
HAL Id: hal-01816451
https://hal.science/hal-01816451

Preprint submitted on 15 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CaLi: A Lattice-Based Model for License Classifications
Benjamin Moreau, Patricia Serrano-Alvarado, Emmanuel Desmontils

To cite this version:
Benjamin Moreau, Patricia Serrano-Alvarado, Emmanuel Desmontils. CaLi: A Lattice-Based Model
for License Classifications. 2018. �hal-01816451�

https://hal.science/hal-01816451
https://hal.archives-ouvertes.fr

CaLi: A Lattice-Based Model for License Classifications
Benjamin Moreau

OpenDataSoft
Paris, France

Benjamin.Moreau@opendatasoft.
com

Patricia Serrano-Alvarado
Nantes University, LS2N, CNRS,

UMR6004
Nantes, France

Patricia.Serrano-Alvarado@ls2n.fr

Emmanuel Desmontils
Nantes University, LS2N, CNRS,

UMR6004
Nantes, France

Emmanuel.Desmontils@ls2n.fr

ABSTRACT
Web applications facilitate combining resources (linked data,
web services, source code, documents, etc.) to create new
ones. For a resource producer, choosing the appropriate li-
cense for a combined resource involves choosing a license
compliant with all the licenses of combined resources and
controlling the reusability of the resulting resource through
the compatibility of its license. The risk is either, to choose a
license too restrictive making the resource difficult to reuse,
or to choose a not enough restrictive license that will not
sufficiently protect the resource. Finding the right trade-off
between compliance and compatibility is a difficult process.
An automatic classification over licenses protecting resources
would facilitate this task. Our research question is: given a li-
cense 𝑙𝑖, how to automatically position 𝑙𝑖 over a set of licenses
in terms of compatibility and compliance? We propose CaLi, a
lattice-based model to classify licenses. CaLi classifications
are able to answer questions like, “what are the licenses with
which 𝑙𝑖 is compliant?” and “what are the licenses with which
𝑙𝑖 is compatible?”. We show the usability of a CaLi classifi-
cation through a prototype of a license-based search engine
for the Web of Data. Our work is a step forward to facilitate
and encourage the reuse of license compliant resources in the
Web.

KEYWORDS
Licenses, usage control, privacy, linked data, RDF, ODRL

1 INTRODUCTION
Web applications facilitate combining resources (linked data,
web services, source code, documents, etc.) to create new
ones. Resource producers should systematically associate
licenses with resources before sharing or publishing them.
Licenses specify precisely the conditions of reuse of resources,
i.e., what actions are permitted, obliged and prohibited when
using the resource.

For a resource producer, choosing the appropriate license
for a combined resource and choosing the appropriate licensed
resources for a combination is a difficult process. It involves
choosing a license compliant with all the licenses of combined
resources as well as controlling the reusability of the resulting
resource through the compatibility of its license. The risk is
either, to choose a license too restrictive making the resource
difficult to reuse, or to choose a not enough restrictive license
that will not sufficiently protect the resource.

We consider a simplified definition of compliance inspired
by works like [5–7, 13]: a license 𝑙𝑗 is compliant with a license
𝑙𝑖 if a resource licensed under 𝑙𝑖 can be licensed under 𝑙𝑗

without violating 𝑙𝑖. If a license 𝑙𝑗 is compliant with 𝑙𝑖 then
we consider that 𝑙𝑖 is compatible with 𝑙𝑗 and that resources
licensed under 𝑙𝑖 are reusable with resources licensed under
𝑙𝑗 .

Compatibility of licenses can be verified through the actions
permitted, obliged and prohibited. In general, when 𝑙𝑖 is
compatible with 𝑙𝑗 , the obligations and prohibitions of 𝑙𝑖
exist in 𝑙𝑗 , and 𝑙𝑗 has at most the permissions of 𝑙𝑖. Figure 1
shows an excerpt of three Creative Commons (CC)1 licenses
described in RDF using the ODRL vocabulary2. We can
notice that:

∙ CC BY is compatible with CC BY, CC BY-NC and
CC BY-NC-ND;

∙ CC BY-NC is compatible with CC BY-NC, CC BY-
NC-ND; and

∙ CC BY-NC-ND is compatible with CC BY-NC-ND.

Imagine a search engine that can find linked data based on
their licenses. Consider this search “find all datasets concern-
ing bikes that can be reused under the CC BY-NC license”.
The answer must contain datasets with licenses compatible
with CC BY-NC that (in our example) are less or as restric-
tive as it. Consider this other search that will find out the
reusability of the combined resource “find all datasets that
can reuse a dataset protected by CC BY-NC ”. The answer
must contain datasets with licenses compliant with CC BY-
NC that (in our example) are at least as restrictive as it is
(CC BY-NC and CC BY-NC-ND). Answers are order form
the least to the most restrictive (or vice versa).

We can imagine a similar search engine for services such
as GitHub3 or APISearch4 that could find source code repos-
itories or APIs protected by licenses that are compatible or
compliant with a specific license.

We argue that a model for license classifications would
make possible the existence of such a license-based search
engines. Our research question is: given a license 𝑙𝑖, how to
automatically position 𝑙𝑖 over a set of licenses in terms of
compatibility and compliance? That is, given a set of licenses,
what are the licenses that precede and follow 𝑙𝑖 in terms of
compatibility and compliance?

Our contribution is twofold: (1) inspired by access control
models [4, 11], we propose CaLi (ClAssification of LIcenses),
a lattice-based model for license classifications and (2) a
prototype of a search engine based on a CaLi classification

1https://creativecommons.org/
2https://www.w3.org/TR/odrl-model/
3https://github.com/
4http://apis.io/

https://creativecommons.org/
https://www.w3.org/TR/odrl-model/
https://github.com/
http://apis.io/

Working Paper, June, 2018 Benjamin Moreau, Patricia Serrano-Alvarado, and Emmanuel Desmontils

: cc−by4 . 0 a odr l : Po l i cy ;
r d f s : l a b e l "CC BY" ;
. . .
od r l : pe rmis s ion

[od r l : a c t i on
cc : D i s t r ibu t i on ,
cc : Reproduction ,
cc : CommercialUse ,
cc : DerivativeWorks ;] ;

od r l : duty
[od r l : a c t i on

cc : Notice ,
cc : At t r ibut i on ;] .

(a) CC BY

: cc−by−nc4 . 0 a odr l : Po l i cy ;
r d f s : l a b e l "CC BY−NC" ;
. . .
od r l : pe rmis s ion

[od r l : a c t i on
cc : D i s t r ibu t i on ,
cc : Reproduction ,
cc : DerivativeWorks ;] ;

od r l : duty
[od r l : a c t i on

cc : Notice ,
cc : At t r ibut i on ;]

od r l : p r oh i b i t i o n
[od r l : a c t i on

cc : CommercialUse] .

(b) CC BY-NC

: cc−by−nc−nd4 . 0 a odr l : Po l i cy
;

r d f s : l a b e l "CC BY−NC−ND" ;
. . .
od r l : pe rmis s ion
[od r l : a c t i on

cc : D i s t r ibu t i on ,
cc : Reproduction ;] ;

od r l : duty
[od r l : a c t i on

cc : Notice ,
cc : At t r ibut i on ;] ;

od r l : p r oh i b i t i o n
[od r l : a c t i on

cc : CommercialUse ,
cc : DerivativeWorks] .

(c) CC BY-NC-ND

Figure 1: Three Creative Commons licenses described in RDF.

that allows to find datasets of the Web of Data whose licenses
are compatible or compliant with a target license.

Our work is a step forward in creating tools that facilitate
the creation and reuse of license compliant resources. This
kind of effort will encourage the publication and reuse of data
in the Web of Data.

The remainder of the paper is as follows. Section 2 discuses
related works, Section 3 introduces the CaLi model, Section 4
illustrates the usability of our model, Section 5 shows the
implementation of a license-based search engine for linked
data, and Section 6 concludes.

2 RELATED WORK
This section analyses several approaches and tools related to
our research question.

2.1 Machine-readable licenses
Automatic license classification requires machine-readable
licenses. License expression languages such as CC REL5,
ODRL, or L4LOD6 enable fine-grained RDF description of
licenses. Works like [10] and [1] use natural language pro-
cessing to automatically generate RDF licenses from licenses
described in natural language. Other works such as [9] or [2]
propose a set of well-known licenses in RDF described in CC
REL and ODRL. In this work we do not address these issues,
we consider that there exist consistent licenses described in
RDF.

5https://creativecommons.org/ns
6https://ns.inria.fr/l4lod/

2.2 Tools for license compliant resources
There exist some tools to facilitate the creation of license com-
pliant resources. TLDRLegal7, CC Choose8 and ChooseALi-
cense9 help users to choose actions to form a license for their
resources.

CC search10 allows users to find images licensed under Cre-
ative Commons licenses that can be commercialized, modified,
adapted, or built upon.

Web2rights proposes a tool to check compatibility among
Creative Commons licenses11.

Finally, Licentia12, based on defeasible deontic logic to
reason over the licenses, proposes a web service to find li-
censes compatible with a set of permissions, obligations and
prohibitions chosen by the user.

From these tools, only Licentia uses machine-readable
licenses13 described in RDF using ODRL. Unfortunately,
Licentia is not able to order licenses in terms of compatibility
or compliance.

2.3 License compatibility and license
combination

The easiest way to choose a license for a combined resource
is to create a new one by combining all resource licenses
to combine. Several works address the problem of license
compatibility and license combination.

In Web services, [5] proposes a framework that analyzes
compatibility of licenses to verify if two services are compati-
ble and then generate the composite service license.

[8] addresses the problem of license preservation during the
combination of digital resources (e.g., music, data, picture,
7https://tldrlegal.com/
8https://creativecommons.org/choose/
9https://choosealicense.com/
10https://ccsearch.creativecommons.org/
11http://www.web2rights.com/creativecommons/
12http://licentia.inria.fr/
13purl.org/NET/rdflicense

https://creativecommons.org/ns
https://ns.inria.fr/l4lod/
https://tldrlegal.com/
https://creativecommons.org/choose/
https://choosealicense.com/
https://ccsearch.creativecommons.org/
http://www.web2rights.com/creativecommons/
http://licentia.inria.fr/
purl.org/NET/rdflicense

CaLi: A Lattice-Based Model for License Classifications Working Paper, June, 2018

etc.) in a collaborative environment. Licenses of combined
resources are combined into a new one.

In the Web of Data, [13] proposes a framework to check
compatibility among CC REL licenses. If licenses are compat-
ible, a new license compliant with combined ones is generated.
[6] formally defines the combination of licenses using deontic
logic.

[12] proposes PrODUCE, an approach to combine usage
policies taking into account the usage context. These works
focus on combining operators for automatic license combi-
nation but do not propose to position a license over a set of
licenses.

Such operators will be very valuable in the design of an
automatic classification.

2.4 License classification
Concerning the problem of license classification to facilitate
the selection of a license, [3] uses Formal Concept Analysis
(FCA) to generate a lattice of actions. Once pruned and
annotated, this lattice can be used to classify licenses in
terms of features. This classification reduces the selection of
a license to an average of three to five questions. However, this
work does not address the problem of license combination
and license compatibility. Moreover, FCA is not suitable
to generate complex compatibility relations among licenses.
FCA defines a derivation operator on objects that returns
a set of attributes shared by the objects. We consider that
the set of actions in common of two licenses is not enough
to infer compatibility. If applied to our introductory license
compatibility example, FCA can only work with permissions
but not with obligations and prohibitions. That is because
𝑙𝑖 is compatible with 𝑙𝑗 if 𝑙𝑖 permissions are a superset of 𝑙𝑗
permissions, but regarding obligations and prohibitions, 𝑙𝑖 is
compatible with 𝑙𝑗 if they are a subset of those of 𝑙𝑗 .

In the context of Free Open Source Software (FOSS), [7]
proposes an approach, based on a directed acyclic graph,
to detect license violations in existing software packages. It
considers that license 𝑙𝑖 is compatible with 𝑙𝑗 if the graph
contains a path from 𝑙𝑖 to 𝑙𝑗 . However, as such a graph
is build from a manual interpretation of each license, its
generalization and automation is not possible.

2.5 Lattice-based access control
In the domain of access control, [4] proposes a lattice model of
secure information flow. This model classifies security classes
with associated resources. Like in the compatibility graph
of [7], security class 𝑠𝑐𝑖 is compatible with 𝑠𝑐𝑗 if the lattice
contains a path from 𝑠𝑐𝑖 to 𝑠𝑐𝑗 . Thus, this path represents the
authorized flow of resources (e.g., resource 𝑟𝑖 protected with
𝑠𝑐𝑖 can flow to a resource protected by 𝑠𝑐𝑗 without violating
𝑠𝑐𝑖.). The lattice can be generated automatically through a
pairwise combination of all security classes if 𝑠𝑐𝑖 combined
with 𝑠𝑐𝑘 gives 𝑠𝑐𝑗 where 𝑠𝑐𝑖 and 𝑠𝑐𝑘 are both compatible
with 𝑠𝑐𝑗 . [11] describes several models based on this approach
but none focuses on classifying licenses.

None of these works answers our research question. They
do not allow to automatically position a license over a set of
licenses in terms of both compatibility and compliance.

In our work we propose a lattice-based model inspired
by [4]. Existing combining operators like [5, 6, 12, 13] make
feasible the automatic generation of a lattice. Our model
allows users to easily find and compare licenses as well as
licensed resources. This model is independent on any license
combination approach, license description language and li-
censed resources so that it can be used in a wide variety of
domains.

3 CALI: A LATTICE-BASED LICENSE
MODEL

CaLi is a model that allows to express license classifications
with a lattice structure. The model considers a finite set of
licenses, a combining operator, a compatibility relation over
licenses, resources and their association with licenses, and a
constraint set. The combining operator applied to the set of
licenses produces a lattice that expresses the compliance and
compatibility among licenses.

Next section introduces the CaLi model, then we describe
its lattice structure and we finish with a simple example of a
CaLi-based classification.

3.1 Model description
The license classification model is introduced by Definition
3.1.

Definition 3.1. CaLi = ⟨𝐿,
⨁︀

,→, 𝑅, ↦→, 𝐶⟩.
𝐿 = {𝑙1, ..., 𝑙𝑛} is a set of licenses.⨁︀

is a license combining operator.
→ is the compatible with relation defined on pairs of li-

censes.
𝑅 = {𝑟1, ..., 𝑟𝑚} is a set of resources.

↦→ is the protected by relation between 𝑅 and 𝐿.
𝐶 = ⟨𝐶𝐿, 𝐶→⟩ is a finite set of constraints to express viability.

𝐶𝐿 is a set of constraints over 𝐿 and 𝐶→ is a set of
constraints over → in 𝐿× 𝐿.

A license is considered as a set of actions. Actions used in
𝐿 can be taken from 𝐴 = {𝑎1, ..., 𝑎𝑛}, a set of actions that
can be applied on resources.⨁︀

is an associative and commutative binary operator that
specifies for any pair of licenses, the combined license that
is compliant with both licenses. For licenses 𝑙𝑖 and 𝑙𝑘, if
𝑙𝑖
⨁︀

𝑙𝑘 = 𝑙𝑗 then 𝑙𝑗 is compliant with 𝑙𝑖 and 𝑙𝑘.
For licenses 𝑙𝑖 and 𝑙𝑗 , we write 𝑙𝑖 → 𝑙𝑗 iff 𝑙𝑖 is compatible

with 𝑙𝑗 (or 𝑙𝑗 is compliant with 𝑙𝑖). 𝑙𝑖 → 𝑙𝑗 implies 𝑙𝑖
⨁︀

𝑙𝑗 = 𝑙𝑗 ,
i.e., 𝑙𝑗 overcomes 𝑙𝑖.

Concerning 𝑅, we write 𝑟𝑖 ↦→ 𝑙𝑖 when the resource 𝑟𝑖 is
protected by 𝑙𝑖. For 𝑟𝑖 ↦→ 𝑙𝑖, if 𝑙𝑖 is compatible with 𝑙𝑗 then
𝑟𝑖 can be protected by 𝑙𝑗 .

In this work, we introduce the concepts of viability of a
license and viability of a → relation.

∙ A viable license is a license that allows the licensed
resource to be used. A license 𝑙𝑖 is viable iff it respects

Working Paper, June, 2018 Benjamin Moreau, Patricia Serrano-Alvarado, and Emmanuel Desmontils

all 𝐶𝐿 constraints. We define a constraint on licenses
as an application 𝜔𝐿 : 𝐿 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 which associates
each license of 𝐿 with either True or False.

∙ A viable compatible with relation, 𝑙𝑖 → 𝑙𝑗 , is a relation
that allows a resource licensed under 𝑙𝑖 to be licensed
under 𝑙𝑗 . A → relation between two licenses is viable iff
it respects all 𝐶→ constraints. We define a constraint on
→ relations as an application 𝜔→ : 𝐿× 𝐿 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛
which associates each → with either True or False.

3.2 Lattice structure ⟨𝐿,→,
⨁︀

⟩
The set of licenses 𝐿, the compatible with relation → and
the combining operator

⨁︀
form a lattice with the following

properties:
(1) ⟨𝐿,→⟩ is a partially ordered set.
(2) 𝐿 is finite.
(3) 𝐿 has an infimum (or greatest lower bound) 𝐼 such that

𝐼 → 𝑙𝑖 ∀𝑙𝑖 ∈ 𝐿.
(4)

⨁︀
is a totally defined least upper bound operator on 𝐿.

Demonstrations.

Property (1) is demonstrated by showing that the relation
→ is reflexive, transitive and antisymmetric.

∀𝑙𝑖, 𝑙𝑗 , 𝑙𝑘 ∈ 𝐿:
(a) 𝑙𝑖 → 𝑙𝑖 (reflexive), i.e., a license is compatible with itself.
(b) 𝑙𝑖 → 𝑙𝑗 and 𝑙𝑗 → 𝑙𝑘 ⇒ 𝑙𝑖 → 𝑙𝑘 (transitive), i.e., if 𝑙𝑖 is

compatible with 𝑙𝑗 and 𝑙𝑗 is compatible with 𝑙𝑘 then 𝑙𝑖 is
compatible with 𝑙𝑘.

(c) 𝑙𝑖 → 𝑙𝑗 and 𝑙𝑗 → 𝑙𝑖 ⇒ 𝑙𝑖 = 𝑙𝑗 (antisymmetric), i.e., if
two licenses are compatible with each other, then they are
the same license.

Property (2) is demonstrated by the fact that the set of
actions 𝐴 is finite. If a license is a set of actions and the license
combining operator

⨁︀
is a least upper bound operator, then

𝐿 is finite.
Property (3) can be made without loss of generality consid-

ering as infimum a license 𝐼 with zero, one or more actions.
Property (4) is demonstrated by showing that every pair

of licenses is combined and the result is a combined license
(i.e.,

⨁︀
is totally defined) and that the license combining

operator is a least upper bound, that is, ∀𝑙𝑖, 𝑙𝑗 , 𝑙𝑘 ∈ 𝐿:
(a) 𝑙𝑖 → 𝑙𝑖

⨁︀
𝑙𝑗 and 𝑙𝑗 → 𝑙𝑖

⨁︀
𝑙𝑗.

(b) 𝑙𝑖 → 𝑙𝑘 and 𝑙𝑗 → 𝑙𝑘 ⇒ 𝑙𝑖
⨁︀

𝑙𝑗 → 𝑙𝑘.
For (a) without loss of generality we can consider that

every pair of licenses is combined and the combining operator
is commutative and associative. In (b), for any two licenses 𝑙𝑖
and 𝑙𝑗 the least upper bound is 𝑙𝑖

⨁︀
𝑙𝑗 . This property implies

the existence of a supremum 𝑆 (or least upper bound) that
is a 𝑙1

⨁︀
𝑙2
⨁︀

...
⨁︀

𝑙𝑛 of 𝑛 licenses.
Our model with the lattice structure allow to answer our

research question given a license 𝑙𝑖, how to automatically
position 𝑙𝑖 over a set of licenses in terms of compatibility and
compliance? For a license 𝑙𝑖, the licenses which precede it
in the lattice are compatible with it, and the licenses which
follow it in the lattice are compliant with this one. This is

equivalent to say that 𝑙𝑖 is compliant with the licenses which
precede it in the lattice and it is compatible with the licenses
which follow it in the lattice.

When the constraint set 𝐶 is not empty, 𝐶 ̸= ∅, 𝑙𝑖 is
compatible with 𝑙𝑗 if there exists a path from 𝑙𝑖 to 𝑙𝑗 where
all compatible with relations and all licenses are viable.

3.3 Example 1
Consider a classification where licenses are simplified to a
set of prohibitions. The set 𝐴 of actions is {read, modify,
distribution}. The license combining operator consists in the
union of prohibitions. Resources are datasets in 𝑅. This 𝐶𝑎𝐿𝑖
classification is described as follows.

𝐿 = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡(𝐴) where each 𝑙𝑖 is a set of prohibited actions
𝑃𝑟𝑙𝑖 taken from 𝐴 ={read, modify, distribution}.⨁︀
is the license combining operator where 𝑙𝑖

⨁︀
𝑙𝑗 ≡ 𝑃𝑟𝑙𝑖∪

𝑃𝑟𝑙𝑗 .
→ is the compatible with relation stating that 𝑙𝑖 → 𝑙𝑗 iff

𝑃𝑟𝑙𝑖 ⊆ 𝑃𝑟𝑙𝑗 .
𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7}

↦→ is the protected by relation such that 𝑟1, 𝑟2 ↦→ 𝑙0; 𝑟3 ↦→
𝑙2; 𝑟4 ↦→ 𝑙3; 𝑟5 ↦→ 𝑙4; 𝑟6 ↦→ 𝑙6; 𝑟7 ↦→ 𝑙7.

𝐶 = ⟨𝐶𝐿, 𝐶→⟩ where 𝐶𝐿 = {𝜔𝐿1} and 𝐶→ = ∅ (all → rela-
tions are viable).

In this example, the constraint that characterizes viable
licenses is, if the 𝑚𝑜𝑑𝑖𝑓𝑦 action is prohibited then the 𝑟𝑒𝑎𝑑
action must be too:

𝜔𝐿1(𝑙𝑖) =

{︂
𝐹𝑎𝑙𝑠𝑒 if 𝑟𝑒𝑎𝑑 ∈ 𝑃𝑟𝑙𝑖 and 𝑚𝑜𝑑𝑖𝑓𝑦 /∈ 𝑃𝑟𝑙𝑖 ;
𝑇𝑟𝑢𝑒 otherwise.

Figure 2 shows a visual representation of the lattice of this
example. In the lattice, 𝐼 = ∅ and 𝑆 = 𝐴. The combining
operator generates the powerset of the first level of the lattice.
The first level of the lattice is composed by the minimal set of
licenses that allows CaLi to generate all other licenses. Due
to the combining operator, the minimal set for this example
is composed of licenses having only one action ∈ 𝐴, i.e.,
|𝑙𝑒𝑣𝑒𝑙1| = |𝐴|. The total number of licenses in L is 2|𝑙𝑒𝑣𝑒𝑙1| =
2|𝐴|. Non-viable licenses, 𝑙1 and 𝑙5, are part of the lattice but
they cannot protect resources.

To the question, “find resources whose licenses are compat-
ible with 𝑙4”, this lattice allows to answer 𝑟1, 𝑟2, 𝑟3 and 𝑟5
which are protected by 𝑙0 and 𝑙2 which precede 𝑙4 in the clas-
sification as well as by 𝑙4 itself. That means that resources
protected by 𝑙0, 𝑙2 and 𝑙4 can be reusable with resources
protected by 𝑙4.

Similarly, to the question, “find resources whose licenses
are compliant with 𝑙4”, this lattice allows to answer 𝑟5 and
𝑟7, which respectively are protected by license 𝑙7 as well as
by 𝑙4 itself. That means that resources protected by 𝑙4 are
reusable with resources protected by 𝑙4 and 𝑙7.

Thus, analyzing compatibility and compliance allow to
evaluate the reusability of resources.

Licenses above 𝑙4 are more restrictive than 𝑙4 and licenses
below 𝑙4 are less restrictive than 𝑙4. The least restrictive
compliant license for 𝑙4 is the direct following one 𝑙7. The most

CaLi: A Lattice-Based Model for License Classifications Working Paper, June, 2018

Figure 2: Visual representation of the CaLi classification of Example 1.

restrictive compatible licenses for 𝑙4 are the direct preceding
ones 𝑙1 and 𝑙2.

This example of classification illustrates our model with
a very simple combining operator. It shows how our model
answers the two motivating questions of this work. Next
section introduces a CaLi classification of licenses used to
publish creative works on the Web with a realistic combining
operator.

4 LICENSE CLASSIFICATION FOR
ACTIONS OF CREATIVE COMMONS

Creative Commons (CC) proposes easy-to-understand li-
censes that are widely used when publishing resources on
the web (creative content, linked data14, etc.). Licenses are
composed of at most 7 actions distributed in permissions,
obligations and prohibitions: cc:Distribution, cc:Reproduction,
cc:DerivativeWorks, cc:CommercialUse, cc:Notice, cc:Attribution,
cc:ShareAlike. CC REL is the language to express Creative
Commons licenses in RDF.

CC proposes only 7 licenses but with the CaLi model we
search to produce a complete classification of all possible
licenses using these 7 actions.

4.1 Description of a CC classification
based on CaLi

In this CC classification, we consider that each license has
a set of permissions, obligations and prohibitions. Licenses
are consolidated, that is, each term of the set of actions 𝐴
must appear in each license. The idea is that each action be
permitted, obliged or prohibited in each license.

The license combining operator makes the intersection
of permissions, the union of obligations and the union of
prohibitions of concerned licenses.

14https://ns.inria.fr/l4lod/v2/l4lod_v2.html

𝐿 = {⟨𝑃,𝑂, 𝑃𝑟⟩}; 𝑃,𝑂, 𝑃𝑟 are sets of permissions, obliga-
tions and prohibitions containing actions ∈ 𝐴; the
union of these sets is 𝐴.
𝐴 ={cc:Distribution, cc:Reproduction, cc:DerivativeWorks,
cc:CommercialUse, cc:Notice, cc:Attribution, cc:ShareAlike}.⨁︀
is the license combining operator, 𝑙𝑖

⨁︀
𝑙𝑗 ≡ ⟨𝑃𝑙𝑖 ∩

𝑃𝑙𝑗 , 𝑂𝑙𝑖 ∪ 𝑂𝑙𝑗 , 𝑃 𝑟𝑙𝑖 ∪ 𝑃𝑟𝑙𝑗 ⟩ where 𝑃𝑙𝑖 is the permis-
sion set of 𝑙𝑖, 𝑂𝑙𝑖 is the obligation set of 𝑙𝑖, and 𝑃𝑟𝑙𝑖
is the prohibition set of 𝑙𝑖.

→ is the compatible relation stating that 𝑙𝑖 → 𝑙𝑗 iff 𝑃𝑙𝑖 ⊇
𝑃𝑙𝑗 and 𝑂𝑙𝑖 ⊆ 𝑂𝑙𝑗 and 𝑃𝑟𝑙𝑖 ⊆ 𝑃𝑟𝑙𝑗 .

𝐶 = ⟨𝐶𝐿, 𝐶→⟩ where 𝐶𝐿 = {𝜔𝐿1} and 𝐶→ = {𝜔→1 , 𝜔→2}.
Concerning the set of constraints that characterizes viable

licenses and viable → relations:

𝜔𝐿1(𝑙𝑖) =

{︂
𝐹𝑎𝑙𝑠𝑒 if (𝑃𝑙𝑖 ∩𝑂𝑙𝑖) ∪ (𝑃𝑙𝑖 ∩ 𝑃𝑟𝑙𝑖) ∪ (𝑂𝑙𝑖 ∩ 𝑃𝑟𝑙𝑖) ̸= ∅;
𝑇𝑟𝑢𝑒 otherwise.

That is, sets of permissions, obligations and prohibitions are
mutually disjoint.

𝜔→1(𝑙𝑖, 𝑙𝑗) =

{︂
𝐹𝑎𝑙𝑠𝑒 if cc:ShareAlike ∈ 𝑂𝑙𝑖 and 𝑙𝑖 ̸= 𝑙𝑗 ;
𝑇𝑟𝑢𝑒 otherwise.

That is, cc:ShareAlike term obligates the distribution of
derivative works only under the same license.

𝜔→2(𝑙𝑖, 𝑙𝑗) =

{︂
𝐹𝑎𝑙𝑠𝑒 if cc:DerivativeWorks ∈ 𝑃𝑟𝑙𝑖 ;
𝑇𝑟𝑢𝑒 otherwise.

That is, if cc:DerivativeWorks is prohibited in 𝑙𝑖 then re-
sources protected by 𝑙𝑖 should not be protected by 𝑙𝑗 .

Other constraints could be defined, but for the purposes
of this classification we consider that these three constraints
are enough.

𝐼 = ⟨𝑙𝑙, 𝐴, ∅, ∅⟩ is the license compatible with all other
licenses of the lattice. 𝐼 is obtained by creating a license that
permits all actions from 𝐴.

https://ns.inria.fr/l4lod/v2/l4lod_v2.html

Working Paper, June, 2018 Benjamin Moreau, Patricia Serrano-Alvarado, and Emmanuel Desmontils

𝑆 = ⟨𝑙𝑠, ∅, 𝐴,𝐴⟩ is the license compliant with all other
licenses of the lattice. 𝑆 is obtained by combining all licenses
with

⨁︀
.

The size of the lattice for this classification (i.e., the num-
ber of licenses) is 22|𝐴| where 2|𝐴| is the size of the first level.
The first level of the lattice is composed of the minimal set of
licenses that allows

⨁︀
to generate all possible licenses, that

is, all licenses having |𝐴| − 1 actions in permissions and at
most one action in obligations or prohibitions: |𝑃𝑙𝑖 | = |𝐴| − 1
and |𝑂𝑙𝑖 |+ |𝑃𝑟𝑙𝑖 | = 1. That gives 2 |𝐴| = 14 licenses in our ex-
ample. Thus, this classification is composed of 16384 licenses.
The set of constraints identifies 2134 viable licenses.15

4.2 Analysis of the CC classification based
on CaLi compared to the Creative
Commons family

Our CC classification that uses the seven actions of Cre-
ative Commons is consistent with the one obtained from the
web2rights tool. The number of licenses produced by CaLi is
huge compared to the number of Creative Commons licenses
but our goal is not classify their seven licenses. Our goal is to
have a formal model that automatically classifies all possible
licenses from a set of actions. To control the number of viable
licenses, depending on the context, the set of constraints can
be expanded. For instance, all compatibility rules identified
in [13] can be included as 𝐶𝐿 constraints.

Table 1 shows some licenses of the first level of this lattice.
Next levels of the lattice are produced by the combining

operator. Table 2 shows some licenses of the Creative Com-
mons family. Notice that CC BY is produced by 𝑙1

⨁︀
𝑙2 and

CC BY-NC by 𝑙1
⨁︀

𝑙2
⨁︀

𝑙3.
Table 3 shows some licenses that are not part of the Cre-

ative Commons family. First license is like CC BY-NC but
without the obligation to give credit to the copyright holder
and/or author of the work. The second license prohibits to
make multiple copies of the resource. The third license obli-
gates the reuse of the resource by making exact copies of the
original source. The last license is the third license with the
prohibition to make a commercial use of the resource.

The combining operator may produce non-viable licenses
or non-viable compatibility relations. Table 4 shows one non-
viable license of the lattice that does not respect 𝐶1.

Figure 3 shows a small part of the lattice of this CaLi clas-
sification, the one that concerns the compatibility relations of
Creative Commons licenses. This graph shows only licenses
and → relations that are viable. Thanks to 𝐶2, the compat-
ibility relation between CC BY-SA and CC BY-NC-SA is
identified as non-viable and thanks to 𝐶3, the compatibility
relation between CC BY-ND and CC BY-NC-ND is identi-
fied as non-viable. We recall that the compatibility relations
of this graph are conform to the ones obtained from the
web2rights tool.

15This CaLi classification can be generated from https://github.com/
benjimor/CaLi/tree/combinatory_method

5 A LICENSE-BASED LINKED DATA
SEARCH ENGINE

We experiment the usefulness of a CaLi classification with
the implementation of a license-based search engine for the
Web of Data.

5.1 A CaLi-based classification for licenses
of the Web of Data

This search engine is based on a CaLi classification that
is similar to the CC classification of last section with the
following particularities: (i) 𝐴 contains the set of 72 actions
considered by ODRL16, (ii) licenses are not required to be
consolidated, and (iii) a 𝜔𝐿2 constraint is added to 𝐶𝐿.

Unlike Creative Commons actions, ODRL actions are orga-
nized using inclusion. For example, action use is included by
CommercialUse or play is included by display. To preserve
this dependency we include the constraint 𝜔𝐿2 in 𝐶𝐿 such
that, if an action 𝑎𝑖 is prohibited all the actions included in 𝑎𝑖

must not be permitted nor obligated. For example, a license
that prohibits Use is not viable if it permits or obligates
Commercial Use.

𝜔𝐿2(𝑙𝑖) =

⎧⎨⎩
𝐹𝑎𝑙𝑠𝑒 if ∃𝑎𝑖 ∈ 𝑃𝑟𝑙𝑖 and ∃𝑎𝑗 included by 𝑎𝑖

and (𝑎𝑗 ∈ 𝑃𝑙𝑖 or 𝑎𝑗 ∈ 𝑂𝑙𝑖);
𝑇𝑟𝑢𝑒 otherwise.

The generation of a lattice has a complexity of 𝑂(2𝑛). In
our case, 𝑛 = 2|𝐴| and the number of nodes in the lattice
is 2144. The number of nodes grows exponentially with the
number of terms resulting in a combinatorial explosion. Gen-
erating the complete lattice is not suitable for a real scenario
with a large number of terms. In next section, we show how
we can generate part of the lattice on the fly to implement a
license compliant tool.

5.2 Implementation of a license-based
search engine

Since the complete lattice cannot be generated, we propose
two algorithms to generate on the fly part of the lattice. This
approach is in 𝑂(𝑛) where 𝑛 is the number of existing nodes.

We chose to generate the most used licenses in datahub17

and in the OpenDataSoft platform18. We extracted the sets of
permissions, obligations and prohibitions from an existing set
of RDF licenses19. As currently we do not take into account
other aspects of a license like its jurisdiction, all licenses
having the same sets will be considered in the same node.

The search engine maintains an index of licenses. The
condition to add a license to our index is to have at least the
URI of one RDF dataset associated to this license. As in this
implementation the combining operator cannot combine all
licenses to generate the complete classification (because the

16https://www.w3.org/TR/odrl-vocab/#actionConcepts
17https://old.datahub.io/
18https://data.opendatasoft.com/pages/home/
19http://purl.org/NET/rdflicense

https://github.com/benjimor/CaLi/tree/combinatory_method
https://github.com/benjimor/CaLi/tree/combinatory_method
https://www.w3.org/TR/odrl-vocab/#actionConcepts
https://old.datahub.io/
https://data.opendatasoft.com/pages/home/
http://purl.org/NET/rdflicense

CaLi: A Lattice-Based Model for License Classifications Working Paper, June, 2018

Label Permissions Obligations Prohibitions

𝑙1

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:CommercialUse,
cc:Notice,

cc:Attribution ∅

𝑙2

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:CommercialUse,
cc:Attribution

cc:Notice ∅

𝑙3

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:Notice,
cc:Attribution

∅ cc:CommercialUse

𝑙4

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:Notice,
cc:Attribution

cc:CommercialUse ∅

Table 1: Some licenses of the first level of the lattice.

Label Permissions Obligations Prohibitions

𝑙1
⨁︀

𝑙2
(CC BY)

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:CommercialUse

cc:Notice,
cc:Attribution ∅

𝑙1
⨁︀

𝑙2
⨁︀

𝑙3
(CC BY NC)

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks

cc:Notice,
cc:Attribution cc:CommercialUse

Table 2: Some Creative Commons licenses of the lattice.

complete lattice cannot be generated), we make a verifica-
tion of compatibility and compliance of the new license over
(potentially all) existing licenses in the classification. The
goal is to be conform to the partial order of the lattice. The
challenge is to find the right place to insert new licenses.

First, the classification graph 𝐺 is initialized with the in-
fimum 𝐼, the supremum 𝑆 and the compatibility relation
𝐼 → 𝑆. Then, in order to insert a new license in the classifica-
tion, Algorithm 1 adds a new license 𝑙𝑖 and calls Algorithm 2
to position 𝑙𝑖 in the right place in the classification.

Algorithm 1 adds 𝑙𝑖 to the classification 𝐺 only if it is
viable. License 𝑙𝑖 is viable if it respects all constraints in
𝐶𝐿 (in the particular case of the license-based search engine,
𝐶1 and 𝐶4). Then, it calls the recursive Algorithm 2 with
𝐼 and 𝐺, to classify 𝑙𝑖 in licenses compliant with 𝐼, i.e., the
recursive link starts from the Infimum. Licenses compliant
with 𝐼 are all the licenses of 𝐺.

To be conform to the partial order of the lattice, Algo-
rithm 2 uses the combining operator to check if two licenses
are compatible. Using CaLi, license 𝑙𝑖 is compatible with 𝑙𝑗
iff 𝑙𝑖

⨁︀
𝑙𝑗 = 𝑙𝑗 . We recall that if 𝑙𝑖 is compatible with 𝑙𝑗

Working Paper, June, 2018 Benjamin Moreau, Patricia Serrano-Alvarado, and Emmanuel Desmontils

Label Permissions Obligations Prohibitions

𝑙3

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:Notice,
cc:Attribution

∅ cc:CommercialUse

𝑙1
⨁︀

𝑙2
⨁︀

𝑙𝑚

cc:Distribution,
cc:ShareAlike,
cc:DerivativeWorks,
cc:CommercialUse

cc:Notice,
cc:Attribution cc:Reproduction

𝑙1
⨁︀

𝑙2
⨁︀

𝑙𝑛
⨁︀

𝑙𝑜

cc:Distribution,
cc:ShareAlike,
cc:CommercialUse

cc:Notice,
cc:Attribution,
cc:Reproduction

cc:DerivativeWorks

𝑙1
⨁︀

𝑙2
⨁︀

𝑙3⨁︀
𝑙𝑛

⨁︀
𝑙𝑜

cc:Distribution,
cc:ShareAlike

cc:Notice,
cc:Attribution,
cc:Reproduction

cc:DerivativeWorks,
cc:CommercialUse

Table 3: Some non Creative Commons licenses of the lattice.

Label Permissions Obligations Prohibitions

𝑙3
⨁︀

𝑙4

cc:Distribution,
cc:Reproduction,
cc:ShareAlike,
cc:DerivativeWorks,
cc:Notice,
cc:Attribution

cc:CommercialUse cc:CommercialUse

Table 4: One non-viable license of the lattice.

Figure 3: Compatibility of Creative Commons licenses taken from the CC classification.

then 𝑙𝑗 is compliant with 𝑙𝑖. This algorithm recursively links
𝑙𝑖 to the least restrictive licenses compliant with 𝑙𝑖 in the
classification.

Algorithm 2 tries to add compatible relations → between
𝑙𝑖 and the least restrictive compatible licenses that are com-
pliant with 𝑙𝑗 (𝐿𝑅𝐶𝑙𝑗). A compatible relation is added only
if it is viable. Relation → is viable if it respects all 𝐶→ con-
straints (in the particular case of the license-based search

CaLi: A Lattice-Based Model for License Classifications Working Paper, June, 2018

Algorithm 1: Adds and classifies a new license in the
classification.

1 Function addAndClassify(𝑙𝑖, 𝐺):
Data: 𝑙𝑖: License, 𝐺: Classification Graph, 𝐼:

Infimum,
𝐶𝐿: Constraints on licenses
Result: Returns 𝐺 with 𝑙𝑖 classified

2 if viable(𝑙𝑖, 𝐶𝐿) then
// 𝑙𝑖 respects all 𝐶𝐿 constraints

3 Add 𝑙𝑖 to 𝐺
// Classifies 𝑙𝑖 in licenses compliant with 𝐼

4 classify(𝑙𝑖, 𝐼, 𝐺)
5 end
6 return 𝐺

7 end

engine, 𝐶2 and 𝐶3). Algorithm 2 checks if 𝑙𝑖 is compatible
with a least restrictive licenses 𝑙𝑐𝑜𝑚𝑝 compliant with 𝑙𝑗 . If 𝑙𝑖
is compatible with 𝑙𝑐𝑜𝑚𝑝 and 𝑙𝑖 is compatible with 𝑙𝑗 then 𝑙𝑖
is inserted between 𝑙𝑗 and 𝑙𝑐𝑜𝑚𝑝. If 𝑙𝑖 is only compatible with
𝑙𝑐𝑜𝑚𝑝, 𝑙𝑖 is linked to 𝑙𝑐𝑜𝑚𝑝. Otherwise, Algorithm 2 is called
again to find the least restrictive licenses compliant with 𝑙𝑖
in the graph containing licenses compliant with 𝑙𝑐𝑜𝑚𝑝.

Algorithm 2: Recursively classifies the new license to
compliant licenses

1 Function classify(𝑙𝑖, 𝑙𝑗, 𝐺):
Data: 𝑙𝑖, 𝑙𝑗 , 𝑙𝑐𝑜𝑚𝑝: License, 𝐺: Classification Graph,
𝐶→: Constraints on compatibility relations,
𝐿𝑅𝐶𝑙𝑗 : Least restrictive licenses compliant with 𝑙𝑗 in
𝐺

2 for 𝑙𝑐𝑜𝑚𝑝 ∈ 𝐿𝑅𝐶𝑙𝑗 do
3 if 𝑙𝑖

⨁︀
𝑙𝑐𝑜𝑚𝑝 = 𝑙𝑐𝑜𝑚𝑝 and viable(𝑙𝑖 → 𝑙𝑐𝑜𝑚𝑝,

𝐶→) then
// 𝑙𝑖 is compatible with 𝑙𝑐𝑜𝑚𝑝

// 𝑙𝑖 → 𝑙𝑐𝑜𝑚𝑝 respects all 𝐶→ constraints

4 add 𝑙𝑖 → 𝑙𝑐𝑜𝑚𝑝 to 𝐺

5 if 𝑙𝑗
⨁︀

𝑙𝑖 = 𝑙𝑖 and viable(𝑙𝑗 → 𝑙𝑖, 𝐶→) then
// 𝑙𝑖 is between 𝑙𝑗 and 𝑙𝑐𝑜𝑚𝑝

6 add 𝑙𝑗 → 𝑙𝑖 to 𝐺

7 delete 𝑙𝑗 → 𝑙𝑐𝑜𝑚𝑝 from 𝐺

8 end
9 else if 𝑙𝑖

⨁︀
𝑙𝑐𝑜𝑚𝑝 ̸= 𝑙𝑐𝑜𝑚𝑝 then

// Classifies 𝑙𝑖 in licenses compliant with 𝑙𝑐𝑜𝑚𝑝

10 classify(𝑙𝑖, 𝑙𝑐𝑜𝑚𝑝, 𝐺)
11 end
12 end

With these algorithms, when licenses are inserted to 𝐺
the partial order of the lattice is maintained. The produced
graph is part of the lattice and is directed and acyclic.

Another strategy can be implemented to reduce the aver-
age number of operations needed to classify a new license.
Algorithms 1 and 2 could start from the bottom (the least
restrictive license 𝐼) or the top (the most restrictive license 𝑆)

of 𝐺 depending on the cardinality of permissions, obligations
and prohibitions sets of the new license to insert.

Once the graph is enriched with licenses and associated
datasets, answering our questions is straightforward. Find-
ing all licensed datasets whose licenses are compliant with
a particular license 𝑙𝑖 means to retrieve datasets protected
by 𝑙𝑖 and all datasets protected by licenses that are above
𝑙𝑖 in the graph. Similarly, finding all licensed datasets whose
licenses are compatible with a specific license 𝑙𝑖 means to
retrieve datasets protected by 𝑙𝑖 and all datasets protected
by licenses that are below 𝑙𝑖 in the graph.

The prototype of this search engine is available at http:
//cali.priloo.univ-nantes.fr20. The home screen21 enables full-
text and license compliant searches of RDF datasets. The
CaLi classification is available through a documented API22

containing functions that can answer our questions. For ex-
ample, with /api/licenses/{licenseID}23/compatible, it is pos-
sible to retrieve licenses compatible with a particular license
(e.g., CC BY-NC24). Likewise, with /api/licenses/{licenseID}
/compliant it is possible to retrieve licenses compliant with a
particular license (e.g., CC BY-NC25). A graph visualization
of the classification is also available26.

The source code is available at Github27 under the MIT
license. The classification is stored using Neo4j28 because it
facilitates the storage and exploration of graph structures.

6 CONCLUSIONS AND
PERSPECTIVES

In this paper we proposed CaLi, a model to express license
classifications. The goal is to encourage the publication and
reuse of resources in a license compliant web.

CaLi can be used to classify licenses in different contexts
where resources need to be reused. It considers a set of licenses,
a combining operator, a compatibility relation over the set of
licenses and a set of constraints. We consider licenses as sets
of permissions, obligations and prohibitions. The combining
operator applied automatically to the set of licenses produces
a lattice that expresses both compliance and compatibility
among licenses. This lattice garantees a partial order over
licenses where the relation is compatible with is reflexive,
transitive and antisymmetric.

A limitation of our approach is the complexity in 𝑂(2𝑛) of
the lattice implementation. We demonstrate that the imple-
mentation of part of the lattice on-the-fly, in 𝑂(𝑛), is useful

20A video demonstration is available at https://youtu.be/
YkSWHSiD-Ps.
21http://cali.priloo.univ-nantes.fr
22http://cali.priloo.univ-nantes.fr/api
23licenseID is the hash of permissions, obligations and prohibitions of
a license.
24http://cali.priloo.univ-nantes.fr/api/licenses/
3154600001362308832/compatible
25http://cali.priloo.univ-nantes.fr/api/licenses/
3154600001362308832/compliant
26http://cali.priloo.univ-nantes.fr/graph
27https://github.com/benjimor/CaLi
28https://neo4j.com

http://cali.priloo.univ-nantes.fr
http://cali.priloo.univ-nantes.fr
https://youtu.be/YkSWHSiD-Ps
https://youtu.be/YkSWHSiD-Ps
http://cali.priloo.univ-nantes.fr
http://cali.priloo.univ-nantes.fr/api
http://cali.priloo.univ-nantes.fr/api/licenses/3154600001362308832/compatible
http://cali.priloo.univ-nantes.fr/api/licenses/3154600001362308832/compatible
http://cali.priloo.univ-nantes.fr/api/licenses/3154600001362308832/compliant
http://cali.priloo.univ-nantes.fr/api/licenses/3154600001362308832/compliant
http://cali.priloo.univ-nantes.fr/graph
https://github.com/benjimor/CaLi
https://neo4j.com

Working Paper, June, 2018 Benjamin Moreau, Patricia Serrano-Alvarado, and Emmanuel Desmontils

for a real application like the license-based search engine we
present.

A perspective of this work is to take into account other
aspects of a license related to usage contexts like jurisdiction,
dates of reuse, etc. Another perspective is to analyse how
two CaLi classifications can be compared. That is, (1) if two
classifications are defined with different sets of actions 𝐴1

and 𝐴2, (2) if there exist an aligment between 𝐴1 and 𝐴2,
and (3) if the combining operators of both classifications are
compatible then find a function (for instance) to pass from a
lattice to another.

ACKNOWLEDGMENTS
Authors thank Matthieu Perrin for his helpful comments on
this work.

REFERENCES
[1] Elena Cabrio, Alessio Palmero Aprosio, and Serena Villata. 2014.

These Are Your Rights. In European Semantic Web Conference
(ESWC).

[2] Creative Commons. 2017. cc.licenserdf. https://github.com/
creativecommons/cc.licenserdf.

[3] Enrico Daga, Mathieu d’Aquin, Enrico Motta, and Aldo Gangemi.
2015. A Bottom-up Approach for Licences Classification and
Selection. In International Semantic Web Conference (ISWC).

[4] Dorothy E Denning. 1976. A Lattice Model of Secure Information
Flow. Commun. ACM 19, 5 (1976), 236–243.

[5] GR Gangadharan, Michael Weiss, Vincenzo D’Andrea, and Renato
Iannella. 2007. Service License Composition and Compatibility
Analysis. In International Conference on Service-Oriented Com-
puting (ICSOC). 257–269.

[6] Guido Governatori, Antonino Rotolo, Serena Villata, and Fabien
Gandon. 2013. One License to Compose Them All. A Deon-
tic Logic Approach to Data Licensing on the Web of Data. In
International Semantic Web Conference (ISWC).

[7] Georgia M Kapitsaki, Frederik Kramer, and Nikolaos D Tselikas.
2017. Automating the License Compatibility Process in Open
Source Software With SPDX. Journal of Systems and Software
131 (2017), 386–401.

[8] Marco Mesiti, Paolo Perlasca, and Stefano Valtolina. 2013. On the
Composition of Digital Licenses in Collaborative Environments.
In Conference on Database and Expert Systems Applications
(DEXA).

[9] Víctor Rodríguez Doncel, A Gómez-Pérez, and Serena Villata.
2014. A Dataset of RDF Licenses. In Legal Knowledge and
Information Systems Conference (ICLKIS).

[10] Norman Sadeh, Alessandro Acquisti, Travis D Breaux, Lorrie Faith
Cranor, Aleecia M McDonald, Joel Reidenberg, Noah A Smith,
Fei Liu, N Cameron Russell, Florian Schaub, et al. 2014. Towards
Usable Privacy Policies: Semi-Automatically Extracting Data
Practices from Websites? Privacy Policies. Symposium on Usable
Privacy and Security (SOUPS) (2014), 9–11.

[11] Ravi S. Sandhu. 1993. Lattice-Based Access Control Models.
Computer 26, 11 (1993), 9–19.

[12] Valeria Soto-Mendoza, Patricia Serrano-Alvarado, Emmanuel
Desmontils, and Jose Antonio Garcia-Macias. 2015. Policies
Composition Based on Data Usage Context. In Consuming
Linked Data (COLD) in International Semantic Web Confer-
ence (ISWC).

[13] Serena Villata and Fabien Gandon. 2012. Licenses Compatibility
and Composition in the Web of Data. In Consuming Linked Data
(COLD) in International Semantic Web Conference (ISWC),
Vol. 905.

https://github.com/creativecommons/cc.licenserdf
https://github.com/creativecommons/cc.licenserdf

	Abstract
	1 Introduction
	2 Related work
	2.1 Machine-readable licenses
	2.2 Tools for license compliant resources
	2.3 License compatibility and license combination
	2.4 License classification
	2.5 Lattice-based access control

	3 CaLi: A lattice-based license model
	3.1 Model description
	3.2 Lattice structure "426830A L, , "526930B
	3.3 Example 1

	4 License classification for actions of Creative Commons
	4.1 Description of a CC classification based on CaLi
	4.2 Analysis of the CC classification based on CaLi compared to the Creative Commons family

	5 A license-based linked data search engine
	5.1 A CaLi-based classification for licenses of the Web of Data
	5.2 Implementation of a license-based search engine

	6 Conclusions and perspectives
	References

