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A Second-Order PHD Filter With Mean and Variance
in Target Number
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Abstract—The Probability Hypothesis Density (PHD) and Car-
dinalized PHD (CPHD) filters are popular solutions to the multi-
target tracking problem due to their low complexity and ability
to estimate the number and states of targets in cluttered envi-
ronments. The PHD filter propagates the first-order moment (i.e.
mean) of the number of targets while the CPHD propagates the car-
dinality distribution in the number of targets, albeit for a greater
computational cost. Introducing the Panjer point process, this pa-
per proposes a Second-Order PHD (SO-PHD) filter, propagating
the second-order moment (i.e., variance) of the number of targets
alongside its mean. The resulting algorithm is more versatile in
the modeling choices than the PHD filter, and its computational
cost is significantly lower compared to the CPHD filter. This paper
compares the three filters in statistical simulations which demon-
strate that the proposed filter reacts more quickly to changes in
the number of targets, i.e., target births and target deaths, than
the CPHD filter. In addition, a new statistic for multiobject filters
is introduced in order to study the correlation between the esti-
mated number of targets in different regions of the state space,
and propose a quantitative analysis of the spooky effect for the
three filters.

Index Terms—Bayes methods, filtering, analysis of variance, cor-
relation, PHD filter, Panjer distribution, second-order moment.

I. INTRODUCTION

IN THE context of multi-target detection and tracking prob-
lems, methods based on the Random Finite Set (RFS) frame-

work have recently attracted a lot of attention due to the devel-
opment of low-complexity algorithms within this methodology
[1]. The best-known algorithm is perhaps the probability Hy-
pothesis Density (PHD) filter that jointly estimates the number
of targets and their states by propagating the first-order moment
of a RFS [2]; a Gaussian Mixture (GM) and a Sequential Monte
Carlo (SMC) implementation have been presented in [3] and [4].
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Erdinc and Willett [5] suggested that only propagating the
first-order moment did not provide sufficient information for
applications where a high confidence in the target number was
needed. Consequently, Mahler derived the Cardinalized PHD
(CPHD) filter which propagates the cardinality distribution of
the target point process alongside its first-order moment [6]. It
thus provides higher-order information on the number of tar-
gets, but to the expense of a higher computational cost. Around
the same time, he also proposed a filter restricted to the first
two moments using a binomial approximation [7]. However,
due to the binomial approximation it was suggested that restric-
tions were required on the relative number of false alarms and
targets. In 2007, Vo et al. showed that the CPHD filter can be
overconfident in some cases [8], and in 2009, Fränken et al. iden-
tified a counter-intuitive property of the CPHD filter that occurs
with the weights of the targets when they are miss-detected
which they called the spooky effect [9]. An alternative approach
for extending the PHD filter to a second-order filter was pro-
posed by Singh et al. using a Gauss-Poisson prior [10], though
this was designed specifically for tracking correlated pairs of
targets.

Other developments in the Finite Set Statistics (FISST) frame-
work have focussed on more advanced filtering solutions with
higher complexity. The Multi-Bernoulli (MeMBer) filter [1] is
based on a fully Bayesian approach where the system assumes
that each target is modelled by a state estimate and a probability
of existence. The bias in the number of targets in the original
MeMBer filter was addressed in [11], and further developments
around Bernoulli RFSs were introduced in [12], [13]. Various
methods propagating information on individual targets within
the FISST framework have been developed since [14]–[16].

This paper focuses on a filtering solution with low complexity.
We introduce a second-order filter in which the predicted target
process is assumed Panjer instead of Poisson. The Panjer distri-
bution [17] is specified by two parameters and encompasses the
binomial, Poisson and negative binomial distributions; unlike
a Poisson distribution, it can describe a population of targets
whose estimated size has a higher or lower variance than its
mean. The proposed Second-Order PHD (SO-PHD) filter thus
complements the original PHD filter with the variance in the esti-
mated number of targets; it also propagates less information than
the CPHD filter but has a lower computational cost. The Panjer
distribution was studied for the analysis of the CPHD update in
[9], though it was not used to develop a new filter. The proposed
filter can also be seen as a generalisation of the PHD filter with
a negative binomial-distributed false alarms [18], which was
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designed for scenarios with high variability in background
noise.1 We also introduce the correlation for point processes
in disjoint regions of the state space, in order to analyse quanti-
tatively the spooky effect [9] for the considered filters.

Section II introduces some background material on point pro-
cesses. Section III presents four relevant point processes, then
used in Section IV to construct the proposed SO-PHD filter.
The regional correlation for the PHD, SO-PHD, and CPHD
filters are introduced in Section V. A comparison of the GM
implementations of the three filters is given in Section VI, and
Section VII concludes. Pseudo-code for the proposed algorithms
and detailed proofs are given in appendices.

II. BACKGROUND

Many recent works in multi-object filtering exploit Mahler’s
FISST framework [1], in which multi-target state configura-
tions are described by RFSs. The FISST framework allows for
the production of the densities of various statistical quantities
describing a RFS (multi-object density, Probability Hypothesis
Density, etc.) through the set derivative operator.

This paper considers higher-order statistical quantities whose
expression arises naturally from probability measures rather
than densities, such as the regional covariance, or does not ad-
mit a density altogether, such as the regional variance or corre-
lation (see Section II-C). Hence we shall favour the measure-
theoretical formulation originating from the point process the-
ory, for which a specific methodology has been developed to
construct higher-order statistical moment measures or densities
through the chain derivative operator [20]. Let us furthermore
assume that the theorem of Radon and Nikodým [21] holds for
all measures studied in this article, i.e. that they admit densities.

In the section, we provide the necessary background material
on point processes, and highlight the connections with the FISST
framework when appropriate. For the rest of the paper, (Ω,F , P )
denotes a probability space with sample space Ω, σ-algebra F ,
and probability measure P . Throughout the paper, all random
variables are defined on (Ω,F , P ) and we denote by E the
expectation with respect to (w.r.t.) P .

A. Point Processes

We denote by X ⊆ Rdx the dx -dimensional state space de-
scribing the state of an individual object (position, velocity, etc.).
A point process Φ onX is a random variable on the process space
X =

⋃
n≥0 X n , i.e., the space of finite sequences of points in

X . A realisation of Φ is a sequence ϕ = (x1 , . . . , xn ) ∈ X n ,
representing a population of n objects with states xi ∈ X . Point
processes can be described using their probability distribution
PΦ on the measurable space (X,B(X)), where B(X) denotes
the Borel σ-algebra of the process space X [22].

The projection measure P
(n)
Φ of the probability distribution

PΦ on X n , n ≥ 0, describes the realisations of Φ with n ele-
ments; the projection measures of a point process are always
defined as symmetrical functions, so that the permutations of

1A follow-on work based on the results in the current paper has been devel-
oped for joint parameter estimation and multi-target tracking [19].

a realisation ϕ are equally probable. Furthermore, a point pro-
cess is called simple if ϕ does not contain repetitions, i.e. its
elements are pairwise distinct almost surely. For the rest of the
paper, all point processes are assumed simple. In that case, it is
assumed that the probability distribution PΦ of a point process
admits a density pΦ w.r.t. some reference measure λ. The den-
sities of the projection measures P

(n)
Φ are denoted by p

(n)
Φ , and

both quantities will be exploited throughout the paper.
In the literature originating from Mahler’s FISST framework

[2], [3], an alternative construction of simple point processes is
a RFS, a random object whose realizations are sets of points
{x1 , . . . , xn}, in which the elements are by construction un-
ordered.

B. Multi-Target Bayesian Filtering

In the context of multi-target tracking, we make use of a tar-
get point process Φk to describe the information about the target
population at time k. The scene is observed by a sensor system,
providing sets of measurements at discrete times (indexed by
k ∈ N in the following). The dz -dimensional observation space
describing the individual measurements produced by the sen-
sor (range, azimuth, etc.) is denoted by Z ⊆ Rdz . The set of
measurements collected at time k is denoted by Zk .

Point processes can be cast into a Bayesian framework in
order to propagate Φk over time [1]. Bayesian filtering consists
of a prediction or time update step which is concerned with the
motion model, birth and death of targets, and a data update step
which models the observation process, missed detections and
false alarms and exploits the current measurement set Zk .

The full multi-target Bayesian recursion propagates the law
Pk of the target process Φk . The time prediction and data update
equations at time k are given by [1]

Pk |k−1(dξ) =
∫

Tk |k−1(dξ|ϕ)Pk−1(dϕ), (1)

Pk (dξ|Zk ) =
Lk (Zk |ξ)Pk |k−1(dξ)

∫
Lk (Zk |ϕ)Pk |k−1(dϕ)

, (2)

where Tk |k−1 is the multi-target Markov transition kernel from
time k − 1 to time k, and Lk is the multi-measurement/multi-
target likelihood at time step k.2 Note that the formulation of the
multi-target Bayesian recursion with measure-theoretical inte-
grals (1), (2) is drawn from its original RFS-based formulation
in [1] with set integrals.

C. Statistical Moments

Similar to real-valued random variables, statistical moments
can be defined for a point process Φ in order to provide an alter-
native description to its probability distribution PΦ (or, equiva-
lently, to its projection measures P

(n)
Φ for any n ∈ N). Statistical

moments will play an important role in this paper, for the con-
struction of the SO-PHD filter in Section IV as well as for the

2When μ, μ′ are two measures on some space X , we use the notation μ(dx) =
μ′(dx), where x ∈ X , to indicate that

∫
f (x)μ(dx) =

∫
f (x)μ′(dx) for any

bounded measurable function f on X .
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study of the correlation in the estimated target number in distinct
regions of the state space in Section V.

The n-th order moment measure μ
(n)
Φ of a point process Φ

is the measure on X n such that, for any bounded measurable
function fn on X n , it holds that [22]

∫

fn (x1:n )μ(n)
Φ (d(x1:n )) = E

⎡

⎣
∑

x1 ,...,xn ∈Φ

fn (x1:n )

⎤

⎦ (3)

where we use the shorter notation x1:n to denote the sequence
(x1 , . . . , xn ).3 In addition, the n-th order factorial moment mea-

sure ν
(n)
Φ of a point process Φ is the measure on X n such that,

for any bounded measurable function fn on X n , it holds that
[22]

∫

fn (x1:n )ν(n)
Φ (d(x1:n )) = E

⎡

⎣
∑ �=

x1 ,...,xn ∈Φ

fn (x1:n )

⎤

⎦ (4)

where Σ�= indicates that the selected points x1 , . . . , xn are all
pairwise distinct. The last result is known as Campbell’s theorem
[22].

Setting fn (x1:n ) =
∏n

i=1 1Bi
(xi) in Eqs (3), (4), yields

μ
(n)
Φ (B1×· · ·×Bn) = E

⎡

⎣
∑

x1 ,...,xn ∈Φ

1B1 (x1). . .1Bn
(xn)

⎤

⎦, (5)

ν
(n)
Φ (B1×· · ·×Bn) = E

⎡

⎣
∑ �=

x1 ,...,xn ∈Φ

1B1 (x1). . .1Bn
(xn)

⎤

⎦, (6)

for any regions Bi ∈ B(X ), 1 ≤ i ≤ n.4 Eqs (5) and (6)
provide some insight on the moment measures. The scalar
μ

(n)
Φ (B1× · · · ×Bn ) estimates the joint localisation of sequence

points within the regions Bi , while ν
(n)
Φ (B1× · · · ×Bn ) further

imposes the sequence points to be pairwise distinct.
Note that the first-order moment measure μ

(1)
Φ coincides with

the first-order factorial moment measure ν
(1)
Φ ; it is known as

the intensity measure of the point process and simply denoted
by μΦ . Its associated density, also denoted by μΦ , is called the
intensity of the point process Φ, more usually called Probability
Hypothesis Density in the context of RFSs [2]. In this paper we
shall also exploit the second-order moment measures; similarly
to real-valued random variables we can define the covariance,
variance, and correlation of a point process Φ as [22], [23]

covΦ(B,B′) := μ
(2)
Φ (B × B′) − μΦ(B)μΦ(B′), (7)

varΦ(B) := μ
(2)
Φ (B × B) − [μΦ(B)]2 , (8)

corrΦ(B,B′) :=
covΦ(B,B′)

√
varΦ(B)

√
varΦ(B′)

, (9)

3When ϕ ∈ Xn , n ≥ 0, is a sequence of elements on some space X , the
abuse of notation “x ∈ ϕ” is used to denote that the element x ∈ X appears in
the sequence ϕ.

4The notation 1B denotes the indicator function, i.e., 1B (x) = 1 if x ∈ B ,
and zero otherwise.

for any regions B,B′ ∈ B(X ). The scalar μΦ(B) yields the ex-
pected (or mean) number of objects within B, while the scalar
varΦ(B) quantifies the spread of the estimated number of ob-
jects within B around its mean value μΦ(B) [24]. Finally, the
scalar corrΦ(B,B′) quantifies the correlation between the esti-
mated number of targets within B and B′; it will be exploited in
this paper to assess the so-called “spooky effect” of multi-object
filters, coined in [9] for the CPHD filter.

Note that in the general case the variance varΦ is a non-
additive function, and does not admit a density. Note also that
the second-order moment measure can be decomposed into the
sum

μ
(2)
Φ (B × B′) = μΦ(B ∩ B′) + ν

(2)
Φ (B × B′), (10)

for any regions B,B′ ∈ B(X ).

D. Point Processes and Functionals

Similar to the Fourier transform for signals or the probability
generating function for discrete real-valued random variables,
convenient tools exist to handle operations on point processes.
The Laplace functional LΦ and the Probability Generating
Functional (PGFL) GΦ of a point process Φ are defined by

LΦ(f) :=
∑

n≥0

∫

exp

(

−
n∑

i=1

f(xi)

)

P
(n)
Φ (dx1:n ), (11)

GΦ(h) :=
∑

n≥0

∫ [
n∏

i=1

h(xi)

]

P
(n)
Φ (dx1:n ), (12)

respectively for two test functions f : X → R+ and h : X →
[0, 1]. Note that from (11) and (12) it holds that

GΦ(h) = LΦ(−ln h). (13)

Depending on the nature of the point process Φ, the expression
of the functionals may reduce to simpler expressions that do not
involve infinite sums (see examples in Section III).

E. Point Processes and Differentiation

In this paper we shall exploit the chain differential [20], a
convenient operator that allows for the evaluation of both the
statistical moments of a point process Φ and their corresponding
densities through the differentiation of its Laplace functionalLΦ
or its PGFL GΦ [25]–[27].

Given a functional G and two functions h, η : X → R+ , the
(chain) differential of G w.r.t. h in the direction of η is defined
as [20]

δG(h; η) := lim
n→∞

G(h + εnηn ) − G(h)
εn

, (14)

when the limit exists and is identical for any sequence of real
numbers (εn )n∈N converging to 0 and any sequence of functions
(ηn : X → R+)n∈N converging pointwise to η.

The statistical quantities described in Section II-A and
Section II-C can then be extracted through the following
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differentiations:

P
(n)
Φ (B1× · · · ×Bn ) =

1
n!

δnGΦ(h; 1B1 , . . . , 1Bn
)|h=0 , (15)

μ
(n)
Φ (B1× · · · ×Bn ) = (−1)nδnLΦ(f ; 1B1 , . . . , 1Bn

)|f =0 ,
(16)

ν
(n)
Φ (B1× · · · ×Bn ) = δnGΦ(h; 1B1 , . . . , 1Bn

)|h=1 , (17)

for any regions Bi ∈ B(X ), 1 ≤ i ≤ n [22]. The chain differ-
ential has convenient properties and leads to rules similar to the
classical derivative: namely, a product rule [20]

δ(F · G)(h; η) = δF (h; η)G(h) + F (h)δG(h; η), (18)

and a chain rule [20]

δ(F ◦ G)(h; η) = δF (G(h); δG(h; η)). (19)

They can be generalised to the n-fold product rule [27]

δn (F · G)(h; η1 , . . . , ηn )

=
∑

ω⊆{1,...,n}
δ|ω |F

(
h; (ηi)i∈ω

)
δ|ω

c |G
(
h; (ηj )j∈ω c

)
, (20)

where ωc = {1, . . . , n} \ ω is the complement of ω, and the
n-fold chain rule or Faà di Bruno’s formula for chain differen-
tials [26], [27]

δn (F ◦ G)(h; η1 , . . . , ηn )

=
∑

π∈Πn

δ|π |F
(
G(h);

(
δ|ω |G(h; (ηi)i∈ω )

)

ω∈π

)
, (21)

where Πn is the set of partitions of the index set {1, . . . , n}.
The equivalent of the n-fold product rule (20) in the FISST
framework is called the generalised product rule for set deriva-
tives [1, p. 389]. Faà di Bruno’s formula (21) has recently been
applied for spatial cluster modelling [28], Volterra series [29],
multi-target spawning [30], and for negative binomial clutter
modelling [18].

When the chain differential (14) is linear and continuous w.r.t.
its argument, it is also called the chain derivative operator. For
the rest of the paper, chain differentials will always assumed
to be chain derivatives and called as such. Also, when a func-
tional G is defined as an integral with respect to a measure μ
on X which is absolutely continuous with respect to the refer-
ence measure λ, the term δG(f, δx) will be understood as the
Radon-Nikodým derivative of the measure μ′ : B �→ δG(f, 1B )
evaluated at point x, i.e. δG(f, δx) := dμ ′

dλ (x), for any appropri-
ate function f on X and any point x ∈ X . In the context of this
paper, this property holds for the PGFL GΦ of any point process
Φ since its probability distribution PΦ admits a density w.r.t. the
reference measure λ. In particular,

p
(n)
Φ (x1 , . . . , xn ) =

1
n!

δnGΦ(h; δx1 , . . . , δxn
)|h=0 , (22)

for any points xi ∈ X , 1 ≤ i ≤ n. This result is similar to the
extraction rule (52) in [2], allowing for the evaluation of the
multitarget density of a RFS in the set {x1 , . . . , xn}.

III. FOUR RELEVANT EXAMPLES OF POINT PROCESSES

This section presents three well-established point processes in
the context of multi-object estimation, namely, the independent
and identically distributed (i.i.d.), Bernoulli, and Poisson point
processes. It then introduces the Panjer point process and its
fundamental properties.

A. i.i.d. Cluster Process

An i.i.d. cluster process with cardinality distribution ρ on N
and spatial distribution s onX describes a population whose size
is described by ρ, and whose objects’ states are i.i.d. according
to s. Its PGFL is given by

Gi.i.d.(h) =
∑

n≥0

ρ(n)
[∫

h(x)s(dx)
]n

. (23)

In the construction of the CPHD filter, the predicted target pro-
cess Φk |k−1 is assumed i.i.d. cluster [6].

B. Bernoulli Process

A Bernoulli point process with parameter 0 ≤ p ≤ 1 and spa-
tial distribution s is an i.i.d. cluster process with spatial distribu-
tion s, whose size is 1 with probability p and 0 with probability
q = (1 − p). Its PGFL is given by

GBernoulli(h) = q + p

∫

h(x)s(dx). (24)

In the context of target tracking, Bernoulli processes are com-
monly used to describe binary events such as the detection or
survival of individual targets.

C. Poisson Process

A Poisson process with parameter λ and spatial distribution s
is an i.i.d. cluster process with spatial distribution s, whose size
is Poisson distributed with rate λ. Its PGFL is given by

GPoisson(h) = exp
(∫

[h(x) − 1]μ(dx)
)

, (25)

where the intensity measure μ of the process is such that
μ(dx) = λs(dx). Due to its simple form and its prevalence
in many natural phenomena, the Poisson point process is a
common and well-studied modelling choice. It can be shown
that the intensity (5) and the variance (8) of a Poisson pro-
cess are equal when evaluated in any region B ∈ B(X ), i.e.,
μΦ(B) = varΦ(B). In other words, the random variable de-
scribing the number of objects within B has equal mean and
variance. This property holds in particular for B = X . In the
construction of the PHD filter, the predicted target process
Φk |k−1 is assumed Poisson [2].

D. Panjer Process

A Panjer point process with parameters α and β and spatial
distribution s is an i.i.d. cluster process with spatial distribution
s, whose size is Panjer distributed with parameters α and β [17],
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i.e., whose cardinality distribution is given by

ρ(n) :=
(−α

n

)(

1 +
1
β

)−α( −1
β + 1

)n

, (26)

for any n ∈ N, where either α, β ∈ R>0 or α ∈ Z<0 and
β ∈ R<0 .5 The particular nature of the Panjer process is de-
termined by the values α and β:

� For finite and positive α and β, (26) describes a negative
binomial distribution.

� For finite and negative α and β we obtain a binomial
distribution.6

� The limit case α, β → ∞with constant ratio λ := α
β yields

a Poisson process with parameter λ [18], [31].
The PGFL of a negative binomial process is given in [32], and
it can be extended to the Panjer point process as follows:

Proposition III.1: The PGFL of a Panjer process with pa-
rameters α, β is given by

GPanjer(h) =
(

1 +
1
β

∫

[1 − h(x)]s(dx)
)−α

. (27)

The proof is given in appendix. The parameters of a Panjer
point process are linked to the first- and second-order moment
of its cardinality distribution as follows:

Proposition III.2: The parameters αΦ , βΦ of a Panjer pro-
cess Φ are such that

αΦ =
μΦ(X )2

varΦ(X ) − μΦ(X )
, (28)

βΦ =
μΦ(X )

varΦ(X ) − μΦ(X )
. (29)

The proof is given in appendix. It can be seen from Eqs. (28),
(29) that binomial and negative binomial point processes have
a size with larger and smaller variance than mean, respectively.
In particular, a negative binomial point process can model a
population whose size is highly uncertain, such as the clutter
process in the PHD filter with negative binomial clutter [18].

IV. THE SO-PHD FILTER WITH VARIANCE IN

TARGET NUMBER

The intensity measure of the target process μΦ (or its den-
sity) plays an important role in the construction of multi-object
filters; it is propagated by both the PHD [2] and CPHD filters
[6], and the quantity μΦ(X ) yiels the expected number of tar-
gets in the scene. The CPHD also propagates the cardinality
distribution of the target process ρΦ , describing the number of
targets in the scene. As an intermediate solution, the SO-PHD
filter propagates the variance in the number of targets varΦ(X ).
In order to do so, the Poisson or i.i.d. cluster assumption on the
predicted target process and clutter process is replaced by a Pan-
jer assumption. The data flow of the SO-PHD filter is depicted
in Fig. 1.

5Note that negative, non-integer values of α yield complex values, and are
thus discarded.

6In [17], the binomial and negative binomial distributions are given in differ-
ent forms but are equivalent to (26).

Fig. 1. Data flow of the SO-PHD filter at time k. In addition to the inten-
sity function μ it propagates the scalar var(X ), describing the variance in the
estimated number of targets in the whole state space.

A. Time Prediction Step (Time k)

In the time prediction step, the posterior target process Φk−1 is
predicted to Φk |k−1 based on prior knowledge on the dynamical
behaviour of the targets. The assumptions of the time prediction
step can be stated as follows:

Assumptions IV.1:
a) The targets evolve independently from each other;
b) A target with state x ∈ X at time k − 1 survived to the

current time k with probability ps,k (x); if it did so, its
state evolved according to a Markov transition kernel
tk |k−1(·|x);

c) New targets entered the scene between time k − 1 and k,
independently of the existing targets and described by a
newborn point process Φb,k with PGFL Gb,k .

Assumptions IV.2:
a) The probability of survival is uniform over the state space,

i.e., ps,k (x) := ps,k for any x ∈ X .
Note that Assumptions IV.1 are those of the original PHD

filter; in particular, the SO-PHD filter does not require a specific
form for the posterior process Φk−1 or the birth process Φb,k .

Theorem IV.3 (Intensity prediction [2]): Under Assump-
tions IV.1, the intensity measure μk |k−1 of the predicted target
process Φk |k−1 is given by

μk |k−1(B) = μb,k (B) + μs,k (B), (30)

in any B ∈ B(X ), where μs,k is the intensity measure of the
process describing the surviving targets

μs,k (B) :=
∫

ps,k (x)tk |k−1(B|x)μk−1(dx), (31)

and μb,k is the intensity measure of the newborn process Φb,k .
Theorem IV.4 (Variance prediction): Under Assumptions

IV.1, the variance vark |k−1 of the predicted target process
Φk |k−1 is given by

vark |k−1(B) = varb,k (B) + vars,k (B), (32)



SCHLANGEN et al.: SECOND-ORDER PHD FILTER WITH MEAN AND VARIANCE IN TARGET NUMBER 53

in any B ∈ B(X ), where vars,k is the variance of the process
describing the surviving targets

vars,k (B) := μs,k (B) [1 − μs,k (B)]

+
∫

ps,k (x)ps,k (x′)tk |k−1(B|x)tk |k−1(B|x′)ν(2)
k−1(d(x, x′)),

(33)

and varb,k is the variance of the newborn process Φb,k .
The proof is given in appendix. Note that the propagation

of the regional variance (32)—i.e., the variance vark |k−1(B) in
any B ∈ B(X ) – requires the posterior second-order factorial
moment ν

(2)
k−1 , which is not available from the posterior infor-

mation μk−1(·), vark−1(X ) (see data flow in Fig. 1). However,
considering the additional Assumption IV.2, the variance of the
predicted target process Φk |k−1 evaluated in the whole state
space becomes as follows.

Corollary IV.5 (Variance prediction, uniform ps,k ): Under
Assumptions IV.1 and IV.2, the variance vark |k−1 of the
predicted target process Φk |k−1 evaluated in the whole state
space X is given by

vark |k−1(X ) = varb,k (X ) + vars,k (X ), (34)

where vars,k is the variance of the process describing the sur-
viving targets

vars,k (X ) = p2
s,kvark−1(X ) + ps,k [1 − ps,k ]μk−1(X ), (35)

and varb,k is the variance of the newborn process Φb,k .
The proof is given in Appendix. The results in Theorem IV.3

and Corollary IV.5 produce the predicted quantities μk |k−1 ,
vark |k−1(X ) from their posterior values μk−1 , vark−1(X ).

B. Data Update Step (Time k)

In the data update step, the predicted process Φk |k−1 is up-
dated to Φk given the current measurement set Zk , collected
from the sensor. The date update step relies on the following
assumptions:

Assumptions IV.6:
a) The predicted target process Φk |k−1 is Panjer, with pa-

rameters αk |k−1 , βk |k−1 and spatial distribution sk |k−1 .
b) The measurements originating from target detections are

generated independently from each other.
c) A target with state x ∈ X is detected with probability

pd,k (x); if so, it produces a measurement whose state is
distributed according to a likelihood lk (·|x).

d) The clutter process, describing the false alarms produced
by the sensor, is Panjer with parameters αc,k , βc,k and
spatial distribution sc,k .

Before stating the data update equations for the SO-PHD
filter, recall the Pochhammer symbol or rising factorial (ζ)n for
any ζ ∈ R and n ∈ N:

(ζ)n := ζ(ζ + 1) · · · (ζ + n − 1), (ζ)0 := 1. (36)

Following the notations used in [24] and introduced in [8], we
define the corrective terms

�u (z) :=
Υu (Zk\{z})

Υ0(Zk )
, �u (φ) :=

Υu (Zk )
Υ0(Zk )

, (37)

for any u ∈ N and any z ∈ Zk , where

Υu (Z) :=
|Z |∑

j=0

(αk |k−1)j+u

(βk |k−1)j+u

(αc,k )|Z |−j

(βc,k + 1)|Z |−j
F−j−u

d ej (Z),

(38)

for any Z ⊆ Zk , where Fd is the scalar given by

Fd :=
∫ [

1 +
pd,k (x)
βk |k−1

]

μk |k−1(dx), (39)

and ej is the j-th elementary symmetric function

ej (Z) :=
∑

Z ′⊆Z
|Z ′ |=j

∏

z∈Z ′

μz
k (X )

sc,k (z)
, (40)

with μz
k (B) :=

∫
B pd,k (x)lk (z|x)μk |k−1(dx) for any B ∈ B

(X ).7

Theorem IV.7 (Intensity update): Under Assumptions IV.6,
the intensity measure μk of the updated target process Φk is
given by

μk (B) = μφ
k (B)�1(φ) +

∑

z∈Zk

μz
k (B)

sc,k (z)
�1(z), (41)

in any B ∈ B(X ), where the missed detection term μφ
k is given

by μφ
k (B) :=

∫
B (1 − pd,k (x))μk |k−1(dx).

Theorem IV.8 (Variance update): Under Assumptions IV.6,
the variance vark of the updated target process Φk is given by

vark (B) = μk (B) + μφ
k (B)2 [�2(φ) − �1(φ)2]

+ 2μφ
k (B)

∑

z∈Zk

μz
k (B)

sc,k (z)
[�2(z) − �1(φ)�1(z)]

+
∑

z ,z ′∈Zk

μz
k (B)

sc,k (z)
μz ′

k (B)
sc,k (z′)

[
��=2 (z, z′) − �1(z)�1(z′)

]
, (42)

in any B ∈ B(X ), with

��=2 (z, z′) :=

⎧
⎨

⎩

Υ2(Zk\{z, z′})
Υ0(Zk )

, z �= z′,

0, otherwise.
(43)

The proofs of Theorems IV.7 and IV.8 are given in appendix.
Together with Eqs. (28), (29), the results in Theorems IV.7, IV.8
produce the updated quantities μk , vark (X ) from their predicted
values μk |k−1 , vark |k−1(X ).

As mentioned earlier in Section III-D, a Panjer distribution
converges to a Poisson distribution for suitable parameters α,
β. An interesting consequence for the intensity update of the
SO-PHD filter (41) follows.

7In these definitions, the time subscripts on the �u , Υu , Fd , and ej terms are
omitted for the sake of simplicity.
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Corollary IV.9 (Intensity update: limit cases): If, in addition
to Assumptions IV.6, the predicted point process Φk |k−1 is as-
sumed Poisson, i.e., αk |k−1 , βk |k−1 → ∞ with constant ratio
λk |k−1 := αk |k −1

βk |k −1
, then the intensity update (41) converges to

the intensity update of the PHD filter with Panjer clutter given
in [18].

Furthermore, if the clutter process is assumed Poisson as well,
i.e., αc,k , βc,k → ∞ with constant ratio λc,k := α c , k

βc , k
, then the

intensity update given in [18] converges to the intensity update
of the original PHD filter [2].

With Cor. IV.9, the SO-PHD filter presented in this paper can
be seen as a generalisation of the original PHD filter8. Note
that the expression of the intensity (41) and variance (42) of
the updated target process are remarkably similar to their coun-
terpart in the CPHD filter, and only differ on the expressions
of the corrective terms �u [24]. Both filters involve the compu-
tation of elementary symmetric functions ej (Z) on subsets Z
of the measurement set Zk . Each function has a computational
cost of O(|Z| log2 |Z|) [8]; the CPHD requires the computa-
tion for sets of the form Zk , and Zk \ {z}, for a total cost of
O(|Zk |2 log2 |Zk |), while the proposed solution requires the
computation for sets of the form Zk , Zk \ {z}, Zk \ {z, z′}, for
a total cost of O(|Zk |3 log2 |Zk |). However, while the CPHD
filter requires the computation of the Υu (n) terms [8, Eq. (14)]
for each possible target number n (to a maximum number Nmax
set as a parameter), the proposed filter requires the computation
of the Υu terms (38) only once. The complexity of the proposed
filter is thus significantly lower than for the CPHD filter, as it
will be illustrated in the simulation results in Section VI, and
the difference in complexity increases with the value Nmax .

V. REGIONAL CORRELATIONS FOR PHD FILTERS

In order to assess the mutual influence of the estimated num-
ber of targets in two regions B,B′ ∈ B(X ), we compute in
this section the statistical correlation (9) of the updated target
process Φk for the PHD, SO-PHD and CPHD filters.

Proposition V.1 (Covariance of the PHD filters) :
Let B,B′ ∈ B(X ) be two arbitrary regions in the state space.
(a) PHD filter:
Let λc,k be the Poisson clutter rate at time k. The covariance

of the updated target process Φk in B, B′ is

covk (B × B′) = μk (B ∩ B′)

−
∑

z∈Zk

μz
k (B)μz

k (B′)
[
μz

k (X ) + λc,k sc,k (z)
]2 . (44)

(b) Second-order PHD filter:
The covariance of the updated target process Φk in B, B′ is

covk (B × B′)

= μk (B ∩ B′) + μφ
k (B)μφ

k (B′)[�2(φ) − �1(φ)2 ]

8Under the proviso that the additional Assumption IV.2 is met, i.e., the prob-
ability of survival ps ,k is uniform over the state space.

+
∑

z∈Zk

[

μφ
k (B)

μz
k (B′)

sc,k (z)
+ μφ

k (B′)
μz

k (B)
sc,k (z)

]

[�2(z) − �1(z)�1(φ)]

+
∑

z ,z ′∈Zk

[
μz

k (B)
sc,k (z)

μz ′
k (B′)

sc,k (z′)

] [
��=2 (z, z′) − �1(z)�1(z′)

]
. (45)

(c) CPHD filter:
The covariance of the updated target process Φk in B, B′

is given by (45), where the corrective terms �1 , �2 and ��=2 are
replaced by the values in Eqns (20), (30) of [24].

The proof is given in appendix. The correlations corrΦ(B,B′)
are a direct consequence of Eq. (9), using the regional variance
stated in Eqns (35), (33) [24] for the PHD and CPHD filters and
the regional variance (42) for the SO-PHD filter.

VI. EXPERIMENTS

A GM implementation [3], [8] was used for all algorithms
to make them comparable. For the CPHD filter, the maximum
number of targets Nmax is set to 150 for all experiments. The
Optimal Sub-Pattern Assignment (OSPA) metric per time step
[33] is used with the Euclidean distance (i.e. p = 2) and the
cutoff c = 100.

A. Scenario 1

This scenario examines the robustness of the PHD, CPHD,
and SO-PHD filters to large variations in the number of targets
and focuses on a single time step when the change in target
number occurs.

The size of the surveillance scene is 50 m × 50 m. The gen-
eration of new objects is restricted to the centre of the image
to prevent the objects from leaving the scene before the last
time step. Their movement is generated using a nearly constant
velocity model where the standard deviation of the acceleration
noise is 0.3 ms−2 and the initial velocity is Gaussian normal
distributed with mean 0 and standard deviation 0.5 ms−1 along
each dimension of the state space. False alarms are generated
according to a Poisson point process with uniform spatial dis-
tribution and clutter rate μc = 5 for experiments 1.1, 1.2 and
μc = 20 for experiment 1.3. The probabilities of detection and
survival are constant and set to 0.9 and 0.99, respectively.

1.1 50 targets are created in the first time step and propagated
until time step 15 to give the algorithms time to settle. At
time 15, the number of targets suddenly changes, either
by removing some or all of the current targets without
creating new objects or by creating up to 50 births while
maintaining the old targets. The birth model is Poisson
with uniform spatial distribution and birth rate μb = 25,
for the three filters.

1.2 The parameters are identical to experiment 1.1, except
that the birth model is negative binomial with μb = 25
and varb = 100 for the SO-PHD and CPHD filter.

1.3 Here, only one target is created in the beginning and
maintained up to time 15. At this time, from 0 to 100
targets are spontaneously created in the scene. The birth
model is a negative binomial point process with uniform
spatial distribution, mean μb = 1 and varb = 100 for
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Fig. 2. Results for Scenario 1, averaged over 20 Monte Carlo (MC) runs. The
lines depict the mean of the estimated number of targets, the coloured areas
show the 2σ confidence region (estimated by the filter).

the three filters, though the PHD filter cannot exploit the
information on the variance.

Fig. 2 depicts the results of this scenario. In experiment 1.1 and
1.2, the three filters estimate target birth more accurately than
target death since the high survival probability, together with a
high birth rate, does not account for severe drops in the number
of targets. In particular, the CPHD filter lacks flexibility and
fails at recognising unexpected drops in the number of targets.
Choosing negative binomial birth model allows for larger un-
certainty in the number of targets and improves the quality of
the estimate for the CPHD and SO-PHD filters. Furthermore,
the variance of the SO-PHD filter is lower than that of the PHD
filter. Experiment 1.3 highlights a limitation of the PHD filter,
which reduces the prior information on the number of newborn
targets to its mean value. The CPHD and SO-PHD filters, on the
other hand, can exploit a birth process with high variability in
target number—i.e., through a negative binomial process with
large variance in target number—in order to cope with a burst
of target births. Fig. 2(c) suggests that the birth and false alarm

processes are competing in the CPHD and SO-PHD filters when
there is a significant influx in the number of newborn targets,
resulting in an offset linked to the mean number of false alarms
(recall that μc = 20 in this case). The PHD filter, on the other
hand, is unable to cope with an influx that is well beyond the
Poisson model.

Average run times are omitted for this scenario as they change
greatly with the different changes in target number and are there-
fore not very meaningful. The following scenarios will provide
a more valuable insight in the computational performance.

B. Scenario 2

This scenario examines the behaviours of the PHD, CPHD
and SO-PHD filters with increasing amounts of target birth and
death.

The size of the surveillance scene is 50 m × 50 m. The number
of targets is designed to follow a stair pattern starting with 5
initial targets, and increasing the cardinality by 10, 15, 20 and
25 targets every ten time steps until time 40. From time 50
onwards up to time 90, the number of targets is decreased in
reverse order, i.e. every ten time steps, the target population is
reduced by 25, 20, 15, and 10 targets. The generation of new
objects is restricted to the centre of the image to prevent the
objects from leaving the scene before the last time step. Their
movement is generated using a nearly constant velocity model
where the standard deviation of the acceleration noise is 0.1 ms2

and the initial velocity is Gaussian normal distributed with mean
0 and standard deviation 0.3 ms−1 along each dimension of the
state space.

From the ground truth obtained as above, measurements are
created with a constant probability of detection. For compari-
son, two different values are chosen, i.e. pd = 0.95 in the first
experiment and pd = 0.6 in the second. Each detection is cor-
rupted with white noise with standard deviation 0.2 m in each
dimension. Additionally, false alarms are generated according
to a Poisson point process with uniform spatial distribution and
clutter rate μc = 15.

The three filters are parametrised with the simulation param-
eters above. In addition, the probability of survival is set to
ps = 0.98, and target birth is modelled using a negative bino-
mial process with uniform spatial distribution, mean μb(X ) = 1
and variance varb(X ) = 100 to account for the big changes in
the number of objects. Each experiment is averaged on 100 MC
runs.

In Fig. 3, an example run of the first experiment is depicted.
Fig. 4 shows the estimated means and variances for all filters
and all experiments over time (left column), along with the mean
and standard deviation of the respective OSPA distances over
time (right column). The first experiment (Fig. 4(a)–(b)) demon-
strates that the three filters show a delay in the adjustment of the
cardinality estimate when the population is growing, resulting
in spikes of OSPA error. In general, the CPHD filter is clos-
est to the true target number, however in case of target death,
the PHD and SO-PHD filters prove to be more reactive despite
setting the survival rate to 98%. In the second experiment (cf.
Fig. 4(c)–(d)), all three filters show a significant increase in the
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Fig. 3. The setup of experiment 2.1, plotted separately for x and y over time (shown for one MC run). The ground truth is plotted in red, the measurements in
grey.

Fig. 4. Results for Scenario 2, averaged over 100 MC runs. Fig. 4(a) and 4(c) show the estimated means and variances of the number of targets, Fig. 4 b and
4(d) displays the mean and standard deviation of the respective OSPA results. The rows depict the results of experiments 2.1 (pd = 0.95) and 2.2 (pd = 0.6),
respectively.

estimated variance in cardinality since target death and missed
detections are hard to distinguish and therefore more missed de-
tections lead to increased uncertainty in the number of targets.
In terms of the estimated mean, on the other hand, the proposed
method shows the highest reactivity to target birth and espe-
cially to target death, estimated poorly with the CPHD filter.
Table I shows the averaged run time for both cases of this sce-
nario. The prediction runs approximately 100 times slower for
the CPHD than for the first- and second-order PHD filters; this
is to be expected since the complexity of the former grows pro-
portional to the range of cardinalities for which the cardinality
distribution is estimated. The update performance, on the other
hand, varies greatly for different probabilities of detection: if pd
is low, the weight for miss-detected objects does not plummet

TABLE I
RUNTIMES FOR EXPERIMENTS 2 AND 3, AVERAGED OVER ALL TIME STEPS

AND MONTE CARLO RUNS, WITH RELATIVE TIME WITH RESPECT TO THE PHD
FILTER IN BRACKETS

directly and therefore the information about dead tracks is kept
and propagated for longer.
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Fig. 5. Tracking scenario, with region A on the left and region B on the right.

C. Scenario 3

This scenario assesses the spooky effect of the PHD, CPHD,
and SO-PHD filters through the regional covariance introduced
in this paper. Two completely separate regions of interest, hence-
forth called A and B, are depicted in Fig. 5. Both regions are of
size 50 m × 50 m, and they are 100 m apart horizontally. In each
region, 10 targets are initialised in the first time step and they
survive throughout 100 time steps. Again, the generation of new
objects is restricted to the centre of each region to prevent the
objects from leaving the scene before the last time step. Their
movement is generated using a nearly constant velocity model
where the standard deviation of the acceleration noise is 0.1 ms2

and the initial velocity is Gaussian normal distributed with mean
0 and standard deviation 0.3 ms−1 along each dimension of the
state space.

Measurements are created with the (constant) probability of
detection pd = 0.9. Each detection is corrupted with white noise
with standard deviation 0.2 m in each dimension. Additionally,
false alarms are generated in each region according to a Poisson
point process with uniform spatial distribution (in the region)
and clutter rate μc(A) = μc(B) = 20.

The three filters are parametrised with the simulation pa-
rameters above. In addition, the probability of survival is set
to ps = 0.98, and target birth is modelled using a negative bi-
nomial point process with uniform spatial distribution (in the
region) with mean μb(X ) = 1 and variance varb(X ) = 100 to
account for sudden changes in the number of objects.

In order to analyse the spooky effect on this scenario, all
objects in region B are forced to be miss-detected every 10 time
steps, additionally to the modelled natural missed detections
in the scene. Fig. 6(b)–(d) show the estimated regional means
and regional variances for the three filters in both regions. In
case of the PHD filter (cf. Fig. 6(b)), the intensity in region A
is unaffected by the sudden drop in the intensity in region B.
The proposed filter, in contrast, reacts with a slight drop in the
intensity of region A when the targets in B are missed, and it
compensates sightly in each subsequent time step (Fig. 6(c)).
The biggest effect by far is noticed with the CPHD filter, as
seen in Fig. 6(d). Every time the objects in B stay undetected,
the intensity in that region does not drop as low as for the other
two filters, but the intensity in region A increases notably to
approximately 12 targets.

The observed behaviour can be further illustrated by looking
at the correlation of A and B under the PHD, SO-PHD and

Fig. 6. Results for Scenario 3, averaged over 100 MC runs. Fig. 6(a) shows
the correlation in A and B for all filters. Fig. 6 (b), 6(c) and 6(d) depict the
mean and standard deviation of the estimated number of targets per region for
the three filters.

CPHD filters, exploiting the covariance of the three filters given
in Section V. Eq. (44) shows that the covariance of the PHD
filter is 0 if the two regions are disjoint and the region of origin
of each measurement is unambiguous; this is clearly seen in
the correlation depicted in Fig. 6 (a). The same figure shows
a strongly negative correlation in the case of the CPHD filter,
which highlights the spooky effect: the filter compensates for
the lost intensity mass in region B by introducing it in region
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A. The SO-PHD filter shows a milder but positive correlation,
as the sudden drop/increase in intensity mass in region B goes
along with a smaller drop/increase in region A. These results
suggest that, on these experiments, the SO-PHD filter exhibits
a milder spooky effect than the CPHD filter.

Table I shows the averaged run time for this scenario, showing
a coherent image with the findings above.

VII. CONCLUSION

A new Second-Order (SO-PHD) filter has been introduced,
propagating the variance in the estimated number of targets
alongside the first-order moment of the target process. The Pan-
jer point process is introduced in order to approximate the multi-
target predicted process and to model the false alarm process.
Described with two parameters, a Panjer distribution encom-
passes the binomial, Poisson, and negative binomial distribu-
tion; the resulting SO-PHD filter provides more flexibility in
the modelling phase than the PHD filter. The proposed filter is
implemented with a Gaussian mixture algorithm, and compared
to the PHD and CPHD filters on simulated data where it proved
to be more robust to changes in the number of targets of un-
usually large extent. In a more usual scenario, the three filters
showed similar performance; the proposed filter proved more
reactive to the disappearance of targets than the CPHD filter,
while having a significantly lower computational complexity.

The regional covariance of a point process is introduced in
order to analyse the correlation between the estimated number
of targets in disjoint regions of the state space, and to assess
quantitatively the well-known spooky effect of the three filters
on a simulated scenario. The results showed that the estimated
targets in the two regions were uncorrelated with the PHD filter,
strongly negatively correlated with the CPHD filter, and mildly
positively correlated with the proposed SO-PHD filter.

APPENDIX A
PROOFS

The appendix provides the proofs for the results in
Section III and IV. We first introduce the following differen-
tiation rules, whose proofs are given in [18].

Lemma A.1 (Differentiation rules): Let G be a linear func-
tional.

a) The nth order derivative of the composition exp(G(h))
can be written as

δn (exp ◦G)(h; η1 , . . . , ηn ) = exp(G(h))
n∏

i=1

δG(h; ηi).

(46)
b) The nth order derivative of the composition (G(h))−α is

derived to be

δn (G−α )(h; η1 , . . . , ηn )

= (−1)n (α)n G(h)−α−n
n∏

i=1

δG(h; ηi) (47)

with (·)n being the Pochhammer symbol (36).

Proof of Proposition III.1: Since a Panjer point process is an
i.i.d. point process, let us start with equation (23), inserting (26)
for ρ:

GPanjer(h)

(23)
=

∑

n≥0

(−α

n

)(

1 +
1
β

)−α( −1
β + 1

)n [∫

h(x)s(dx)
]n

(48a)

=
(

1 +
1
β

)−α ∑

n≥0

(−α

n

)[ −1
β + 1

∫

h(x)s(dx)
]n

(48b)

=
(

1 +
1
β

)−α [

1 − 1
β + 1

∫

h(x)s(dx)
]−α

(48c)

=
[

1 +
1
β

∫

[1 − h(x)]s(dx)
]−α

. (48d)

Equality (48c) follows from the binomial series. �
Proof of Proposition III.2: Let us derive the mean and vari-

ance of a Panjer process with parameters α, β and spatial distri-
bution s, for arbitrary regions B,B′ ∈ B(X ):

μ(B)
(16)
= δGPanjer(h; 1B )

∣
∣
∣
∣
h=1

(49a)

(27)
= δ

([

1 +
1
β

∫

[1 − h(x)]s(dx)
]−α

; 1B

)∣
∣
∣
∣
h=1

(49b)

(47)
= −α

[

1 +
1
β

∫

[1 − 1]s(dx)
]−α−1 [

− 1
β

∫

B

s(dx)
]

(49c)

=
α

β

∫

B

s(dx). (49d)

μ(2)(B × B′) = δ2GPanjer(e−f ; 1B , 1B ′)
∣
∣
∣
∣
f =0

(50a)

=
(α)2

β2

[

1+
1
β

∫

[1 − e0 ]s(dx)
]−α−2∫

B

e0s(dx)
∫

B ′
e0s(dx)

+
α

β

[

1 +
1
β

∫

[1 − e0 ]s(dx)
]−α−1 ∫

B∩B ′
s(dx) (50b)

=
(α)2

β2

∫

B

s(dx)
∫

B ′
s(dx) +

α

β

∫

B∩B ′
s(dx). (50c)

Therefore,

var(B)
(8)
= μ(2)(B × B) − [μ(B)]2 (51a)

= μ(B)
(

1 +
1
β

∫

B

s(dx)
)

. (51b)

From (49) and (51) we get
{

μ(X ) = α
β

var(X ) = μ(X )
(
1 + 1

β

)
,

(52)

which yields the desired result when solved for α and β. �



SCHLANGEN et al.: SECOND-ORDER PHD FILTER WITH MEAN AND VARIANCE IN TARGET NUMBER 59

Proof of Theorem IV.4: Let us denote by Gs,k the PGFL of
the point process describing the evolution of a target from the
previous time step. For the sake of simplicity, we shall omit the
time subscripts on the quantities related to the survival and birth
process.

The PGFL Gk |k−1 of the predicted target process takes the
form Gk |k−1(h) = Gb(h)Gk−1(Gs(h|·)). Here, the multiplica-
tive structure stems from the independence between the new-
born targets and those surviving from the previous time step;
the composition appears because the survival process applies to
each preexisting target described by the updated target process
Φk−1 from the previous time step [32, Eq. 5.5.18].

In order to produce the variance vark |k−1 of the pre-
dicted process via (8) we first build the second-order moment
μ

(2)
k |k−1(B × B′) in arbitrary regions B,B′ ∈ B(X ). From (16)

we have

μ
(2)
k |k−1(B × B′) = δ2Lk |k−1(f ; 1B , 1B ′)

∣
∣
f =0 (53a)

= δ2Gk |k−1(e−f ; 1B , 1B ′)
∣
∣
f =0 . (53b)

The product rule (18) gives

μ
(2)
k |k−1(B × B′) = δ2Gb(e−f ; 1B ; 1B ′)

∣
∣
f =0Gk−1(Gs(1|·))

+ δGb(e−f ; 1B )
∣
∣
f =0δ(Gk−1(Gs(e−f |·)); 1B ′)

∣
∣
f =0

+ δGb(e−f ; 1B ′)
∣
∣
f =0δ(Gk−1(Gs(e−f |·)); 1B )

∣
∣
f =0

+ Gb(1)δ2(Gk−1(Gs(e−f |·)); 1B , 1B ′)
∣
∣
f =0 , (53c)

(16)
= μ

(2)
b (B × B′) − μb(B)δ(Gk−1(Gs(e−f |·)); 1B ′)

∣
∣
f =0

− μb(B′)δ(Gk−1(Gs(e−f |·)); 1B )
∣
∣
f =0

+ δ2(Gk−1(Gs(e−f |·)); 1B , 1B ′)|f =0 , (53d)

where μb and μ
(2)
b are the first- and second-order moment mea-

sures of the birth process, respectively. Let us first focus on the
term δ(Gk−1(Gs(e−f |·)); 1B )

∣
∣
f =0 in (53d). Using the definition

of the PGFL (12) we can write

δ(Gk−1(Gs(e−f |·)); 1B )
∣
∣
f =0

=
∑

n≥0

∫

X n

δ

([
n∏

i=1

Gs(e−f |xi)

]

; 1B

)∣
∣
∣
∣
∣
f =0

P
(n)
k−1(dx1:n )

(54a)

(18)
=

∑

n≥0

∫

X n

n∑

i=1

δ(Gs(e−f |xi); 1B )
∣
∣
f =0 P

(n)
k−1(dx1:n ) (54b)

(4)
=

∫

δ(Gs(e−f |x); 1B )
∣
∣
f =0μk−1(dx). (54c)

The survival process for a target with state x at the previous
time step can be described with a Bernoulli point process with
parameter ps(x) and spatial distribution t(·|x), and thus (24)
gives

Gs(e−f |x) = 1 − ps(x) + ps(x)
∫

e−f (y )t(dy|x). (55)

It follows that

δ(Gs(e−f |x); 1B ) = ps(x)
∫

δ(e−f (y ) ; 1B )t(dy|x) (56a)

= −ps(x)
∫

1B (y)e−f (y )t(dy|x), (56b)

which leads to

δ(Gs(e−f |x); 1B )
∣
∣
f =0 = −ps(x)t(B|x). (57)

Substituting (57) in (54c) yields

δ(Gk−1(Gs(e−f |·)); 1B )
∣
∣
f =0 = −

∫

ps(x)t(B|x)μk−1(dx).

(58)
Let us write the last term δ2(Gk−1(Gs(e−f |·)); 1B , 1B ′)|f =0 in
(53d) in a similar manner as above. From the definition of the
PGFL (12) we can write

δ2(Gk−1(Gs(e−f |·)); 1B , 1B ′)|f =0 (59a)

(18)
=

∑

n≥0

∫

X n

n∑

i=1

δ2(Gs(e−f |xi); 1B , 1B ′)
∣
∣
f =0 P

(n)
k−1(dx1:n )

+
∑

n≥0

∫

X n

∑

1≤i,j≤n
i �=j

δ(Gs(e−f |xi); 1B )
∣
∣
f =0

· δ(Gs(e−f |xj ); 1B ′)
∣
∣
f =0P

(n)
k−1(dx1:n ) (59b)

(4)
=

∫

δ2(Gs(e−f |x); 1B , 1B ′)
∣
∣
f =0μk−1(dx)

+
∫

δ(Gs(e−f |x); 1B )
∣
∣
f =0

· δ(Gs(e−f |x′); 1B ′)
∣
∣
f =0ν

(2)
k−1(d(x, x′)). (59c)

From (56), the value of δ2(Gs(e−f |x); 1B , 1B ′)
∣
∣
f =0 is found to

be

δ2(Gs(e−f |x); 1B , 1B ′)
∣
∣
f =0 = ps(x)t(B ∩ B′|x), (60)

so that (59c) becomes

δ2(Gk−1(Gs(e−f |·)); 1B , 1B ′)|f =0 = μs(B ∩ B′)

+
∫

ps(x)t(B|x)ps(x′)t(B′|x′)ν(2)
k−1(d(x, x′)). (61)

Substituting (58) and (61) in (53d) and setting B = B′ yields

μ
(2)
k |k−1(B × B) = μ

(2)
b (B × B) + 2μb(B)μs(B) + μs(B)

+
∫

ps(x)t(B|x)ps(x′)t(B|x′)ν(2)
k−1(d(x, x′)). (62)

Using the definition of the variance (8) then yields

vark |k−1(B) = varb(B) + [μb(B)]2 − [μk |k−1(B)]2

+ 2μb(B)μs(B) + μs(B)

+
∫

ps(x)t(B|x)ps(x′)t(B|x′)ν(2)
k−1(d(x, x′)), (63)
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and substituting the expression of the predicted intensity (30) to
μk |k−1(B) in (63) yields the desired result. �

Proof of Corollary IV.5: Let us assume that the probability
of survival ps,k is uniform over the state space. First of all,
Eq. (31) with B = X simplifies to

μs,k (X ) = ps,k

∫

tk |k−1(X|x)
︸ ︷︷ ︸

=1

μk−1(dx) (64a)

= ps,kμk−1(X ). (64b)

From Eq. (32) we can then compute the variance of the survival
process vars,k in the whole state space, i.e.

vars,k (X ) = μs,k (X )[1 − μs,k (X )] (65a)

+ p2
s,k

∫

tk |k−1(X|x)
︸ ︷︷ ︸

=1

tk |k−1(X|x′)
︸ ︷︷ ︸

=1

ν
(2)
k−1(d(x, x′)) (65b)

(64)
= ps,kμk−1(X )

[
1 − ps,kμk−1(X )

]
+ p2

s,k ν
(2)
k−1(X × X )

(65c)

(10)
= ps,kμk−1(X )

[
1 − ps,kμk−1(X )

]

+ p2
s,k

[
μ

(2)
k−1(X × X ) − μk−1(X )

]
(65d)

(8)
= ps,kμk−1(X )

[
1 − ps,kμk−1(X )

]

+ p2
s,k

[
vark−1(X ) + [μk−1(X )]2 − μk−1(X )

]
(65e)

so vars,k (X ) = p2
s,kvark−1(X ) + ps,k [1 − ps,k ]μk−1(X ). �

Proof of Theorem IV.7: For the sake of simplicity, time sub-
scripts will be omitted when there is no ambiguity. In addition,
qd(x) := 1 − pd(x) will denote the probability of missed de-
tection for a target with state x ∈ X , and Gc,k and Gd,k will
denote the PGFLs of the clutter and target detection process,
respectively.

From Assumptions IV.6 we can write the joint PGFL describ-
ing the predicted targets and the observations [2]:

GJ,k (g, h) = Gk |k−1 (hGd(g|·))Gc(g), (66)

where the multiplicative form stems from the independence
between the target-generated and the clutter measurements; the
composition appears because the detection process applies to
each target described by Φk |k−1 . Since both the predicted target
and the clutter process are assumed Panjer, (66) takes the more
specific form

GJ,k (g, h) = μ(X )α
(
Fd(g, h)

)−α(
Fc(g)

)−α c

, (67)

where

Fd(g, h) := μ(X )
(

1 +
1
β

∫

(1 − h(x)Gd(g|x))s(dx)
)

(68)

=
∫ [

1 +
1 − h(x)Gd(g|x)

β

]

μ(dx), (69)

and Fc(g) := 1 + 1
βc

∫
(1 − g(z))sc(z)dz. Note that the clutter

term Fc follows directly from the definition of a Panjer process
(27); the detection term (67) stems from (27) as well but is
then scaled by the predicted mean number of targets μ(X ), so
that the final result of the theorem exploits similar notations as
the CPHD filter in [8], [24]. The detection process in state x
can be described with a Bernoulli point process with parameter
pd(x) and spatial distribution density l(·|x), and thus (24) gives
Gd(g|x) = qd(x) + pd(x)

∫
Z g(z)l(z|x)dz. Note that both Fd

and Fc are linear w.r.t. to the argument g, and thus only their first-
order derivatives are non-zero; given an arbitrary measurement
z ∈ Zk , we can write

δFd(g, h; δz ) = −
∫

h(x)pd(x)l(z|x)
β

μ(dx), (70)

and δFc(g; δz ) = −sc(z)/βc . Similar to the PHD filter update
[2], the PGFL of the updated target process Φk is obtained from
the differentiation of the joint PGFL (67) using Bayes’ rule:

Gk (h) =
δ|Zk |GJ,k (g, h; (δz )z∈Zk

)|g=0

δ|Zk |GJ,k (g, 1; (δz )z∈Zk
))|g=0

. (71)

Using the higher-order product (20) and chain (21) rules, the
|Zk |-th derivative of the joint PGFL (67) in directions (δz )z∈Zk

yields

δ|Zk |GJ,k (g, h; (δz )z∈Zk
) ∝

|Zk |∑

j=0

(α)j

βj

(αc)|Zk |−j

β
|Zk |−j
c

Fd(g, h)−j

· Fc(g)−|Zk |+j
∑

Z⊆Zk

|Z |=j

⎛

⎝
∏

z∈Z

F z
d (h)

∏

z ′∈Zk \Z
sc(z′)

⎞

⎠ (72a)

∝
|Zk |∑

j=0

(α)j

βj

(αc)|Zk |−j

(βcFc(g))|Zk |−j
Fd(g, h)−j

∑

Z⊆Zk

|Z |=j

∏

z∈Z

F z
d (h)

sc(z)
,

(72b)

where Fz
d (h) :=

∫
h(x)pd(x)l(z|x)μ(dx). The proportional

constant in (72) is the quantity μ(X )αFd(g, h)−αFc(g)−α c
∏

z∈Zk
sc(z); since it is discarded in the ratio (71), it will be

omitted from now on. Details of the developments leading to
(72) can be found in Lemma VI.6 in [18], where a similar result
is produced.

Similar to [2], we can finally compute the intensity of the
updated target process Φk in any region B ∈ B(X ) from the
first-order derivative of its PGFL (71), i.e.

μk (B) =
δ|Zk |+1GJ,k (g, h; (δz )z∈Zk

, 1B )|g=0,h=1

δ|Zk |GJ,k (g, 1; (δz )z∈Zk
))|g=0

. (73)
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We first need to differentiate (72) in direction 1B through the
product rule (18) and get

δ|Zk |+1GJ,k (g, h; (δz )z∈Zk
, 1B ) ∝ (−βδFd(g, h; 1B ))

·
|Zk |∑

j=0

(α)j+1

βj+1

(αc)|Zk |−j

(βcFc(g))|Zk |−j
Fd(g, h)−j−1

∑

Z⊆Zk

|Z |=j

∏

z∈Z

F z
d (h)

+
∑

z∈Zk

F z
d (1B )

|Zk |−1∑

j=0

(α)j+1

βj+1

(αc)(|Zk |−1)−j

(βcFc(g))(|Zk |−1)−j

· Fd(g, h)−j−1
∑

Z⊆Zk \{z}
|Z |=j

∏

z ′∈Zk

F z ′
d (h), (74)

where

δFd(g, h; 1B )

= − 1
β

∫

B

[

qd(x) + pd(x)
∫

Z
g(z)�(z|x)dz

]

μ(dx). (75)

Substituting (72) and (74) into (73) yields the result. �
Proof of Theorem IV.8: From (16), we can compute the

second-order moment measure μ
(2)
k in any regions B,B′ ∈

B(X ) from the second-order derivative of the Laplace functional
Lk of the updated target process Φk . Substituting exp(−f) to h
in the PGFL (71) yields the expression of the Laplace functional
Lk , and from (16) it follows that [24]

μ
(2)
k (B ×B′) =

δ|Zk |+2GJ,k (g, e−f ; (δz)z∈Zk
, 1B , 1B ′)|g=0,f =0

δ|Zk |GJ,k (g, 1; (δz )z∈Zk
))|g=0

.

(76)
The denominator in (76) has already been computed in (72); we
shall thus focus here on the derivation in directions 1B , 1B ′ of
the numerator

δ|Zk |GJ,k (0, e−f ; (δz )z∈Zk
) ∝

|Zk |∑

j=0

(α)j

βj

(αc)|Zk |−j

(1 + βc)|Zk |−j

· Fd(0, e−f )−j
∑

Z⊆Zk

|Z |=j

∏

z∈Z

F z
d (e−f )
sc(z)

. (77)

The first-order derivative of (77) in direction 1B is

δ|Zk |+1GJ,k (0, e−f ; (δz )z∈Zk
, 1B )

∝ −
|Zk |∑

j=0

(α)j+1

βj+1

(αc)|Zk |−j

(βc + 1)|Zk |−j
Fd(0, e−f )−j−1

· Fmd(e−f 1B )
∑

Z⊆Zk

|Z |=j

∏

z∈Z

F z
d (e−f )

−
|Zk |∑

j=1

(α)j

βj

(αc)|Zk |−j

(βc + 1)|Zk |−j
Fd(0, e−f )−j

·
∑

z∈Zk

F z
d (e−f 1B )
sc(z)

∑

Z⊆Zk \{z}

∏

z ′∈Z

F z ′
d (e−f )
sc(z)

, (78)

where Fmd(h) :=
∫

h(x)qd(x)μ(dx). In a similar manner, (78)
can be differentiated another time in the direction of 1B ′ to

yield the second-order derivative of (77) in directions 1B , 1B ′ .
Substituting this second-order derivative and Eq. (72) into (76)
yields

μ
(2)
k (B × B′) = μk (B ∩ B′) + μφ

k (B)μφ
k (B′)�2(φ)

+ μφ
k (B)

∑

z∈Z

μz
k (B′)
sc(z)

�2(z) + μφ
k (B′)

∑

z∈Z

μz
k (B)

sc(z)
�2(z)

+
∑

z ,z ′∈Zk

μz
k (B)

sc(z)
sz ′

k (B′)
sc(z′)

��=2 (z, z′). (79)

Following (8), the intensity (41) is then squared and subtracted
from the second-order moment (79) evaluated with B′ = B in
order to yield the desired quantity vark (B).

Proof of Corollary IV.9: Let us assume that the predicted
target process Φk |k−1 is Poisson with rate λk |k−1 , i.e.,
αk |k−1 , βk |k−1 →∞, with constant ratio λk |k−1 = α

β . For the
same of simplicity, the time subscripts on αk |k−1 , βk |k−1 , λk |k−1
are omitted for the rest of the proof. Note first that, since
μ(dx) = λs(dx), we have

lim
α,β→∞

Fd = lim
α,β→∞

∫ [

1 +
pd,k (x)

β
︸ ︷︷ ︸

→0

]

λs(dx) = λ. (80)

In order to check the convergence of the intensity update equa-
tion (41), we only need to check the convergence of the term
Υu (Z) in (38) as it is the only term that contains α or β. We
can write:

lim
α,β→∞

|Z |∑

j=0

(α)j+u

(β)j+u

(αc)|Z |−j

(βc + 1)|Z |−j
F−j−u

d ej (Z) (81)

(36)
= lim

α,β→∞

|Zk |∑

j=0

j+u−1∏

i=0

(

λ +
i

β

)

︸ ︷︷ ︸
→λ

(αc)|Z |−j

(βc + 1)|Z |−j
F−j−u

d︸ ︷︷ ︸

→λ
−j −u

ej (Z)

(82)

=
|Z |∑

j=0

(αc)|Z |−j

(βc + 1)|Z |−j
ej (Z). (83)

Note in particular that the limit of Υu (Z) is independent of the
value of u; the corrective terms (37) thus converge to

⎧
⎪⎪⎨

⎪⎪⎩

limα,β→∞ �1(φ) = 1

limα,β→∞ �1(z) =
∑ |Z k |−1

j = 0

(α c ) |Z k |−j −1

(β c + 1 ) |Z k |−j −1 ej (Zk \{z})
∑ |Z k |

j = 0

(α c ) |Z k |−j

(β c + 1 ) |Z |−j
ej (Zk )

,
(84)

which coincides with the results of Theorem III.2 in [18].
If we further assume that the clutter process is Poisson, the

intensity update equation (41) further converges to the intensity
update equation of the original PHD filter [18]. �

Proof of Proposition V.1: The covariance is found with
Eq. (7). For the SO-PHD filter, the first- and second-order mo-
ment measures are given by Eqns (41) and (79). For the PHD
filter, they are given by (28) and (31) in [24], and for the CPHD
filter by (19) and (29) ibid. �
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APPENDIX B
SECOND-ORDER GM-PHD FILTER

Algorithm 1: Prediction (Time k).
Input
Posterior: {w(i)

k−1 ,m
(i)
k−1 , P

(i)
k−1}Nk −1

i=1 , vark−1(X )
Birth: {w(i)

b,k−1 ,m
(i)
b,k−1 , P

(i)
b,k−1}Nb , k −1

i=1 , varb,k (X )
Survival process
μk−1(X ) :=

∑Nk −1
i=1 w

(i)
k−1

for 1 ≤ i ≤ nk−1 do
w

(i)
k |k−1 := ps,kw

(i)
k−1

m
(i)
k |k−1 := Fk−1m

(i)
k−1

P
(i)
k |k−1 := Fk−1P

(i)
k−1F

T
k−1 + Qk−1

end for
vars,k (X ) := p2

s,kvark−1(X ) + ps,k [1 − ps,k ]μk−1(X )
Newborn process
for 1 ≤ j ≤ Nb,k−1 do
{w,m,P}(Nk −1 +j )

k |k−1 := {w,m,P}(j )
b,k−1

end for
Nk |k−1 := Nk−1 + Nb,k−1
vark |k−1(X ) := varb,k (X ) + vars,k (X )
Output

Prediction: {w(i)
k |k−1 ,m

(i)
k |k−1 , P

(i)
k |k−1}

Nk |k −1
i=1 , vark |k−1(X )

Algorithm 2: Elementary Symmetric Functions.
Input
Collection of terms: {μz

k (X )}z∈Zk

Vieta’s theorem
Expand: p(x) =

∏
z∈Zk

(x − μz
k (X )) =

∑mk

j=0 pjx
j

Set ej (Zk ) = pj for all 0 ≤ j ≤ mk

Output
{ej (Zk )}0≤j≤mk

Algorithm 3: Data Update (Time k).
Input

Prediction: {w(i)
k |k−1 ,m

(i)
k |k−1 , P

(i)
k |k−1}

Nk |k −1
i=1 , vark |k−1(X )

Current measurements: Zk = {zj}Mk
j=1

Panjer parameters

μk |k−1(X ) :=
∑Nk |k −1

i=1 w
(i)
k |k−1

αk |k−1 := μk |k−1(X )2/(vark |k−1(X ) − μk |k−1(X ))
βk |k−1 := μk |k−1(X )/(vark |k−1(X ) − μk |k−1(X ))
Missed detection and measurement terms
for 1 ≤ i ≤ Nk |k−1 do

w
(i)
φ,k := (1 − pd,k )w(i)

k |k−1

m
(i)
φ,k := m

(i)
k |k−1

P
(i)
φ,k := P

(i)
k |k−1

end for
μφ

k (X ) := (1 − pd,k )μk |k−1(X )

Algorithm 3: Continue.
for 1 ≤ j ≤ Mk do

for 1 ≤ i ≤ Nk |k−1 do

y
(i,j )
k := zj − Hkm

(i)
k |k−1

S
(i)
k := HkP

(i)
k |k−1H

T
k + Rk

K
(i)
k := P

(i)
k |k−1H

T
k [S(i)

k ]−1

w
(i,j )
d,k := pd,kw

(i,j )
d,k |k−1N (z; y(i,j )

k , S
(i)
k )/sc,k

m
(i,j )
d,k := m

(i)
k |k−1 + K

(i)
k y

(i,j )
k

P
(i,j )
d,k := (I − K

(i)
k Hk )P (i)

k |k−1
end for
μ

zj

k (X ) :=
∑Nk |k −1

i=1 w
(i,j )
d,k

end for
Corrective terms
Fd := (1 + pd , k

βk |k −1
)
∑

z∈Zk
μ

zj

k (X )
Compute {ed(Zk )}0≤d≤Mk

using Algorithm 1
for 0 ≤ u ≤ 2 do

Υu (Zk ) :=
∑Mk

j=0
(αk |k −1 )j + u

(βk |k −1 )j + u

(α c , k )m k −j

(βc , k +1)m k −j

F−j−u
d ej (Zk )

end for
�1(φ) := Υ1(Zk )/Υ0(Zk ), �2(φ) := Υ2(Zk )/Υ0(Zk )
for 1 ≤ i ≤ Mk do

Compute {ed(Zk \ zi)}0≤d≤Mk −1 using Algorithm 1
for 1 ≤ u ≤ 2 do

Υu (Zk \ zi) :=
∑Mk −1

d=0
(αk |k −1 )d + u

(βk |k −1 )d + u

· (α c , k )m k −1−d

(βc , k +1)m k −1−d F−d−u
d ed(Zk \ zi)

end for
�1(zi) := Υ1(Zk \ zi)/Υ0(Zk )
�2(zi) := Υ2(Zk \ zi)/Υ0(Zk )
for 1 ≤ i < j ≤ Mk do

Compute {ed(Zk \{zi, zj})}0≤d≤Mk −2 using
Algorithm 1

Υ2(Zk \ {zi, zj}) :=
∑Mk −2

d=0
(αk |k −1 )d + 2

(βk |k −1 )d + 2

· (α c , k )m k −2−d

(βc , k +1)m k −2−d F−d−2
d ed(Zk \ {zi, zj})

��=2 (zi, zj ) := Υ2(Zk \ {zi, zj})/Υ0(Zk )
end for

end for
Missed detection terms
for 1 ≤ i ≤ Nk |k−1 do

w
(i)
k := �1(φ)w(i)

φ,k

m
(i)
k := m

(i)
φ,k

P
(i)
k := P

(i)
φ,k

Association terms
for 1 ≤ j ≤ Mk do

w
(i·nk |k −1 +j )
k := �1(zj )w

(i,j )
d,k

m
(i·nk |k −1 +j )
k := m

(i,j )
d,k

P
(i·nk |k −1 +j )
k := P

(i,j )
d,k

end for
end for
Nk := Nk |k−1 + Nk |k−1Mk

μk (X ) :=
∑Nk

i=1 w
(i)
k



SCHLANGEN et al.: SECOND-ORDER PHD FILTER WITH MEAN AND VARIANCE IN TARGET NUMBER 63

Algorithm 3: Continue.
Variance update
vark (X ) := μk (X ) + μφ

k (X )2
[
�2(φ) − �1(φ)2

]

+ 2μφ
k (X )

∑
z∈Zk

μz
k (X )

sc , k (z ) [�2(z) − �1(φ)�1(z)]

+
∑

z �=z ′∈Zk

μz
k (X )

sc , k (z )
μz ′

k (X )
sc , k (z ′)

[
��=2 (z, z′) − �1(z)�1(z′)

]

Output
Posterior: {w(i)

k ,m
(i)
k , P

(i)
k }Nk

i=1 , vark (X )
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