
Fano if n = m

XL Rational Fano Rational CY if n = m Fano visitor if n = m

Table 2. The Segre-determinantal duality.

6. Fano and rational varieties

6.1. Representability into Fano varieties. In this section, we consider question
1.1. We start by stating a straightforward consequence of Corollary 3.7 and Lemma
3.8 (see also Table 1), which provides a large class of examples of weakly Fano-visitor
(see Def. 2.10) varieties, up to categorical resolutions of singularities.

Proposition 6.1. Suppose that n = m. If c < rn, then Y rL and (ZLr ,R
′
PL) are

weakly Fano visitor. If c > nr, then Xr
L and (ZrL,R

′
PL
) are weakly Fano visitor.

If r = 1 we have an interpretation of Proposition 6.1 for determinantal varieties.

Corollary 6.2. Let Z ⊂ Pk be a determinantal variety associated with a generic
m× n matrix. If k < m− 1 then the categorical resolution of singularities of Z is
Fano visitor.

Proof. The determinantal variety Z is ZLm−1 = Z m−1
m,n ∩PL for a subspace L ⊂ U⊗V

of codimension k + 1. Then we use results from Table 2 and conclude. �

Corollary 6.2 gives a positive answer to Question 1.1 for almost every curve.

Example 6.3 (Plane curves). Let C ⊂ P2 be a plane curve of degree d ≥ 4. Then,
it is well known (see [4, §3]) that C can be written as the determinant of a d × d
matrix of linear forms. In other words, we put m = n = d, k = 2 and the inequality
of Corollary 6.2 is respected. Hence any plane curve of degree at least four is a
Fano-visitor, up to resolution of singularities.

On the other hand, one can check that the blow-up of P3 along a plane cubic is
Fano (see, e.g., [7, Proposition 3.1, (i)]). Hence any plane curve of positive genus
is a Fano-visitor.

Example 6.4 (More curves of general type). Determinantal varieties with n 6= m
provide a wealth of examples of (even non plane) curves of general type that are
Fano-visitor.

Let us make the case where dim (Y 1
L ) = dim (ZL) = 1 explicit. We have c =

n −m + 3. From Table 2 it is straightforward to see that Y 1
L is an elliptic curve

(the Calabi-Yau case) if m = n = c = 3; this yields indeed a plane cubic. On the
other hand, we see that if m = 2 then the curve is rational for any value of n since
c = n+ 1, and if m > 3 it is forced to be a curve of general type in Pc−1, which is
Fano visitor if c < m.

The dual XL is a smooth variety of dimension 2m − 5. If m = 3, we have
that ZL is an elliptic curve. If m > 3, we have dimZL ≥ 3. This gives quite a
lot of examples of space curves of general type that are Fano visitors. Take for
example c = 4, n = 6 and m = 5. This gives a curve of genus 4 in P3, complete
intersection of two degree 5 determinantal hypersurfaces, whose derived category is
fully faithfully embedded in the derived category of a rational Fano 5-fold in P25.
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6.2. Rationality and categorical representability. In this subsection, we con-
sider Question 1.2. The second consequence of Corollary 3.7 is a large class of
examples of rational varieties which are categorically representable in codimension
at least 2. For simplicity, let us assume that r = 1, so that we already discussed
in section 5 the rationality of the sections. We state the following Proposition in
terms of Segre and determinantal varieties.

Corollary 6.5. The categorical resolution of a rational determinantal variety is
categorically representable in codimension at least 2. A rational linear section of the
Segre variety Pn−1 × Pm−1 ⊂ Pnm−1 is categorically representable in codimension
at least 2.

Proof. First we observe that the Segre linear section XL is rational for c < n and
the determinantal linear section YL for c > n by Table 2. Then we recall from
Corollary 3.7 that, assuming r = 1, it is exactly in these ranges that we have
the required functors and semiorthogonal decompositions. A computation of the
dimensions of the linear sections, following the formulas in section 3.1.2, proves the
claim. �

6.3. Categorical resolution of the residual category of a determinantal

Fano hypersurface. The Segre-determinantal HPD involves categorical resolu-
tions for determinantal varieties, which is crepant if n = m. In this subsection
we consider the cases where such resolution gives a crepant categorical resolution
for nontrivial components of a semiorthogonal decomposition. For simplicity, we
will consider only determinantal hypersurfaces, hence we need to assume r = 1 and
m = n. We will drop all the useless indexes.

Let F be a smooth Fano variety such that Pic(F ) = Z[OF (1)]. The index of
F is the integer i such that ωF = OF (−i). Kuznetsov observed that this kind of
varieties have a Lefschetz-type semiorthogonal decomposition.

Lemma 6.6. [29, Lemma 3.4] Let F be a smooth Fano variety of index i, then the
collection OF (−i+ 1), . . . ,OF in Db(F ) is exceptional.

Corollary 6.7. [29, Corollary 3.5] For any smooth Fano variety F of Picard rank
1 and index i we have the following semiorthogonal decomposition

(6.1) Db(F ) = 〈OF (−i+ 1), . . . ,OF ,TF 〉,

where TF = {E ∈ Db(V )|H•(V,E(−k)) = 0 for all 0 ≤ k ≤ i− 1}.

The main technical tools used in the proof of Lemma 6.6 are Kodaira vanishing
Theorem and Serre duality. Before we proceed, we first need to broaden slightly the
class of varieties for which the semiorthogonal decomposition (6.1) holds. In fact, we
recall that Kodaira vanishing holds also for varieties with rational singularities (for
example, see [32, I, Example 4.3.13]), and the well-known fact that the canonical
divisor of a Gorenstein variety is Cartier.

Proposition 6.8. Let F be a projective Gorenstein variety with rational singular-
ities. Suppose that Pic(F ) = Z, OF (1) is its (ample) generator and KF = OF (−i),
with i > 0. Then there is a semiorthogonal decomposition

Db(F ) = 〈OF (−i+ 1), . . . ,OF ,TF 〉.

This holds in particular if F ⊂ Pk is an hypersurface of degree d < k with rational
singularities (in which case, i = k − d).
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Proof. It is straightforward to check that the line bundle OF (i) is exceptional for
any i. To show the semiorthogonality, we use a vanishing theorem for varieties with
rational singularities (see [32, I, Example 4.3.13]), which states that

Extj(OF (s),OF (t)) ≃ Extj(OF ,OF (t− s)) ≃ Hj(F,OF (t− s))

vanishes for j < dim(F ), and s > t. Thanks to Serre duality

Extdim(F )(OF (s),OF (t)) ≃ Hdim(F )(F,OF (t− s)) ≃ H0(F,OF (s+ i− t))

and the latter group vanishes if s+ i− t < 0, �

Homological Projective Duality allows us to describe a resolution of singularities
of TF in the case where F is determinantal. This means that we consider ZL ⊂ PL

for some integers m = n and for some linear subspace L ⊂ U⊗V of Fano type (that
is, of degree d < k + 1). The Springer resolution of ZL is then YL and the dual
section of the Segre variety is XL. Let us fix L, and drop it from the notations from
now on. We want to describe a categorical resolution of the category TZ described
in Proposition 6.8.

We constructed a crepant categorical resolution of singularities Db(Z,R′) of
Z. The category Db(Z,R′) is equivalent to Db(Y ), for Y the corresponding fibre
product of the linear section of the Springer resolution (see Theorem 3.6). In
particular, Y is a (the fibre product over a) linear section of a projective bundle
over Pd−1, since d = n = m is the degree of Z. Let us denote by X the dual
linear section of the Segre variety (notice in fact that X is smooth). Numerical
computations provide a semiorthogonal decomposition

Db(Z,R′) ≃ Db(Y ) = 〈k − d+ 1 copies of Db(Pd−1),Db(X)〉.

Hence Db(Z,R′) is generated by by d(k−d+1) exceptional objects and Db(X).
More precisely, the j-th occurrence of Db(Pd−1) can be generated by the excep-

tional sequence (OY (j, 1), . . . ,OY (j, d)), where we use the same notation OY (a, b)
as in Section 5, i.e. OYL

(0, 1) ≃ OYL
(H) and OYL

(1, 0) = OYL
(Q).

This allows one to calculate a categorical resolution of singularities of TZ which
is decomposed into Db(X) and exceptional objects.

Proposition 6.9. Let Z be a Fano determinantal hypersurface of Pk, and X the
dual section of the Segre variety. There is a strongly crepant categorical resolution

T̃Z of TZ , admitting a semiorthogonal decomposition by Db(X) and (d−1)(k−d+1)
exceptional objects.

Proof. Consider the resolution p : Y → Z, and denote by D its exceptional divi-
sor. We have proved that Db(Y ) ≃ Db(Z,R′) is a categorical resolution of sin-
gularities of Db(Z). In particular (see [30]), this comes equipped with a functor
p∨ : Perf(Z) → Db(X) admitting a right adjoint. Indeed, according to [30], to
get such a pair for a variety M with rational singularities, one needs to consider a
desingularization q : N → M with exceptional divisor E, such that Db(E) admits
a Lefschetz decomposition with respect to the conormal bundle. In our case, we
can just consider the Lefschetz decomposition with one component B0 = Db(D).
Now we will check that all the hypotheses of [30, Theorem 1] for the existence of
such a categorical resolution are satisfied by the category generated by Db(X) and
the exceptional objects. So, in order to get a categorical resolution of singulari-
ties for TZ , let us consider the functor p∗ introduced above and its action on the
semiorthogonal decomposition from Proposition 6.8.



HPD FOR DETERMINANTAL VARIETIES 21

Let PL ≃ Pk. There is a commutative diagram:

Y

p

��

f

  
❆

❆

❆

❆

❆

❆

❆

❆

Z
g

// Pk,

where the map f is given by the restriction linear system |OY (1, 1)|, and the
map g is defined by |OZ(1)|. It follows that p∗OZ(k) = OY (k, k), so that the
exceptional sequence OZ(−k + d), . . . ,OZ pulls back to the exceptional sequence
OY (−k + d,−k + d), . . . ,OY .

Now recall that Y 1
d,d is a projective bundle s : Y 1

d,d ≃ P(V ∨ ⊗TP(U)(−1)) → PU .

The Lefschetz decomposition of Db(Y 1
d,d) giving the HP-duality of Theorem 3.5 is:

Db(Y 1
d,d) = 〈A−j ⊗ OP(V⊗Q)(−j), . . . ,A0〉,

with −j = 1 − d2 + d, where A0 = . . . = Aj = s∗Db(PU). In particular, we
can choose, for each occurrence of s∗Db(PU), an appropriate exceptional collection
generating Db(PU) in order to get, after taking the linear sections (recall that
Y := Y 1

L , and X := X1
L):

Db(Y ) = 〈OY (−k + d,−k + d), . . . ,OY (−k + d,−k + 2d− 1),
OY (−k + d+ 1,−k + d+ 1), . . . ,OY (−k + d+ 1,−k + 2d),
. . .
OY (0, 0), . . . ,OY (0, d− 1),Db(X)〉.

Now we can mutate all the exceptional objects which are not of the form
OY (−t,−t), for some t, to the right until we get

Db(Y ) = 〈OY (−k + d,−k + d), . . . ,OY (−1,−1),OY ,
E1, . . . , E(d−1)(k−d+1),D

b(X)〉,

where the Ei are the exceptional objects resulting from the mutations. Hence, the
first block is the pull-back from Z of the exceptional sequence (OZ(−k+d), . . . ,OZ),
then by definition we get that the second block is the categorical resolution of
singularities for TZ . �

Remark 6.10. A particular and interesting case is given by determinantal cubics
in P

4 and P
5. In both cases, the dual linear section X is empty. So, the numeric

values give explicitly:

• If Z is a determinantal cubic threefold, then the category TZ admits a
crepant categorical resolution of singularities generated by 4 exceptional
objects.

• If Z is a determinantal cubic fourfold, then the category TZ admits a
crepant categorical resolution of singularities generated by 6 exceptional
objects.

In the case of cubic threefolds and fourfolds with only one node, categorical res-
olution of singularities of TZ are described (see resp. [5] and [23]). One should
expect that these geometric descriptions carry over to the more degenerate case of
determinantal cubics - which are all singular. We haven’t developed the (very long)
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calculations, but nevertheless we outline expectations about the geometrical nature
of these categorical resolutions.

In the 3-dimensional case, the 4 exceptional objects should correspond to a dis-
joint union of two rational curves, arising as the geometrical resolution of singular-
ities of the discriminant locus of a projection Z → P

3 from one of the six singular
points. This discriminant locus is composed by two twisted cubics intersecting in
five points, and turns out to be a degeneration of the (3, 2) complete intersection
curve appearing in the one-node case (see [5, Proposition 4.6]).

In the 4-dimensional case, the 6 exceptional objects should correspond to a
disjoint union of two Veronese-embedded planes (isomorphically projected to P

4),
arising as the geometrical resolution of singularities of the discriminant locus of
a projection Z → P4 from one of the singular points. This discriminant locus is
composed by two cubic scrolls intersecting along a quintic elliptic curve, and turns
out to be a degeneration of the degree 6 K3 surface appearing in the one-node case
(see [23, §5]).
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