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ABSTRACT

Smartphones have became an easy and convenient mean to
acquire documents. In this paper, we focus on the automatic
segmentation of identity documents in smartphone photos
or videos using visual saliency (VS). VS-based approaches,
which pertain to computer vision, have not be considered yet
for this particular task. Here we compare different VS meth-
ods, and we propose a new VS scheme, based on a recent
distance belonging to the scope of mathematical morphology.
We show that our resulting saliency maps are competitive
with state-of-the-art visual saliency methods, and that such
approaches are very promising for use in identity document
detection and segmentation, even without taking into account
any prior knowledge about document contents. In particular
they can perform in real-time on smartphones.

Index Terms— Document detection, Visual saliency,
Identity document, Mathematical morphology, Smartphone-
based acquisition.

1. INTRODUCTION

Smartphones are able to easily capture images and take videos;
thanks to this convenience, many users use smartphones as a
tool to acquire documents instead of a traditional scanner. In
this paper, we focus on the detection of identity documents,
such as visas, passports, and identity cards, in photos or videos
acquired by a smartphone. This detection task can be actually
seen as the segmentation of the image into two parts: the doc-
ument and the background—note that the term “document seg-
mentation” usually refers to the segmentation of the document
contents into several parts. Knowing the precise area of the
document allows to guide the user during the image acquisition,
to check for forgeries, to properly archive the document, and
also to identify the model of document [1, 2]. There are many
difficulties in such a real-world mobile-based application: the
scene background is unknown; lighting conditions are highly
variable (with poor contrast, and unreliable color tones); illu-
mination defects can appear (inhomogeneity, shadows, specu-
lar reflections); last, some problems due to the acquisition can
occur (out-of-focus blur, motion blur, optical distortions, and
noise). In this paper, we assume that the type of identity doc-
ument present in an image to process is unknown. Typically,
we consider situations where we can have passports from dif-
ferent countries, such as in an airport. That implies that docu-

ments can have different kinds of contents (layout, text zones,
pictures, background). As said before, we want to delineate
precisely the document boundary, so its contents (presence of a
face photo or of text) is actually of poor help.

To detect documents, the most classical approach is to ex-
tract lines from contours as candidates for being a document
side [3] (see also [4], which presents a survey on camera-based
analysis of documents, and the recent paper [5]). Here we put
aside theses approaches, since we are going to explore a rad-
ically different approach, the visual saliency-based one. That
is why Sec. 2 only focuses on salient object detection1. Many
salient object detection methods, for use in computer vision,
have been recently defined using the Minimum Barrier Dis-
tance (MBD) [6], the first ones being [7, 8], and the most recent
one being [9]. This particular distance and a distance which de-
rives from it [10], whose computation is very fast, are detailed
in Sec. 2. That latter distance is the cornerstone of the method
that we present in Sec. 3 to detect documents. This method
computes a saliency map, that is, an intensity image where the
pixels of salient objects are brighter than the other pixels. Then
we binarize this map to obtain the final segmentation result.

The two main contributions of this paper are:

1. an extension to color images (Sec. 3.2) of the Dahu distance,
originally defined on gray-level images [10], which allows for
computing saliency maps,

2. and a study (Sec. 4) that compares different saliency-based
methods for the segmentation / detection of identity documents.

2. SALIENT DOCUMENT DETECTION

This section describes the saliency map we will use in the doc-
ument segmentation method presented in Sec. 3.

2.1. Saliency based on the Minimum Barrier Distance

The Minimum Barrier Distance (MBD) has been defined in
the seminal paper [6], and later studied in [11, 12]. Consid-
ering that the image domain is a graph, where vertices repre-

† This work has been conducted in the context of the MOBIDEM project,
part of the “Systematic Paris-Region” and “Images & Network” Clusters
(France). This project is partially funded by the French Government and
its economic development agencies.

1It also explains that a comparison between saliency-based methods and
some more classical line/contour-based methods is left as future work. Our
intent here is only to see whether using saliency can be effective to document
detection and segmentation.
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(f) A minimal path in a u<− ũ.

Fig. 1. Image representations for computing barrier distances.

sent the discrete points of the domain, we can define paths on
this graph. A gray-level image (such as in Fig. 1(a)) is then
a vertex-valued graph (such as in Fig. 1(b)). The barrier τ of
a path π = 〈..., πi, ...〉 (πi being a vertex of the graph) in a
gray-level image u is defined by:

τu(π) = max
πi∈π

u(πi) − min
πi∈π

u(πi). (1)

The barrier thus represents the gray-level dynamics in u along
a path. The minimum barrier distance between x and x′ in u is
then defined by:

d MB

u (x, x′) = min
π∈Π(x, x′)

τu(π), (2)

where Π(x, x′) denotes the set of all paths between two ver-
tices x and x′. The minimum barrier distance is thus the min-
imum gray-level dynamics that we can have along a path be-
tween two vertices.

A simple illustration is given in Fig. 1. In the graph-based
representation depicted in Fig. 1(b), between the two red ver-
tices, multiple paths are possible. The path π corresponding to
the sequence of values 〈1, 3, 0, 0, 2〉 is such as τu(π) = 3−0 =
3; it is not minimal since we can have paths with a lower barrier
value. A minimal path w.r.t. the MBD is depicted in blue, and
we have d MB

u (x, x′) = 2.

From a distance, we can derive a saliency map, that is, an
image where the image value at a point x is the distance of x to
a given set of points X ′; formally:

S MBD

u (x, X ′) = min
x′∈X′

d MB

u (x, x′). (3)

The computation of a saliency map using the exact MBD is
costly [11]; yet some fast but approximate algorithms exist,
based on the minimum spanning tree of the image [8]. The
next section presents a variant of the MBD, which is also based
on the notion of barrier (Eq. (1)), and which leads to an exact
and efficient computation of saliency maps.

2.2. The Dahu Distance and the Tree of Shapes

In [10], a “continuous” version of the MBD has been defined,
where a gray-level image is interpreted as a surface. An illus-
tration is given in Fig. 1(d) for the image in Fig. 1(a). We can
define paths on this surface, and a minimal path is depicted in
blue in Fig. 1(d), having a barrier of 1 gray-level. This contin-
uous representation of images thus leads to a slightly different
distance. Let us now recall briefly how the continuous version
of the MBD is defined in [10].

A gray-level image can be seen as a function u : Z2 → N,
but such a function is inappropriate to represent a surface such
as the one in Fig. 1(d). In [10] the authors have proposed to re-
place the domain Z

2 by the topological space H2 of 2D cubical
complexes, and the co-domain N by the set IN of intervals on
natural numbers. Briefly put, a 2D cubical complex is a set of
elements that have a geometrical interpretation: it is composed
of squares (2D elements), of segments (1D elements), and of
points (0D elements). Fig. 1(e) depicts these elements, where
segments and points are respectively drawn as rectangles and
tiny squares. The 2D elements correspond to the original pix-
els of the image (in salmon pink in Fig. 1(e)), whereas the other
elements correspond to “what lies between the pixels”. From a
scalar-valued image u we construct an interval-valued image ũ
which really represents the surface corresponding to u.

For instance, the scalar image u in Fig. 1(a) can be seen as
the surface depicted in Fig. 1(d). The corresponding interval-
valued image ũ depicted in Fig. 1(e), and in 3D in Fig. 1(c), is a
way to represent this surface. Actually, the 0D and 1D elements
of the complex which have non-degenerated interval values (in
yellow in Fig. 1(e)) encode the vertical parts of the surface. For
instance, the 1D element e with the purple border in Fig. 1(e) is
such as ũ(e) = [2, 3]; it represents the vertical part of the image
surface depicted in purple both in Fig. 1(c) and in Fig. 1(d).

Let us denote by <− the relation between a scalar image
and an interval-valued image stating that the values of the pix-
els of the former are “included” in the interval values of the
pixels of the latter; formally: u<− ũ ⇔ ∀x, u(x) ∈ ũ(x).
Fig. 1(f) depicts a scalar image u which is “included” in the
interval-valued image ũ depicted in Fig. 1(e). The adaptation
of the minimum barrier distance to an interval-valued image /
function, called the Dahu distance [10], is the following:

d DAHU

u (x, x′) = min
u<− ũ

d MB

u (hx, hx′) (4)

= min
u<− ũ

min
π∈Π(hx, hx′ )

τu(π), (5)

where hx and hx′ are the 2D elements of the complex cor-
responding to x and x′. Fig. 1(f) depicts in blue a minimal
path w.r.t. the Dahu distance; it is obtained with a particular
scalar image included in the interval-valued image ũ depicted
in Fig. 1(e). This minimal path corresponds to the one depicted
on the surface of u in Fig. 1(d), and gives a distance of 1 gray-
level between the two red pixels.

As compared to the minimum barrier distance (see Eq. (2))
there is an extra combinatorial layer with the minimization
“minu<− ũ”. Yet, this new distance can be very easily and
efficiently computed thanks to a tree-based representation of
the image. The tree of shapes [13, 14] is a morphological de-
composition of gray-level images into connected components,
called shapes, which can be arranged into a tree; indeed, two
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Fig. 2. The tree of shapes of an image allows to easily express
and compute the Dahu distance and saliency maps.

shapes are either disjoint or nested. Quickly said, a shape is
the interior of an iso-level line. In Fig. 2, an illustration of a
tree of shapes is given and, for instance, the sub-tree B∪D∪ E

corresponds to a shape, the contour of which being a dark-gray
iso-level line. In Fig. 2(a), the blue path between the two points
(x, x′) indicated by red bullets in u starts from region B, then
goes through A and C, and finally ends in region F. Such a
path is minimal because every path in Π(x, x′) should at least
cross this same set of level lines to go from x to x′; thus the
Dahu distance corresponds to the level dynamics of this set of
lines. Actually this path in the image space is exactly the path
on the tree of shapes between the nodes tx and tx′ containing
respectively the two red endpoints x and x′; see the blue path
on the tree depicted in Fig. 2(c). In the following, a path on a
tree is denoted by

•

π (to distinguish it from paths in the image
space).

The Dahu distance between x and x′ can therefore be re-
expressed directly on the tree of shapes S(u) of u as being the
minimum barrier distance between the nodes tx and tx′ :

d DAHU

u (x, x′) = d MB

S(u)(tx, tx′)

= max
t∈

•

π(tx, tx′ )
µu(t) − min

t∈
•

π(tx, tx′ )
µu(t), (6)

where µu(t) denotes the gray-level associated with the node
t of S(u). For instance, in Fig. 2(c), the blue path gives the
sequence of node values 〈0, 1, 2, 1〉, so the Dahu distance is 2−
0 = 2. Eventually, there is no need to find the best scalar image
u<− ũ, nor the best path π ∈ Π(x, x′) in the image space;
it thus means that the primary definition of the Dahu distance
(Eq. (5)) is not used as is. The new expression of the distance
(Eq. (6)) is just a barrier computation (such as Eq. (1)), but on
the trivial path

•

π(tx, tx′) of nodes of the tree of shapes.

2.3. Saliency based on the Dahu Distance

A saliency map of an image u can be derived from this new
distance, such as in Eq. (3), except that this new saliency map
has a direct expression on the tree of shapes S(u). With a set
of points X ′, the corresponding set of nodes on S(u) is:

TX′ = { tx′ ; x′ ∈ X ′ } ⊂ S(u). (7)

The saliency map from X ′ based on the Dahu distance can then
be expressed by:

S DAHU

u (x,X ′) = min
x′∈X′

d DAHU

u (x, x′) = S MBD

S(u)(tx, TX′). (8)

The major difference with a classical saliency map, defined in
the image space (such as the one of Eq. (3)), is that the tree
structure is one-dimensional. Since the Dahu distance on the

tree (given by Eq. (6)) has the form of a barrier “max - min”,
the saliency map S MBD

S(u) expressed on the tree can be computed

by a two-pass procedure (here, downwards then upwards) like
the very classical computation of a chamfer distance map [15].
Afterward, getting the 2D saliency map S DAHU

u means reading
for each x the value of S MBD

S(u) at tx. Eventually, once computed

the tree of shapes S(u), the computation of a saliency map
x 7→ S DAHU

u (x, X ′) is instantaneous, whatever the set X ′.
Last, let us mention that the representation of an image into

a tree of connected components is not memory consuming and
is very easy to manipulate [16]. The tree of shapes of an im-
age can be computed in quasi-linear time complexity w.r.t. the
number of image pixels [17], and can be parallelized [18].

3. PROPOSED METHOD

We now present a method that relies on saliency maps based on
the Dahu distance (Eq. (8)) to detect identity documents.

3.1. Overview of the Method

The method we propose is composed of four steps. 1. We rely
on the SLIC algorithm [19] to simplify the image into super-
pixels (clusters of pixels, i.e., very tiny regions). This step is
interesting because it removes unnecessary image details, and
the image can now been seen as a graph of superpixels, which
has a reasonable size (instead of a huge matrix of pixels). That
drastically reduce the number of elements to deal with for the
next steps. 2. To each superpixel we assign its average color,
and a tree of shapes is computed from this graph. 3. We then
produce a saliency map from this structure, and we normalize
this map (Sec. 3.3). 4. Finally, we apply a detection step to
obtain the resulting detection (Sec. 3.4).

Let us remark that steps 2 and 3 require to compute respec-
tively the tree of shapes and Dahu distances on a color-valued
graph; yet both this tree and this distance are originally defined
on scalar data (gray-valued images and graphs). So, before giv-
ing the method details, we first have to extend these notions to
color data.

3.2. Extension to Color Data

The tree of shapes, primarily defined on gray-level images, has
been recently extended to multi-valued data [20]; this extension
is called the Multivariate Tree of Shapes (MToS). It yields that
we can represent color images by a tree mapping the inclusion
of shapes, that is, connected components without holes. Such a
representation is of prime importance for computer vision [21]
because it satisfies some strong invariance properties featured
by natural images, such as local contrast changes [22].

However, the definition of the Dahu distance on the tree of
shapes Eq. (6) cannot be used as is; it shall be adapted to take
into account that we have color data. Let us now consider that
u is a color image, t is a node of the MToS of u, and µu(t)
is the color associated with node t. A superscript i is used to
stand for taking one component of the color given by µ. We
can then re-write the Dahu distance as follows:

with τ (i)
u

(
•

π) = max
t∈

•

π

µ(i)
u
(t) − min

t∈
•

π

µ(i)
u
(t), (9)

d DAHU

u
(x, x′) =

∑
i∈{R,G,B} τ

(i)
u (

•

π(tx, tx′) ). (10)
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Fig. 3. Effect of fusing four side-specific maps using Eq. (11).

This distance is therefore the sum of the lengths of the 3 sides of
the minimum 3D bounding box of the set of colors correspond-
ing to the nodes along the path between tx and tx′ . This mod-
ified Dahu distance can now be used to compute the saliency
map of Eq. (8). 2

3.3. Obtaining a Relevant Saliency Map

We assume that the four sides of the image boundary are mostly
composed of the scene background (i.e., the document does not
predominantly touch the image boundary). Hence, from each
boundary side of the image, we compute a saliency map; for
instance, with Xtop being the set of pixels of the image top row,
we have the saliency map S DAHU

u
(x, Xtop). We end up with

4 saliency maps, depicted in Fig. 3(b), that we combine in a
pixel-wise way using:

S DAHU

u
(x) =

∑
i∈{top, left, right, bottom} S

DAHU

u
(x, Xi) / 4. (11)

An example is given in Fig. 3. As we can see in Fig. 3(a), the
fact that the document touches the top row gives an irrelevant
saliency map S DAHU

u
(x, Xtop), marked T in Fig. 3(b). However,

after the fusion of the 4 maps, we obtain a satisfy result, which
is depicted in Fig. 3(c).

Similarly to some previous works [23, 11, 12], we normal-
ize the saliency map by using “a - b” normalization (with a =
0.1 and b = 0.8), followed by an adaptive contrast enhance-
ment with a sigmoid mapping. The saliency map in Fig. 3(c) is
depicted after normalization in the 2nd row of Fig. 5(f).

3.4. Final Detection Step

The final detection step consists in deducing a binary image
from the saliency map obtained by Eq. (11). Our detection step
is still experimental (briefly put, we only search for a thresh-
old so that the result looks like a quadrilateral); it is not em-
phasized in this paper, since we focus on comparing gray-level
saliency maps w.r.t. all possible thresholds in Sec. 4.2. Though,
with this simple detection step, some preliminary results are de-
picted in Fig. 5(g) with the following color code: white for true
positives, red for false negatives, and green for false positives.

2Please note that, although Eq. (10) looks simple, we have here a strong
result. To be able to compute visual saliency maps (efficiently, and based
on the very effective Minimum Barrier Distance) while taking into account
colors, we need to compute a particular distance between two points. This
distance is the one of an optimal path between two points in the image space,
this path being such that the set of colors on the path has the smallest bound-
ing box in the color space. Precisely, the distance between the 2 points is the
diameter (with the L1 norm) of this 3D bounding box. This is a highly com-
binatorial problem, far to be trivial, and which cannot be solved efficiently in
the image space. Our contribution here is to turn this problem into an efficient
straightforward computation in a tree space.

Method MAE Fβ

GS [24] 0.328 0.573

MR [25] 0.299 0.642

SO [26] 0.265 0.7461

Dahu 0.178 0.7465
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Fig. 4. Numerical comparison of saliency maps.

4. EXPERIMENTAL RESULTS

To know how our Dahu-distance-based saliency method per-
forms in the context of identity document segmentation, we are
going to compare it with some other similar approaches.

4.1. Some Other Saliency Detection Methods

Let us now present three state-of-the-art methods of salient ob-
ject detection, that we are going to compare our method with.
In [24] the saliency detection is based on a geodesic distance
(GS) which uses background priors. The major assumptions
are that the background is usually large, homogeneous, and lo-
cated near the boundary of the image. In [25] the saliency de-
tection relies on a bottom-up approach to choose some regions
by manifold ranking (MR) on a graph of superpixels. Such as
in Sec. 3.3, the authors compute 4 maps and fuse them. In these
maps, the superpixels are ranked w.r.t. the similarity with some
seeds located in the image boundaries. In [26], a saliency op-
timization method (SO) is proposed which combines multiple
saliency measures, one of them using the notion of “boundary
connectivity”. Note that all these methods also rely on a post-
processing step to “normalize” the resulting saliency maps.

4.2. Dataset and Experiments

For our experiments, we have built a dataset of identity docu-
ments3. We have a dozen of different types of visas and pass-
ports from various countries. We recorded over 100 videos
under different environment conditions, using several kinds of
smartphones. From these videos, we selected 100 frames to
create our dataset, so that it presents some realistic difficulties
such as out-of-focus and motion blur, inhomogeneous illumi-
nations, etc. Then, we generated semi-automatically the corre-
sponding ground-truth images.

We compare our method with the state-of-the-art saliency-
based detection methods presented in the previous section.
We use two distinct measures: 1. the Mean Absolute Error
(MAE), which is the average difference between a saliency
map S (gray-level image) and a ground-truth image GT (bi-
nary image): MAE = (

∑
x |GT (x) − S(x)|) /N, with N

being the number of pixels, and 2. an Fβ-measure defined by:
Fβ = (1 + β2) × P × R/ (β2 × P + R), where P and R

3Available at http://publications.lrde.epita.fr/movn.18.das
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Fig. 5. Comparison of our saliency maps with other classical or state-of-the-art methods.

are respectively the precision and the recall, and with β2 = 0.3
(it is the classical setting in the visual saliency community).
To compute the precision and recall scores, for each image
to process, we simply binarize the corresponding gray-level
saliency map with a threshold sliding from 0 to 255. Then, for
every threshold, we compare the obtained binary map with the
ground-truth map. For a given threshold, we depict in Fig. 4(b)
the average Fβ-measure obtained on the dataset of 100 images.
The “global” Fβ-measure, averaged for all thresholds (and all

images), is denoted by Fβ . The values of Fβ and the MAE
scores for all the compared methods are depicted in the table
in Fig. 4(a); note that the better a method is, the lower MAE
values are, and the higher Fβ values are. First, we can observe
that, over the years, the state-of-the-art methods give better re-
sults (first GS, then MR, and last SO). Second, the Dahu-based
approach gives the lowest MAE score, and slightly outperforms
the SO method for the Fβ criterion.

If we look at the Fβ-measure curves for the different thresh-
olds in Fig. 4(b), there are two main observations. First, the
methods SO (in gray) and Dahu (in red) have stables / flat
curves, which is an advantage, because the “best” threshold
remains unknown and depends on the image. Conversely, for
the GS and MR methods (respectively in blue and green), the
curves are not stable, which means that taking a threshold
might not be a very robust task. The second observation is
that the “best” method with respect to the Fβ-measure seems
to be the MR method, with a rather low threshold (around
50). Though, the MR method is computationally expensive
so it cannot run in real-time on smartphones, whereas the
Dahu-based approach can.

Some qualitative illustrations on a few images (Fig. 5(a))
are depicted in Fig. 5. The prominent observation is that the
compared saliency methods, from Fig. 5(b) to Fig. 5(f), have
rather different behaviors. The one based on the Dahu dis-
tance, so on the principle of a barrier (see Eq. (1), Eq. (6),
and Eq. (9)) is effective: the main barrier is visible around the
documents, even before normalization; see Fig. 5(e). Also we

can notice that the saliency values inside the documents are
much more uniform with the Dahu-based method than with the
other saliency-based methods.

4.3. Limitations and Perspectives

The major limitation of saliency-based methods is due to low
contrast; some failure cases are depicted in Fig. 5(i). The left
image is blurred and the contrast between the document and
the background is poor, so the document cannot be detected.
In the right image, the identity card has a color similar to the
one of the background, so the salient objects are the hand and
the portrait. Actually, as perspectives, the method we present
can be improved through taking into account some extra prior
information such as “text texture”, and can be combined with
more classical contour/line-based approaches.

5. RELATED WORK

Actually, there exists a short state of the art of document de-
tection, contrasting from methods to extract lines as candidates
for the document sides, and being related to the one presented
here. In [27], after down-sampling, some seeds are located in
the image, and the “geodesic object proposals” method [28]
extracts from these seeds a set of regions; the best candidate
region is then elected as being the document. In [29] and [30],
the authors proposed a method based on the tree of shapes [20].
For each shape (node of the tree / connected component with-
out hole), an energy is computed being the sum two terms: one
measuring how the shape fits a quadrilateral, and the other one
measuring the degree of “text texture” of the contents of the
shape. The shape with the highest energy is considered as the
candidate for document detection. This approach won the first
challenge (detection of a document page in videos captured by
smartphones) of the SMARTDOC competition, organized for
ICDAR 2015 by Burie et al. [3]. The work presented in this pa-
per, relying on a saliency map computed on the tree of shapes,
is clearly derived from it.



6. CONCLUSION AND PERSPECTIVES

In this paper, we have presented an extension of the Dahu
distance to color images, which allows for computing some
saliency maps for object detection purpose. We have proposed
a framework to detect identity documents in photos or videos
captured by smartphones based on saliency maps, with very
few prior knowledges about the documents and the images. We
only take into account that the document looks like a quadrilat-
eral and does not mostly touch the image boundary. Our main
conclusion (and contribution) is that visual saliency approaches
are relevant to document detection. Moreover, while remaining
efficient (both in time and memory usage), which is critical in
embedded software, we have the potential to offer better results
than the one presented here, using some extra knowledge. In-
deed, finding some text [31] or a face photograph can help the
final decision step in locating the document, though that does
not directly help delineating the document boundary. Last, we
will also consider images acquired by tablets and webcams to
test the robustness of the saliency approach.

Acknowledgments. The authors would like to thank Nicole
Vincent and Jean-Christophe Burie for their valuable com-
ments on a preliminary version of this work.
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of Shape Identification, ser. LNM. Springer, 2008, vol. 1948.

[22] V. Caselles, B. Coll, and J.-M. Morel, “Topographic maps and

local contrast changes in natural images,” International Jour-

nal on Computer Vision, vol. 33, no. 1, pp. 5–27, 1999.

[23] G. Wang, Y. Zhang, and J. Li, “High-level background prior

based salient object detection,” Journal of Visual Communica-

tion and Image Representation, vol. 48, pp. 432–441, 2017.

[24] Y. Wei, F. Wen, W. Zhu, and J. Sun, “Geodesic saliency using

background priors,” Proc. of ECCV, pp. 29–42, 2012.

[25] C. Yang et al., “Saliency detection via graph-based manifold

ranking,” in Proc. of ICPR, 2013, pp. 3166–3173.

[26] W. Zhu, S. Liang, Y. Wei, and J. Sun, “Saliency optimization

from robust background detection,” in Proc. of ICPR, 2014, pp.

2814–2821.

[27] L. R. Leal and B. L. Bezerra, “Smartphone camera document

detection via Geodesic Object Proposals,” in Proc. of IEEE LA-

CCI, 2016, pp. 1–6.
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[29] Y. Xu, T. Géraud, and L. Najman, “Hierarchical image sim-

plification and segmentation based on Mumford-Shah-salient

level line selection,” Pattern Recognition Letters, vol. 83, no. 3,

pp. 278–286, 2016.
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