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Abstract

In this work, we propose a new non-intrusive coupling algorithm for global/local isogeometric structural
analysis. In contrast to the existing non-intrusive strategies that rely on a Lagrange multiplier coupling,
the algorithm makes use of the non-symmetric Nitsche method. It results in an accurate and efficient tool
to compute any evolution of a local model within a fixed global NURBS one. The reason for this is the
robustness and simplicity of the coupling (no auxiliary fields, no dual space approximation, no stabilization
parameters), which enables to directly handle all the non-conforming coupling scenarios encountered through
the global/local multiresolution process. The performance of the methodology is numerically demonstrated
through a series of two-dimensional elastic benchmarks involving conforming and non-conforming couplings,
along straight, curved, and bi-material interfaces. In all examined problems, the proposed Nitsche algorithm
provides optimal accuracy. Finally, to illustrate both the efficiency in a multiple query context and the
robustness of the method to arbitrary non-conforming scenarios, a simple structural optimization problem is
carried out using the developed non-intrusive solver, which simplifies the process and ensures computational
time saving.

Keywords: Isogeometric analysis, , Non-symmetric Nitsche method, Non-intrusive coupling,
Non-conforming geometries, Multiresolution

1. Introduction

The IsoGeometric Analysis (IGA) concept, which was first introduced in Hughes et al. [1] and later
formalized in the book by Cottrell et al. [2], relies on the use of the same basis functions for the representation
of both the geometry in Computer-Aided Design (CAD) and the numerical approximations in Finite Element
Analysis (FEA). As a consequence, typical Lagrange polynomials are replaced in the computations by smooth
and higher-order functions such as Non-Uniform-Rational-B-Splines (NURBS) [3, 4], which constitute the
most commonly used technology in CAD. Other geometry descriptions include T-splines [5] and subdivision
surfaces [6]. Within this work NURBS are used. Beyond the reinforced link between CAD and analysis,
IGA turned out to be a superior computational mechanics technology, which on a per-degree-of-freedom
basis exhibits increased accuracy and robustness in comparison to standard FEA [7]. The reason for this
is the higher order of regularity of spline-based functions, namely C(p−1) through the knot-span elements
of the mesh for a polynomial degree p, whereas only C0 continuity is available for Lagrange polynomials.
However, in contrast to the standard nodal basis, a multivariate NURBS basis comprises a rigid tensor
product structure which precludes the simple modeling of local phenomena. Indeed, we necessarily end up
with a structured mesh in a NURBS patch. This unavoidably leads to the overlap of some global knot-span

∗Corresponding author
Email addresses: bouclier@insa-toulouse.fr (Robin Bouclier), passieux@insa-toulouse.fr (Jean-Charles Passieux)

Preprint submitted to CMAME June 5, 2018



elements to allow for a truly global-mesh independent local region to be incorporated for the modeling of
any specific local behaviors (e.g., introduction of a hole [8], of an inclusion [9], crack propagation [10, 11],
emergence of a plastic zone [12], of local damage [13], modeling of local contact [14], etc). Fig. 1(a) illustrates
this issue for the example of the integration of a geometrical detail (a hole) within an initial NURBS plate.
The coupling of two domains along a non-conforming interface (i.e., an interface that intersects through the
global mesh), is involved. The analysis of trimmed NURBS patches needs thus to be addressed, which is
known not to be a trivial task in the IGA community [15].

From the literature, it seems that three main strategies could be applied to numerically solve the resulting
NURBS non-conforming global/local problem. The first strategy consists in recovering the usual situation
of boundary fitted discretizations (see Fig. 1(b)). In order to do so, a re-parametrization of the whole
global NURBS model is required, leading to the splitting of the new geometry into several patches with C0

continuity at the boundaries (see, e.g., [16, 17]). This may entail a considerable modeling and computational
effort which is often as complex and time consuming as standard mesh generation and then, is opposed to
the core idea of IGA.

Concurrently, a second approach initiated in Ruess et al. [18] and based on the combination of a fictitious
domain approach with a weak coupling, may constitute an interesting option to carry out global/local
NURBS simulations. To this purpose, the authors made use of the so-called Finite Cell Method (FCM)
(see, e.g., [19] for a detailed review). Unlike the first approach, the idea here is to simply use the resulting
unfitted structured mesh for the interpolation of the global fields (see Fig. 1(c)), while the trimmed geometry
is accurately captured by means of suitable quadrature rules for cut knot-span elements [20, 21, 22, 23, 24].
This strategy appears and has proved to be highly efficient in the context of immersed finite elements.
However, let us notice that in the general and more industrially ubiquitous case of a local region that may
evolve during the simulation (e.g., to carry out the shape optimization of local entities, or to model crack
propagation, or the expansion of a plastic zone, etc), we expect several re-assemblies and re-factorizations of
the resulting global/local stiffness operator during the multiresolution process. The left-hand side operators
may also appear ill-conditioned depending on the encountered trimmed configuration [19, 25].

Relatively connected to the previous approach, the last strategy revolves around the concept of non-
intrusiveness. This notion has originally emerged in the standard FE-based community through the so-called
non-intrusive global/local coupling methods. Based on an idea put forward by Whitcomb [26] and later
developed in Gendre et al. [12], this new class of methods has attracted large attention these last years and
has now been successfully applied in many domains in FEA (see, e.g., [10, 11] for crack propagation, [27]
for taking localized uncertainties into account, [28] for non-intrusive plate/3D coupling, [14] for non-linear
domain decomposition, [29, 30] for transient dynamics analysis and [13] for real aeronautical strcutures).
More recently, an extension for NURBS has been proposed in Bouclier et al. [31] and has proved to be a
good candidate for NURBS local enrichment. This strategy seeks to locally modify a global NURBS model
without having an impact on its corresponding numerical operators. The method relies on an iterative
process between global and local computations, thus involving the initial global non-trimmed NURBS mesh
(see Fig. 1(d)). The replacement of part of this mesh locally is carried out exactly and non-intrusively:
only interface data are transmitted from one model to the other and the initial global stiffness operator
remains unchanged (independently of the shape of the local domain). We emphasize that the terminology
“non-intrusive” used here only characterizes the numerical solver but not the geometrical construction (and
parametrization) of the local model that still needs to be addressed. We believe that this method is of the
greatest interest when addressing NURBS global/local analysis. Especially in case the local region evolves,
thus leading to the resolution of a sequence of similar problems (in a multiresolution fashion [32, 33]), the
method meets its full potential: the global stiffness operator is assembled and factorized only once and
the systems to be solved remain well-conditioned, which ensures both robustness and computational time
saving.

If in FEA the situation of conforming interfaces appears sufficient for the global/local coupling since
the basis functions do not suffer from a global tensor product structure, the challenge when addressing
NURBS is to handle non-conforming coupling interfaces (see Fig. 1(a) again). In its standard FEA and
first NURBS version, the non-intrusive strategy comes with a Lagrange multiplier based coupling method.
Indeed, thanks to the introduction of additional unknowns that represent the interface traction, it appears,
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Figure 1: Example of a global/local NURBS problem. The global model over subdomain Ω12 is replaced by the finer local
model of domain Ω2 through interface Γ, which enables to integrate a geometrical detail (a hole) within the initial NURBS
model (top). Three different strategies may be applied to numerically solve the global/local problem (bottom).

at first glance, easier to make the two models communicate through interface exchanges while keeping the
initial structure of the global and local stiffness operators. Regarding the more general context of NURBS
coupling, such methods involving the definition of dual basis functions have been successfully applied (see,
e.g., [34, 35] for standard elasticity, [36, 37] for the weak substitution method and [38, 39, 40] for the coupling
of shells). However, it has to be noted that the performance of these techniques crucially depends on the
compatibility between the approximation subspaces considered for the primal and the dual variables. In our
case of arbitrary non-conforming coupling configurations, this rules out many choices for the subspaces. As
a result, Nitsche-based coupling have been preferred in the field of immersed boundary methods. Nitsche
formulations ensure variational consistency by introducing flux terms along the coupling interface expressed
by primal unknowns of the coupling domains. Thus, the method is free of auxiliary fields, which simplifies
the theory. Nevertheless, in its widespread symmetric version (see, e.g., [41] for the origin and then [9, 18]
for standard elasticity), additional stabilization terms are required to ensure coercivity of the formulation.

3



Appropriate estimates of the stabilization parameters involving the resolution of an additionnal eigenvalue
problem (whose resolution can be performed locally per element [42]) are thus involved, which may appear
delicate from an algorithmic viewpoint. Therefore, there has been an increasing interest in developing
methods without such mesh-dependent stabilization parameters [43, 44].

In this context, the non-symmetric version of the Nitsche method has recently reemerged in Schillinger et
al. [45] for isogeometric immersed methods. Since then, few applications can already be found (for instance,
see [46] for the coupling of shells and [47] which is related to the incompressible Navier–Stokes equations).
Originally introduced as a discontinuous Galerkin method [48, 49, 50], it is based on variationally consistent
numerical flux conditions that are introduced in such a way that the criterion for stability is (weakly)
satisfied. Therefore, it does not require the introduction of additional stabilization terms in contrast to its
symmetric counterpart and thus, its performance does not rely on an appropriate estimation of additional
sensitive parameters.

The object of this work is to further improve the NURBS non-intrusive approach [31] by extending it to
incorporate the non-symmetric Nitsche coupling. The goal is to offer simplicity, accuracy and robustness,
regardless of the non-conforming coupling scenarios encountered through the global/local multi-resolution
process. Indeed, we believe that the combination of the non-symmetric Nitsche coupling with the global/local
iterative non-intrusive strategy will result in an accurate and efficient tool to compute any evolution of a
local model within a fixed NURBS one. The paper is organized as follows: following this introduction,
Section 2 specifies the modeling and the derivation of the non-symmetric Nitsche coupling in the context
of linear elasticity. Then, in Section 3, we develop a non-intrusive iterative algorithm that makes use of
the non-symmetric Nitsche method for the coupling. It results in an original iterative procedure whose
mechanical interpretation is rather different from that of the existing non-intrusive strategies. In section 4,
the performance of the proposed methodology over the existing NURBS one is numerically demonstrated
through a series of benchmarks involving local mesh refinement, introduction of a geometrical detail, and
coupling at a bi-material interface. In addition, the ability of the method to adapt to any evolution of
the local model is highlighted by carrying out a simple structural optimization example. Finally, Section 5
concludes on this work by summarizing our most important points and motivating future research based on
the proposed algorithm.

2. Reference mechanical coupling problem and formulation

The framework of this study draws on research dealing with IGA [1, 2] based on NUBRS [3, 4], non-
intrusive global/local analysis [12, 14, 31], and non-symmetric Nitsche coupling [45, 46, 47]. More precisely,
the interaction of two non-conforming linear elastic NURBS meshes is considered: one domain is the fore-
ground and defines the local model, the other is the background and constitutes the global NURBS model
to be enriched. Special care is taken to handle the most general situations we may encounter; that is, for
instance, when the shape of the local region is expected to evolve during the simulation. This results in a
local mesh that is truly independent from the underlying global NURBS discretization.

2.1. Governing equations

Let us start by considering a global NURBS (possibly multi-patch) model. Its mesh is characterized by
a physical domain Ω1 ⊂ Rd (d = 2 or 3 being the dimension of the ), which is divided into two disjoint,
open and bounded subsets Ω11 and Ω12. Those two non-overlapping subdomains share a common interface
denoted by Γ such that Ω1 = Ω11 ∪ Ω12 ∪ Γ and Ω11 ∩ Ω12 = ∅ (see Fig. 2(a) (left) for illustration). We
assume that this coarse NURBS mesh is sufficient for the modeling except in the small region Ω12 where a
local phenomena is to be introduced. As a consequence, a local (more detailed) ”sub-model” characterized
by domain Ω2 is constructed to replace the global model in Ω12 (see Fig. 2(a) (right)). The substitution of
the local model within the global one is achieved through interface Γ. The resulting global/local problem to
be solved concerns the coupling of two overlapping NURBS meshes (multi-domain problem in Ω11∪Ω2∪Γ),
the global solution in Ω12 being discarded (see Fig. 2(b)).

We assume that the two non-overlapping subdomains Ω11 and Ω2 are subjected to body forces fg11

and fg2 , respectively. Furthermore, surface forces F g
11 and F g

2 are associated to boundaries ΓF11
and ΓF2
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Figure 2: Reference mechanical coupling problem.

and, displacements ug11 and ug2 are prescribed over boundaries Γu11
and Γu2

(see Fig. 2 again). In each
subdomain, the kinematic constraints, the equilibrium equations and the constitutive relations have to be
verified. Using subscript m to denote a quantity that is valid over region Ωm, with m = 11 and 2, the
corresponding governing equations read:

um = ugm over Γum ; (1a)

div(σm) + fgm = 0 in Ωm ; (1b)

σm nm = F g
m over ΓFm ; (1c)

σm = Cm ε (um) in Ωm. (1d)

In the above equations, ε (um) denote the infinitesimal strain tensors, σm the Cauchy stress tensors and
Cm the Hooke tensors. n11 and n2 represent the outward unit normals to Ω11 and Ω2, respectively. . To
complete the formulation of the boundary value problem, the interface condition has to be added. The
writing of this condition depends on the considered domain Ωm:

u+ − u− = 0 over Γ ; (2a)

σ+n+ + σ−n− = 0 over Γ ; (2b)

where subscript + is used to denote a variable of subdomain Ωm whereas subscript − refers to a variable of
the neighboring subdomain. It ensures kinematic compatibility and equilibrium of the tractions, respectively,
along the coupling interface Γ between the subdomains.

2.2. Non-symmetric Nitsche coupling formulation

As stated in the introduction, the non-symmetric Nitsche method has recently reemerged for the weak
enforcement of boundary and coupling conditions in isogeometric immersed methods (see, e.g., [45] that
provides a detailed review of the non-symmetric Nitsche method applied to the Poisson problem). In this
part, we rewrite the derivation of the non-symmetric Nitsche formulation for the weak coupling of multiple
domains in the context of linear elasticity. The obtained formulation constitutes the reference coupling of
the present work.
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In order to do so, let us start by defining the functional spaces Um and Vm over subdomain Ωm that will
contain the displacement solution and test functions respectively:

Um =
{
um ∈

[
H1 (Ωm)

]d
, um|Γum

= ugm

}
; Vm =

{
vm ∈

[
H1 (Ωm)

]d
, vm|Γum

= 0
}
. (3)

We also introduce the space for the stress solution and for the virtual stress field:

Σm =
{
τm ∈ H (,Ωm) , τm = τTm

}
, (4)

where:
H (,Ωm) =

{
τm ∈

[
L2 (Ωm)

]d×d
such that div (τm) ∈

[
L2 (Ωm)

]d}
. (5)

We note that Eq. (1a) is enforced strongly by considering space Um. To derive a Nitsche-type method, the
first step consists in imposing weakly the equilibrium and behavior of the structure. In order to do so,
we multiply Eqs. (1d) and (1b) by C−1

m τm with τm ∈ Σm and by vm ∈ Vm, respectively, and we perform
integration by parts on each subdomain Ωm. Making also use of the Neumann boundary condition (1c), we
find: ∫

Ωm

τm : C−1
m σmdΩ = −

∫
Ωm

div (τm) · umdΩ +

∫
∂Ωm

τmnm · umdΓ ; (6a)∫
Ωm

ε (vm) : σmdΩ =

∫
Ωm

vm · fgmdΩ +

∫
ΓFm

vm · F g
mdΓ +

∫
Γ

vm · σmnmdΓ. (6b)

We then discretize Eqs. (6a) and (6b) by means of the finite element subspaces Uh
m ⊂ Um, Vh

m ⊂ Vm and
Σh

m ⊂ Σm . We end up with the flux formulation [50]: find uhm and σh
m such that:∫

Ωm

τhm : C−1
m σh

mdΩ = −
∫

Ωm

div
(
τhm
)
· uhmdΩ +

∫
Γum∪ΓFm

τhmnm · uhmdΓ +

∫
Γ

τhmnm · dΓ ; (7a)∫
Ωm

ε
(
vhm
)

: σh
mdΩ =

∫
Ωm

vhm · fgmdΩ +

∫
ΓFm

vhm · F g
mdΓ +

∫
Γ

vhm · nmdΓ ; (7b)

where the numerical fluxes and are the approximations of the displacement and stress, respectively, on the
interface Γ. To obtain the non-symmetric Nitsche formulation, the following expressions for the numerical
fluxes are considered:

=
3

2
uh+ −

1

2
uh− ; (8a)

=
1

2

(
σh

+ + σh
−
)
. (8b)

To make use of these expressions, we now consider the following integration by parts formula:

−
∫

Ωm

div
(
τhm
)
· uhmdΩ =

∫
Ωm

τhm : ε
(
uhm
)

dΩ−
∫
∂Ωm

τhmnm · uhmdΓ. (9)

Considering Eq. (7a), replacing its second term by the right terms of Eq. (9), choosing τhm = Cmε
(
vhm
)

on
its left term, and inserting the flux approximation (8a), we then get:∫

Ωm

ε
(
vhm
)

: σh
mdΩ =

∫
Ωm

ε
(
vhm
)

: Cm ε
(
uhm
)

dΩ +

∫
Γ

Cm ε
(
vhm
)
nm ·

1

2

(
uh+ − uh−

)
dΓ. (10)

Finally, by making use of the flux approximation (8b) into (7b), relating the result to the left-hand side
of (10) and summing over the two subdomains Ω11 and Ω2, we end up with the non-symmetric Nitsche
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coupling formulation: find
(
uh11, u

h
2

)
∈ Uh

11 × Uh
2 such that:∑

m

am

(
uhm, v

h
m

)
+

∫
Γ

{}n11 · JuhKdΓ−
∫

Γ

JvhK ·
{
σh
}
n11dΓ =

∑
m

lm
(
vhm
)
, ∀
(
vh11, v

h
2

)
∈ Vh

11 × Vh
2 . (11)

In the above formulation, the standard elastic bilinear forms am and linear forms lm are recovered:

am (um, vm) =

∫
Ωm

ε (vm) : Cm ε (um) dΩ ; (12a)

lm (vm) =

∫
Ωm

vm · fgmdΩm +

∫
ΓFm

vm · F g
mdΓ ; (12b)

and the jump and average operators are introduced, respectively, as follows:

JuhK =
(
uh11 − uh2

)
; (13a){

σh
}

=
1

2

(
σh

11 + σh
2

)
|Γ =

1

2

(
C11 ε

(
uh11

)
+ C2 ε

(
uh2
))
. (13b)

−
∑
m

∫
Ωm

vm · (div(σm) + fgm) dΩ +
∑
m

∫
ΓFm

vm · (σm nm − F g
m) dΓ (14a)

+

∫
Γ

1

2
n11 · (u11 − u2) dΓ +

∫
Γ

v11 ·
1

2
(σ11 − σ2)n11dΓ (14b)

+

∫
Γ

1

2
n11 · (u11 − u2) dΓ +

∫
Γ

v2 ·
1

2
(σ11 − σ2)n11dΓ = 0. (14c)

As a consequence, there is no need for additional stabilization terms with associated parameters in
contrast to symmetric Nitsche methods [18, 9, 41, 42]. Moreover, the formulation is free of auxiliary fields,
thereby circumventing the difficulty of choosing a suitable dual space (particularly in case of non-conforming
couplings) when considering mixed-type methods [34]. Reminding the case of an evolving local model within
an underlying NURBS mesh, the attractiveness of the non-symmetric Nitsche method becomes clear: it
provides an easy and robust coupling in every non-conforming situations that may be encountered.

3. Non-intrusive resolution

We now address the non-intrusive resolution of the non-symmetric Nitsche coupling. In order to do
so, we need to extend the strategy proposed in the framework of Lagrange multiplier coupling [31]. After
clarifying the classical monolithic approach which essentially consists in the approach illustrated in Fig. 1(c),
the proposed non-intrusive algorithm is constructed. Finally, a reformulation of the iterative procedure is
performed to highlight the mechanical and numerical properties of the algorithm.

3.1. Monolithic resolution

For ease of understanding of the next developments, let us first note that Eq. (11) reads: find uh11 and
uh2 such that:

a11

(
uh11, v

h
11

)
−
∫

Γ

vh11 ·
{
σh
}
n11dΓ +

∫
Γ

1

2
n11 · JuhKdΓ = l11

(
vh11

)
, ; (15a)

a2

(
uh2 , v

h
2

)
−
∫

Γ

vh2 ·
{
σh
}
n2dΓ−

∫
Γ

1

2
n2 · JuhKdΓ = l2

(
vh2
)
, . (15b)

Resolution (15) of the coupling problem constitutes the classical monolithic approach: the resulting multi-
scale model of Fig. 1(c) is computed directly using a single direct solver. This strategy can be characterized
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as intrusive. Indeed, it is important to note that the global stiffness operator a11 depends at this stage
on the interface Γ or, in other words, on the shape of the local domain Ω2. Therefore, if domain Ω2 is
expected to evolve, not only the local operator a2 but also the global operator a11 have to be fully re-built
and re-factorized.

3.2. Construction of a non-intrusive resolution algorithm

Rather than directly solving system (15), we start by considering the following asymmetric algorithm,
where problems over Ω11 and problems over Ω2 are alternatively solved until convergence. For the nth

iteration, starting with initial guesses uh
(0)

11 and uh
(0)

2 , we look for uh
(n)

11 and uh
(n)

2 such that:

1. Resolution of a problem over Ω11:

a11

(
uh

(n)

11 , vh11

)
= l11

(
vh11

)
+

∫
Γ

vh11 ·
{
σh(n−1)

}
n11dΓ−

∫
Γ

1

2
n11 · Juh

(n−1)

KdΓ. (16)

2. Resolution of a problem over Ω2:

a2

(
uh

(n)

2 , vh2

)
−
∫

Γ

vh2 ·
1

2
σh(n)

2 n2dΓ +

∫
Γ

1

2
n2 · uh

(n)

2 dΓ = l2
(
vh2
)

(17a)

+

∫
Γ

vh2 ·
1

2
σh(n)

11 n2dΓ +

∫
Γ

1

2
n2 · uh

(n)

11 dΓ. (17b)

Remark 1. A mechanical interpretation of the resulting iterative strategy will be given later in the paper (see
section 3.3). Nevertheless, one may already notice that formulation (17) corresponds to the non-symmetric
Nitsche weak imposition of the coupling conditions for subdomain Ω2 only. Indeed, formulation (17) can be
obtained by applying the procedure of section 2.2 to subdomain Ω2 (only the sum over the two subdomains is
not performed at the end). Another way of realizing this is to investigate the consistency of the formulation.
Considering the continuous version of (17), integrating by parts, and bringing all terms on the left-hand
side, we find:

−
∫

Ω2

v2 ·
(

div(σ
(n)
2 ) + fg2

)
dΩ +

∫
ΓF2

v2 ·
(
σ

(n)
2 n2 − F g

2

)
dΓ (18a)

+

∫
Γ

1

2
n2 ·

(
u

(n)
2 − u(n)

11

)
dΓ +

∫
Γ

v2 ·
1

2

(
σ

(n)
2 − σ(n)

11

)
n2dΓ = 0. (18b)

The above equation clearly shows that, at each iteration of the proposed algorithm, the interface term (14c)
is recovered from the initial coupling formulation.

We now switch to the matrix form of problems (16) and (17) for ease of reading with respect to the imple-
mentation of the method. To this end, let us introduce the finite element basis functions

(
N1

A

)
A∈{1,2,..,n1}

and
(
N2

B

)
B∈{1,2,..,n2}

that discretize the global and local model, respectively. In addition, we denote by(
N11

C

)
C∈{1,2,..,n11}

the restricted part to subdomain Ω11 of the shape functions of the global model. Follow-

ing the principle of isoparametric elements, the basis
(
N11

C

)
C∈{1,2,..,n11}

and
(
N2

B

)
B∈{1,2,..,n2}

are used to

build the above-mentioned finite element spaces Uh
11 and Uh

2 (see Eq. (3)), respectively. Denoting by u11 and
u2 the associated degrees of freedom vector, the fixed point (16)-(17) reads: for the nth iteration, starting

with initial guesses u
(0)
11 and u

(0)
2 , we look for u

(n)
11 and u

(n)
2 such that:

1. Resolution over Ω11:

K11u
(n)
11 = f11 −

(
KN

11

T −KN
11

)
u

(n−1)
11 −

(
KN

21

T −KN
12

)
u

(n−1)
2 . (19)
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2. Resolution over Ω2:[
K2 +

(
KN

22

T −KN
22

)]
u

(n)
2 = f2 −

(
KN

12

T −KN
21

)
u

(n)
11 . (20)

Operators K11 (respectively F11) and K2 (resp. F2) are the classical stiffness matrices (resp. vector forces)
associated to subdomains Ω11 and Ω2. KN is the standard Nitsche coupling operator (see, e.g., [18, 9])
defined as follows:

KN =

[
KN

11 KN
12

KN
21 KN

22

]
, (21)

where the different blocks read:

KN
11 =

∫
Γ

−1

2

(
D11 B11

)T
N11dΓ ; (22a)

KN
12 =

∫
Γ

1

2

(
D11 D11

)T
N2dΓ ; (22b)

KN
21 =

∫
Γ

−1

2

(
D2 D2

)T
N11dΓ ; (22c)

KN
22 =

∫
Γ

1

2

(
D2 D2

)T
N2dΓ. (22d)

In the above equations, N11 and N2 represent the standard shape function matrices, B11 and B2 are the
standard strain-displacement operators and, D11 and D2 model the Hooke constitutive law. In addition, is
introduced to perform the product between the stress tensor and the outward unit normal to Ω11 (see [9, 18]
for more details regarding the construction of such operators).

Even if two problems are now solved separately, procedure (19)-(20) is still intrusive because only the
contributions over Ω11 of the global model are involved. To go further, we make use of the continuous
prolongation of the global solution from Ω11 to Ω12 and we apply the additivity of the integral with respect
to domain Ω1 = Ω11 ∪Ω12 ∪Γ. Denoting by u1 the degrees of freedom vector associated to domain Ω1, this
gives us:

K1u1 = K11u1 + K12u1. (23)

In the above equation, K11 and K12 are the extensions to Ω1 of the classical stiffness matrices K11 and K12

related to subdomains Ω11 and Ω2, respectively. They formally contain the classical stiffness operators and
are padded with zeros to make them the same dimension of u1. As well, we define f1 = f11 + f12 the load
vector associated to domain Ω1. Equality (23) is used to expand problem (19) from Ω11 to Ω1. We finally

end up with the following algorithm: for the nth iteration, starting with initial guesses u
(0)
1 and u

(0)
2 , we

look for u
(n)
1 and u

(n)
2 such that:

1. Resolution over Ω1:

K1u
(n)
1 = f1 −

(
K

N

11

T
−K

N

11

)
u

(n−1)
1 −

(
K

N

21

T
−K

N

12

)
u

(n−1)
2 + r

(n−1)
12 . (24)

2. Resolution over Ω2:[
K2 +

(
K

N

22

T
−K

N

22

)]
u

(n)
2 = f2 −

(
K

N

12

T
−K

N

21

)
u

(n)
1 . (25)

We note that the Nitsche operator K
N

simply consists of the prolongation of former operator KN from Ω11

to Ω1. r12 is introduced to denote the discrete reaction forces at Γ of the global model in the covered part
Ω12. It reads at iteration n− 1:

r
(n−1)
12 = K12u

(n−1)
1 − f12. (26)
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Note that in expression (26), only the degrees of freedom concerned with interface Γ are not zero. . Thanks
to this prolongation, the whole stiffness matrix of the global NURBS model is now considered without
any modification. In this sense, the iterative strategy (24)-(25) is said to be non-intrusive. We emphasize
that the global stiffness operator can be assembled and factorized only once (in a pre-processing step),
and system (24) remains symmetric and well-conditioned (regardless of the evolution of the local shape).
Futhermore, the global and local problem being solved alternatively and the interaction between the two
models being restricted to interface Γ, the formalism offers the possibility to couple different numerical codes
with few implementation effort. The price to pay is the number of iterations of the fixed point, that may
appear quite important in some challenging situations. For more efficiency in such situations, we will see in
forthcoming section 3.3 that acceleration techniques, such as based on an Aitken’s Delta Squared method
or a Quasi-Newton method [12, 14, 31], can be applied to the present coupling. Numerical experiments to
account for this point will also be carried out in Section 4.

Remark 2. It has to be noticed that the computation of the reaction forces r12 (see Eq. (26)) requires to
perform a volume integration to be consistent with the discrete form of the problem (see, e.g., [31] for more
information regarding this point). As a consequence, specific quadrature rules need to be implemented to
integrate over pieces of global knot-span elements. In order to do so, a large amount of techniques, mostly
taken from immersed boundary methods, may be used: for instance, the standard sub-triangulation technique
in the context of X-FEM [55], the technique used in the NURBS Enhanced FEM [56], the recursive quadrature
approach applied in the FCM [18, 19, 45], or more recent geometrically faithfull quadratures [20, 21, 22, 23,
24, 31]. In this work, for simplicity and robustness, we perform the recursive quadrature approach of FCM.

Remark 3. We emphasize that the terminology ”non-intrusive” used here only characterizes the numerical
solver but not the geometrical construction (and parameterization) of the local model, which may not be a
trivial task.

3.3. Incremental formulation, mechanical interpretation and convergence acceleration

In this section, another incremental formulation of the proposed non-intrusive algorithm is derived for
a better understanding of the numerical procedure. It may be noted that the emphasis is made on the
mechanical interpretation of the formulation, but not on the rigorous theoretical analysis of the algorithm.

To start with, let us denote by rN the Nitsche-based discrete reaction forces at Γ applied to the global
model in Eq. (24). We have at iteration n− 1:

rN
(n−1)

=

(
K

N

11

T
−K

N

11

)
u

(n−1)
1 −

(
K

N

21

T
−K

N

12

)
u

(n−1)
2 . (27)

Then, let us notice the following equality that corresponds to the discrete equilibrium of the global model
at iteration n− 1:

K1u
(n−1)
1 = f1 + r

(n−1)
11 + r

(n−1)
12 , (28)

where r11 characterizes the discrete reaction forces at Γ produced by the global model in subdomain Ω11:

r
(n−1)
11 = K11u

(n−1)
1 − f11. (29)

Now, performing the subtraction between Eqs. (24) and (28), we arrive at:

K1

(
u

(n)
1 − u

(n−1)
1

)
= −

(
rN

(n−1)
+ r

(n−1)
11

)
. (30)

As a result, procedure (24)-(25) can be rewritten as follows: for the nth iteration, starting with initial guess

u
(0)
1 , we look for u

(n)
1 such that:

u
(n)
1 = u

(n−1)
1 −K−1

1 g
(
u

(n−1)
1

)
, (31)
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where the application g is defined as:

g
(
u

(n−1)
1

)
= rN

(n−1)
+ r

(n−1)
11 , (32)

provided the local solution u
(n−1)
2 in rN

(n−1)
is computed from u

(n−1)
1 through system (25) (expressed at

iteration n− 1).
With formulation (31) in hand, one can realize that the iterative procedure simply consists in a fixed

point aiming at solving g = 0. The following residual is thus considered to stop the algorithm:

η =
||rN + r11||√
||f1||2 + ||f2||2

. (33)

In the following, we denote this residual by the ”non-intrusive residual”. Moreover, writing the continuous
version of Eq. (32), we literally find:

g
(
u

(n−1)
1

)
=

∫
Γ

1

2
n11 ·

(
u

(n−1)
1 − u(n−1)

2

)
dΓ−

∫
Γ

v1 ·
1

2

(
σ

(n−1)
1 + σ

(n−1)
2

)
n11dΓ+

∫
Γ

v1 ·σ(n−1)
1 n11dΓ, (34)

which corresponds to the consistency term (14b) of the initial coupling formulation. Therefore, the proposed
iterative strategy aims at ensuring the coupling conditions for subdomain Ω11 in a non-symmetric Nitsche
weak sense. In addition, reminding that the other interface consistency term (14c) is enforced at each
iteration of the non-intrusive procedure through the local problem (25) (see term (18b) that corresponds
the coupling conditions related to domain Ω2), we ensure that if the proposed algorithm is convergent, all
the interface terms of the initial coupling formulation (14) are recovered. In other words, if the developed
non-intrusive algorithm is convergent, it leads to the same solution as the one computed from the monolithic
approach (15). This numerical procedure is original and its mechanical interpretation is quite different from
the existing non-intrusive strategies that aims at recovering the interface forces equilibrium provided that
the Dirichlet conditions (over Γ) are transmitted, at each iteration, form the global to the local problem
through the use of a Lagrange field (see Duval et al. [14]).

Remark 4. Note that we need to compute r11 (involving K11) to evaluate residual (33). The calculation is
performed from the already computed stiffness K12 (see Eq. (26)), i.e.: K11 = K1 −K12.

Although different from the existing non-intrusive strategies in its mechanical interpretation, the algo-
rithm can still be interpreted as a modified Newton method on g = 0 (see Eq. (31)). As a consequence, the
application of the same acceleration techniques as the ones usually performed in the context of non-intrusive
Lagrange multiplier coupling appears straightforward. In this work, we consider two acceleration methods:
the Aitken dynamic relaxation and the Quasi-Newton update. The first technique, based upon the Aitken’s
Delta Squared formulation [57, 58], proved to be very simple, cheap and of relatively good acceleration
performance, especially when the global and local models are rather close (e.g., local mesh refinement, local
plasticity). With a slightly more computational overhead, the second method enables to further speed up
the algorithm and to make it convergent even in challenging situation. The inverse of the Symmetric Rank
One update [59, 60] (which converges towards ∇g−1) is computed in a non-intrusive fashion by means of a
Sherman-Morrison formula. For more information regarding these accelerations techniques, the interested
reader is advised to consult [12, 14].

Remark 5.

4. Numerical experiments

To assess the performance of the developed algorithm (24)-(25), we now present a series of numerical
experiments in two-dimensional linear elasticity. The plane stress assumption is considered for all test cases.
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The examples include different discretization scenarios that cover conforming and non-conforming couplings
along straight and curved interfaces. The presentation is divided into two parts: first, the strategy is
validated through three different benchmarks involving local mesh refinement, introduction of a geometrical
detail, and coupling at a bi-material interface. In this part, the results are compared with those obtained from
the existing standard approach based on Lagrange multipliers [31], which demonstrates the performance of
the proposed methodology. Then, the situation of an evolving local model is addressed. More precisely, a
simple shape optimization problem is solved: the position of an inclusion within a global plate is optimized
so as to provide maximal rigidity for the structure. The optimization algorithm calls upon the non-intrusive
solver each time the objective function needs to be evaluated.

4.1. Validation of the non-intrusive coupling strategy

From here on, the mesh composed of N elements along the first length and M elements along the second
length will be denoted N ×M . The k-refinement strategy [65] is performed so that the maximum level of
continuity (i.e., C(p−1) for a polynomial degree p) is ensured across the interior knots. In the illustrations, we
keep the notations introduced in Section 2; in particular, domain Ω1 = Ω11∪Ω12∪Γ characterizes the global
NURBS model and the local model of domain Ω2 is expected to replace the global model in subdomain Ω12.

4.1.1. Curved beam subjected to end shear

The first example consists of a curved beam subjected to end shear. The problem, together with its
global/local discretization, is illustrated in Fig. 3(a). A constant horizontal displacement of u0 = 0.01 units
is prescribed over the lower beam boundary. An analytical solution is available for the problem in [66]. In the
upper half of the structure, the global NURBS model is meant to be replaced by a more refined (along the
radial direction) NURBS model. Quadratic NURBS functions are considered for the discretization of both
models. The situation of conforming meshes to be coupled is investigated here: the global/local interface
is aligned with the edges of the global knot-span elements. As a result, no specific quadrature rules need
to be implemented for the computation of r12 (see remark 2 and Eq. (26)). However, the two meshes can
be non-matching: the global and local mesh may not be aligned along the interface. To integrate over the
interface, we divide the straight line into 1D sub-elements by combining the trace on the interface of the
two meshes.

The results obtained by performing algorithm (24)-(25) with the discretization of Fig. 3(a) are grouped
in Figs. 3(b)-3(e). More precisely, the solution obtained once the iterative algorithm has converged is plotted
in Figs. 3(b) and 3(c) in terms of displacement and Von Mises stress, respectively. We note that it is the
coupled solution in Ω11∪Ω2 that is mapped (the fictitious prolongation of the global solution over Ω12 is not
represented). The solution appears to be in a good agreement with [66]. In particular, there is no visible error
concentration around the coupling interface Γ. Figs. 3(d) and 3(e) enable the convergence of the iterative
strategy to be appreciated: first, in terms of the non-intrusive residual (Eq. (33)) and then in terms of the
error on the displacements in the energy norm . No acceleration techniques are implemented here since the
standard fixed point already appears efficient. The non-intrusive residual goes to zero and the error on the
displacements reaches an asymptotic value (corresponding to the NURBS finite element approximation).
This accounts for the convergence of the algorithm. More importantly, it may be actually noticed from
Fig. 3(e) that it takes only 3 iterations to reach the stagnation of the NURBS finite element interpolation
error. This means that it takes only 3 iterations for the coupling error to be negligible compared to that
of the discretization. It seems that a criterion based on a coupling error of 10−4 is a bit too demanding.
To go further, a suitable error estimator should be implemented to stop the iterative algorithm at the right
time [67]. Such an estimator, which should be extended to the case of NURBS, goes beyond the scope of
this work, and we chose to stop the algorithm at 10−4 in the following.

Then, the convergence of the method with the refinement of the mesh is studied. For this purpose,
Figs. 4 and 5 show the convergence curves for the error in the L2 norm and in the energy norm, respectively.
To refine the coupled solution, we consider the meshes indicated in Tab. 1. The situations of matching
and non-matching meshes are investigated. For each approximation, the first mesh discretizes domain Ω11

(this is the global mesh divided in half along the circumferential direction) and the second mesh is used for
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Figure 3: Global/local non-intrusive Nitsche analysis of the curved beam problem (NURBS mesh of quadratic 24 (circumferential
direction) ×12 (radial direction) elements for Ω1 (12 × 12 for Ω11), and NURBS mesh of quadratic 12 × 20 elements for Ω2).
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domain Ω2 (this is the local mesh). For comparison purpose, the convergence curves of equivalent single-
patch solutions have been plotted in Figs. 4 and 5. Also, the equivalent single-patch meshes are reported in
Tab. 1. The convergence curves are plotted with respect to the equivalent mesh size normalized by the mesh
size of the equivalent coarsest mesh. Finally, the standard non-intrusive solutions [31] based on a simple
Lagrange multiplier coupling have been added to the graphics. A pragmatic strategy is adopted to build
the space for the Lagrange multiplier field: it is the trace along the interface of the local shape functions.

Total number of elements Single-patch mesh Matching meshes Non-matching meshes
(Ω11 ∪ Ω2) (Ω11 ∪ Ω2)

24 6× 4 3× 4 ∪ 3× 4 3× 3 ∪ 3× 5
96 12× 8 6× 8 ∪ 6× 8 6× 6 ∪ 6× 10
384 24× 16 12× 16 ∪ 12× 16 12× 12 ∪ 12× 20
1536 48× 32 24× 32 ∪ 24× 32 24× 24 ∪ 24× 40

Table 1: Meshes considered to study the convergence behavior of the curved beam problem.
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Figure 4: Convergence of the error in the L2 norm for the curved beam problem.

The present results confirm the behavior of the non-symmetric Nitsche coupling reported for the Poisson
problem in [45]: although optimal rates of convergence are achieved, the level of L2 accuracy is reduced
by a constant factor. Conversely, the corresponding convergence curves for the error in the energy norm
are optimal: the rate of convergence and the error constant are equivalent to those of the single-patch
discretization. These results indicate that the error regarding the derivatives of the primal variable is
significantly smaller than the error due to the NURBS finite element approximation. This means that the
accuracy of the derivative quantities is preserved with the proposed methodology. In the context of solid
mechanics where, from an engineering point of view, the accuracy of the stresses is crucial for the structural
design and optimization, this property is of primary importance while the reduced L2 accuracy is acceptable.
This encourages us to pursue in this direction.

Unlike its non-symmetric Nitsche counterpart, the standard non-intrusive procedure based on a Lagrange
multiplier coupling exhibits optimal results in the energy norm as well as in the L2 norm on this test case. We
emphasize here that we are considering a simple coupling situation of conforming meshes. As a consequence,
the choice adopted for the approximation of the dual variable appears suitable in this particular situation,
which gives the full accuracy of the resulting mixed method. As will be illustrated in the next examples,
this property of the Lagrange multiplier method will be deteriorated when addressing truly non-conforming
interfaces.
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Figure 5: Convergence of the error in the energy norm for the curved beam problem.

4.1.2. Infinite plate with a circular hole

In the next step, we study the performance of the proposed methodology for the introduction of a
geometrical detail in a given NURBS model. As an example, we consider the popular test case of an
infinite plate with a circular hole under in-plane tension. The geometry, material, boundary conditions and
the analytical stress solution [68] are given in Fig. 6. The hole constitutes the geometrical detail to be
incorporated in the initial NURBS square plate. The discretization of the problem following the developed
non-intrusive strategy is illustrated in Fig. 7(a). A regular B-Spline mesh is used for the plate without the
hole (domain Ω1) and a circular refined ring-shaped NURBS domain is constructed, as the local model, for an
accurate representation of the stress concentration around the hole. Therefore, the case of non-conforming
coupling along a curved interface is this time investigated. The recursive quadrature approach [19] applied
in the FCM is implemented to integrate over intersected elements for the evaluation of r12 (see Figs. 7(b)
and 7(c)). To ensure accuracy, we employ 6 levels of quadrature sub-cells. This precaution holds for all
remaining examples of the paper. To integrate over the non-conforming interface, we refine the NURBS
curve irrespective of the underlying global and local meshes.
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S
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R
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Parameters:

Exact solution:

Figure 6: Infinite plate with a hole: description and data of the problem.

The results obtained with algorithm (24)-(25) and the discretization of Fig 7(a) are shown in Figs. 7(d)
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Figure 7: Global/local non-intrusive Nitsche analysis of the infinite plate with a hole (rectangular B-spline mesh of cubic 6× 6
elements for Ω1, recursive Gaussian quadrature with 6 levels of sub-cells for Ω12, and circular NURBS mesh of cubic 4 × 4
elements for Ω2).
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and 7(e) in terms of stress and non-intrusive convergence, respectively. Removing the smooth non-physical
fictitious prolongation in Ω12, and replacing part of it by the local solution in Ω2, the resulting global/local
solution appears smooth and to be in good agreement with results obtained using NURBS fitted discretiza-
tions [1, 2]. Regarding the convergence of the proposed algorithm, the Quasi-Newton acceleration technique
seems to be necessary on this test case. This may be expected here since the stiffness gap between domains
Ω12 and Ω2 is significant. Taking the advantage of the Quasi-Newton update, we are able to make the
number of iterations relatively low: a residual of 10−4 is obtained in about 20 iterations.

The finite element convergence of the method when applied to this non-conforming scenario is then
investigated (see Figs. 8 and 9). 2nd, 3rd and 4th-order NURBS shape functions are considered for both of
the models. The different meshes of Fig. 8 are built for the numerical study. They correspond to several
uniform refinements starting from a mesh of 3× 3 B-spline elements for the global model and 2× 2 NURBS
elements for the local model. The corresponding convergence curves obtained with the error in the energy
norm are plotted in Figs. 9(a) and 9(b) for the proposed Nitsche-based strategy and for the standard
Lagrange multiplier based strategy, respectively. For the Lagrange multiplier coupling, we keep the choice
of a dual space constructed by means of the trace along the interface of the local shape functions.

Figure 8: Sequence of meshes considered for the convergence study.
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(b) Non-intrusive Lagrange strategy.

Figure 9: Convergence curves in energy norm for the infinite plate with a hole.

Unlike what was experienced for the curved beam problem of the previous section, the Lagrange mul-
tiplier approach appears to fail to reproduce the optimal convergence rates, especially when increasing the
polynomial order of the NURBS shape functions. We remind that the performance of such mixed methods
highly depends on the compatibility between the approximation subspaces considered for the primal and the
dual variables. As a result, the reason for this poor accuracy may be due to the non-conforming situation en-
countered which rules out many choices for the dual subspace. Conversely, without any additional specific
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treatment, the proposed non-symmetric Nitsche version seems to achieve the optimal rates of convergence,
which demonstrates that the methodology does not interfere with the accuracy of the NURBS functions
regardless of the coupling scenario encountered. Note that for the finest quartic coupling discretization, the
error level is so low that it may be deteriorated by rounding errors.

For completeness, the jump of the traction forces across Γ with respect to the parametric coordinate
along the interface is plotted in Fig. 10 in case of a Nistche-based as well as a Lagrange multiplier based
non-intrusive strategy. The second quartic discretization is considered. We observe that the Nitsche based
strategy enables to significantly reduce the numerical jump in order to reproduce Eq. (2b) whereas important
oscillations appear in case of a Lagrange multiplier based procedure, which confirms the superiority of the
developed strategy when addressing non-intrusive non-conforming coupling.
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4.1.3. Plate with a central inclusion

With the next example, the situation of a non-conforming, curved, and bi-material interface is investi-
gated, considering the modeling of a plate with a central inclusion subjected to constant in-plane tension
(see Fig. 11(a)). The Young’s modulus is chosen to be a hundred times larger for the inclusion than for the
plate (Ei = 100×Ep). The Poisson’s ratios are the same. Regarding the discretization, a regular quadratic
B-Spline grid composed of 28×40 elements is used for the plate while a circular quadratic NURBS mesh with
48 (circumferential direction) ×12 (radial direction) elements is constructed to model the inclusion. For the
integration over intersected entitites, we keep the quadrature approach and we refine the NURBS interface
irrespective of the underlying models. The interest of such a test case involving an overlapping mesh both
finer and stiffer than the underlying grid, is that it may display mesh locking, as shown in the context of
classical finite elements (see, e.g., [72, 73]). For comparison purpose, a refined conforming finite element
solution is computed using the classical 4-node element implemented in the industrial software ABAQUS
(see Fig. 11(b)).

The results in terms of Von Mises stress are given in Fig. 12. The Quasi-Newton acceleration technique
was used to make the algorithm converge and about 50 iterations were necessary to handle such a challenging
situation. Due to the contrast in Young’s moduli at the coupling interface, the same treatment as proposed
in [74] for the symmetric Nitsche coupling in the context of standard immersed finite elements is applied to
the proposed non-intrusive non-symmetric Nitsche coupling. The average operator (13b) is thus modified
as follows to counterbalance the material gap at the interface:{

σh
}

= γσh
1 + (1− γ)σh

2 with γ =
E2

E1 + E2
. (35)

Thanks to this precaution, we are able to accurately recover the physical stress state with the developed
non-intrusive strategy (the stiffer behavior of the inclusion is well captured, see Fig. 12(a)) whereas spurious
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Figure 11: Plate with a central inclusion: description and discretization of the problem.

oscillatory stresses are encountered at the interface with the standard Lagrange multiplier based procedure
due to mesh locking (see Fig. 12(b)). To better appreciate the phenomenon, the jump of the traction forces
across Γ with respect to the parametric coordinate along the interface is also plotted in Fig. 13. These
results confirm the attractiveness of the proposed non-intrusive method over the standard approach: it can
be easily extended with a suitable average operator to properly handle severe bi-material interfaces.

Remark 6.

4.2. Application to a simple optimization problem

With the last example, we seek to demonstrate the ability of the proposed strategy to accurately and
efficiently compute any evolution of a local model within a fixed global NURBS one. Such a feature opens
the door to tackle various applications. One of them concerns the optimization of local entities that can arise
in different contexts: for instance, for the shape optimization of holes [75, 76], or inclusions, or stiffeners
within stiffened panels [77], or even, to perform local topology optimization [78, 79, 80]. In this section, we
compute, as a preliminary example, a simple optimization problem involving the positioning of an inclusion
within a global plate. The objective is to show the potential of the developed method for carrying out
structural optimization and to motivate future research in this direction.

The considered structural shape optimization problem is illustrated in Fig. 14. For the numerical model,
the same parameters as for the previous test case (see Fig. 11(a)) are taken expect that the Young’s modulus
of the inclusion is chosen to be, this time, a hundred times smaller than for the plate (Ep = 103 and Ei = 10).
The design variables are the horizontal and vertical coordinate of the center of the inclusion: xc and yc,
respectively. The objective function is the compliance. As an optimization algorithm, we make use of the
black box FMINSEARCH available in MATLAB. This routine uses a gradient-free algorithm: it is the
Nelder-Mead simplex algorithm as described in Lagarias et al. [81]. We admit that more sophisticated
algorithms may be probably used for improving the optimization performance. Nevertheless, our interest
here being to prove the efficiency of the developed non-intrusive solver rather than building an advanced
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(a) Non-intrusive Nitsche strat-
egy.

(b) Non-intrusive Lagrange strat-
egy.

(c) Reference Abaqus solution.

Figure 12: Plate with a central inclusion: Von Mises stress distribution.
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Figure 13:

optimization tool, we choose to initiate the study with this simple algorithm. Starting with an inclusion
located at position x0

c = 2 and y0
c = 2, the optimization process is expected to lead to the configuration of a

central inclusion, i.e. such that xrefc = 3.5 and yrefc = 5 . Indeed, the further the inclusion is from all plate
boundaries, the less stress concentration is encountered around the inclusion. For illustration purpose, the
solution in terms of Von Mises stress is plotted for the initial configuration and the expected optimized one
(see Figs. 15(a) and 15(b), respectively).

The optimization algorithm calls upon the developed non-intrusive solver to get the displacement solution
at each configuration encountered through the optimization process. A maximum number of iterations of
20 is prescribed for the non-intrusive iterative algorithm. The interest of using algorithm (24)-(25) is clear

in this situation: the stiffness operators K1 and

[
K2 +

(
K

N

22

T
−K

N

22

)]
are assembled and factorized once

for all in a pre-processing step. Then, the only things to do to compute the successive coupled solutions
encountered at each iteration of the optimization process are:

1. build the integration rule for the small immersed region Ω12;
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Figure 14: Simple optimization problem: the position of the inclusion (xc, yc) in the plate is optimized so as to provide maximal
rigidity for the structure. The optimization algorithm calls upon the non-intrusive solver each time the objective function needs
to be evaluated.
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Figure 15: Simple optimization problem: Von Mises stress distribution.

2. assemble r12, K
N

11, K
N

12 and K
N

21;

3. perform few lower and upper triangular resolutions to solve alternatively problems (24) and (25).
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Figure 16: Simple optimization problem: results.

Conversely, a direct solver would require to fully rebuild and recompute the resulting global/local prob-
lem (15) (that may also appear ill-conditioned) at each of these steps. The results of the optimization using
the non-intrusive solver are presented in Fig. 16. More precisely, Figs. 16(a) and 16(b) show the conver-
gence of the objective function and of the design variables, respectively. The convergence criterion for the
optimization algorithm relies on the stagnation of the objective function as well as of the design variables:
it stops when it gets below 10−4. It can be observed that we are able to recover the expected optimized
configuration through the optimization process, which accounts for the ability of the non-intrusive solver
to adapt to any arbitrary non-conforming situations, in particular when the edge of an element of the local
model approaches that of an element of the global model.

5. Conclusion

In this paper, we proposed a new non-intrusive global/local coupling algorithm. In contrast to the existing
non-intrusive strategies that rely on a Lagrange multiplier coupling, the developed iterative procedure makes
use of the non-symmetric Nitsche approach. Recenty, the non-symmetric variant of the Nitsche method
was successfully applied to the weak enforcement of boundary and interface conditions in non-boundary-
fitted discretizations [45, 46]. This work further consolidated this technique by establishing its application
in the context of global/local isogeometric structural analysis. In this field, the non-symmetric Nitsche
coupling gave the full potential of the non-intrusive approach: it offered the opportunity to address simply
and efficiently all the non-conforming global/local coupling configurations that were encountered when
integrating a local region within an underlying global NURBS model. The reason for this is the robustness
and simplicity of the coupling. Indeed, the coupling formulation is (1) free of auxiliary fields which enables to
circumvent the difficulty of choosing a suitable dual space (particularly in case of non-conforming couplings),
and (2) is intrinsically stable (in a weak sense), thus eliminating the need for additional stabilization terms
with appropriate parameters (whose determination can be delicate depending on the cutting scenarios).

The extension of the non-intrusive technique resulted in an original iterative process that aims at recover-
ing the interface conditions (in a non-symmetric Nitsche weak sense) for the global model, provided that the
coupling conditions viewed by the local model are enforced at each iteration of the algorithm. Although its
mechanical interpretation is rather different form that of the existing non-intrusive strategies, the numerical
procedure could still be interpreted as a modified Newton method so that, it was possible to apply efficient
acceleration procedures in order to maintain a limited number of iterations (a few dozen) even in challenging
situations. More precisely, the performance of the developed methodology over the existing NURBS one
was numerically demonstrated through a range of two-dimensional elastic benchmarks involving conforming
and non-conforming couplings along straight, curved, and possibly bi-material interfaces. Our results clearly
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indicated the superiority of the proposed approach when addressing any arbitrary non-conforming situation:
the non-symmetric Nitsche version always achieved optimal accuracy while, due to a choice for the dual
space, the existing Lagrange version appeared to fail to reproduce optimal behavior in some situations.
In addition, mesh locking was reported when coupling at a severe bi-material interface with the Lagrange
multiplier based method whereas the Nitsche counterpart handled successfully such interfaces thanks to the
use of a suitable averaging operator.

Given its attractive properties, the developed method appears particularly suitable to compute any evo-
lution of a local model within a fixed global NURBS one. From an engineering point of view, this appears of
great interest since in many applications it is necessary to solve a sequence of similar problems, in a multires-
olution process, where only the behavior at a local scale needs to be updated (e.g., to carry out the shape
optimization of local entities [76, 77], or to perform the identification of local mechanical parameters [82, 83],
or to model crack propagation [11], or the expansion of a plastic zone [12, 14], a damage zone [13], etc). To
show the potential of the method in this context, a simple optimization problem involving the positioning
of an inclusion within a global plate was carried out. The optimization algorithm called upon the non-
intrusive solver each time the objective function needed to be evaluated, which facilitated the process and
ensured computational time saving. The success of this study opens the door for the development of effective
optimization tools, based on the proposed non-intrusive solver, to handle more realistic applications (e.g.,
for the shape optimization of stiffeners within stiffened panels [77]). This motivates future research in this
direction and, more generally, encourages to make use of such an algorithm when performing multiresolution
processes.
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[58] U. Küttler and W.A. Wall. Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Me-
chanics, 43 (2008) 61-72.

[59] C.T. Kelley and E.W. Sachs. Local Convergence of the Symmetric Rank-One Iteration. Computational Optimization and
Applications, 9 (1998) 43-63.

[60] H.F Khalfan, R.H. Byrd and R.B. Schnabel A Theoretical and Experimental Study of the Symmetric Rank-One Update.
SIAM Journal on Optimization, 3 (1993) 1-24.

[61] P. Gosselet, M. Blanchard, O. Allix and G. Guguin. Non-invasive global–local coupling as a Schwarz domain decomposition
method: acceleration and generalization. Advanced Modeling and Simulation in Engineering Sciences, 5:4 (2018).

[62] C. Farhat, F.X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm, Inter-
national Journal for Numerical Methods in Engineering, 32 (1991) 1205-1227.

[63] P. Le Tallec, Y.-H. De Roeck, M. Vidrascu. Domain-decomposition methods for large linearly elliptic three dimensional
problems, Journal of Computational and Applied Mathematics, 34 (1991) 93-117.

[64] P. Gosselet, C. Rey, Non-overlapping domain decomposition methods in structural mechanics, Archives of Computational
Methods in Engineering, 13 (2006) 515-572.

[65] J.A. Cottrell, T.J.R. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural analysis. Computer
Methods in Applied Mechanics and Engineering, 196 (2007) 4160-4183.

[66] O.C. Zienckewicz, R.L. Taylor, The Finite Element Method - The Basis, vol.1, Butterworth-Heinemann, 2005, sixth ed..
[67] M. Duval, A. Losinski, J.-C. Passieux and M. Salaün. Residual error based adaptive mesh refinement with the non-intrusive

patch algorithm. Computer Methods in Applied Mechanics and Engineering, 329 (2018) 118-143.
[68] M.H. Sadd, Elasticity, Theory, Applications, and Numerics, Academic Press, Oxford 2009.
[69] C. Bernardi, T.C. Rebollo and E.C Vera. A FETI method with a mesh independent condition number for the iteration

matrix. Computer Methods in Applied Mechanics and Engineering, 197 (2008) 1410-1429.
[70] C. Bernardi, T.C. Rebollo, E.C. Vera and F. Coronil. A posteriori error analysis for two non-overlapping domain decom-

position techniques. Appl. Numer. Math., 59 (2009) 1214-1236.

[71] G. Desmeure, P. Gosselet, C. Rey and P. Cresta. Étude de différentes représentations des interefforts dans une stratégie
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