Benjamin Moreau
email: benjamin.moreau@opendatasoft.com

Patricia Serrano-Alvarado
email: patricia.serrano-alvarado@ls2n.fr

Emmanuel Desmontils
email: emmanuel.desmontils@ls2n.fr

A Lattice-Based Model for License Classifications

Keywords: Licenses, usage control, privacy, linked data, RDF, ODRL

come

INTRODUCTION

Web applications facilitate combining resources (linked data, web services, source code, documents, etc.) to create new ones. Resource producers should systematically associate licenses with resources before sharing or publishing them. Licenses specify precisely the conditions of reuse of resources, i.e., what actions are permitted, obliged and prohibited when using the resource.

For a resource producer, choosing the appropriate license for a combined resource and choosing the appropriate licensed resources for a combination is a difficult process. It involves choosing a license compliant with all the licenses of combined resources as well as controlling the reusability of the resulting resource through the compatibility of its license. The risk is either, to choose a license too restrictive making the resource difficult to reuse, or to choose a not enough restrictive license that will not sufficiently protect the resource.

We consider a simplified definition of compliance inspired by works like [START_REF] Gr Gangadharan | Service License Composition and Compatibility Analysis[END_REF][START_REF] Governatori | One License to Compose Them All. A Deontic Logic Approach to Data Licensing on the Web of Data[END_REF][START_REF] Kapitsaki | Automating the License Compatibility Process in Open Source Software With SPDX[END_REF][START_REF] Villata | Licenses Compatibility and Composition in the Web of Data[END_REF]: a license 𝑙𝑗 is compliant with a license 𝑙𝑖 if a resource licensed under 𝑙𝑖 can be licensed under 𝑙𝑗 without violating 𝑙𝑖. If a license 𝑙𝑗 is compliant with 𝑙𝑖 then we consider that 𝑙𝑖 is compatible with 𝑙𝑗 and that resources licensed under 𝑙𝑖 are reusable with resources licensed under 𝑙𝑗.

Compatibility of licenses can be verified through the actions permitted, obliged and prohibited. In general, when 𝑙𝑖 is compatible with 𝑙𝑗, the obligations and prohibitions of 𝑙𝑖 exist in 𝑙𝑗, and 𝑙𝑗 has at most the permissions of 𝑙𝑖. Figure 1 shows an excerpt of three Creative Commons (CC) 1 licenses described in RDF using the ODRL vocabulary 2 . We can notice that:

• CC BY is compatible with CC BY, CC BY-NC and CC BY-NC-ND; • CC BY-NC is compatible with CC BY-NC, CC BY-NC-ND; and • CC BY-NC-ND is compatible with CC BY-NC-ND.

Imagine a search engine that can find linked data based on their licenses. Consider this search "find all datasets concerning bikes that can be reused under the CC BY-NC license". The answer must contain datasets with licenses compatible with CC BY-NC that (in our example) are less or as restrictive as it. Consider this other search that will find out the reusability of the combined resource "find all datasets that can reuse a dataset protected by CC BY-NC ". The answer must contain datasets with licenses compliant with CC BY-NC that (in our example) are at least as restrictive as it is (CC BY-NC and CC BY-NC-ND). Answers are order form the least to the most restrictive (or vice versa).

We can imagine a similar search engine for services such as GitHub 3 or APISearch 4 that could find source code repositories or APIs protected by licenses that are compatible or compliant with a specific license.

We argue that a model for license classifications would make possible the existence of such a license-based search engines. Our research question is: given a license 𝑙𝑖, how to automatically position 𝑙𝑖 over a set of licenses in terms of compatibility and compliance? That is, given a set of licenses, what are the licenses that precede and follow 𝑙𝑖 in terms of compatibility and compliance?

Our contribution is twofold: (1) inspired by access control models [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF][START_REF] Sandhu | Lattice-Based Access Control Models[END_REF], we propose CaLi (ClAssification of LIcenses), a lattice-based model for license classifications and (2) a prototype of a search engine based on a CaLi classification that allows to find datasets of the Web of Data whose licenses are compatible or compliant with a target license.

Our work is a step forward in creating tools that facilitate the creation and reuse of license compliant resources. This kind of effort will encourage the publication and reuse of data in the Web of Data.

The remainder of the paper is as follows. Section 2 discuses related works, Section 3 introduces the CaLi model, Section 4 illustrates the usability of our model, Section 5 shows the implementation of a license-based search engine for linked data, and Section 6 concludes.

RELATED WORK

This section analyses several approaches and tools related to our research question.

Machine-readable licenses

Automatic license classification requires machine-readable licenses. License expression languages such as CC REL 5 , ODRL, or L4LOD6 enable fine-grained RDF description of licenses. Works like [START_REF] Sadeh | Towards Usable Privacy Policies: Semi-Automatically Extracting Data Practices from Websites? Privacy Policies[END_REF] and [START_REF] Cabrio | These Are Your Rights[END_REF] use natural language processing to automatically generate RDF licenses from licenses described in natural language. Other works such as [START_REF] Víctor | A Dataset of RDF Licenses[END_REF] or [2] propose a set of well-known licenses in RDF described in CC REL and ODRL. In this work we do not address these issues, we consider that there exist consistent licenses described in RDF.

Tools for license compliant resources

There exist some tools to facilitate the creation of license compliant resources. TLDRLegal7 , CC Choose8 and ChooseALicense 9 help users to choose actions to form a license for their resources.

CC search10 allows users to find images licensed under Creative Commons licenses that can be commercialized, modified, adapted, or built upon.

Web2rights proposes a tool to check compatibility among Creative Commons licenses 11 .

Finally, Licentia 12 , based on defeasible deontic logic to reason over the licenses, proposes a web service to find licenses compatible with a set of permissions, obligations and prohibitions chosen by the user.

From these tools, only Licentia uses machine-readable licenses 13 described in RDF using ODRL. Unfortunately, Licentia is not able to order licenses in terms of compatibility or compliance.

License compatibility and license combination

The easiest way to choose a license for a combined resource is to create a new one by combining all resource licenses to combine. Several works address the problem of license compatibility and license combination.

In Web services, [START_REF] Gr Gangadharan | Service License Composition and Compatibility Analysis[END_REF] proposes a framework that analyzes compatibility of licenses to verify if two services are compatible and then generate the composite service license. [START_REF] Mesiti | On the Composition of Digital Licenses in Collaborative Environments[END_REF] addresses the problem of license preservation during the combination of digital resources (e.g., music, data, picture, etc.) in a collaborative environment. Licenses of combined resources are combined into a new one.

In the Web of Data, [START_REF] Villata | Licenses Compatibility and Composition in the Web of Data[END_REF] proposes a framework to check compatibility among CC REL licenses. If licenses are compatible, a new license compliant with combined ones is generated. [START_REF] Governatori | One License to Compose Them All. A Deontic Logic Approach to Data Licensing on the Web of Data[END_REF] formally defines the combination of licenses using deontic logic. [START_REF] Soto-Mendoza | Policies Composition Based on Data Usage Context[END_REF] proposes PrODUCE, an approach to combine usage policies taking into account the usage context. These works focus on combining operators for automatic license combination but do not propose to position a license over a set of licenses.

Such operators will be very valuable in the design of an automatic classification.

License classification

Concerning the problem of license classification to facilitate the selection of a license, [START_REF] Daga | A Bottom-up Approach for Licences Classification and Selection[END_REF] uses Formal Concept Analysis (FCA) to generate a lattice of actions. Once pruned and annotated, this lattice can be used to classify licenses in terms of features. This classification reduces the selection of a license to an average of three to five questions. However, this work does not address the problem of license combination and license compatibility. Moreover, FCA is not suitable to generate complex compatibility relations among licenses. FCA defines a derivation operator on objects that returns a set of attributes shared by the objects. We consider that the set of actions in common of two licenses is not enough to infer compatibility. If applied to our introductory license compatibility example, FCA can only work with permissions but not with obligations and prohibitions. That is because 𝑙𝑖 is compatible with 𝑙𝑗 if 𝑙𝑖 permissions are a superset of 𝑙𝑗 permissions, but regarding obligations and prohibitions, 𝑙𝑖 is compatible with 𝑙𝑗 if they are a subset of those of 𝑙𝑗.

In the context of Free Open Source Software (FOSS), [START_REF] Kapitsaki | Automating the License Compatibility Process in Open Source Software With SPDX[END_REF] proposes an approach, based on a directed acyclic graph, to detect license violations in existing software packages. It considers that license 𝑙𝑖 is compatible with 𝑙𝑗 if the graph contains a path from 𝑙𝑖 to 𝑙𝑗. However, as such a graph is build from a manual interpretation of each license, its generalization and automation is not possible.

Lattice-based access control

In the domain of access control, [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF] proposes a lattice model of secure information flow. This model classifies security classes with associated resources. Like in the compatibility graph of [START_REF] Kapitsaki | Automating the License Compatibility Process in Open Source Software With SPDX[END_REF], security class 𝑠𝑐𝑖 is compatible with 𝑠𝑐𝑗 if the lattice contains a path from 𝑠𝑐𝑖 to 𝑠𝑐𝑗. Thus, this path represents the authorized flow of resources (e.g., resource 𝑟𝑖 protected with 𝑠𝑐𝑖 can flow to a resource protected by 𝑠𝑐𝑗 without violating 𝑠𝑐𝑖.). The lattice can be generated automatically through a pairwise combination of all security classes if 𝑠𝑐𝑖 combined with 𝑠𝑐 𝑘 gives 𝑠𝑐𝑗 where 𝑠𝑐𝑖 and 𝑠𝑐 𝑘 are both compatible with 𝑠𝑐𝑗. [START_REF] Sandhu | Lattice-Based Access Control Models[END_REF] describes several models based on this approach but none focuses on classifying licenses.

None of these works answers our research question. They do not allow to automatically position a license over a set of licenses in terms of both compatibility and compliance.

In our work we propose a lattice-based model inspired by [START_REF] Denning | A Lattice Model of Secure Information Flow[END_REF]. Existing combining operators like [START_REF] Gr Gangadharan | Service License Composition and Compatibility Analysis[END_REF][START_REF] Governatori | One License to Compose Them All. A Deontic Logic Approach to Data Licensing on the Web of Data[END_REF][START_REF] Soto-Mendoza | Policies Composition Based on Data Usage Context[END_REF][START_REF] Villata | Licenses Compatibility and Composition in the Web of Data[END_REF]] make feasible the automatic generation of a lattice. Our model allows users to easily find and compare licenses as well as licensed resources. This model is independent on any license combination approach, license description language and licensed resources so that it can be used in a wide variety of domains.

CALI: A LATTICE-BASED LICENSE MODEL

CaLi is a model that allows to express license classifications with a lattice structure. The model considers a finite set of licenses, a combining operator, a compatibility relation over licenses, resources and their association with licenses, and a constraint set. The combining operator applied to the set of licenses produces a lattice that expresses the compliance and compatibility among licenses.

Next section introduces the CaLi model, then we describe its lattice structure and we finish with a simple example of a CaLi-based classification.

Model description

The license classification model is introduced by Definition 3.1.

Definition 3.1. CaLi = ⟨𝐿, ⨁︀ , →, 𝑅, ↦ →, 𝐶⟩. 𝐿 = {𝑙1, ..., 𝑙𝑛} is a set of licenses.
⨁︀ is a license combining operator. → is the compatible with relation defined on pairs of licenses. 𝑅 = {𝑟1, ..., 𝑟𝑚} is a set of resources. ↦ → is the protected by relation between 𝑅 and 𝐿. 𝐶 = ⟨𝐶𝐿, 𝐶→⟩ is a finite set of constraints to express viability.

𝐶𝐿 is a set of constraints over 𝐿 and 𝐶→ is a set of constraints over → in 𝐿 × 𝐿.

A license is considered as a set of actions. Actions used in 𝐿 can be taken from 𝐴 = {𝑎1, ..., 𝑎𝑛}, a set of actions that can be applied on resources.

⨁︀ is an associative and commutative binary operator that specifies for any pair of licenses, the combined license that is compliant with both licenses. For licenses 𝑙𝑖 and 𝑙 𝑘 , if 𝑙𝑖 ⨁︀ 𝑙 𝑘 = 𝑙𝑗 then 𝑙𝑗 is compliant with 𝑙𝑖 and 𝑙 𝑘 . For licenses 𝑙𝑖 and 𝑙𝑗, we write 𝑙𝑖 → 𝑙𝑗 iff 𝑙𝑖 is compatible with 𝑙𝑗 (or 𝑙𝑗 is compliant with 𝑙𝑖). 𝑙𝑖 → 𝑙𝑗 implies 𝑙𝑖 ⨁︀ 𝑙𝑗 = 𝑙𝑗, i.e., 𝑙𝑗 overcomes 𝑙𝑖.

Concerning 𝑅, we write 𝑟𝑖 ↦ → 𝑙𝑖 when the resource 𝑟𝑖 is protected by 𝑙𝑖. For 𝑟𝑖 ↦ → 𝑙𝑖, if 𝑙𝑖 is compatible with 𝑙𝑗 then 𝑟𝑖 can be protected by 𝑙𝑗.

In this work, we introduce the concepts of viability of a license and viability of a → relation.

• A viable license is a license that allows the licensed resource to be used. A license 𝑙𝑖 is viable iff it respects all 𝐶𝐿 constraints. We define a constraint on licenses as an application 𝜔𝐿 : 𝐿 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 which associates each license of 𝐿 with either True or False. Our model with the lattice structure allow to answer our research question given a license 𝑙𝑖, how to automatically position 𝑙𝑖 over a set of licenses in terms of compatibility and compliance? For a license 𝑙𝑖, the licenses which precede it in the lattice are compatible with it, and the licenses which follow it in the lattice are compliant with this one. This is equivalent to say that 𝑙𝑖 is compliant with the licenses which precede it in the lattice and it is compatible with the licenses which follow it in the lattice.

When the constraint set 𝐶 is not empty, 𝐶 ̸ = ∅, 𝑙𝑖 is compatible with 𝑙𝑗 if there exists a path from 𝑙𝑖 to 𝑙𝑗 where all compatible with relations and all licenses are viable.

Example 1

Consider a classification where licenses are simplified to a set of prohibitions. The set 𝐴 of actions is {read, modify, distribution}. The license combining operator consists in the union of prohibitions. Resources are datasets in 𝑅. This 𝐶𝑎𝐿𝑖 classification is described as follows. In this example, the constraint that characterizes viable licenses is, if the 𝑚𝑜𝑑𝑖𝑓 𝑦 action is prohibited then the 𝑟𝑒𝑎𝑑 action must be too:

𝐿 = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡(𝐴)
𝜔𝐿 1 (𝑙𝑖) = {︂ 𝐹 𝑎𝑙𝑠𝑒 if 𝑟𝑒𝑎𝑑 ∈ 𝑃 𝑟 𝑙 𝑖 and 𝑚𝑜𝑑𝑖𝑓 𝑦 / ∈ 𝑃 𝑟 𝑙 𝑖 ; 𝑇 𝑟𝑢𝑒 otherwise.
Figure 2 shows a visual representation of the lattice of this example. In the lattice, 𝐼 = ∅ and 𝑆 = 𝐴. The combining operator generates the powerset of the first level of the lattice. The first level of the lattice is composed by the minimal set of licenses that allows CaLi to generate all other licenses. Due to the combining operator, the minimal set for this example is composed of licenses having only one action ∈ 𝐴, i.e., |𝑙𝑒𝑣𝑒𝑙1| = |𝐴|. The total number of licenses in L is 2 |𝑙𝑒𝑣𝑒𝑙 1 | = 2 |𝐴| . Non-viable licenses, 𝑙1 and 𝑙5, are part of the lattice but they cannot protect resources.

To the question, "find resources whose licenses are compatible with 𝑙4", this lattice allows to answer 𝑟1, 𝑟2, 𝑟3 and 𝑟5 which are protected by 𝑙0 and 𝑙2 which precede 𝑙4 in the classification as well as by 𝑙4 itself. That means that resources protected by 𝑙0, 𝑙2 and 𝑙4 can be reusable with resources protected by 𝑙4.

Similarly, to the question, "find resources whose licenses are compliant with 𝑙4", this lattice allows to answer 𝑟5 and 𝑟7, which respectively are protected by license 𝑙7 as well as by 𝑙4 itself. That means that resources protected by 𝑙4 are reusable with resources protected by 𝑙4 and 𝑙7.

Thus, analyzing compatibility and compliance allow to evaluate the reusability of resources.

Licenses above 𝑙4 are more restrictive than 𝑙4 and licenses below 𝑙4 are less restrictive than 𝑙4. The least restrictive compliant license for 𝑙4 is the direct following one 𝑙7. The most

LICENSE CLASSIFICATION FOR ACTIONS OF CREATIVE COMMONS

Creative Commons (CC) proposes easy-to-understand licenses that are widely used when publishing resources on the web (creative content, linked data 14 , etc.). Licenses are composed of at most 7 actions distributed in permissions, obligations and prohibitions: cc:Distribution, cc:Reproduction, cc:DerivativeWorks, cc:CommercialUse, cc:Notice, cc:Attribution, cc:ShareAlike. CC REL is the language to express Creative Commons licenses in RDF. CC proposes only 7 licenses but with the CaLi model we search to produce a complete classification of all possible licenses using these 7 actions.

Description of a CC classification based on CaLi

In this CC classification, we consider that each license has a set of permissions, obligations and prohibitions. Licenses are consolidated, that is, each term of the set of actions 𝐴 must appear in each license. The idea is that each action be permitted, obliged or prohibited in each license. The license combining operator makes the intersection of permissions, the union of obligations and the union of prohibitions of concerned licenses. Concerning the set of constraints that characterizes viable licenses and viable → relations:

𝜔𝐿 1 (𝑙𝑖) = {︂ 𝐹 𝑎𝑙𝑠𝑒 if (𝑃 𝑙 𝑖 ∩ 𝑂 𝑙 𝑖) ∪ (𝑃 𝑙 𝑖 ∩ 𝑃 𝑟 𝑙 𝑖) ∪ (𝑂 𝑙 𝑖 ∩ 𝑃 𝑟 𝑙 𝑖) ̸ = ∅; 𝑇 𝑟𝑢𝑒 otherwise.
That is, sets of permissions, obligations and prohibitions are mutually disjoint.

𝜔→ 1 (𝑙𝑖, 𝑙𝑗) = {︂ 𝐹 𝑎𝑙𝑠𝑒 if cc:ShareAlike ∈ 𝑂 𝑙 𝑖 and 𝑙𝑖 ̸ = 𝑙𝑗; 𝑇 𝑟𝑢𝑒 otherwise.
That is, cc:ShareAlike term obligates the distribution of derivative works only under the same license.

𝜔→ 2 (𝑙𝑖, 𝑙𝑗) = {︂ 𝐹 𝑎𝑙𝑠𝑒 if cc:DerivativeWorks ∈ 𝑃 𝑟 𝑙 𝑖 ; 𝑇 𝑟𝑢𝑒 otherwise.
That is, if cc:DerivativeWorks is prohibited in 𝑙𝑖 then resources protected by 𝑙𝑖 should not be protected by 𝑙𝑗.

Other constraints could be defined, but for the purposes of this classification we consider that these three constraints are enough. 𝐼 = ⟨𝑙 𝑙 , 𝐴, ∅, ∅⟩ is the license compatible with all other licenses of the lattice. 𝐼 is obtained by creating a license that permits all actions from 𝐴. 𝑆 = ⟨𝑙𝑠, ∅, 𝐴, 𝐴⟩ is the license compliant with all other licenses of the lattice. 𝑆 is obtained by combining all licenses with ⨁︀ . The size of the lattice for this classification (i.e., the number of licenses) is 2 2|𝐴| where 2|𝐴| is the size of the first level. The first level of the lattice is composed of the minimal set of licenses that allows ⨁︀ to generate all possible licenses, that is, all licenses having |𝐴| -1 actions in permissions and at most one action in obligations or prohibitions:

|𝑃 𝑙 𝑖 | = |𝐴| -1 and |𝑂 𝑙 𝑖 |+|𝑃 𝑟 𝑙 𝑖 | = 1.
That gives 2 |𝐴| = 14 licenses in our example. Thus, this classification is composed of 16384 licenses. The set of constraints identifies 2134 viable licenses. 15

Analysis of the CC classification based on CaLi compared to the Creative Commons family

Our CC classification that uses the seven actions of Creative Commons is consistent with the one obtained from the web2rights tool. The number of licenses produced by CaLi is huge compared to the number of Creative Commons licenses but our goal is not classify their seven licenses. Our goal is to have a formal model that automatically classifies all possible licenses from a set of actions. To control the number of viable licenses, depending on the context, the set of constraints can be expanded. For instance, all compatibility rules identified in [START_REF] Villata | Licenses Compatibility and Composition in the Web of Data[END_REF] can be included as 𝐶𝐿 constraints.

Table 1 shows some licenses of the first level of this lattice.

Next levels of the lattice are produced by the combining operator. Table 2 shows some licenses of the Creative Commons family. Notice that CC BY is produced by 𝑙1 ⨁︀ 𝑙2 and CC BY-NC by 𝑙1 ⨁︀ 𝑙2 ⨁︀ 𝑙3. Table 3 shows some licenses that are not part of the Creative Commons family. First license is like CC BY-NC but without the obligation to give credit to the copyright holder and/or author of the work. The second license prohibits to make multiple copies of the resource. The third license obligates the reuse of the resource by making exact copies of the original source. The last license is the third license with the prohibition to make a commercial use of the resource.

The combining operator may produce non-viable licenses or non-viable compatibility relations. Table 4 shows one nonviable license of the lattice that does not respect 𝐶1.

Figure 3 shows a small part of the lattice of this CaLi classification, the one that concerns the compatibility relations of Creative Commons licenses. This graph shows only licenses and → relations that are viable. Thanks to 𝐶2, the compatibility relation between CC BY-SA and CC BY-NC-SA is identified as non-viable and thanks to 𝐶3, the compatibility relation between CC BY-ND and CC BY-NC-ND is identified as non-viable. We recall that the compatibility relations of this graph are conform to the ones obtained from the web2rights tool.

A CaLi-based classification for licenses of the Web of Data

This search engine is based on a CaLi classification that is similar to the CC classification of last section with the following particularities: (i) 𝐴 contains the set of 72 actions considered by ODRL16 , (ii) licenses are not required to be consolidated, and (iii) a 𝜔𝐿 2 constraint is added to 𝐶𝐿. Unlike Creative Commons actions, ODRL actions are organized using inclusion. For example, action use is included by CommercialUse or play is included by display. To preserve this dependency we include the constraint 𝜔𝐿 2 in 𝐶𝐿 such that, if an action 𝑎𝑖 is prohibited all the actions included in 𝑎𝑖 must not be permitted nor obligated. For example, a license that prohibits Use is not viable if it permits or obligates Commercial Use.

𝜔𝐿 2 (𝑙𝑖) = ⎧ ⎨ ⎩ 𝐹 𝑎𝑙𝑠𝑒 if ∃𝑎𝑖 ∈ 𝑃 𝑟 𝑙 𝑖 and ∃𝑎𝑗 included by 𝑎𝑖 and (𝑎𝑗 ∈ 𝑃 𝑙 𝑖 or 𝑎𝑗 ∈ 𝑂 𝑙 𝑖); 𝑇 𝑟𝑢𝑒 otherwise.
The generation of a lattice has a complexity of 𝑂(2 𝑛). In our case, 𝑛 = 2|𝐴| and the number of nodes in the lattice is 2 144 . The number of nodes grows exponentially with the number of terms resulting in a combinatorial explosion. Generating the complete lattice is not suitable for a real scenario with a large number of terms. In next section, we show how we can generate part of the lattice on the fly to implement a license compliant tool.

Implementation of a license-based search engine

Since the complete lattice cannot be generated, we propose two algorithms to generate on the fly part of the lattice. This approach is in 𝑂(𝑛) where 𝑛 is the number of existing nodes. We chose to generate the most used licenses in datahub17 and in the OpenDataSoft platform18 . We extracted the sets of permissions, obligations and prohibitions from an existing set of RDF licenses 19 . As currently we do not take into account other aspects of a license like its jurisdiction, all licenses having the same sets will be considered in the same node.

The search engine maintains an index of licenses. The condition to add a license to our index is to have at least the URI of one RDF dataset associated to this license. As in this implementation the combining operator cannot combine all licenses to generate the complete classification (because the complete lattice cannot be generated), we make a verification of compatibility and compliance of the new license over (potentially all) existing licenses in the classification. The goal is to be conform to the partial order of the lattice. The challenge is to find the right place to insert new licenses. First, the classification graph 𝐺 is initialized with the infimum 𝐼, the supremum 𝑆 and the compatibility relation 𝐼 → 𝑆. Then, in order to insert a new license in the classification, Algorithm 1 adds a new license 𝑙𝑖 and calls Algorithm 2 to position 𝑙𝑖 in the right place in the classification.

Algorithm 1 adds 𝑙𝑖 to the classification 𝐺 only if it is viable. License 𝑙𝑖 is viable if it respects all constraints in 𝐶𝐿 (in the particular case of the license-based search engine, 𝐶1 and 𝐶4). Then, it calls the recursive Algorithm 2 with 𝐼 and 𝐺, to classify 𝑙𝑖 in licenses compliant with 𝐼, i.e., the recursive link starts from the Infimum. Licenses compliant with 𝐼 are all the licenses of 𝐺.

To be conform to the partial order of the then 𝑙𝑗 is compliant with 𝑙𝑖. This algorithm recursively links 𝑙𝑖 to the least restrictive licenses compliant with 𝑙𝑖 in the classification.

Algorithm 2 tries to add compatible relations → between 𝑙𝑖 and the least restrictive compatible licenses that are compliant with 𝑙𝑗 (𝐿𝑅𝐶 𝑙 𝑗). A compatible relation is added only if it is viable. Relation → is viable if it respects all 𝐶→ constraints (in the particular case of the license-based search With these algorithms, when licenses are inserted to 𝐺 the partial order of the lattice is maintained. The produced graph is part of the lattice and is directed and acyclic.

Another strategy can be implemented to reduce the average number of operations needed to classify a new license. Algorithms 1 and 2 could start from the bottom (the least restrictive license 𝐼) or the top (the most restrictive license 𝑆) of 𝐺 depending on the cardinality of permissions, obligations and prohibitions sets of the new license to insert.

Once the graph is enriched with licenses and associated datasets, answering our questions is straightforward. Finding all licensed datasets whose licenses are compliant with a particular license 𝑙𝑖 means to retrieve datasets protected by 𝑙𝑖 and all datasets protected by licenses that are above 𝑙𝑖 in the graph. Similarly, finding all licensed datasets whose licenses are compatible with a specific license 𝑙𝑖 means to retrieve datasets protected by 𝑙𝑖 and all datasets protected by licenses that are below 𝑙𝑖 in the graph.

The prototype of this search engine is available at http: //cali.priloo.univ-nantes.fr20 . The home screen21 enables fulltext and license compliant searches of RDF datasets. The CaLi classification is available through a documented API22 containing functions that can answer our questions. For example, with /api/licenses/{licenseID}23 /compatible, it is possible to retrieve licenses compatible with a particular license (e.g., CC BY-NC24). Likewise, with /api/licenses/{licenseID} /compliant it is possible to retrieve licenses compliant with a particular license (e.g., CC BY-NC25). A graph visualization of the classification is also available26 .

The source code is available at Github27 under the MIT license. The classification is stored using Neo4j 28 because it facilitates the storage and exploration of graph structures.

CONCLUSIONS AND PERSPECTIVES

In this paper we proposed CaLi, a model to express license classifications. The goal is to encourage the publication and reuse of resources in a license compliant web.

CaLi can be used to classify licenses in different contexts where resources need to be reused. It considers a set of licenses, a combining operator, a compatibility relation over the set of licenses and a set of constraints. We consider licenses as sets of permissions, obligations and prohibitions. The combining operator applied automatically to the set of licenses produces a lattice that expresses both compliance and compatibility among licenses. This lattice garantees a partial order over licenses where the relation is compatible with is reflexive, transitive and antisymmetric.

A limitation of our approach is the complexity in 𝑂(2 𝑛) of the lattice implementation. We demonstrate that the implementation of part of the lattice on-the-fly, in 𝑂(𝑛), is useful for a real application like the license-based search engine we present.

A perspective of this work is to take into account other aspects of a license related to usage contexts like jurisdiction, dates of reuse, etc. Another perspective is to analyse how two CaLi classifications can be compared. That is, (1) if two classifications are defined with different sets of actions 𝐴1 and 𝐴2, (2) if there exist an aligment between 𝐴1 and 𝐴2, and (3) if the combining operators of both classifications are compatible then find a function (for instance) to pass from a lattice to another.

Figure 1 :

 1 Figure 1: Three Creative Commons licenses described in RDF.

Figure 2 :

 2 Figure 2: Visual representation of the CaLi classification of Example 1.

 14 https://ns.inria.fr/l4lod/v2/l4lod_v2.html 𝐿 = {⟨𝑃, 𝑂, 𝑃 𝑟⟩}; 𝑃, 𝑂, 𝑃 𝑟 are sets of permissions, obligations and prohibitions containing actions ∈ 𝐴; the union of these sets is 𝐴. 𝐴 ={cc:Distribution, cc:Reproduction, cc:DerivativeWorks, cc:CommercialUse, cc:Notice, cc:Attribution, cc:ShareAlike}. ⨁︀ is the license combining operator, 𝑙𝑖 ⨁︀ 𝑙𝑗 ≡ ⟨𝑃 𝑙 𝑖 ∩ 𝑃 𝑙 𝑗 , 𝑂 𝑙 𝑖 ∪ 𝑂 𝑙 𝑗 , 𝑃 𝑟 𝑙 𝑖 ∪ 𝑃 𝑟 𝑙 𝑗 ⟩ where 𝑃 𝑙 𝑖 is the permission set of 𝑙𝑖, 𝑂 𝑙 𝑖 is the obligation set of 𝑙𝑖, and 𝑃 𝑟 𝑙 𝑖 is the prohibition set of 𝑙𝑖. → is the compatible relation stating that 𝑙𝑖 → 𝑙𝑗 iff 𝑃 𝑙 𝑖 ⊇ 𝑃 𝑙 𝑗 and 𝑂 𝑙 𝑖 ⊆ 𝑂 𝑙 𝑗 and 𝑃 𝑟 𝑙 𝑖 ⊆ 𝑃 𝑟 𝑙 𝑗 . 𝐶 = ⟨𝐶𝐿, 𝐶→⟩ where 𝐶𝐿 = {𝜔𝐿 1 } and 𝐶→ = {𝜔→ 1 , 𝜔→ 2 }.

Figure 3 :

 3 Figure 3: Compatibility of Creative Commons licenses taken from the CC classification.

 • A viable compatible with relation, 𝑙𝑖 → 𝑙𝑗, is a relation that allows a resource licensed under 𝑙𝑖 to be licensed under 𝑙𝑗. A → relation between two licenses is viable iff it respects all 𝐶→ constraints. We define a constraint on → relations as an application 𝜔→ : 𝐿 × 𝐿 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 which associates each → with either True or False. 𝑙𝑖 → 𝑙 𝑘 and 𝑙𝑗 → 𝑙 𝑘 ⇒ 𝑙𝑖 ⨁︀ 𝑙𝑗 → 𝑙 𝑘 . For (a) without loss of generality we can consider that every pair of licenses is combined and the combining operator is commutative and associative. In (b), for any two licenses 𝑙𝑖 and 𝑙𝑗 the least upper bound is 𝑙𝑖

	3.2 Lattice structure ⟨𝐿, →,	⨁︀ ⟩
	The set of licenses 𝐿, the compatible with relation → and
	the combining operator	⨁︀	form a lattice with the following
	properties:
	(1) ⟨𝐿, →⟩ is a partially ordered set.
	(2) 𝐿 is finite.
	(3) 𝐿 has an infimum (or greatest lower bound) 𝐼 such that
		𝐼 → 𝑙𝑖 ∀𝑙𝑖 ∈ 𝐿.
	(4)	⨁︀	is a totally defined least upper bound operator on 𝐿.
	Demonstrations.
								e., if
		two licenses are compatible with each other, then they are
		the same license.
	Property (2) is demonstrated by the fact that the set of
	actions 𝐴 is finite. If a license is a set of actions and the license
	combining operator	⨁︀	is a least upper bound operator, then
	𝐿 is finite.
	Property (3) can be made without loss of generality consid-
	ering as infimum a license 𝐼 with zero, one or more actions.
	Property (4) is demonstrated by showing that every pair
	of licenses is combined and the result is a combined license
	(i.e.,	⨁︀	is totally defined) and that the license combining
	operator is a least upper bound, that is, ∀𝑙𝑖, 𝑙𝑗, 𝑙 𝑘 ∈ 𝐿:
	(a) 𝑙𝑖 → 𝑙𝑖	⨁︀	𝑙𝑗 and 𝑙𝑗 → 𝑙𝑖	⨁︀	𝑙𝑗.
	(b) ⨁︀	𝑙𝑗. This property implies
	the existence of a supremum 𝑆 (or least upper bound) that
	is a 𝑙1	⨁︀	𝑙2	⨁︀	...	⨁︀	𝑙𝑛 of 𝑛 licenses.

Property

[START_REF] Cabrio | These Are Your Rights[END_REF]

is demonstrated by showing that the relation → is reflexive, transitive and antisymmetric.

∀𝑙𝑖, 𝑙𝑗, 𝑙 𝑘 ∈ 𝐿: (a) 𝑙𝑖 → 𝑙𝑖 (reflexive), i.e., a license is compatible with itself. (b) 𝑙𝑖 → 𝑙𝑗 and 𝑙𝑗 → 𝑙 𝑘 ⇒ 𝑙𝑖 → 𝑙 𝑘 (transitive), i.e., if 𝑙𝑖 is compatible with 𝑙𝑗 and 𝑙𝑗 is compatible with 𝑙 𝑘 then 𝑙𝑖 is compatible with 𝑙 𝑘 . (c) 𝑙𝑖 → 𝑙𝑗 and 𝑙𝑗 → 𝑙𝑖 ⇒ 𝑙𝑖 = 𝑙𝑗 (antisymmetric), i.

 where each 𝑙𝑖 is a set of prohibited actions 𝑃 𝑟 𝑙 𝑖 taken from 𝐴 ={read, modify, distribution}. ⨁︀ is the license combining operator where 𝑙𝑖 ⨁︀ 𝑙𝑗 ≡ 𝑃 𝑟 𝑙 𝑖 ∪ 𝑃 𝑟 𝑙 𝑗 . → is the compatible with relation stating that 𝑙𝑖 → 𝑙𝑗 iff 𝑃 𝑟 𝑙 𝑖 ⊆ 𝑃 𝑟 𝑙 𝑗 . 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7} ↦ → is the protected by relation such that 𝑟1, 𝑟2 ↦ → 𝑙0; 𝑟3 ↦ → 𝑙2; 𝑟4 ↦ → 𝑙3; 𝑟5 ↦ → 𝑙4; 𝑟6 ↦ → 𝑙6; 𝑟7 ↦ → 𝑙7. 𝐶 = ⟨𝐶𝐿, 𝐶→⟩ where 𝐶𝐿 = {𝜔𝐿 1 } and 𝐶→ = ∅ (all → relations are viable).

Table 1 :

 1 Some licenses of the first level of the lattice.

	Label	Permissions	Obligations	Prohibitions
		cc:Distribution,		
		cc:Reproduction,		
	𝑙 1	cc:ShareAlike, cc:DerivativeWorks,	cc:Attribution	∅
		cc:CommercialUse,		
		cc:Notice,		
		cc:Distribution,		
		cc:Reproduction,		
	𝑙 2	cc:ShareAlike, cc:DerivativeWorks,	cc:Notice	∅
		cc:CommercialUse,		
		cc:Attribution		
		cc:Distribution,		
		cc:Reproduction,		
	𝑙 3	cc:ShareAlike, cc:DerivativeWorks,	∅	cc:CommercialUse
		cc:Notice,		
		cc:Attribution		
		cc:Distribution,		
		cc:Reproduction,		
	𝑙 4	cc:ShareAlike, cc:DerivativeWorks,	cc:CommercialUse	∅
		cc:Notice,		
		cc:Attribution		
	Label	Permissions	Obligations	Prohibitions
		cc:Distribution,		
	𝑙 1 (CC BY) ⨁︀ 𝑙 2	cc:Reproduction, cc:ShareAlike, cc:DerivativeWorks,	cc:Notice, cc:Attribution	∅
		cc:CommercialUse		
		cc:Distribution,		
	𝑙 1 (CC BY NC) ⨁︀ 𝑙 2 ⨁︀ 𝑙 3	cc:Reproduction, cc:ShareAlike,	cc:Notice, cc:Attribution	cc:CommercialUse
		cc:DerivativeWorks		

Table 2 :

 2 Some Creative Commons licenses of the lattice.

 lattice, Algorithm 2 uses the combining operator to check if two licenses are compatible. Using CaLi, license 𝑙𝑖 is compatible with 𝑙𝑗 iff 𝑙𝑖 ⨁︀ 𝑙𝑗 = 𝑙𝑗. We recall that if 𝑙𝑖 is compatible with 𝑙𝑗

				Label			Permissions	Obligations	Prohibitions
										cc:Distribution,
										cc:Reproduction,
					𝑙 3					cc:ShareAlike, cc:DerivativeWorks,	∅	cc:CommercialUse
										cc:Notice,
										cc:Attribution
										cc:Distribution,
		𝑙 1	⨁︀	𝑙 2	⨁︀	𝑙 𝑚		cc:ShareAlike, cc:DerivativeWorks,	cc:Notice, cc:Attribution	cc:Reproduction
										cc:CommercialUse
										cc:Distribution,	cc:Notice,
	𝑙 1	⨁︀	𝑙 2	⨁︀	𝑙 𝑛	⨁︀	𝑙 𝑜	cc:ShareAlike,	cc:Attribution,	cc:DerivativeWorks
										cc:CommercialUse	cc:Reproduction
		𝑙 1 ⨁︀ ⨁︀ 𝑙 𝑛 𝑙 2 ⨁︀ ⨁︀ 𝑙 𝑜 𝑙 3		cc:Distribution, cc:ShareAlike	cc:Notice, cc:Attribution, cc:Reproduction	cc:DerivativeWorks, cc:CommercialUse

Table 3 :

 3 Some non Creative Commons licenses of the lattice.

	Label	Permissions	Obligations	Prohibitions
				cc:Distribution,		
				cc:Reproduction,		
	𝑙 3	⨁︀	𝑙 4	cc:ShareAlike, cc:DerivativeWorks,	cc:CommercialUse	cc:CommercialUse
				cc:Notice,		
				cc:Attribution		

Table 4 :

 4 One non-viable license of the lattice.

Algorithm 1 :

 1 Adds and classifies a new license in the classification. Function addAndClassify(𝑙𝑖, 𝐺): Data: 𝑙𝑖: License, 𝐺: Classification Graph, 𝐼: 𝐶2 and 𝐶3). Algorithm 2 checks if 𝑙𝑖 is compatible with a least restrictive licenses 𝑙𝑐𝑜𝑚𝑝 compliant with 𝑙𝑗. If 𝑙𝑖 is compatible with 𝑙𝑐𝑜𝑚𝑝 and 𝑙𝑖 is compatible with 𝑙𝑗 then 𝑙𝑖 is inserted between 𝑙𝑗 and 𝑙𝑐𝑜𝑚𝑝. If 𝑙𝑖 is only compatible with 𝑙𝑐𝑜𝑚𝑝, 𝑙𝑖 is linked to 𝑙𝑐𝑜𝑚𝑝. Otherwise, Algorithm 2 is called again to find the least restrictive licenses compliant with 𝑙𝑖 in the graph containing licenses compliant with 𝑙𝑐𝑜𝑚𝑝.

		Infimum,	
		𝐶𝐿: Constraints on licenses
		Result: Returns 𝐺 with 𝑙𝑖 classified
	2	if viable(𝑙𝑖, 𝐶𝐿) then
		// 𝑙𝑖 respects all 𝐶 𝐿 constraints
	3	Add 𝑙𝑖 to 𝐺	
		// Classifies 𝑙𝑖 in licenses compliant with 𝐼
	4	classify(𝑙𝑖, 𝐼, 𝐺)
	5	end		
	6	return 𝐺		
	7 end		
	engine, Algorithm 2: Recursively classifies the new license to
	compliant licenses		
	8	end		
	9	else if 𝑙𝑖	⨁︀	𝑙𝑐𝑜𝑚𝑝 ̸ = 𝑙𝑐𝑜𝑚𝑝 then
		// Classifies 𝑙𝑖 in licenses compliant with 𝑙𝑐𝑜𝑚𝑝
	10	classify(𝑙𝑖, 𝑙𝑐𝑜𝑚𝑝, 𝐺)
	11	end		
	12 end		

1 1 Function classify(𝑙𝑖, 𝑙𝑗, 𝐺): Data: 𝑙𝑖, 𝑙𝑗, 𝑙𝑐𝑜𝑚𝑝: License, 𝐺: Classification Graph, 𝐶→: Constraints on compatibility relations, 𝐿𝑅𝐶 𝑙 𝑗 : Least restrictive licenses compliant with 𝑙𝑗 in 𝐺 2 for 𝑙𝑐𝑜𝑚𝑝 ∈ 𝐿𝑅𝐶 𝑙 𝑗 do 3 if 𝑙𝑖 ⨁︀ 𝑙𝑐𝑜𝑚𝑝 = 𝑙𝑐𝑜𝑚𝑝 and viable(𝑙𝑖 → 𝑙𝑐𝑜𝑚𝑝, 𝐶→) then // 𝑙𝑖 is compatible with 𝑙𝑐𝑜𝑚𝑝 // 𝑙𝑖 → 𝑙𝑐𝑜𝑚𝑝 respects all 𝐶→ constraints 4 add 𝑙𝑖 → 𝑙𝑐𝑜𝑚𝑝 to 𝐺 5 if 𝑙𝑗 ⨁︀ 𝑙𝑖 = 𝑙𝑖 and viable(𝑙𝑗 → 𝑙𝑖, 𝐶→) then // 𝑙𝑖 is between 𝑙𝑗 and 𝑙𝑐𝑜𝑚𝑝 6 add 𝑙𝑗 → 𝑙𝑖 to 𝐺 7 delete 𝑙𝑗 → 𝑙𝑐𝑜𝑚𝑝 from 𝐺

https://creativecommons.org/ns

https://ns.inria.fr/l4lod/

https://tldrlegal.com/

https://creativecommons.org/choose/

https://choosealicense.com/

https://ccsearch.creativecommons.org/

http://www.web2rights.com/creativecommons/

http://licentia.inria.fr/

purl.org/NET/rdflicense

This CaLi classification can be generated from https://github.com/ benjimor/CaLi/tree/combinatory_method5 A LICENSE-BASED LINKED DATA SEARCH ENGINEWe experiment the usefulness of a CaLi classification with the implementation of a license-based search engine for the Web of Data.

https://www.w3.org/TR/odrl-vocab/#actionConcepts

https://old.datahub.io/

https://data.opendatasoft.com/pages/home/

A video demonstration is available at https://youtu.be/ YkSWHSiD-Ps.

http://cali.priloo.univ-nantes.fr

http://cali.priloo.univ-nantes.fr/api

licenseID is the hash of permissions, obligations and prohibitions of a license.

http://cali.priloo.univ-nantes.fr/api/licenses/ 3154600001362308832/compatible

http://cali.priloo.univ-nantes.fr/api/licenses/ 3154600001362308832/compliant

http://cali.priloo.univ-nantes.fr/graph

https://github.com/benjimor/CaLi

ACKNOWLEDGMENTS

Authors thank Matthieu Perrin for his helpful comments on this work.

://creativecommons.org/ 2 https://www.w3.org/TR/odrl-model/ 3 https://github.com/