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Abstract

This work is devoted to the construction of weakly nonlinear, highly oscillating, current vortex sheet
solutions to the incompressible magnetohydrodynamics equations. Current vortex sheets are piecewise
smooth solutions to the incompressible magnetohydrodynamics equations that satisfy suitable jump con-
ditions for the velocity and magnetic field on the (free) discontinuity surface. In this work, we complete
an earlier work by Al̀ı and Hunter [Quart. Appl. Math. 61(3), 451-474, 2003] and construct approximate
solutions at any arbitrarily large order of accuracy to the free boundary problem in three space dimensions
when the initial discontinuity displays high frequency oscillations. As evidenced in earlier works, high
frequency oscillations of the current vortex sheet give rise to ‘surface waves’ on either side of the sheet.
Such waves decay exponentially in the normal direction to the current vortex sheet and, in the weakly
nonlinear regime that we consider here, their leading amplitude is governed by a nonlocal Hamilton-Jacobi
type equation known as the ‘HIZ equation’ (standing for Hamilton-Il’insky-Zabolotskaya [J. Acoust. Soc.
Am. 97(2), 891-897, 1995]) in the context of Rayleigh waves in elastodynamics.

The main achievement of our work is to develop a systematic approach for constructing arbitrarily
many correctors to the leading amplitude. Based on a suitable duality formula, we exhibit necessary
and sufficient solvability conditions for the corrector equations that need to be solved iteratively. The
verification of these solvability conditions is based on a combination of mere algebra and arguments of
combinatorial analysis. The construction of arbitrarily many correctors enables us to produce infinitely
accurate approximate solutions to the free boundary problem. Eventually, we show that the rectification
phenomenon exhibited by Marcou in the context of Rayleigh waves [C. R. Math. Acad. Sci. Paris
349(23-24), 1239-1244, 2011] does not arise in the same way for the current vortex sheet problem.



Contents

1 Introduction and main result 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Choice of parameters and initial data for the front . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The functional framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The WKB cascade 16
2.1 The evolution equations and divergence constraints . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The jump conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The fixed boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Normalizing the total pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Analysis of the fast problem 28
3.1 A reminder on the normal mode analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 The inhomogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Necessary conditions for solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Solvability I. Zero Fourier mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Solvability II. Non-zero Fourier modes . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Solving the WKB cascade I: the leading amplitude 44
4.1 The slow mean of the leading profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 The fast mean of the leading profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 The non-local Hamilton-Jacobi equation for the leading front . . . . . . . . . . . . . . . . 49

4.3.1 Derivation of the equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Solvability of the leading amplitude equation . . . . . . . . . . . . . . . . . . . . . 54

4.4 Construction of the leading profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Solving the WKB cascade II: the correctors 57
5.1 The initial step of the induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Reduction to (almost) homogeneous equations . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 The slow mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Collecting the equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Solvability of the linearized current vortex sheet system . . . . . . . . . . . . . . . 82
5.3.3 Determining the slow mean of the front profile . . . . . . . . . . . . . . . . . . . . 84
5.3.4 Determining the slow mean of the corrector . . . . . . . . . . . . . . . . . . . . . . 91

5.4 The tangential components of the fast mean . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 The linearized non-local Hamilton-Jacobi equation for the front . . . . . . . . . . . . . . . 95
5.6 High order approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

1



6 The rectification phenomenon 99
6.1 The first corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 The second corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A Linear and bilinear algebra 104

B Compatibility conditions for the construction of correctors 108
B.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2 The first symmetry formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.3 The second symmetry formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.4 Compatibility of the source terms for the slow mean problem . . . . . . . . . . . . . . . . 124

B.4.1 Compatibility for the magnetic field at the boundary . . . . . . . . . . . . . . . . . 124
B.4.2 Compatibility for the divergence of the magnetic field . . . . . . . . . . . . . . . . 139

2



Notations

The variables
t the time variable
x1, x2, x3 the original space variables
y1, y2, y3 the straightened space variables
x′ = (x1, x2) the original tangential space variable
y′ = (y1, y2) the straightened tangential space variable
θ the fast tangential variable
Y3 the fast normal variable

The frequencies
ε the small wavelength for the oscillating problem
τ the time frequency
ξ1, ξ2, ξ3 the space frequencies
k the fast tangential frequency (associated with θ)

The indices
α an index in {1, 2, 3}
j a tangential index in {1, 2}
j′ a tangential index in {1, 2}
m,µ, ` nonnegative integers for the WKB cascade

The domains
[0, T ] the time interval
Ω±ε the original spatial domains
Γε(t) the oscillating free discontinuity
Ω±0 the straightened spatial domains
Γ0 the straightened discontinuity
Γ± the top and bottom boundaries
I+, resp. I− the interval (0, 1), resp. (−1, 0)
T the torus R/(2π Z)
T2 the two-dimensional torus (R/(2π Z))2

The unknowns
u the velocity field (a three dimensional vector)
H the magnetic field (a three dimensional vector)
p the pressure (a scalar quantity)
q the total pressure (a scalar quantity)
U the vector of unknowns (u,H, q)T ∈ R7

U±ε the exact solution to the oscillatory problem (on either side of the current vortex sheet)
ψ the front (a scalar quantity)
ψε the exact oscillating front
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The profiles
Um,± the m-th profile in the WKB expansion of the exact solution U±ε
ψm the m-th profile in the WKB expansion of the exact front ψε
χ[`], χ̇[`] profiles arising when straightening the original spatial domains

The operators
× the cross product in R3

∇ the gradient (with respect to x = (x1, x2, x3) or y = (y1, y2, y3), unless otherwise specified)
∇· the divergence (with respect to x = (x1, x2, x3) or y = (y1, y2, y3))
∇× the curl (with respect to x = (x1, x2, x3) or y = (y1, y2, y3))

Miscellanea
XT the transpose of a matrix (or vector) X
µ,ν sequences of nonnegative integers (with finitely many possible non-zero entries)
|µ| the length of the sequence µ
〈µ〉 the weight of the sequence µ
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Chapter 1

Introduction and main result

1.1 Motivation

This work is devoted to the asymptotic analysis of a free boundary problem arising in magnetohydro-
dynamics (MHD), namely the current vortex sheet problem. We consider a homogeneous, perfectly
conducting, inviscid and incompressible plasma. The model consists of the so-called ideal incompressible
MHD system, which reads in non-dimensional form:

(1.1)


∂tu+∇ · (u⊗ u−H ⊗H) +∇q = 0 ,
∂tH −∇× (u×H) = 0 ,
∇ · u = ∇ ·H = 0 .

In (1.1), u ∈ R3 and H ∈ R3 stand for the velocity and the magnetic field of the plasma respectively, ×
denotes the cross product in R3 and ∇·, resp. ∇, denotes the divergence, resp. gradient, operator with
respect to the three-dimensional space variable x = (x1, x2, x3). The scalar unknown q := p + |H|2/2 is
the ‘total’ pressure, p being the ‘physical’ pressure.

We are interested here in a special class of (weak) solutions to (1.1): we want (u,H, q) to be smooth,
for each time t, on either side of a hypersurface Γ(t) ⊂ R3, and to give rise to a tangential discontinuity
across Γ(t). The appropriate jump conditions on Γ(t) are described below. For simplicity, we shall assume
that the hypersurface Γ(t) is a graph that can be parametrized by Γ(t) = {x ∈ R3 / x3 = ψ(t, x′)} for
some smooth function ψ of (t, x′) to be determined, with x′ := (x1, x2) the tangential space variable
which we shall consider to be lying in the two-dimensional torus T2 := (R/(2π Z))2. The unknown ψ
that parametrizes Γ will be called the ‘front’ of the discontinuity later on. We shall thus consider the
incompressible MHD system (1.1) in the time-dependent domain:

Ω(t) := Ω+(t) t Ω−(t), where Ω±(t) := {x3 ≷ ψ(t, x′)} ,

with the following jump conditions on Γ(t):

(1.2) ∂tψ = u+ ·N = u− ·N , H+ ·N = H− ·N = 0 , [ q ] = 0 .

The notation [ q ] in (1.2) stands for the jump of the total pressure q across Γ(t):

[ q ] := q+
∣∣
Γ(t)
− q−

∣∣
Γ(t)

,

and the notation N in (1.2) stands for the normal vector to Γ(t) chosen as follows:

N := (−∂x1ψ,−∂x2ψ, 1)T .

The boundary conditions (1.2) correspond to a tangential discontinuity. The velocity ∂tψ of the front
is given by the normal component of the fluid velocity on either side of the free discontinuity, meaning
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that the fluid does not flow through the interface Γ(t). The normal magnetic field H · N is zero (hence
continuous) on either side of the discontinuity, and the total pressure q should also be continuous across
Γ(t). Such boundary conditions account for the evolution of a plasma which gives rise to a current vortex
sheet (see, e.g., Figure 1.1 below). Both ∇× u and ∇×H have a singular component on Γ(t). We refer
to [Cha61, BT02] for other types of discontinuities in compressible or incompressible MHD.

u−

u+

Γ(t)

x1

x2

x3

N

H+

H−

Ω−(t)

Ω+(t)

Figure 1.1: Schematic picture of a current vortex sheet

To be consistent with several earlier works on current vortex sheets [CMST12, SWZ18, Pie18], we
shall assume that the plasma is confined in the strip x3 ∈ (−1, 1). In particular, the front ψ should satisfy
−1 < ψ(t, x′) < 1 for all (t, x′) so that the current vortex sheet itself is located within the strip. We then
impose the standard boundary conditions on the fixed “top” and “bottom” boundaries:

Γ± :=
{

(x′,±1) , x′ ∈ T2
}
.

On Γ±, the plasma should have zero normal velocity and zero normal magnetic field. In its quasilinear
form, the system of current vortex sheets eventually reads as follows:

(1.3)



∂tu
± + (u± · ∇)u± − (H± · ∇)H± +∇q± = 0 , in Ω±(t) , t ∈ [0, T ] ,

∂tH
± + (u± · ∇)H± − (H± · ∇)u± = 0 , in Ω±(t) , t ∈ [0, T ] ,

∇ · u±(t) = ∇ ·H±(t) = 0 , in Ω±(t) , t ∈ [0, T ] ,

∂tψ = u± ·N , H± ·N = 0 , [ q ] = 0 , on Γ(t) , t ∈ [0, T ] ,

u±3 = H±3 = 0 , on [0, T ]× Γ± .

The superscript ± in (1.3) refers to the unknowns u, H and q restricted to the subdomains Ω±(t). Of
course, (1.3) should be supplemented with initial conditions for ψ, u±, H± that satisfy suitable compati-
bility requirements (e.g., the divergence free constraints in (1.3) or the boundary conditions on Γ±).
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The local in time solvability of (1.3) in Sobolev spaces has been recently proved by Sun, Wang and
Zhang [SWZ18] by a clever reduction to the free boundary in the spirit of water wave theory. This
reduction yields a second order scalar hyperbolic equation, a simplified version of which will play a crucial
role in the analysis below. The well-posedness result of [SWZ18] relies on a stability condition that dates
back, at least, to [Syr53, Axf62] and that also plays a crucial role in the present analysis. An alternative
approach to [SWZ18], which does not rely on any stability condition but that is restricted to analytic data,
has been recently proposed by the first author [Pie18] with the aim of using it also in the compressible
case. Within this article, we are interested in the qualitative behavior of exact solutions to (1.3) for
highly oscillating initial data. This problem has been first addressed by Al̀ı and Hunter [AH03] who have
considered the two-dimensional problem and who have shown that for some specific oscillation phase,
and in the weakly nonlinear regime, the leading amplitude of the solution on either side of the current
vortex sheet displays a surface wave structure: it oscillates with the same phase as the front and it is
localized near the free surface with exponential decay in the normal direction to the free surface. Such
a phenomenon is entirely analogous to the description of Rayleigh waves in elastodynamics, see, e.g.,
[Lar83, Lar86, Par88, PT85, HIZ95] and further references therein.

That surface waves occur in the current vortex sheet problem can be explained by performing a
so-called normal mode analysis. Given a reference piecewise constant solution to the current vortex
sheet system (1.3), we seek for planar waves of the form exp

(
i (τ t + ξ1 x1 + ξ2 x2 + ξ3 x3)

)
, with τ ∈ C,

(ξ1, ξ2) ∈ R2 and ξ3 ∈ C, which can be solutions to the linearization of (1.3) at the given piecewise constant
solution. Here, the normal coordinate to the (flat) sheet is denoted by x3. Due to the divergence-free
constraints on the velocity and the magnetic field, the resulting system is not a “standard” hyperbolic
system. However, the method we use is analogous to the case of free boundary hyperbolic problems
[BGS07]: the goal is to verify whether the weak and/or the uniform Kreiss-Lopatinskii condition [Kre70]
(ULC for short hereafter) i satisfied in order to obtain a linear stability criterion for planar current vortex
sheets. The analysis of the linearized problem performed in [Syr53, Cha61, Axf62] and more recently in
[MTT08], leads to a necessary stability criterion by eliminating the case Im τ < 0 for which the normal
modes blow up (the problem would then typically be strongly ill-posed unless the data are analytic). The
limit ‘neutral’ case we are interested in corresponds to Im τ = 0; we shall say that the problem is weakly
well-posed. Weak well-posedness is associated with frequencies (τ, ξ1, ξ2) ∈ R3 for which the so-called
Lopatinskii determinant vanishes. For the current vortex sheet problem (1.3), only the weak Lopatinskii
condition is fulfilled at best, meaning that there does not exist any planar current vortex sheet for which
the ULC is satisfied. We refer for instance to [MTT08] and to Chapter 3 below for more details. The main
(striking) result of [SWZ18] shows that the linear stability criterion that precludes violent instabilities is
actually a sufficient condition for nonlinear stability in the Sobolev regularity scale.

In our problem, the roots (τ, ξ1, ξ2) ∈ R3 of the Lopatinskii determinant can be parametrized by
(ξ1, ξ2). Namely, under the linear stability condition which we shall recall below, for any fixed tangential
frequency (ξ1, ξ2) ∈ R2 \ {0}, there exist two simple roots τ±(ξ1, ξ2) of the Lopatinskii determinant, and
these roots belong to the set of so-called elliptic frequencies because the corresponding normal frequency
ξ3 is not real (it is even a purely imaginary number). Those frequencies are responsible for the creation
of surface waves, which corresponds to the case Im ξ3 ≷ 0 (depending on the sign of x3). The solution
associated with such frequencies decays exponentially with respect to x3. In other problems related
to hydrodynamics, such as detonation waves or compressible vortex sheets [MR83, AM87], the normal
frequency ξ3 associated with the roots of the Lopatinskii determinant is real, which gives rise to bulk waves
that radiate into the whole domain, see [BGRSZ02] for a general description of this class of problems. The
latter case does not arise when studying current vortex sheets in incompressible MHD. At the opposite,
the MHD problem we consider here is closer to the one studied by Sablé-Tougeron [ST88] whose prototype
example is the system of elastodynamics with zero normal stress on the boundary (which gives rise to the
so-called Rayleigh waves). Another occurrence of surface waves in MHD is the so-called plasma-vacuum
interface problem [ST14, Sec15].

The main question we address here follows a long line of research, whose rigorous mathematical
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formulation dates back to Hunter [Hun89], see also [AHP02, AH13, BGR09, Mar10, CW18, WW17], and
is concerned with the evolution of weakly nonlinear surface waves. Up to a time rescaling, we shall thus
be concerned with the ‘slow’ modulation of high frequency, small amplitude surface wave solutions to
(1.3). We follow the seminal work of Al̀ı and Hunter [AH03] with two main extensions; not only do we
consider the three dimensional case to the price of some more algebra (the analysis in [AH03] is performed
in two space dimensions), but what is more significant is that we give a complete construction of infinitely
accurate solutions to (1.3) (the analysis in [AH03] is restricted more or less to the construction of the
leading order amplitude). This is done by enlightening several algebraic properties in the analysis of the
WKB cascade, some of which might be useful in other contexts. The construction of arbitrarily many
correctors is not a mere technical issue. It is a crucial step towards the rigorous justification that exact
solutions to (1.3) with highly oscillating data are actually close to the WKB expansion we shall construct
here, see, e.g., [Guè93, JMR93, Mar10, Rau12, WW17]. However, we do not address this stability issue
here, because of intricate non-locality issues [SWZ18], and rather focus on the construction of a solution
to the WKB cascade.

In the following Sections of this introduction, we state our main result by first stating the assumptions
on the reference planar current vortex sheet and on the frequencies we shall work with. We then introduce
the functional framework in which we shall solve the WKB cascade that will be made explicit in Chapter
2. Eventually we state our main result and give the plan for its (slightly long) proof.

1.2 Choice of parameters and initial data for the front

Our goal is to construct highly oscillating solutions to (1.3) that are small perturbations of a reference
piecewise constant solution to (1.3). The starting point is to fix the reference current vortex sheet. By
imposing a suitable stability condition, inequality (H1) below, this will enable us to fix the planar phase
of the oscillations for the front. The goal will then be to describe the behavior of the solution to (1.3) on
either side of the oscillating front by choosing (and hopefully one day justifying) a suitable WKB ansatz.
As a long term goal, this will justify the asymptotic behavior of the exact solution (U±ε , ψε) to (1.3)
when we impose highly oscillating initial data, that is, displaying oscillations at frequencies ∼ ε−1, ε� 1.
(Anticipating a little the notation described below, we have collected here all unknowns (u±, H±, q±)T for
(1.3) into a single vector U± with seven components.) In particular, part of our work aims at justifying
that for suitably chosen oscillating initial data, the exact solution (U±ε , ψε) to (1.3) exists on a time
interval [0, T ] that does not depend on the small wavelength ε > 0.

The reference current vortex sheet

To be consistent with the notation below for the WKB ansatz, we consider a (steady) piecewise constant
solution to (1.3) of the form

(1.4) U±(t, x) =

{
U0,+ , if x3 ∈ (0, 1) ,

U0,− , if x3 ∈ (−1, 0) ,

where the two constant states U0,±, and the corresponding fixed reference front1 ψ0, ψ1, are given by:

(1.5) U0,± := (u0,±
1 , u0,±

2 , 0, H0,±
1 , H0,±

2 , 0, 0)T , ψ0, ψ1 := 0 .

Let us recall that here and from on, the notation U stands for a (column) vector in R7 whose coordinates
are labeled u1, u2, u3, H1, H2, H3, q. The normalization of the total pressure q0,± = 0 in (1.5) is consistent

1We use two functions ψ0 and ψ1 since the leading front should be rather thought of as ψ0 + εψ1. One possible extension
of our work would be to study high frequency oscillations on a curved current vortex sheet, and in that case, both ψ0 and
ψ1 would be nontrivial.
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with the choice that is made below for the solution to (1.3), namely2:∫
Ω+(t)

q+(t, x) dx +

∫
Ω−(t)

q−(t, x) dx = 0 .

For later use, we assume that the reference current vortex sheet (1.5) fulfills the following stability criterion:

(H1)
∣∣H0,+ × [u0]

∣∣2 +
∣∣H0,− × [u0]

∣∣2 < 2
∣∣H0,+ ×H0,−∣∣2 ,

where [u0] := u0,+ − u0,− stands for the jump of the velocity u0 across the (flat) sheet {x3 = ψ0(t, x′) +
εψ1(t, x′) = 0}, and × denotes the cross product in R3. (Note however that the third coordinate of
all three vectors H0,± and [u0] is zero hence (H1) involves two dimensional vectors only.) The stability
condition (H1) has been highlighted in [Syr53, Cha61, Axf62] and more recently in [MTT08, SWZ18] and
is further discussed in Chapter 3 below. (A restricted version of (H1) is used in [Tra05, CMST12].)

The frequencies

Let us begin with a few notations. The 2π−periodic torus R/(2π Z) is denoted by T and the tangential
spatial variable is x′ = (x1, x2) ∈ T2. We consider a given tangential frequency vector ξ′ = (ξ1, ξ2) ∈ R2

which we normalize by assuming |ξ′| :=
√
ξ2

1 + ξ2
2 = 1. We also choose a (real) time frequency τ which will

be assumed to meet several requirements below, but let us right away define the planar phase τ t+ ξ′ · x′,
the notation · here referring to the inner product of R2. With the reference planar current vortex sheet
defined by (1.5), we define the following parameters:

(1.6) a± := ξ1 u
0,±
1 + ξ2 u

0,±
2 , b± := ξ1H

0,±
1 + ξ2H

0,±
2 , c± := τ + a± .

Given a 2π−periodic function v = v(x′, θ) with respect to each of its arguments (x′, θ) ∈ T3, we shall
require below that functions of the form:

vε(x
′) := v

(
x′,

ξ′ · x′
ε

)
,

be 2π−periodic with respect to x′. To do so, we need to impose some additional conditions on the
frequency vector ξ′. We choose the frequency ξ′ of the form:

(H2) ξ′ =
1√

p2 + q2
(p, q)T with (p, q)T ∈ Z2\{0} .

Then, considering the sequence (ε`)`≥1 defined by:

(1.7) ε` :=
1

`
√
p2 + q2

, ` ≥ 1 ,

which tends to 0 as ` goes to +∞, we will indeed have ξ′/ε` ∈ Z2 and therefore the above function vε`
will be 2π−periodic with respect to x′ for any integer ` ≥ 1. In the following, the frequency vector ξ′ is
chosen of the form (H2) and the (small) parameter ε stands for one element of the sequence (ε`)`≥1 in
(1.7). When we write ε→ 0, we mean that we consider ε` with `→ +∞.

We add another assumption on the frequency ξ′ in order to fulfill the technical condition (c±)2 6= (b±)2

used in Appendix A, see in particular the proof of Theorem 3.1 hereafter in Chapter 3:

(H3)

{ ∣∣a+ − a−
∣∣ 6= ∣∣b+ − b−∣∣ ,∣∣a+ − a−
∣∣ 6= ∣∣b+ + b−

∣∣ .
2Recall the jump condition [ q ] = 0 in (1.3) across the interface Γ(t), so the total pressure in Ω+ ∪ Ω− is defined up to a

function of time only.
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In other words, if we define the following three vectors in R2:

u :=
(
u0,+

1 − u0,−
1 , u0,+

2 − u0,−
2

)
, h± :=

(
H0,+

1 ±H0,−
1 , H0,+

2 ±H0,−
2

)
,

then we ask the frequency ξ′ not to be orthogonal to the four vectors u − h+, u − h−, u + h+, u + h−.
None of these four vectors is zero because of Assumption (H1). Indeed, if we have for instance u = h−,
then it would lead to the identity [u0] = [H0], and plugging this equality into (H1), we would obtain:

2
∣∣H0,+ ×H0,−∣∣2 < 2

∣∣H0,+ ×H0,−∣∣2 ,
which is a contradiction. The same argument applies for the three remaining cases. Choosing ξ′ of the
form (H2) and satisfying (H3) is possible because satisfying (H3) amounts to excluding at most four
directions on the unit circle S1 and unit vectors of the form (H2) are dense in S1.

Given ξ′ ∈ R2 satisfying (H2) and (H3), it remains to make the restrictions on the time frequency τ
explicit. In all what follows, we choose the time frequency τ ∈ R as one (among the two) root(s) of the
so-called Lopatinskii determinant defined by equation (3.11) herafter. Anticipating on the computation
of the latter quantity in Chapter 3, we choose τ as a root to the following polynomial equation of degree
2 (recall the definition (1.6)):

(H4) (c+)2 + (c−)2 = (b+)2 + (b−)2 .

That Assumption (H1) on the reference planar current vortex sheet implies that (H4) has two real roots
follows from elementary algebraic considerations which we shall recall in Chapter 3 for the sake of com-
pleteness.

The last requirement on the time frequency is the assumption τ 6= 0. This property is also used in
Appendix A to parametrize some eigenspaces. The condition τ 6= 0 automatically follows from (H4) if
u+

0 + u−0 = 0, which can always be achieved by using the Galilean invariance of system (1.3).
Let us focus on the fact that assumptions (H2), (H3), (H4) and τ 6= 0 allow to ensure the condition

(c±)2 6= (b±)2, see Appendix A, which will turn out to be crucial in the analysis of the WKB cascade.

From now on, the reference planar current vortex sheet and the frequencies (τ, ξ1, ξ2) ∈ R3 satisfying
Assumptions (H1), (H2), (H3), (H4), together with τ 6= 0, are fixed. We now describe the oscillating
data that we consider for (1.3).

Initial data for the front and WKB ansatz

We consider small, highly oscillating perturbations of the reference constant state (U0,±, ψ0 + εψ1). To
be specific, we shall consider initial data for the front of the form:

(1.8) ψε(t = 0, x′) := ε2 ψ2
0

(
x′,

ξ′ · x′
ε

)
,

where the initial profile ψ2
0 ∈ C∞(T3) is assumed to have zero mean with respect to its last argument

θ ∈ T. Let us recall that the small parameter ε ∈ (0, 1] actually stands for any ε` defined by (1.7) so that
ψε in (1.8) is indeed 2π-periodic with respect to x′. We could consider a sequence of profiles ψ2

0, ψ
3
0, ψ

4
0, . . .

and the corresponding initial datum:

ψε(t = 0, x′) = ε2 ψ2
0

(
x′,

ξ′ · x′
ε

)
+ ε3 ψ3

0

(
x′,

ξ′ · x′
ε

)
+ · · · ,

the series in ε being either convergent or understood as an asymptotic expansion in ε, but this would not
add any new phenomenon nor any analytical difficulty; we therefore restrict to the initial datum (1.8) for
notational convenience. Choosing the initial profile ψ2

0 to have zero mean with respect to θ is also done
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for the sake of convenience (see Chapter 5). In any case, the mean of ψ2
0 with respect to θ does not affect

the leading amplitude of the solution on either side of the current vortex sheet.
The initial front ψε|t=0 will take its values in (−1, 1) up to restricting ε if necessary. Since ε is meant

to be small, we shall not go back to this issue any longer.
Continuing the analysis of [AH03], we seek an asymptotic expansion of the exact solution (U±ε , ψε) to

(1.3) as a small, highly oscillating perturbation of the reference planar current vortex sheet (1.5). Some
attention needs to be paid when formulating the WKB ansatz for (U±ε , ψε). The front ψε is meant to
oscillate with the planar phase τ t + ξ′ · x′ with a slow modulation in the variables (t, x′). The interior
solution U±ε will display oscillations with the same planar phase τ t + ξ′ · x′, and exponential decay
with respect to the fast normal variable (x3 − ψε(t, x′))/ε. However, describing the slow modulation of
U±ε requires taking into account the slow normal variable x3 − ψε(t, x′) and the fixed top and bottom
boundaries Γ± too. We thus introduce once and for all a fixed cut-off function χ ∈ C∞(R) such that χ ≡ 1
on [−1/3, 1/3] and χ vanishes outside of [−2/3, 2/3]. We aim at constructing, and possibly justifying, an
asymptotic expansion for (U±ε , ψε) of the following form:

U±ε (t, x) ∼ U0,± +
∑
m≥1

εm Um,±
(
t, x′, x3 − χ(x3)ψε(t, x

′),
x3 − ψε(t, x′)

ε
,
τ t+ ξ′ · x′

ε

)
,(1.9a)

ψε(t, x
′) ∼ ψ0 + εψ1 +

∑
m≥2

εm ψm
(
t, x′,

τ t+ ξ′ · x′
ε

)
.(1.9b)

Of course, the two first terms ψ0, ψ1 on the right hand side of (1.9b) are harmless but are placed here to
highlight the consistency of our notation. By ∼, we mean in (1.9) that the series should be understood
in the sense of asymptotic expansions in ε, see, e.g., [Rau12]. We require the front ψε to match with the
function (1.8) at t = 0:

∀ (x′, θ) ∈ T3 , ψ2(0, x′, θ) = ψ2
0(x′, θ) , and ∀m ≥ 3 , ψm(0, x′, θ) = 0 .

In (1.9a), the profiles Um,± are functions of 6 variables which we denote (t, y′, y3, Y3, θ) from now on
(y′ is two-dimensional). The slow variables are (t, y′, y3); t ∈ [0, T ] is the time variable, y′ = x′ ∈ T2 is the
tangential spatial variable, and y3 = x3−χ(x3)ψε(t, x

′) ∈ (−1, 1) is the normal variable which allows both
to lift the free surface in (1.3) and to match with the top and bottom boundaries. The oscillating current
vortex sheet Γε(t) := {x3 = ψε(t, x

′)} in the original space variables corresponds to the fixed interface
{y3 = 0} in the straightened variables, while the top and bottom boundaries Γ± correspond to {y3 = ±1}
(at least for any sufficiently small ε). The fast variables are (Y3, θ): Y3 = (x3−ψε(t, x′))/ε ∈ R± is the fast
normal variable which will describe the exponential decay of the surface wave, and θ = (τ t+ ξ′ ·x′)/ε ∈ T
is the fast tangential variable which describes the oscillations. Let us observe that we do not incorporate
the cut-off function χ in the fast normal variable Y3 since exponential decay will yield O(ε∞) -hence
negligible- terms outside of {|x3| ≤ δ} for any fixed constant δ > 0.

One of the main issues here will consist in constructing the profiles (Um,±, ψm+1)m≥1 in the WKB
expansions (1.9a), (1.9b). To do so, we shall need both the divergence-free constraints on the velocity
u±ε and the magnetic field H±ε . Although the condition ∇ · H±ε = 0 is known to be propagated by the
solutions of system (1.3), see, e.g., [Tra05, Tra09, SWZ18], it is not clear that the associated constraints
on the profiles (Hm,±)m≥1 are propagated in time one by one as well. This is one major algebraic obstacle
that we have to tackle here, and it explains why we choose to keep the divergence-free constraint (2.6) on
H±ε separate from the other equations in system (2.1) below.

It is important to notice that the initial datum associated with U±ε is not free, as is well known in
geometric optics because of polarization, see [Rau12]. Actually, it turns out that part of the profiles Um,±

will be determined for any time t ∈ [0, T ] by solving algebraic equations. In particular, (part of) the
initial data for U±ε will be computed alongside the whole approximate solution. This restricts the choice
of initial data for U±ε ; nevertheless the choice of the initial profile ψ2

0 for the front is free. There are even
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more degrees of freedom that are clarified later on. However, for simplicity, we focus here mainly on the
choice of the initial condition ψε|t=0.

The scaling (1.9a), (1.9b) we choose here is analogous to the scaling of weakly nonlinear geometric
optics for the Cauchy problem that can be found in [Guè93, JMR93, JMR95], [Hun89, Mar10] (for surface
waves in a fixed half-space) or [Les07]. Discarding the two first zero terms ψ0, ψ1, the expansion (1.9b) of
ψε starts with an O(ε2) amplitude, since the gradient of ψε in (1.3) has the same regularity as the trace
of U±ε on Γ(t), see [CMST12, SWZ18]. We can also notice the similarity with uniformly stable shocks
studied by Williams [Wil99], where the profile ψ1 (which is zero in our case) does not depend on the
fast variables. Because of the difference of one power of ε in (1.9b) with respect to (1.9a), the functions
U±ε − U0,± and ∇t,x′ψε have amplitude ε in L∞ and oscillate with frequency ∼ ε−1. In what follows,
we usually study the profiles Um,± jointly with ψm+1. In particular, we shall refer to (U1,±, ψ2) as the
leading amplitude in the WKB expansion (1.9).

1.3 The functional framework

The functional framework we are going to define is inspired from Marcou [Mar10] and Lescarret [Les07]
but we incorporate here some new ingredients. The final time T > 0 below will be fixed once and for all
by Theorem 4.1 hereafter and it will only depend on a fixed Sobolev norm of the initial profile ψ2

0 in (1.8)
(to be precise, the H4 norm does the job). The spaces of profiles for the WKB ansatz (1.9a) are defined
as follows.

Definition 1.1 (Spaces of profiles). The space S± denotes the set of functions in H∞
(
[0, T ]×T2×I±×T

)
,

where I+ (resp. I−) stands for the interval (0, 1) (resp. (−1, 0)). Functions in S± depend on the slow
variables (t, y) and on the fast tangential variable θ.

The space S±? denotes the set of functions in H∞
(
[0, T ]×T2× I±×R±×T

)
that decay exponentially

as Y3 → ±∞ as well as all their derivatives uniformly with respect to all other arguments:

∃ δ > 0 , ∀α ∈ N6 , ∃Cα > 0 , ∀Y3 ≷ 0,
∥∥ ∂αu±? (·, ·, Y3, ·)

∥∥
L∞t,y,θ

≤ Cα e∓ δ Y3 .

Functions in S±? depend on both the slow variables (t, y) and the fast variables (Y3, θ).

The space of profiles is S± := S±⊕S±? (the sum is direct because functions in S±? decay exponentially
with respect to Y3 and functions in S± do not depend on Y3).

The profiles Um,±, for m ≥ 1, will be sought in the functional space S±. The profiles ψm, m ≥ 2, in
(1.9b)will be sought in the functional space H∞([0, T ]× T3).The component on S± of some U± ∈ S± is
called the residual component while the component on S±? is called the surface wave component. Though
we are mainly interested in the component on S±? of the leading amplitude in (1.9), determining the
residual components of the correctors is one major obstacle in the analysis below. It seems likely that
the WKB cascade below can not be solved with profiles Um,± ∈ S±? for all m ≥ 1. Namely, though the
leading profile U1,± will belong to S±? , it is likely that one corrector Um,± will have a non-trivial residual
component, which corresponds to a rectification phenomenon. Such a phenomenon has been rigorously
justified by Marcou [Mar11] for a two-dimensional model of elasticity. In [Mar11], it is shown that the
first corrector has a nontrivial residual component. This will not be the case here because the leading
profile exhibits interesting orthogonality properties which will imply that the first corrector U2,± will also
belong to S±? . We have not been able to push further the calculations, but it is likely though that the
second corrector U3,± has a non-trivial residual component.

Let us observe that in [Mar10], functions in S± are chosen not to depend on the fast tangential variable
θ (the same in [WW17]). It does not seem possible to use this framework here due to the form of the
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source terms in the WKB cascade below. Our source terms differ from those in [Mar10, WW17] because
we deal here with a free boundary problem and we consider additional fixed top and bottom boundaries.
We believe that our extension of the functional framework might be useful in other contexts which also
give rise to surface waves on free discontinuities/surfaces.

Both S± and S± are algebras and are stable under differentiation with respect to any of the arguments.

Notation for profiles

We shall expand profiles U± ∈ S± into Fourier series in θ. Given k ∈ Z, the k-th Fourier coefficient with
respect to θ is denoted Û±(k), that is we use the decomposition:

U±(t, y, Y3, θ) =
∑
k∈Z

Û±(t, y, Y3, k) ei k θ .

Taking the definition of S± into account, we can also split U± as follows:

(1.10) U±(t, y, Y3, θ) = U±(t, y, θ)︸ ︷︷ ︸
∈ S±

+ U±? (t, y, Y3, θ)︸ ︷︷ ︸
∈ S±?

.

The zero Fourier mode plays a special role in the analysis of the WKB cascade, as opposed to the non-zero
Fourier modes. Consistently with (1.10), we split:

Û±(0) = Û
±

(0) + Û±? (0) ,

the first term Û
±

(0) being referred to as the slow mean, and the second term Û±? (0) being referred to as
the fast mean. Later on, we shall need to further split the fast mean Û±? (0) as follows:

Û±? (0) = Π Û±? (0) + (I −Π) Û±? (0) ,

where Π := diag(1, 1, 0, 1, 1, 0, 0) ∈ M7(R) is a projector onto the kernel of the Jacobian matrix A±3
defined in (2.4) below (the projector does not depend on the state ± so we omit the superscript here). In
other words, if we set U± = (u±, H±, q±)T , then the vector:

ΠU± = (u±1 , u
±
2 , 0, H

±
1 , H

±
2 , 0, 0)T ,

consists in the tangential components associated with the velocity u± and the magnetic field H±. The
vector (I − Π)U± gathers the non-characteristic components of U±, which are the normal velocity, the
normal magnetic field and the total pressure.

We shall see in Chapters 4 and 5 that we own several degrees of freedom for the initial data of the
mean of the profiles Um,±; for the sake of simplicity, we shall choose to impose zero initial conditions
for the fast means Π Ûm,±? (0). We shall also impose zero initial conditions on the mean of the residual

component of the leading amplitude Û
1,±

(0). This choice will allow us to simplify part of the construction
of the profiles (Um,±, ψm+1)m≥1 and to focus on the “surface wave” component of the leading amplitude,
i.e. the component U1,±

? ∈ S±? .

1.4 The main result

The aim of this work is to show the existence of a sequence of profiles (Um,±, ψm+1)m≥1 such that in the
sense of formal series, (1.9a) and (1.9b) satisfy (1.3) with accuracy O(ε∞). A precise statement is the
following Theorem.
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Theorem 1.2. Let the reference current vortex sheet defined by (1.4), (1.5) satisfy Assumption (H1)
and let the frequencies τ, ξ′ satisfy Assumptions , (H2), (H3), (H4) together with τ 6= 0. Let also ψ2

0 ∈
H∞(T2×T) have zero mean with respect to its last argument θ. Then there exists a time T > 0, that only
depends on the norm ‖ψ2

0‖H4(T2×T) such that, with the spaces S± = S± ⊕ S±? of Definition 1.1 associated
with this given time T , there exists a sequence of profiles (Um,±, ψm+1)m≥1 in S± ×H∞([0, T ]× T2 × T)
verifying the following properties:

• for any m ≥ 2, ψm|t=0 = δm 2 ψ
2
0 (with δ the Kronecker symbol) and ∂tψ̂

m(0)|t=0 = 0,

• Û1,±
(0)|t=0 = 0,

• for any m ≥ 1, Π Ûm,±? (0)|t=0 = 0,

• for all integer M ≥ 1, the functions:

ψapp,M
ε (t, x′) := ψ0 + εψ1 +

M+1∑
m=2

εm ψm
(
t, x′,

τ t+ ξ′ · x′
ε

)
,

Uapp,M,±
ε (t, x) := U0,± +

M∑
m=1

εm Um,±

(
t, x′, x3 − χ(x3)ψapp,M

ε ,
x3 − ψapp,M

ε

ε
,
τ t+ ξ′ · x′

ε

)
,

satisfy (with Napp,M
ε := (−∂x1ψapp,M

ε ,−∂x2ψapp,M
ε , 1)T ):

∂tu
app,M,±
ε + (uapp,M,±

ε · ∇)uapp,M,±
ε − (Happ,M,±

ε · ∇)Happ,M,±
ε +∇qapp,M,±

ε = R1,±
ε ,

∂tH
app,M,±
ε + (uapp,M,±

ε · ∇)Happ,M,±
ε − (Happ,M,±

ε · ∇)uapp,M,±
ε = R2,±

ε ,

∇ · uapp,M,±
ε = R3,±

ε , ∇ ·Happ,M,±
ε = R4,±

ε ,

∂tψ
app,M
ε − uapp,M,±

ε |
Γapp,M
ε

·Napp,M
ε = R1,±

b,ε ,

Happ,M,±
ε |

Γapp,M
ε

·Napp,M
ε = R2,±

b,ε , [ qapp,M
ε ] = 0 ,

uapp,M,±
ε,3 |Γ± = R3,±

b,ε , Happ,M,±
ε,3 |Γ± = R4,±

b,ε ,

where the error terms satisfy the following bounds:

sup
t∈[0,T ] , x∈Ωapp,M,±

ε (t)

(
|R1,±

ε |+ |R2,±
ε |+ |R3,±

ε |+ |R4,±
ε |
)

= O(εM ) ,

sup
(t,x)∈Γapp,M

ε

(
|R1,±

b,ε |+ |R
2,±
b,ε |
)

= O(εM+1) ,

sup
t∈[0,T ] , x∈Γ±

(
|R3,±

b,ε |+ |R
4,±
b,ε |
)

= O(ε∞) ,

where we have used the notation Ωapp,M,±
ε (t) := {x ∈ T2× (−1, 1) / ± (x3−ψapp,M

ε (t, x′)) > 0}, and
Γapp,M
ε := {(t, x) / x3 = ψapp,M

ε (t, x′)}.

In other words, we can produce approximate solutions to the original free boundary value problem
(1.3) at any desired order of accuracy. By using a Borel summation procedure, one can also achieve
infinitely accurate approximate solutions (meaning with all error terms being O(ε∞) in the appropriate
L∞ norms).

It is likely that the methods we develop here may prove useful in other related problems of magneto-
hydrodynamics or other (free) boundary value problems for systems of partial differential equations that
exhibit surface waves at the linearized level. One such example is the plasma vacuum interface problem
studied in [Sec15] that presents many similarities with the current vortex sheet problem we study here (in
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particular the evolution equation that governs the leading amplitude evolution has been proved in [Sec15]
to be the same as the one exhibited in [AH03] for current vortex sheets).

The plan of this work is the following. In Chapter 2, we exhibit the so-called WKB cascade that
must be satisfied by the profiles (Um,±, ψm+1) in (1.9) in order to get high order approximate solutions
to the original equations (1.3). As will be made clear in Chapter 2, one central problem in the iterative
construction of the profiles (Um,±, ψm+1) is the resolution of the so-called fast problem (system (3.1)
below). Therefore Chapter 3 is devoted to solving (3.1) and in particular to making clear the solvability
conditions for the source terms in (3.1). The construction of the profiles (Um,±, ψm+1) is done in Chapters
4 (for m = 1, that is for the leading profile) and 5 (for m ≥ 2, that is for the correctors). Chapter 4 is
a kind of warm-up for the systematic construction of correctors in Chapter 5. In the weakly nonlinear
regime that we consider here, only the leading amplitude will satisfy nonlinear evolution equations, hence
a separate treatment. The correctors will satisfy linearized versions of the nonlinear equations satisfied
by the leading amplitude but with non-zero source terms. This is a standard feature of weakly non-
linear geometric expansions [Rau12]. Chapter 6 is devoted to the analysis of the so-called rectification
phenomenon. Opposite to the case of elastodynamics, we show here that the first corrector U2,± has no
residual component, provided of course that the initial data (that can be imposed) are suitably tuned to
zero. As explained in Chapter 6, it seems likely that the second corrector U3,± always has (or at least
generically has) a non-trivial residual component, though a complete verification of this fact has been left
aside because the algebra involved was too heavy. At last, Appendix A gathers the expressions of several
matrices, eigenvectors and bilinear operators that are involved in the calculations of Chapters 3, 4 and 5.
Appendix B gathers what is probably the most original part of this work, which is the proof of several
algebraic relations between the profiles involved in the WKB cascade. The results of Appendix B have
been proved in a slightly more general framework than the one we consider here in order to be applicable
to geometric optics problem on a curved background (as opposed to the constant reference solution (1.4)
we consider here).
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Chapter 2

The WKB cascade

Starting from here, we use the notation α ∈ {1, 2, 3} to refer to a spatial coordinate and we use the
notation j ∈ {1, 2} to refer to a tangential spatial coordinate yj . When several tangential coordinates
are involved, we use both j and j′. We also use Einstein summation convention on repeated tangential
indices.

For practical reasons, we rewrite both evolution equations of (1.3) for the velocity and magnetic field
together with the divergence-free constraint on the velocity1 into the following conservative form:

(2.1) A0 ∂tU
± + ∂xαfα(U±) = 0 , x ∈ Ω±(t) , t ∈ [0, T ] ,

where we recall that U stands for the vector (u1, u2, u3, H1, H2, H3, q)
T ∈ R7, and the matrix A0 is defined

by:

(2.2) A0 :=

[
I6 0
0 0

]
∈M7(R) .

Let us observe that A0 is not invertible, the last equation in (2.1) corresponding to the divergence-free
constraint on the velocity, which does not include any time derivative. The fluxes (fα)α=1,2,3 in (2.1) are
explicit polynomial expressions of degree at most 2:

(2.3) f1(U) :=



u2
1 −H2

1 + q
u1u2 −H1H2

u1u3 −H1H3

0
u1H2 −H1u2

u1H3 −H1u3

u1


, f2(U) :=



u2u1 −H2H1

u2
2 −H2

2 + q
u2u3 −H2H3

u2H1 −H2u1

0
u2H3 −H2u3

u2


, f3(U) :=



u3u1 −H3H1

u3u2 −H3H2

u2
3 −H2

3 + q
u3H1 −H3u1

u3H2 −H3u2

0
u3


.

For later use, we introduce the Jacobian matrices:

(2.4) ∀α = 1, 2, 3 , A±α := dfα(U0,±) , A ± := τ A0 + ξ1A
±
1 + ξ2A

±
2 ,

and the symmetric bilinear mappings

(2.5) ∀α = 1, 2, 3 , Aα(·, ·) := d2fα(U0,±)(·, ·) .

Observe that since fα is polynomial of degree at most 2, Aα does not depend on the state U0,± which is
the reason why we have omitted the ± superscript. The Jacobian and Hessian matrices of fα in (2.4) and
(2.5), which appear in the WKB cascade below, are given explicitly in Appendix A.

1We remind that this constraint allows to define the total pressure q± through the resolution of a suitable Laplace problem,
as for the incompressible Euler equations (see, e.g., [Che98]).
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We have decided not to include in (2.1) the divergence-free constraint on the magnetic field, but we
shall rather keep this constraint separate from the remaining partial differential equations:

(2.6) ∇ ·H±(t, x) = 0 , x ∈ Ω±(t) , t ∈ [0, T ] .

For exact solutions to (1.3) (supplemented with suitable initial data), it is known that the divergence-free
constraint (2.6) is only a restriction on the initial data, see [Tra05, SWZ18], so it could be “omitted” from
system (1.3). Nevertheless, since we shall not prescribe arbitrary initial data for (u±, H±, q±), we will
need to keep the constraint (2.6) to make sure that it is satisfied for all times (or at least asymptotically
in ε). We shall come back to this point later on. Our goal now is to derive the profile equations that are
sufficient for (1.9a), (1.9b) to be an approximate solution to (1.3) asymptotically in ε.

2.1 The evolution equations and divergence constraints

We plug the asymptotic expansions (1.9a), (1.9b) in (1.3) and collect the various terms in powers of the
small parameter ε. The point is to collect all terms under the form∑

m≥0

εm Fm,±(t, y, Y3, θ)
∣∣∣
y′=x′,y3=x3−χ(x3)ψε(t,x′),Y3=(x3−ψε(t,x′))/ε,θ=(τ t+ξ′·x′)/ε

.

The only real new additional difficulty compared with previous works, see for instance [CW18, WW17],
is that when we differentiate U±ε with respect to the variables t, x1, x2, there are terms of the form:

∂y3U
m,±(t, y, Y3, θ)χ(x3) ∂t,x1,x2ψε(t, y

′, θ) ,

and when we differentiate U±ε with respect to x3, there are terms of the form:

∂y3U
m,±(t, y, Y3, θ)χ

′(x3)ψε(t, y
′, θ) .

In either situation, χ(x3) or χ′(x3) does not directly read as a function of (t, y, Y3, θ) since we easily have y3

in terms of x3 but not the other way round. We tus need to invert the relation y3 = x3−χ(x3)ψε(t, x
′) in

order first to get x3, and then to compose with either χ of χ′ in order to get χ(x3) and χ′(x3) as asymptotic
expansions in ε. Let us observe that the fast tangential variable θ, as well as the slow variables t, y′, play
the role of parameters here. We thus write, in the sense of formal series in ε:

(2.7) y3 = x3 − χ(x3)
∑
m≥2

εm ψm(t, y′, θ) ,

and invert the latter relation with respect to ε to get x3 in terms of (t, y, θ). This cumbersome process is
done, for instance, inductively by plugging the latter expression of x3:

x3 = y3 + χ

y3 + χ(x3)
∑
m≥2

εm ψm(t, y′, θ)

 ∑
m≥2

εm ψm(t, y′, θ) ,

and by performing Taylor expansions in ε. The first terms of this expansion read:

x3 = y3 + ε2 χ(y3)ψ2(t, y′, θ)

+ ε3 χ(y3)ψ3(t, y′, θ)

+ ε4
(
χ(y3)ψ4(t, y′, θ) + χ(y3)χ′(y3) (ψ2(t, y′, θ))2

)
+ · · · .

For later use, we write the asymptotic expansion of χ(x3) and χ′(x3) under the following ‘abstract’ form
(still in the sense of formal series in ε):

(2.8) χ(x3) ∼
∑
m≥0

εm χ[m](t, y, θ) , χ′(x3) ∼
∑
m≥0

εm χ̇[m](t, y, θ) .
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For instance, some straightforward calculations yield the first terms:

χ[0](t, y, θ) = χ(y3) , χ[1](t, y, θ) = 0 , χ[2](t, y, θ) = χ(y3)χ′(y3)ψ2(t, y′, θ) ,

χ̇[0](t, y, θ) = χ′(y3) , χ̇[1](t, y, θ) = 0 , χ̇[2](t, y, θ) = χ(y3)χ′′(y3)ψ2(t, y′, θ) .

More algebraic properties and relations between the functions χ[m], χ̇[m] will play a crucial role in the
analysis of Chapter 5. The details can be found in Appendix B. (Actually, we shall obtain in Appendix
B an explicit formula for each function χ[m], χ̇[m].)

Once we have written the quantities χ(x3) and χ′(x3) under the form (2.8), it is a long but mere
calculus exercise to write down the asymptotic expansion of the quantity

A0 ∂tU
±
ε + ∂xαfα(U±ε ) ,

in terms of ε, with U±ε , ψε as in (1.9). Here we use the crucial fact that the fluxes fα are quadratic
polynomials so all derivatives of fα higher than 3 vanish. After some calculations, we eventually get:

(2.9) A0 ∂tU
±
ε + ∂xαfα(U±ε )

∼
∑
m≥0

εm
(
L ±
f (∂)Um+1,± − Fm,±

)
|y′=x′,y3=x3−χ(x3)ψε(t,x′),Y3=(x3−ψε(t,x′))/ε,θ=(τ t+ξ′·x′)/ε ,

where the fast operators L ±
f (∂) in (2.9) are defined by:

(2.10) L ±
f (∂) := A±3 ∂Y3 + A ± ∂θ ,

and the source term Fm,± in (2.9) is given for any integer m ∈ N by:

Fm,± := − L±s (∂)Um,± +
∑

`1+`2=m+2

∂θψ
`1 A ± ∂Y3U

`2,± +
∑

`1+`2=m+1

(
∂tψ

`1 A0 + ∂yjψ
`1 A±j

)
∂Y3U

`2,±

+
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2 A ± ∂y3U

`3,± +
∑

`1+`2+`3=m

χ[`1]
(
∂tψ

`1 A0 + ∂yjψ
`1 A±j

)
∂y3U

`3,±

+
∑

`1+`2+`3=m

χ̇[`1] ψ`2 A±3 ∂y3U
`3,± −

∑
`1+`2=m
`1,`2≥1

Aα(U `1,±, ∂yαU
`2,±)

−
∑

`1+`2=m+1
`1,`2≥1

ξj Aj(U `1,±, ∂θU `2,±)−
∑

`1+`2=m+1
`1,`2≥1

A3(U `1,±, ∂Y3U
`2,±)(2.11)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ξj Aj(U `2,±, ∂Y3U `3,±) +

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 Aj(U `2,±, ∂Y3U `3,±)

+
∑

`1+···+`4=m+1
`3,`4≥1

χ[`1] ∂θψ
`2 ξj Aj(U `3,±, ∂y3U `4,±) +

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 Aj(U `3,±, ∂y3U `4,±)

+
∑

`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 A3(U `3,±, ∂y3U
`4,±) .

Just a few words on the expression (2.11). First, the slow operator L±s (∂) appearing on the first line of
(2.11) is defined by:

(2.12) L±s (∂) := A0 ∂t + A±α ∂yα ,

which corresponds to the linearization of the MHD equations around the constant states given in (1.5). In
all expressions such as (2.11) (and many to come later on), we keep the convention ψ0, ψ1 ≡ 0, see (1.5),
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so when a sum involves the functions ψ`, the terms corresponding to ` = 0 and ` = 1 can be discarded
(though we most often omit to mention it). Similarly, all terms involving a partial derivative of the profile
U0,± can be discarded since these profiles are constant, see (1.5).

The precise -though lengthy- expression (2.11) of the source term Fm,± will be absolutely crucial to
verify several compatibility conditions in Chapter 5 when we construct the profiles (Um,±, ψm+1)m≥1.
As is customary in geometric optics [Rau12], the source term Fm,± is entirely defined by the profiles
U1,±, . . . , Um,±, ψ2, . . . , ψm+1. More precisely, the very last front profile ψm+1 only enters Fm,± through
∂θψ

m+1. In other words, we do not need to know the mean ψ̂m+1(0) of ψm+1 with respect to θ to compute
Fm,±. Computing the limit of (2.11) as Y3 tends to infinity, we get the expression:

Fm,± := − L±s (∂)Um,± +
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2 A ± ∂y3U

`3,±

+
∑

`1+`2+`3=m

χ[`1]
(
∂tψ

`1 A0 + ∂yjψ
`1 A±j

)
∂y3U

`3,± +
∑

`1+`2+`3=m

χ̇[`1] ψ`2 A±3 ∂y3U
`3,±

−
∑

`1+`2=m+1
`1,`2≥1

ξj Aj(U `1,±, ∂θU `2,±)−
∑

`1+`2=m
`1,`2≥1

Aα(U `1,±, ∂yαU
`2,±)(2.13)

+
∑

`1+···+`4=m+1
`3,`4≥1

χ[`1] ∂θψ
`2 ξj Aj(U `3,±, ∂y3U `4,±) +

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 Aj(U `3,±, ∂y3U `4,±)

+
∑

`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 A3(U `3,±, ∂y3U
`4,±) .

By using the symmetry of the Aα’s, we get from (2.11) the expressions:

F 0,± = 0 ,(2.14a)

F 1,± = −L±s (∂)U1,± + ∂θψ
2 A ± ∂Y3U

1,± − 1

2

(
ξj ∂θAj(U1,±, U1,±) + ∂Y3A3(U1,±, U1,±)

)
.(2.14b)

The symmetry of the Aα’s will be useful in Chapter 4 when constructing the leading amplitude of the
WKB ansatz, and also later in Chapter 5 when constructing the correctors. This is the reason why we
have chosen to write the MHD system in its conservative form (2.1) rather than in its non-conservative
form.

Since we wish to solve (2.1) asymptotically at any order in ε, a sufficient condition for doing so is to
require that each term in the asymptotic expansion (2.9) vanishes. We are then led to the so-called WKB
cascade which the profiles (Um,±, ψm+1)m≥1 should meet:

(2.15) ∀m ≥ 0 , L ±
f (∂)Um+1,± = Fm,± , (t, y′, y3, Y3, θ) ∈ [0, T ]× T2 × I± × R± × T ,

with the source term Fm,± defined by (2.11). The slow variables (t, y) play the role of parameters in
(2.15) since the operators L ±

f (∂) only act on the fast variables (Y3, θ).
Let us be a little more specific on the seventh equation in (2.15), which corresponds to the divergence-

free constraint on the velocity field. Using that the seventh line of the Aα’s is zero (the divergence
constraint is linear !), see Appendix A, we find that the seventh line of (2.15) reads:
(2.16a)

∂Y3u
m+1,±
3 + ξj ∂θu

m+1,±
j = −∇ · um,± +

∑
`1+`2=m+2

∂θψ
`1 ξj ∂Y3u

`2,±
j +

∑
`1+`2=m+1

∂yjψ
`1 ∂Y3u

`2,±
j

+
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2ξj ∂y3u

`3,±
j +

∑
`1+`2+`3=m

χ[`1] ∂yjψ
`2 ∂y3u

`3,±
j

+
∑

`1+`2+`3=m

χ̇[`1] ψ`2 ∂y3u
`3,±
3 .
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Similarly, plugging the WKB ansatz for the magnetic field in the constraint (2.6), we find that the profiles
(Hm,±)m≥1 must satisfy the following constraints:
(2.16b)

∂Y3H
m+1,±
3 + ξj ∂θH

m+1,±
j = −∇ ·Hm,± +

∑
`1+`2=m+2

∂θψ
`1 ξj ∂Y3H

`2,±
j +

∑
`1+`2=m+1

∂yjψ
`1 ∂Y3H

`2,±
j

+
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2ξj ∂y3H

`3,±
j +

∑
`1+`2+`3=m

χ[`1] ∂yjψ
`2 ∂y3H

`3,±
j

+
∑

`1+`2+`3=m

χ̇[`1] ψ`2 ∂y3H
`3,±
3 .

For future use, we rewrite (2.16b) under the form:

(2.17) ∂Y3H
m+1,±
3 + ξj ∂θH

m+1,±
j = Fm,±8 ,

where Fm,±8 is a short notation for the right hand side of (2.16b). Observe again that ψm+1 enters the
right hand side of (2.16b) only through its fast derivative ∂θψ

m+1. Equation (2.17) is the analogue of the
seventh equation in (2.15), which reads:

∂Y3u
m+1,±
3 + ξj ∂θu

m+1,±
j = Fm,±7 .

Equations (2.16) will be later referred to as the fast divergence constraints.
In Chapters 4 and 5, we shall construct a sequence of profiles that satisfy (2.15) and (2.16b) together

with several jump and boundary conditions which we are going to derive now.

2.2 The jump conditions

The jump conditions for the WKB cascade are obtained by plugging the expressions (1.9a), (1.9b) in the
jump conditions (1.2) which appear in the current vortex sheet system (1.3). Let us recall that on the
free surface {x3 = ψε(t, x

′)}, there holds y3 = Y3 = 0 (recall χ ≡ 1 near 0 so χ(ψε) ∼ 1 at any order in
ε), which is the reason why a double trace appears in the jump conditions for the WKB cascade below.
Collecting the powers of ε, we derive the following set of equations, where m ≥ 0:
(2.18a)

um+1,±
3 − c± ∂θψm+2 = ∂tψ

m+1 + u0,±
j ∂yjψ

m+1

+
∑

`1+`2=m+2
`2≥1

∂θψ
`1 ξj u

`2,±
j +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 u`2,±j ,

Hm+1,±
3 − b± ∂θψm+2 = H0,±

j ∂yjψ
m+1 +

∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj H

`2,±
j +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 H`2,±

j ,

qm+1,+ − qm+1,− = 0 ,

where all functions u`,±α , H`,±
α , q`,± are evaluated at y3 = Y3 = 0, and the set of equations (2.18a) should

be satisfied for all (t, y′, θ) ∈ [0, T ]× T2 × T.
Let us make the two first cases m = 0 and m = 1 in (2.18a) more explicit. For m = 0, we get the

homogeneous system:

(2.18b)


u1,±

3 |y3=Y3=0 − c± ∂θψ2 = 0 ,

H1,±
3 |y3=Y3=0 − b± ∂θψ2 = 0 ,

q1,+|y3=Y3=0 − q1,−|y3=Y3=0 = 0 .
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For m = 1, we get the system:

(2.18c)


u2,±

3 |y3=Y3=0 − c± ∂θψ3 = ∂tψ
2 + u0,±

j ∂yjψ
2 + ∂θψ

2 ξj u
1,±
j |y3=Y3=0 ,

H2,±
3 |y3=Y3=0 − b± ∂θψ3 = H0,±

j ∂yjψ
2 + ∂θψ

2 ξj H
1,±
j |y3=Y3=0 ,

q2,+|y3=Y3=0 − q2,−|y3=Y3=0 = 0 .

It is convenient for later use to rewrite the set (2.18a) of jump conditions in a more compact form.
We first define the following matrices B± ∈M5,7(R):

(2.19) B+ :=


0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

 , B− :=


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1

 ,
as well as the vector:

(2.20) b := −(c+, b+, c−, b−, 0)T ∈ R5 .

We can then rewrite the jump conditions (2.18) in the more compact form:

(2.21) ∀m ≥ 0 , B+ Um+1,+|y3=Y3=0 +B− Um+1,−|y3=Y3=0 + ∂θψ
m+2 b = Gm ,

where the source term Gm has the form:

(2.22a) Gm :=
(
Gm,+1 , Gm,+2 , Gm,−1 , Gm,−2 , 0

)T
,

with:
(2.22b)

Gm,±1 := ∂tψ
m+1 + u0,±

j ∂yjψ
m+1 +

∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj u

`2,±
j |y3=Y3=0 +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 u`2,±j |y3=Y3=0 ,

(2.22c) Gm,±2 := H0,±
j ∂yjψ

m+1 +
∑

`1+`2=m+2
`2≥1

∂θψ
`1 ξj H

`2,±
j |y3=Y3=0 +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 H`2,±

j |y3=Y3=0 .

It is important to observe that the mean ψ̂m+1(0) does enter the definition of the source term Gm. More
precisely, the non-zero Fourier coefficients of Gm depend on U1,±, . . . , Um,±, ψ2, . . . , ψm and ∂θψ

m+1, but
the mean Ĝm(0) does depend on ψ̂m+1(0). this fact will be important in the induction process of Chapter
5.

2.3 The fixed boundaries

We now focus on the boundary conditions on the top and bottom boundaries Γ±. Here we should
recall that profiles in the space S± are decomposed following (1.10) as the sum of a first profile that is
independent of the fast normal variable Y3, and of a second profile that decays exponentially with respect
to Y3. For x3 = ±1, there holds |x3−ψε(t, x′)|/ε ≥ 1/(2 ε) for any sufficiently small ε, so the surface wave
component of the profile is O(ε∞) when evaluated at the top and bottom boundaries.

The boundary conditions (uε)
±
3 |x3=±1 = (Hε)

±
3 |x3=±1 = 0 will therefore be satisfied if there holds:

(2.23) ∀m ≥ 0 , um+1,±
3 |y3=±1 = Hm+1,±

3 |y3=±1 = 0 .
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Observe that in (2.23), the trace of um+1,±
3 at y3 = ±1 is a function of (t, y′, θ) so (2.23) is a condition

for all Fourier modes with respect to θ which we can rephrase as:

∀m ≥ 0 , ∀ k ∈ Z , ûm+1,±
3 (t, y′,±1, k) = Ĥ

m+1,±
3 (t, y′,±1, k) = 0 .

Here we see why introducing the cut-off function χ in the slow normal variable y3 was convenient. If
we had chosen the probably more natural candidate y3 = x3 − ψε(t, x′) as the slow normal variable, the
boundary conditions at x3 = ±1 would have mixed the profiles (Um,±)m≥1 for the physical quantities
(velocity, magnetic field) with the profiles (ψm+1)m≥1 for the front. Beyond the notational inconvenience,
this would have made the verification of some compatibility conditions much more cumbersome than they
will be in our framework. The price to pay with our choice for the slow normal variable is the introduction
of the many additional terms in (2.11) that involve the functions χ[`], χ̇[`]. The algebra involved with these
additional terms is one of the achievements of our work and is detailed in Appendix B.

2.4 Normalizing the total pressure

It will be convenient in the induction argument described in Chapters 4 and 5 to determine the total
pressure in a fixed given way. Observe indeed that in (1.3), the total pressure is defined up to a function
of time. In other words, we can always shift q± by a given function of time:

q+(t, x) +Q(t) , q−(t, x) +Q(t) ,

and we still get a solution to (1.3). To avoid this indeterminacy, we make the same choice as in [CMST12,
SWZ18] and fix the total pressure (q+, q−) by imposing the zero mean condition:∫

Ω+(t)
q+(t, x) dx +

∫
Ω−(t)

q−(t, x) dx = 0 .

For the oscillating problem, since the subdomains also depend on the wavelength ε, the latter normaliza-
tion conditions reads:

(2.24) ∀ t ∈ [0, T ] ,

∫
Ω+
ε (t)

q+
ε (t, x) dx +

∫
Ω−ε (t)

q−ε (t, x) dx = 0 ,

where the domains Ω±ε (t) are given by:

Ω±ε (t) :=
{
x ∈ T2 × (−1, 1)

∣∣x3 ≷ ψε(t, x
′)
}
.

Our goal here is to compute the asymptotic expansion with respect to the small parameter ε of the
integrals in (2.24), when the total pressure and the front follow the asymptotic expansions (1.9a), (1.9b).
The expansion will give rise to the normalization conditions for each profile of the sequence (qm,±)m≥1.

There are several steps in the calculation. First, we observe that the domains Ω±ε (t) have measure
1 + o(1) as ε tends to zero, so any O(εk) contribution in q±ε will give at best an O(εk) contribution in the
integrals of (2.24). This means that if we write

(2.25)

∫
Ω+
ε (t)

q+
ε (t, x) dx +

∫
Ω−ε (t)

q−ε (t, x) dx ∼
∑
m≥1

εm Im(t) ,

then Im(t) only depends on the finitely many profiles q1,±, . . . , qm,±. Let us emphasize that the asymp-
totic expansion (2.25) begins indeed with the ε1 scale because of the normalization condition (1.5) for
the reference current vortex sheet (which makes the term I 0 automatically vanish). We are now going
to make the functions Im, m ≥ 1, in (2.25) explicit. For each profile

qm,±
(
t, x′, x3 − χ(x3)ψε(t, x

′),
x3 − ψε(t, x′)

ε
,
τ t+ ξ′ · x′

ε

)
, m ≥ 1 ,
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we need to compute its integral on Ω±ε (t), then multiply by εm, see (1.9a), sum with respect to m ≥ 1
and rearrange the formal series in terms of powers of ε thus obtaining (2.25). We explain below how one
can derive the asymptotic expansion of the integral:

(2.26) Jm,+ε (t) :=

∫
Ω+
ε (t)

qm,+
(
t, x′, x3 − χ(x3)ψε(t, x

′),
x3 − ψε(t, x′)

ε
,
τ t+ ξ′ · x′

ε

)
dx .

The integral Jm,−ε (t) on the other side of the current vortex sheet is dealt with in exactly the same way
so we omit the details.

• Straightening the domain. We first make the change of variables (x′, x3) → (y′, y3) with y′ := x′

and y3 := x3 − χ(x3)ψε(t, x
′). This is indeed, at least formally, a change of variable for ε sufficiently

small since ψε is expected to be O(ε2) in L∞ so the Jacobian of this transformation does not vanish.
The domain Ω+

ε (t) is mapped onto the fixed domain Ω+
0 := T2 × I+, which corresponds to the flat front

ψε ≡ 0. The integral Jm,+ε (t) in (2.26) is rewritten accordingly:

Jm,+ε (t) =

∫
Ω+

0

qm,+
(
t, y′, y3,

y3 + (χ(x3)− 1)ψε(t, y
′)

ε
,
τ t+ ξ′ · y′

ε

)
dy

1− χ′(x3)ψε(t, y′)
,

where, for any given time t and y ∈ Ω+
0 , x3 ∈ (ψε(t, y

′), 1) denotes the unique solution to the equation:

y3 = x3 − χ(x3)ψε(t, y
′) .

The decomposition (1.10) of the profile qm,+ yields a decomposition of the above integral Jm,+ε (t). Each
of the two terms is examined separately.

• The surface wave component. Let us first look at:

Jm,+ε,? (t) :=

∫
Ω+

0

qm,+?

(
t, y′, y3,

y3 + (χ(x3)− 1)ψε(t, y
′)

ε
,
τ t+ ξ′ · y′

ε

)
dy

1− χ′(x3)ψε(t, y′)
.

We recall that the cut-off function χ equals 1 on the interval [−1/3, 1/3] so χ(x3) equals 1 at any order
in ε for, say, y3 ∈ [0, 1/6]. In the same way, there holds χ′(x3) = 0 for y3 ∈ [0, 1/6] and any ε sufficiently
small. For y3 ≥ 1/6, we recall that qm,+? has exponential decay with respect to the fast normal variable
Y3, so the ‘remainder’ term:∫

T2×(1/6,1)
qm,+?

(
t, y′, y3,

y3 + (χ(x3)− 1)ψε(t, y
′)

ε
,
τ t+ ξ′ · y′

ε

)
dy′ dy3

1− χ′(x3)ψε(t, y′)

is an O(ε∞). (It is actually an exponentially small term.) We may thus write:

Jm,+ε,? (t) =

∫
T2×(0,1/6)

qm,+?

(
t, y′, y3,

y3

ε
,
τ t+ ξ′ · y′

ε

)
dy′ dy3 +O(ε∞)

=

∫
Ω+

0

qm,+?

(
t, y′, y3,

y3

ε
,
τ t+ ξ′ · y′

ε

)
dy′ dy3 +O(ε∞) ,

where the final equality comes again from the exponential decay of qm,+? with respect to Y3. We now
decompose the profile qm,+? in Fourier series with respect to θ. For each k 6= 0, the integral∫

Ω+
0

q̂m,+?

(
t, y′, y3,

y3

ε
, k
)

exp

(
i k

τ t+ ξ′ · y′
ε

)
dy′ dy3 ,
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is shown to be an O(ε∞) by means of integration by parts in y′ - the so-called stationary or rather non-
stationary phase method (here we use ξ′ 6= 0 and the fact that the fast normal variable y3/ε is independent
of y′). We are thus left with:

Jm,+ε,? (t) =

∫
Ω+

0

q̂m,+?

(
t, y′, y3,

y3

ε
, 0
)

dy′ dy3 +O(ε∞)

= ε

∫
T2×[0,1/ε]

q̂m,+? (t, y′, ε Y3, Y3, 0) dy′ dY3 +O(ε∞)

∼
∑
`≥0

ε`+1

` !

∫
T2×R+

Y `
3 ∂

`
y3 q̂

m,+
? (t, y′, 0, Y3, 0) dy′ dY3 .

Collecting the contributions of each integral Jm,+ε,? (t), which we recall is part of the integral Jm,+ε (t) in
(2.26), and adding up with the analogous contributions from the minus side Ω−ε (t), we end up with:

(2.27)
∑
m≥1

εm
(
Jm,+ε,? (t) + Jm,−ε,? (t)

)
∼
∑
m≥2

εm
∑

`1+`2=m−1
`1≥1

1

`2 !

{∫
T2×R+

Y `2
3 ∂`2y3 q̂

`1,+
? (t, y′, 0, Y3, 0) dy′ dY3

+

∫
T2×R−

Y `2
3 ∂`2y3 q̂

`1,−
? (t, y′, 0, Y3, 0) dy′ dY3

}
.

• The residual component. We now examine the integral:

Jm,+ε (t) :=

∫
Ω+

0

qm,+
(
t, y′, y3,

τ t+ ξ′ · y′
ε

)
dy

1− χ′(x3)ψε(t, y′)
.

We know from (2.8) that χ′(x3) can be expanded in terms of ε as:

χ′(x3) ∼
∑
m≥0

εm χ̇[m]

(
t, y′, y3,

τ t+ ξ′ · y′
ε

)
,

with suitable profiles χ̇[m], m ≥ 0, and the asymptotic expansion of ψε is given by (1.9b). We may thus
write:

(2.28)
1

1− χ′(x3)ψε(t, y′)
∼ 1 +

∑
m≥2

εm Jm

(
t, y′, y3,

τ t+ ξ′ · y′
ε

)
.

Each function Jm, m ≥ 2, in (2.28) can be computed by starting from:

1− χ′(x3)ψε(t, y
′) ∼ 1−

∑
m≥2

εm
∑

`1+`2=m

χ̇[`1](t, y, θ)ψ`2(t, y′, θ) ,

and then computing the asymptotic expansion in ε of the inverse (see [Com74] for some explicit formula).
In particular, there holds:

J 2(t, y, θ) = χ′(y3)ψ2(t, y′, θ) .

At this stage, we plug the expansion (2.28) into the expression of the integral Jm,+ε (t). Using again
the stationary phase method, we end up with:

Jm,+ε (t) ∼
∫

Ω+
0

q̂m,+(t, y, 0) dy +
∑
`≥2

ε`
∫

Ω+
0

∫
T
qm,+(t, y, θ) J ` (t, y, θ) dy

dθ

2π
.
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Multiplying by εm and summing over m ≥ 1, we end up with:

(2.29)
∑
m≥1

εm
(
Jm,+ε (t) + Jm,−ε (t)

)
∼
∑
m≥1

εm

(∫
Ω+

0

q̂m,+(t, y, 0) dy +

∫
Ω−0

q̂m,−(t, y, 0) dy

)

+
∑
m≥3

εm
∑

`1+`2=m
`1≥1,`2≥2

∫
Ω+

0

∫
T
q`1,+(t, y, θ) J `2 (t, y, θ) dy

dθ

2π
+

∫
Ω−0

∫
T
q`1,−(t, y, θ) J `2 (t, y, θ) dy

dθ

2π
.

We now collect the contributions (2.27) and (2.29) to get the expression of Im(t) in (2.25). We have
just derived the expression:

(2.30) ∀m ≥ 1 , Im(t) =

∫
Ω+

0

q̂m,+(t, y, 0) dy +

∫
Ω−0

q̂m,−(t, y, 0) dy + Im−1(t) ,

where Im−1(t) is computed from the ‘previous’ profiles q1,±, . . . , qm−1,±, ψ2, . . . , ψm by setting:

Im−1(t) :=
∑

`1+`2=m−1
`1≥1

1

`2 !

{∫
T2×R+

Y `2
3 ∂`2y3 q̂

`1,+
? (t, y′, 0, Y3, 0) dy′ dY3

+

∫
T2×R−

Y `2
3 ∂`2y3 q̂

`1,−
? (t, y′, 0, Y3, 0) dy′ dY3

}
(2.31)

+
∑

`1+`2=m
`1≥1,`2≥2

∫
Ω+

0

∫
T
q`1,+(t, y, θ) J `2 (t, y, θ) dy

dθ

2π
+

∫
Ω−0

∫
T
q`1,−(t, y, θ) J `2 (t, y, θ) dy

dθ

2π
.

Since we wish each term Im(t) in (2.25) to vanish, this will lead from the expression (2.30) to determine
inductively the slow mean (q̂m,±(0))m≥1 of the total pressure by setting:

(2.32)

∫
Ω+

0

q̂m,+(t, y, 0) dy +

∫
Ω−0

q̂m,−(t, y, 0) dy = −Im−1(t) ,

with Im−1(t) given in (2.31). In particular, examining the relation (2.32) shows that the first three slow
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means q̂m,±(0), m = 1, 2, 3, should satisfy:∫
Ω+

0

q̂ 1,+(t, y, 0) dy +

∫
Ω−0

q̂ 1,−(t, y, 0) dy = 0 ,(2.33) ∫
Ω+

0

q̂ 2,+(t, y, 0) dy +

∫
Ω−0

q̂ 2,−(t, y, 0) dy =−
∫
T2×R+

q̂ 1,+
? (t, y′, 0, Y3, 0) dy′ dY3(2.34)

−
∫
T2×R−

q̂ 1,−
? (t, y′, 0, Y3, 0) dy′ dY3 ,∫

Ω+
0

q̂ 3,+(t, y, 0) dy +

∫
Ω−0

q̂ 3,−(t, y, 0) dy =−
∫
T2×R+

q̂ 2,+
? (t, y′, 0, Y3, 0) dy′ dY3(2.35)

−
∫
T2×R−

q̂ 2,−
? (t, y′, 0, Y3, 0) dy′ dY3 ,

−
∫
T2×R+

Y3 ∂Y3 q̂
1,+
? (t, y′, 0, Y3, 0) dy′ dY3

−
∫
T2×R−

Y3 ∂Y3 q̂
1,−
? (t, y′, 0, Y3, 0) dy′ dY3

−
∫

Ω+
0

∫
T
q1,+(t, y, θ)χ′(y3)ψ2(t, y′, θ) dy

dθ

2π

−
∫

Ω−0

∫
T
q1,−(t, y, θ)χ′(y3)ψ2(t, y′, θ) dy

dθ

2π
.

It will turn out that with our choice of initial data, the whole residual total pressure q1,±, including the

slow mean q̂ 1,±(0) will vanish, and the fast mean q̂ 1,±
? (0) will also vanish. Hence the above relations

(2.34) and (2.35) will reduce to:∫
Ω+

0

q̂ 2,+(t, y, 0) dy +

∫
Ω−0

q̂ 2,−(t, y, 0) dy = 0 ,∫
Ω+

0

q̂ 3,+(t, y, 0) dy +

∫
Ω−0

q̂ 3,−(t, y, 0) dy = −
∫
T2×R+

q̂ 2,+
? (t, y′, 0, Y3, 0) dy′ dY3

−
∫
T2×R−

q̂ 2,−
? (t, y′, 0, Y3, 0) dy′ dY3 .

As we shall see later on, the fast mean q̂ 2,±
? (0) will not be zero, which will in turn show that the slow

mean of the second total pressure corrector q̂ 3,± will not be zero. As in [Mar10, Mar11], this will prove
that rectification occurs, even though the leading amplitude in the WKB ansatz is exponentially localized
near the current vortex sheet.

2.5 Summary

Let us now summarize the equations to be solved. We wish to determine some profiles (Um,±, ψm+1)m≥0

that satisfy:

• the fast system (2.15) together with the fast divergence constraint (2.16b) on the magnetic field
(the source term Fm,± in (2.15) is explicitly given in (2.11)),

• the jump conditions (2.21) for the double traces on {y3 = Y3 = 0} (the source terms Gm,±1 , Gm,±2 in
(2.21) are explicitly given in (2.22b), (2.22c)),

• the top and bottom boundary conditions (2.23) for all Fourier modes of the residual components
um,±3 , Hm,±

3 of the normal velocity and normal magnetic field,
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• the normalization constraints Im(t) = 0 for the slow mean of the total pressure, with Im given
by (2.30), (2.31).

All these equations are supplemented with initial conditions in agreement with (1.8). The initial data for
the front profiles (ψm)m≥2 are2:

(2.36) ∀ (x′, θ) ∈ T3 , ψ2(0, y′, θ) = ψ2
0(y′, θ) , and ∀m ≥ 3 , ψm(0, y′, θ) = 0 ,

and the initial data for the fast mean of the tangential components of each Um,± will be zero:

(2.37) ∀m ≥ 1 , Π Ûm,±? (0, y, 0) = 0 .

We shall go back later on in Chapters 4 and 5 to the problem of determining the initial data for the
slow mean of the profiles Um,±. There is some flexibility there too, but the data have to be compatible
with some divergence constraints so we have thought it more convenient to examine the determination of

initial data for Û
m,±

, m ≥ 1, when it arises in the analysis.
The cornerstone of the whole program consists in solving the so-called fast problem (3.1) below in

which we focus on the fast equations (2.15), (2.16b) and the jump conditions (2.21). Depending on whether
m = 0 or m ≥ 1, the fast problem has to be solved either in the homogeneous or non-homogeneous case,
which will be done in Chapter 3 hereafter. We shall go back later in Chapters 4 and 5 to the top and
bottom boundary conditions and to the total pressure normalization.

2Recall that in (2.36), ψ2
0 is assumed to have zero mean with respect to θ.
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Chapter 3

Analysis of the fast problem

Constructing a solution to the WKB cascade (2.15), (2.17), (2.21), (2.23) is done inductively. At each
step of the induction process, the main problem is to solve a system of equations of the form:

(3.1)


L ±
f (∂)U± = F± , y3 ∈ I± , ±Y3 > 0 ,

∂Y3H
±
3 + ξj ∂θH

±
j = F±8 , y3 ∈ I± , ±Y3 > 0 ,

B+ U+|y3=Y3=0 +B− U−|y3=Y3=0 + ∂θψ b = G ,

where the fast operators L ±
f (∂) have ben defined in (2.10), the matrices B± have been defined in (2.19)

and the vector b is given by (2.20). We forget temporarily the top and bottom boundary conditions on
Γ± since they can be dealt with more easily than all remaining equations. Both the source terms and the
solution in (3.1) are real valued.

It is important to observe that in (3.1), the slow variables (t, y′) enter as parameters. The slow normal
variable y3 also enters as a parameter in the two first equations, but the boundary conditions on Γ0 only
bear on the trace on {y3 = 0}. However, for later use, it is useful to consider interior source terms F±, F±8
that also depend on (t, y) and a boundary source term G that depends on (t, y′). The main purpose is to
clarify the functional framework in which (3.1) can be solved. Since the unknown front profile ψ in (3.1)
only appears through its θ-derivative, it will of course be defined only up to its mean with respect to θ
(this mean being a function of (t, y′)).

We shall refer from now on to (3.1) as the ‘fast problem’. In this Section, we fix a time T > 0. The
functional spaces S±, S±? , S± are defined accordingly, see Definition 1.1. Our main result in this Chapter
is the following.

Theorem 3.1. Let Assumptions (H1), (H2), (H3), (H4) be satisfied together with τ 6= 0. Let F±, F±8 ∈
S± and let G ∈ H∞([0, T ] × T2 × T). Then the fast problem (3.1) has a solution (U±, ψ) ∈ S± ×
H∞([0, T ]× T2 × T) if and only if the following conditions are satisfied:

(3.2a)

{
F+

6 |y3=Y3=0 = −b+ ∂θG1 + c+ ∂θG2 ,

F−6 |y3=Y3=0 = −b− ∂θG3 + c− ∂θG4 ,
(compatibility at the boundary)

(3.2b) F̂
±

(t, y, 0) = 0 , F̂
±
8 (t, y, 0) = 0 , (compatibility for the slow means)

(3.2c)


u0,±

1 F̂±7,?(0)−H0,±
1 F̂±8,?(0) = F̂±1,?(0) ,

u0,±
2 F̂±7,?(0)−H0,±

2 F̂±8,?(0) = F̂±2,?(0) ,

H0,±
1 F̂±7,?(0)− u0,±

1 F̂±8,?(0) = F̂±4,?(0) ,

H0,±
2 F̂±7,?(0)− u0,±

2 F̂±8,?(0) = F̂±5,?(0) ,

(compatibility for the fast means)
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(3.2d) ∂Y3F
±
6 + ξj ∂θF

±
3+j − τ ∂θF±8 = 0 , (compatibility for the divergence of the magnetic field)

(3.2e) ∀ k 6= 0 ,

∫
R+

e−|k|Y3 L +(k) q F̂+(t, y′, 0, Y3, k) dY3 −
∫
R−

e|k|Y3 L −(k) q F̂−(t, y′, 0, Y3, k) dY3

+ `+1 Ĝ1(t, y′, k) + `+2 Ĝ2(t, y′, k) + `−1 Ĝ3(t, y′, k) + `−2 Ĝ4(t, y′, k) − i τ sgn(k) Ĝ5(t, y′, k) = 0 ,

where in (3.2e), the vectors L ±(k) are explicitly defined in (A.5), the notation “ q ” stands for the
Hermitian product between two vectors, and the quantities `±1,2 are defined in (3.21) below. The last
solvability condition (3.2e) will be referred to as an orthogonality condition (for the non-zero Fourier
modes).

If the solvability conditions (3.2) are satisfied by the source terms of (3.1), then (3.1) has a solution
of the form (U±, 0), where U± ∈ S± can be chosen such that:

Π Û±(0) = 0 , and Û
±

(0)
∣∣
y3=±1

= 0 .

Furthermore, any solution to (3.1) then reads1:

U±(t, y, Y3, θ) = U±(t, y, Y3, θ) + U±h (t, y) +
(
u±1,?, u

±
2,?, 0, H

±
1,?, H

±
2,?, 0, 0

)T
(t, y, Y3)

+
∑

k∈Z\{0}

γ±(t, y, k) e∓|k|Y3+i k θ R±(k) ,

where U±h ∈ S± is independent of θ, u±1,?, u
±
2,?, H

±
1,?, H

±
2,? ∈ S±? , the vectors R±(k) are explicitly given in

(A.5), the coefficients γ± satisfy γ±(t, y′, 0, k) = ±|k| ψ̂(t, y′, k) for all (t, y′, k) ∈ [0, T ]×T2×Z∗ with the
reality condition:

∀ k ∈ Z∗ , γ±(t, y,−k) = γ±(t, y, k) ,

and, eventually, the slow mean U±h satisfies the boundary conditions on Γ0:

u±h,3|y3=0 = H±h,3|y3=0 = 0 , q+
h
|y3=0 = q−

h
|y3=0 .

Here we have used the notation U±h = (u±h,1, u
±
h,2, u

±
h,3, H

±
h,1, H

±
h,2, H

±
h,3, q

±
h

)T .

Let us observe immediately that (3.2) does not involve any condition on the mean of the boundary source
term Ĝ(0). In the induction process of Chapter 5, the mean of the front profiles ψ̂m(0), m ≥ 2, will be
determined by enforcing a solvability condition for the Laplace type problem that will determine the slow
mean of the total pressure correctors. This solvability condition will be examined separately since it does
not enter the analysis of the fast problem. The analysis of the Laplace problem, which is reminiscent of
the analysis in [SWZ18], will lead to a second order wave type equation for the slow mean of the front
ψ̂m(0).

The following sections are devoted to the proof of Theorem 3.1. In order to understand better why
(3.1) admits non-zero solutions in the homogeneous case, we first go back for a while to the linear stability
problem of incompressible current vortex sheets and recall why Assumption (H1) yields the existence of
linear surface waves that are exponentially decaying with respect to the normal variable to the current
vortex sheet. This will be the opportunity to recall the expression of the so-called Lopatinskii determinant,
which will be useful later on. The various matrices, eigenvectors and so on involved in the normal mode
analysis also enter the explicit description of the (leading amplitude in the) weakly nonlinear ansatz (1.9a).

1The subscript h stands for ‘homogeneous’.
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3.1 A reminder on the normal mode analysis

The analysis of the fast problem (3.1) in the homogeneous case, that is when F± ≡ 0, F±8 ≡ 0, G ≡ 0,
is more or less equivalent to the normal mode analysis that is performed for testing the linear stability
of the piecewise constant solution (1.5) to (1.3). To highlight this, we thus go back for a while to the
original (quasilinear) system (1.3) and linearize the equations around the piecewise constant solution (1.5).
Forgetting in this Section about the top and bottom boundaries Γ±, the linearized problem reads:

∂tu̇
± + (u0,± · ∇) u̇± − (H0,± · ∇) Ḣ± +∇q̇± = 0 , in T2 × R± , t ∈ [0, T ] ,

∂tḢ
± + (u0,± · ∇) Ḣ± − (H0,± · ∇) u̇± = 0 , in T2 × R± , t ∈ [0, T ] ,

∇ · u̇±(t) = ∇ · Ḣ±(t) = 0 , in T2 × R± , t ∈ [0, T ] ,

∂tψ̇ + u0,±
j ∂yj ψ̇ = u̇±3 , H0,±

j ∂yj ψ̇ = Ḣ±3 , [ q̇ ] = 0 , on T2 , t ∈ [0, T ] .

For this Section only, we consider the normal variable y3 ∈ R±, but the tangential variables y′ still lie in
T2. We recall that j and j′ refer to tangential spatial coordinates and that we use Einstein summation
convention.

We perform a Laplace transform with respect to the time variable (z := τ − i γ is the associated dual
variable) and a decomposition in Fourier series with respect to the tangential space coordinates y′ ∈ T2

(the associated frequencies are k ∈ Z2). This yields the problem:

(z + kj u
0,±
j ) û±j′ − (kj H

0,±
j ) Ĥ±j′ + kj′ q̂

± = 0 , y3 ∈ R± , j′ = 1, 2 ,

i (z + kj u
0,±
j ) û±3 − i (kj H

0,±
j ) Ĥ3 + ∂y3 q̂

± = 0 , y3 ∈ R± ,
(z + kj u

0,±
j ) Ĥ± − (kj H

0,±
j ) û± = 0 , y3 ∈ R± ,

i kj û
±
j + ∂y3 û

±
3 = i kj Ĥ

±
j + ∂y3Ĥ

±
3 = 0 , y3 ∈ R± ,

i (z + kj u
0,±
j ) ψ̂ = û±3 , i kj H

0,±
j ψ̂ = Ĥ±3 , [ q̂ ] = 0 , y3 = 0 ,

with what are -at least we hope so- self-explanatory notations. The analysis below follows what has been
performed in [Syr53, Axf62, Cha61, BT02, MTT08]. We first look for exploding modes in time, that
is we assume z to be of negative imaginary part (γ > 0). With some easy manipulations, we first use
the divergence constraints on û±, Ĥ± in the two first equations and derive the second order differential
equation for the total pressure2:

∂2
y3 q̂
± − |k|2 q̂± = 0 , y3 ∈ R± ,

[ q̂ ] = 0 , y3 = 0 ,

∂y3 q̂
± =

(
(z + kj u

0,±
j )2 − (kj H

0,±
j )2

)
ψ̂ , y3 = 0 .

For a non-zero frequency vector k, this problem has a nontrivial solution that is (exponentially) decaying
at |y3| = +∞ if and only if:

(3.3) (z + kj u
0,+
j )2 + (z + kj u

0,−
j )2 − (kj H

0,+
j )2 − (kj H

0,−
j )2 = 0 .

Provided that we can find the expression of the total pressure, all other quantities are then determined by
solving linear equations, so the vanishing of the quantity on the left hand side of (3.3) determines whether,
on the Laplace-Fourier side, the linearized equations admit a nontrivial solution. To make the analogy
with the theory of hyperbolic initial boundary value problems [Kre70, Sak82, BGS07], the polynomial
expression in (3.3) will be referred to as the Lopatinskii determinant for the current vortex sheet problem.

Under the stability condition (H1) on the reference planar current vortex sheet, the second degree
polynomial equation (3.3) in z has two simple real roots. This means that exploding modes in time

2On the Laplace-Fourier side, this is of course the analogue of the Laplace problem that determines the total pressure as
the Lagrange multiplier associated with the divergence constraints on the velocity and the magnetic field.
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(γ > 0) do not occur, which is good for stability, but the linearized problem admits nontrivial oscillating
waves in time (γ = 0). Since these waves decay exponentially with respect to the normal variable y3, they
are usually referred to as surface waves. More algebraic details that fit into our framework for weakly
nonlinear geometric optics are given in the following Section.

3.2 The homogeneous case

In this Section, we are going to characterize the solutions (U±, ψ) ∈ S±×H∞([0, T ]×T2×T) to the fast
problem (3.1) in the homogeneous case. We thus wish to determine all solutions to the system:

(3.4)


L ±
f (∂)U± = 0 , y3 ∈ I± , ±Y3 > 0 ,

∂Y3H
±
3 + ξj ∂θH

±
j = 0 , y3 ∈ I± , ±Y3 > 0 ,

B+ U+|y3=Y3=0 +B− U−|y3=Y3=0 + ∂θψ b = 0 .

Once again, we are only interested in real valued solutions. The result is summarized in the following
Proposition.

Proposition 3.2. The functions (U±, ψ) ∈ S±×H∞([0, T ]×T2×T) that satisfy (3.4) are exactly those
profiles of the form:

U±(t, y, Y3, θ) = U±(t, y) +
(
u±1,?, u

±
2,?, 0, H

±
1,?, H

±
2,?, 0, 0

)T
(t, y, Y3)

+
∑

k∈Z\{0}

γ±(t, y, k) e∓|k|Y3+i k θ R±(k) ,

where U± ∈ S± is independent of θ, u±1,?, u
±
2,?, H

±
1,?, H

±
2,? ∈ S±? , the vectors R±(k) are explicitly given in

(A.5), the coefficients γ± satisfy γ±(t, y′, 0, k) = ±|k| ψ̂(t, y′, k) for all (t, y′, k) ∈ [0, T ]× T2 × Z∗ and the
reality condition:

∀ k ∈ Z∗ , γ±(t, y,−k) = γ±(t, y, k) ,

and, eventually, the slow mean U± satisfies the boundary conditions on Γ0:

u±3 |y3=0 = H±3 |y3=0 = 0 , q+|y3=0 = q−|y3=0 .

In particular, given any ψ ∈ H∞([0, T ] × T2 × T), we can construct a pair of profiles U± ∈ S± such
that (U±, ψ) satisfies (3.4).

Proposition 3.2 extends to the three-dimensional case some of the calculations performed in [AH03]. We
now give the proof for the sake of completeness.

Proof of Proposition 3.2. The proof is rather elementary and follows from mere algebraic manipulations.
We first assume that (U±, ψ) ∈ S±×H∞([0, T ]×T2×T) is a solution to (3.4), try to derive the expression
of (U±, ψ), and eventually verify that such expressions provide indeed with the only possible solutions to
(3.4). Let us therefore assume that (U±, ψ) ∈ S± ×H∞([0, T ]× T2 × T) is a solution to (3.4).

• The residual component. We first take the limit |Y3| → +∞ and obtain the fast equations:{
A ± ∂θ U

± = 0 , y3 ∈ I± ,
ξj ∂θH

±
j = 0 , y3 ∈ I± .

The explicit expression of the matrices A ± is given in Appendix A. In particular, under Assumptions (H1),
(H2), (H3), (H4), together with τ 6= 0, it is proved in Appendix A that the matrices A ± are invertible.
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This means that, even without using the fast divergence constraint ξj ∂θH
±
j = 0 on the magnetic field,

we necessarily have ∂θU
± = 0, or in other words:

U±(t, y, θ) = U±(t, y) ,

for some functions U± ∈ H∞([0, T ] × T2 × I±). The divergence constraint on the magnetic field is a
consequence of the remaining seven equations. We shall examine the boundary conditions that must be
satisfied by the slow means U± on {y3 = 0} later.

• The surface wave component. Zero Fourier mode. Subtracting the residual component at Y3 = ±∞
and taking the average with respect to θ of the fast equations in (3.4), we find that the fast mean Û±? (0)
must satisfy:

A±3 ∂Y3Û
±
? (0) = 0 , ∂Y3Ĥ

±
3,?(0) = 0 ,

where (t, y) ∈ [0, T ]×T2 × I± enter here as parameters. From the explicit expression of the matrices A±3
given in Appendix A and the exponential decay at Y3 = ±∞ of functions in S±? , we find that the latter
equations are satisfied if and only if

û±3,?(0) = Ĥ±3,?(0) = q̂±? (0) ≡ 0 .

In other words, the fast mean Û±? (0) of U± has the form:(
u±1,?, u

±
2,?, 0, H

±
1,?, H

±
2,?, 0, 0

)T
(t, y, Y3) ,

as claimed in Proposition 3.2. Since the tangential components of the velocity and magnetic field do not
enter the boundary conditions in (3.4), the four scalar functions that define the fast mean are completely
free.

Since the normal velocity, normal magnetic field and total pressure of the fast mean Û±? (0) are zero,
it is easy to see that the slow mean U± must satisfy the boundary conditions on Γ0:

u±3 |y3=0 = H±3 |y3=0 = 0 , q+|y3=0 = q−|y3=0 .

These conditions are obtained by computing the mean with respect to θ on T of the boundary conditions
in (3.4).

• The surface wave component. non-zero Fourier modes. We now consider the oscillating Fourier
modes of the surface wave component of U±. We consider a non-zero k ∈ Z and compute the k-th Fourier
coefficient with respect to θ of all equations in (3.4). We get:

(3.5)


A±3 ∂Y3Û

±
? (k) + i kA ± Û±? (k) = 0 , y3 ∈ I± , ±Y3 > 0 ,

∂Y3Ĥ
±
3,?(k) + i k ξj Ĥ

±
j,?(k) = 0 , y3 ∈ I± , ±Y3 > 0 ,

B+ Û+
? |y3=Y3=0(k) +B− Û−? |y3=Y3=0(k) + i k ψ̂(k) b = 0 .

Observe that here, we have already used the fact that the residual component U± does not depend on
θ. The first two equations in (3.5) are reminiscent of the normal mode analysis performed to study the
linear stability of the planar current vortex sheet (1.5). Indeed, if we write down the equations satisfied
by the Fourier coefficient Û±? (k) and use the divergence constraints for the velocity and magnetic field,
we get3:

(3.6)


c± û±j,? − b± Ĥ±j,? + ξj q̂

±
? = 0 , j = 1, 2,

∂Y3 q̂
±
? + i k c± û±3,? − i k b± Ĥ±3,? = 0 ,

−b± û±? + c± Ĥ±? = 0 ,

3This system is similar to the one obtained when performing the normal mode analysis in the previous Section, with
corresponding frequencies z = τ and kj = k ξj .
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together with the divergence constraints

∂Y3 û
1
3,? + i k ξj û

1
j,? = 0 ,(3.7a)

∂Y3Ĥ
1
3,? + i k ξj Ĥ

1
j,? = 0 .(3.7b)

Now, using (3.7) in (3.6), and recalling the boundary conditions in (3.5), we find that the total pressure
must satisfy the (seemingly overdetermined) elliptic system4:

(3.8)


∂2
Y3
q̂±? − k2 q̂±? = 0 , y3 ∈ I± , Y3 ≷ 0 ,

q̂+
? |y3=Y3=0 = q̂−? |y3=Y3=0 ,

∂Y3 q̂
±
? |y3=Y3=0 = k2

(
(c±)2 − (b±)2

)
ψ̂ .

Since we are looking for exponentially decaying profiles (in Y3), the second order differential equation for
q̂±? gives the general expression5:

(3.9) q̂±? (t, y, Y3, k) =
(
(b±)2 − (c±)2

)
γ±(t, y, k) e∓|k|Y3 , ∀ (t, y, Y3) ∈ [0, T ]× T2 × I± × R± .

Let us notice that y3 is a parameter in (3.9). Hence the only remaining problem is to take the double
trace y3 = Y3 = 0 in (3.9) and to determine whether we can solve the boundary conditions in (3.8). The
first boundary condition in (3.8) gives:

γ+(t, y′, 0, k) = γ−(t, y′, 0, k) .

Therefore the second boundary condition will be satisfied if and only if (we recall k 6= 0 and we are looking
for non-trivial solutions, i.e. q̂±? 6≡ 0 and ψ̂ 6≡ 0 for at least one non-zero Fourier mode):

(3.10) (c+)2 + (c−)2 = (b+)2 + (b−)2,

hence Assumption (H4). As in the theory of initial boundary value problems for hyperbolic systems
[Kre70, Sak82, BGS07], the identity (3.10) is similar to the cancellation of some Lopatinskii determinant
(see [MTT08]) that we can define as follows:

(3.11)
∆(τ, ξ1, ξ2) := (c+)2 + (c−)2 − (b+)2 − (b−)2

= 2 τ2 + 2 (a+ + a−) τ + (a+)2 + (a−)2 − (b+)2 − (b−)2 .

This is nothing but a polynomial of degree 2 in τ , so the roots can be easily computed. Under the stability
assumption (H1), we can show that ∆ has exactly two simple real roots τ1 = τ1(ξ1, ξ2) and τ2 = τ2(ξ1, ξ2);
only the weak Lopatinskii condition is fulfilled. Observe that there is no reason why τ = 0 could not be
a root to (3.11), but since the case τ = 0 induces a different parametrization of some eigenspaces (for
instance A ± is not invertible if τ = 0), we need to exclude this possibility.

We refer to [BGS07] for more details on the possible degeneracies of the Uniform Lopatinskii Condition
for hyperbolic initial boundary value problems. Any of the two triples of frequencies (τ1,2(ξ), ξ1, ξ2) will be
called elliptic because it corresponds to a case where the nontrivial solutions to the linearized equations
have exponential decay with respect to the normal variable to the current vortex sheet. For ‘standard’
hyperbolic initial boundary value problems, this type of situation has been studied in [ST88].

Once we have the expression (3.9) for the total pressure, it is a mere algebra exercise to verify that
the solution to (3.5) is given by:

Û±(t, y, Y3, k) = γ±(t, y, k) e∓|k|Y3 R±(k) ,

4We recall that the tangential frequency vector ξ′ has been chosen with norm 1.
5Here we use the fact that both quantities (c±)2− (b±)2 are non-zero, see Appendix A for the verification of this property.
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with the vector R±(k) defined in (A.5). Our normalization (3.9) for the coefficients γ± yields the (rather
simple) relation γ±(t, y′, 0, k) = ±|k| ψ̂(t, y′, k) on Γ0. The reality condition for γ± comes from our choice
of R±(k) that also satisfies, see (A.5):

R±(−k) = R±(k) .

Conversely, it is elementary to verify that any function of the form given in Proposition 3.2 does indeed
satisfy the homogeneous fast system (3.4), which completes the proof of Proposition 3.2.

Proposition 3.2 already yields part of the results claimed in Theorem 3.1. Namely, since we now
have a complete parametrization of the solutions to (3.1) in the homogeneous case, by linearity it is
sufficient to prove that the conditions (3.2) are necessary and sufficient for the existence of one solution
to (3.1). Let us also observe that if, for some given source terms F±, F±8 , G in (3.1), there exists a solution
(U±, ψ) ∈ S± ×H∞, then we can always subtract a solution (V ±, ψ) to the homogeneous problem (3.4)
with the same function ψ. Consequently, showing that (3.1) admits one solution (U±, ψ) amounts to
showing that (3.1) admits one solution of the form (U±, 0) with U± ∈ S±.

3.3 The inhomogeneous case

In this Section, we complete the proof of Theorem 3.1 by using the reduction to the case ψ ≡ 0 as explained
above. We thus focus on the fast problem, whose unknown is now denoted U± = (U ±,H ±,Q±)T :

(3.12)


L ±
f (∂)U± = F± , y3 ∈ I± , ±Y3 > 0 ,

∂Y3H
±

3 + ξj ∂θH
±
j = F±8 , y3 ∈ I± , ±Y3 > 0 ,

B+ U+|y3=Y3=0 +B−U−|y3=Y3=0 = G ,

and we try to determine necessary and sufficient conditions on the source terms such that (3.12) has (at
least) one solution.

3.3.1 Necessary conditions for solvability

We first exhibit several more or less obvious necessary solvability conditions for (3.12). Let us first note
that the sixth equation in the system L ±

f (∂)U± = F± reads6:

−b± ∂θU ±
3 + c± ∂θH

±
3 = F±6 .

Since the slow and fast normal variables y3 and Y3 enter as parameters here, we can take the trace of this
equation on y3 = Y3 = 0, and use the boundary conditions in (3.12):

U +
3 |y3=Y3=0 = G1 , H +

3 |y3=Y3=0 = G2 , U −
3 |y3=Y3=0 = G3 , H −

3 |y3=Y3=0 = G4 .

We get the system (3.2a), which is a compatibility condition between some of the boundary and interior
source terms in (3.12).

We now take the limit Y3 = ±∞ in the ‘interior’ equations of (3.12), and then take the mean with
respect to θ ∈ T. We get the relations (3.2b), which mean that the residual components of the interior
source terms F±, F±8 should be ‘purely oscillating’ in θ.

Let us now project the interior equations of (3.12) on the surface wave components S±? (meaning that
we subtract the limit of all quantities at Y3 = ±∞), and take the mean with respect to θ on T. We get:

A±3 ∂Y3Û
±
? (0) = F̂±? (0) , ∂Y3Ĥ

±
3,?(0) = F̂±8,?(0) .

6We shall repeatedly use in this Section the expression of the matrices A±3 , A ± that are given in Appendix A.
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Using the explicit expression of the matrices A±3 given in Appendix A, we find that the noncharacteristic

components of the vector Û ±
? (0), that is, the normal velocity, normal magnetic field and total pressure,

are given by solving:

∂Y3Q̂
±
? (0) = F̂±3,?(0) , ∂Y3Û

±
3,?(0) = F̂±7,?(0) , ∂Y3Ĥ

±
3,?(0) = F̂±8,?(0) ,

with zero ‘boundary conditions’ at Y3 = ±∞, and it then remains to verify the five algebraic relations:

0 = F̂±6,?(0) ,

u0,±
j ∂Y3Û

±
3,?(0)−H0,±

j ∂Y3Ĥ
±

3,?(0) = F̂±j,?(0) , j = 1, 2 ,

H0,±
j ∂Y3Û

±
3,?(0)− u0,±

j ∂Y3Ĥ
±

3,?(0) = F̂±3+j,?(0) , j = 1, 2 .

The necessary solvability conditions for determining the fast mean Û±? (0) therefore read:

(3.13) F̂±6,?(0) = 0 , u0,±
j F̂±7,?(0)−H0,±

j F̂±8,?(0) = F̂±j,?(0) , H0,±
j F̂±7,?(0)− u0,±

j F̂±8,?(0) = F̂±3+j,?(0) .

The three remaining components F̂±3,?(0), F̂±7,?(0), F̂±8,?(0) are free. Let us observe that (3.13) is more
restrictive than the conditions (3.2c) given in Theorem 3.1. We shall explain why (3.2c), together with
(3.2d) are actually sufficient conditions later on.

The solvability conditions (3.2b), (3.13) bear on the slow and fast means with respect to θ. The
following compatibility conditions will rather bear on the oscillating part with respect to θ (as for (3.2a)).

Let us now examine more closely the fast equations in (3.12). Using the expressions of the matrices
A ± and A±3 in Appendix A, the fourth, fifth, sixth and seventh equations in the system L ±

f (∂)U± = F±

equivalently read:
−u0,±

1 ∂Y3H
±

3 − b± ∂θU ±
1 + (τ + ξ2 u

0,±
2 ) ∂θH

±
1 − ξ1 u

0,±
1 ∂θH

±
2 = F±4 −H0,±

1 F±7 ,

−u0,±
2 ∂Y3H

±
3 − b± ∂θU ±

2 − ξ1 u
0,±
2 ∂θH

±
1 + (τ + ξ1 u

0,±
1 ) ∂θH

±
2 = F±5 −H0,±

2 F±7 ,

−b± ∂θ U ±
3 + c± ∂θH

±
3 = F±6 ,

∂Y3U
±

3 + ξj ∂θU
±
j = F±7 .

Applying ξ1 ∂θ to the first equation, ξ2 ∂θ to the second equation, ∂Y3 to the third one and adding all
three quantities, we end up with:

τ ∂θ

(
∂Y3H

±
3 + ξj ∂θH

±
j

)
= ∂Y3F

±
6 + ξj ∂θF

±
3+j .

This means that the source terms in (3.12) must satisfy:

(3.14) ∂Y3F
±
6 + ξj ∂θF

±
3+j − τ ∂θF±8 = 0 ,

which includes, by taking the mean with respect to θ, one of the conditions in (3.13), namely F̂±6,?(0) = 0.
The condition (3.14) is a compatibility between the fast divergence of the magnetic field and the source
term in the fast equations for the magnetic field. Such a compatibility condition arises because there is no
Lagrange multiplier associated with the divergence constraint in the evolution equation for the magnetic
field (this constraint is meant to be propagated in time due to the ‘curl’ form of the original equation).

Let us now exhibit a convenient duality formula, which is some kind of a Fredholm alternative for the
solvability of (3.12). The analysis below is reminiscent of what has been done in [BGC12, BGC17, CW18]
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with the difference that we deal here with a characteristic (free) boundary problem. We consider a
non-zero k ∈ Z and compute the k-th Fourier coefficient of all equations in (3.12). We obtain7:

(3.15)

{
(A±3 ∂Y3 + i kA ±) Û±(k) = F̂±(k) , y3 ∈ I± , ±Y3 > 0 ,

B+ Û+(k)|y3=Y3=0 +B− Û−(k)|y3=Y3=0 = Ĝ(k) .

In particular, taking the trace on Γ0 of the fast equation in (3.15), we find that there exists a smooth and
bounded (with respect to Y3) solution W± to the system:

(3.16)

{
(A±3 ∂Y3 + i kA ±)W± = F̂±(k)|y3=0 , ±Y3 > 0 ,

B+W+(0) +B−W−(0) = Ĝ(k) .

Observe that in (3.16), the only remaining parameters, which we have omitted to write explicitly, are
(t, y′). For convenience, we introduce the notation L±k := A±3 ∂Y3 + i kA ±, which corresponds to the
action of the fast operator L ±

f (∂) on the k-th Fourier mode with respect to θ. We also use the notation

(L±k )∗ to denote the (formal) adjoint operator −(A±3 )T ∂Y3 − i k (A ±)T . We use at last the notation “ q ”
for the hermitian product in C7:

∀X,Y ∈ C7 , X qY :=
7∑
j=1

Xj Yj .

Let us start with the (bounded) solution W± to the system (3.16). For a pair of sufficiently smooth
and (exponentially) decaying at infinity test functions V ±, we have:

(3.17)

∫ +∞

0
V + q (L+

kW
+) dY3 −

∫ 0

−∞
V − q (L−kW−) dY3

=

∫ +∞

0
(L+

k )∗ V + qW+ dY3 −
∫ 0

−∞
(L−k )∗ V − qW− dY3 − V +(0) qA+

3 W
+(0) − V −(0) qA−3 W−(0) .

We make the boundary terms at Y3 = 0 explicit thanks to the expression of A±3 (see Appendix A), and
use the fact that W± satisfies (3.16). This yields:∫ +∞

0
V + q F̂+(k)|y3=0 dY3−

∫ 0

−∞
V − q F̂−(k)|y3=0 dY3

=

∫ +∞

0
(L+

k )∗ V + qW+ dY3 −
∫ 0

−∞
(L−k )∗ V − qW− dY3

−
(
v+

3 (0) + v−3 (0)
)
q−(0)

−
(
u0,+
j v+

j (0) +H0,+
j B+

j (0) + p+(0)
)
Ĝ1(k)(3.18)

−
(
u0,−
j v−j (0) +H0,−

j B−j (0) + p−(0)
)
Ĝ3(k)

+
(
H0,+
j v+

j (0) + u0,+
j B+

j (0)
)
Ĝ2(k) +

(
H0,−
j v−j (0) + u0,−

j B−j (0)
)
Ĝ4(k)

− v+
3 (0) Ĝ5(k) ,

where the coordinates of V ± are denoted (v±, B±, p±) and the seventh coordinate of W± is denoted q±.
The goal is now to choose the test functions V ± such that all the blue terms in (3.18) -those where W±

7Here we forget temporarily about the divergence constraint on the magnetic field since it is meant to be recovered in the
end by the compatibility condition (3.14) for non-zero Fourier modes.
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still appears- vanish. This leads us to introducing the so-called dual problem:

(3.19)

{
(L±k )∗ V ± = 0, ±Y3 > 0 ,

v+
3 (0) + v−3 (0) = 0 .

After several calculations which are quite similar to those that have been done in the proof of Proposition
3.2, we find that there is a one-dimensional space of solutions to (3.19), that is spanned by the pair:

(3.20) V ±(Y3) := e∓|k|Y3 L ±(k) ,

where the vectors L ±(k) ∈ C7 are explicitly defined by (A.5). Plugging the expression (3.20) of V ± in
(3.18), and defining the quantities:

(3.21) `±1 := 2 (b±)2 − τ c± , and `±2 := −(a± + c±) b± ,

we find that a necessary condition for (3.16) to have a solution is:

(3.22)

∫ +∞

0
e−|k|Y3 L +(k) q F̂+(k)|y3=0 dY3 −

∫ 0

−∞
e|k|Y3 L −(k) q F̂−(k)|y3=0 dY3

+ `+1 Ĝ1(k) + `+2 Ĝ2(k) + `−1 Ĝ3(k) + `−2 Ĝ4(k) − i τ sgn(k) Ĝ5(k) = 0 .

At this stage, we have shown that if (3.12) has a solution (which is equivalent to assuming that the
original fast problem (3.1) has a solution), then the conditions (3.2) must be satisfied by the source terms.

We assume from now on that the source terms in (3.12) satisfy (3.2) and wish to show that there
exists a solution U± ∈ S± to (3.12). This is done by separating the zero Fourier mode from the non-zero
modes and by constructing an explicit solution to (3.12) in each case.

3.3.2 Solvability I. Zero Fourier mode

We first show that we can solve the projection of (3.12) on the zero Fourier mode. Our goal is to construct
a pair of functions Û±(0) ∈ S± that does not depend on θ, and that satisfies:

(3.23)


A±3 ∂Y3Û±(0) = F̂±(0) , y3 ∈ I± , ±Y3 > 0 ,

∂Y3Ĥ
±

3 (0) = F̂±8 (0) , y3 ∈ I± , ±Y3 > 0 ,

B+ Û+(0)|y3=Y3=0 +B− Û−(0)|y3=Y3=0 = Ĝ(0) .

Here and below, the coordinates of Û±(0) are denoted U ±,H ±,Q± for the velocity, magnetic field and
total pressure respectively (we omit to recall the hat notation and the reference to the 0 Fourier mode for
clarity). We also wish to show that solving (3.23) is possible with the additional constraint Π Û±(0) = 0

(zero tangential components for the velocity and magnetic field) and Û
±

(0)|y3=±1 = 0 (zero trace for the
residual component on Γ±).

Solving (3.23) is rather easy. Using the solvability condition (3.2b), we already know that F̂±(0) =
F̂±? (0) and F̂±8 (0) = F̂±8,?(0). We thus define the fast normal velocity, normal magnetic field and total
pressure by:

U −
3,?(t, y, Y3) :=

∫ Y3

−∞
F̂−7,?(t, y, Y, 0) dY , U +

3,?(t, y, Y3) := −
∫ +∞

Y3

F̂+
7,?(t, y, Y, 0) dY ,

H −
3,?(t, y, Y3) :=

∫ Y3

−∞
F̂−8,?(t, y, Y, 0) dY , H +

3,?(t, y, Y3) := −
∫ +∞

Y3

F̂+
8,?(t, y, Y, 0) dY ,

Q−? (t, y, Y3) :=

∫ Y3

−∞
F̂−3,?(t, y, Y, 0) dY , Q+

? (t, y, Y3) := −
∫ +∞

Y3

F̂+
3,?(t, y, Y, 0) dY .
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The above formulas define some functions U ±
3,?,H

±
3,?,Q

±
? ∈ S±? that do not depend on θ. Because of the

compatibility conditions (3.2c) and (3.2d) (which implies F̂±6,? ≡ 0), we find that the vectors:

Û±? (0) :=
(

0, 0,U ±
3,?, 0, 0,H

±
3,?,Q

±
?

)T
,

satisfy the fast equations in (3.23), namely:

A±3 ∂Y3Û
±
? (0) = F̂±? (0) = F̂±(0) , ∂Y3Ĥ

±
3,?(0) = F̂±8,?(0) = F̂±8 (0) ,

for all (t, y, Y3) ∈ [0, T ] × T2 × I± × R±. It remains to add some slow functions Û
±

(0)(t, y) in order to

satisfy the boundary conditions in (3.23). Indeed, any choice of functions Û
±

(0) that are independent of

Y3 will not modify the fulfillment of the fast equations in (3.23). We thus only need to determine Û
±

(0)
such that:

U +
3 (t, y′, 0) = Ĝ1(t, y′, 0) − U +

3,?(t, y
′, 0, 0) ,

H +
3 (t, y′, 0) = Ĝ2(t, y′, 0) − H +

3,?(t, y
′, 0, 0) ,

U −
3 (t, y′, 0) = Ĝ3(t, y′, 0) − U −

3,?(t, y
′, 0, 0) ,

H −
3 (t, y′, 0) = Ĝ4(t, y′, 0) − H −

3,?(t, y
′, 0, 0) ,

Q+(t, y′, 0)−Q−(t, y′, 0) = Ĝ5(t, y′, 0) − Q+
? (t, y′, 0, 0) + Q−? (t, y′, 0, 0) ,

which is always possible. Satisfying the additional constraint Û
±

(0)|y3=±1 = 0 is always made possible
by multiplying, for instance, by the cut-off function χ(y3) that vanishes outside [−2/3, 2/3].

The particular solution Û±(0) which we have constructed for the problem (3.23) obviously satisfies
Û±(0) ∈ S±. Moreover, we have shown that it is always possible to choose Û±(0) such that Π Û±(0) = 0

and Û
±

(0)|y3=±1 = 0. In order to prove Theorem 3.1, we can now reduce to the case where all source
terms in (3.12) have zero mean with respect to θ.

3.3.3 Solvability II. Non-zero Fourier modes

Thanks to the analysis in the previous Paragraph, the only point left in the proof of Theorem 3.1 is to
show that (3.12) admits one solution U± when the source terms satisfy (3.2a), (3.2d), (3.2e), together with
F̂±(0) = 0, F̂±8 (0) = 0 and Ĝ(0) = 0. (Let us observe that in this case, (3.2b), (3.2c) are trivially satisfied.)
In order to solve (3.12), we shall first construct an explicit solution for its projection on each non-zero
Fourier mode with respect to θ. We shall then study the summability properties of the corresponding
Fourier series. Let us therefore compute the k-th Fourier coefficient of each equation in (3.12) and thus
introduce the problem:

(3.24)


(A±3 ∂Y3 + i kA ±) Û±(k) = F̂±(k) , y3 ∈ I± , ±Y3 > 0 ,

∂Y3Ĥ
±

3 (k) + i k ξj Ĥ ±
j (k) = F̂±8 (k) , y3 ∈ I± , ±Y3 > 0 ,

B+ Û±(k)|y3=Y3=0 +B− Û±(k)|y3=Y3=0 = Ĝ(k) .

We focus on the system (3.24), of which we first take the limit at |Y3| = +∞ in order to try to
determine the residual component of Û±(k). We wish to construct a solution to:

(3.25) i kA ± Û
±

(k) = F̂
±

(k) , y3 ∈ I± , Y3 ∈ R± .

Since we already know that the matrices A ± are invertible, there is no choice for the residual component,
and we must set:

Û
±

(k) :=
1

i k
(A ±)−1 F̂

±
(k) .
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Performing some manipulations on the fourth, fifth, sixth and seventh equations of system (3.25), we find
that the residual component which we have just defined satisfies the additional relation:

i k τ
(
i k ξj Ĥ j

±
(k)
)

= i k ξj F̂
±
3+j(k) = i k τ F̂

±
8 (k) ,

where the final equality comes from (3.2d). Since k and τ are non-zero, this means that the residual

components Û
±

(k) satisfy:

i k ξj Ĥ j

±
(k) = F̂

±
8 (k) ,

which is the k-th Fourier coefficient projection of the fast divergence constraint ξj ∂θH
±
j = F±8 .

We now define the boundary source term:

Ĝ(k) := B+ Û
+

(k)|y3=0 +B− Û
−

(k)|y3=0 ,

in such a way that the pair of profiles Û
±

(k) is a solution to:

(3.26)


(A±3 ∂Y3 + i kA ±) Û

±
(k) = F̂

±
(k) , y3 ∈ I± , ±Y3 > 0 ,

i k ξj Ĥ j

±
(k) = F̂

±
8 (k) , y3 ∈ I± , ±Y3 > 0 ,

B+ Û
+

(k)|y3=0 +B− Û
−

(k)|y3=0 = Ĝ(k) .

This is nothing but the residual component of (3.24) except that the boundary source term is not the
same as in (3.24).

The above derivation of necessary solvability conditions for (3.1) implies that the source terms in
(3.26) satisfies the orthogonality condition:

(3.27)

∫
R+

e−|k|Y3 L +(k) q F̂+
(t, y′, 0, k) dY3 −

∫
R−

e|k|Y3 L −(k) q F̂−(t, y′, 0, k) dY3

+ `+1 Ĝ1(t, y′, k) + `+2 Ĝ2(t, y′, k) + `−1 Ĝ3(t, y′, k) + `−2 Ĝ4(t, y′, k) − i τ sgn(k) Ĝ5(t, y′, k) = 0 ,

From the definition of the Fourier coefficients Û
±

(k), k 6= 0, and the fact that the source term F±

belongs to S± = H∞([0, T ]× T2 × I± × T), it is quite clear that the formula:

U±(t, y, θ) :=
∑
k 6=0

Û
±

(t, y, k) ei k θ =
∑
k 6=0

1

i k
(A ±)−1 F̂

±
(t, y, k) ei k θ ,

defines a pair of functions U ± ∈ S±, and these functions satisfy8:

(3.28)


L ±
f (∂)U± = F± , y3 ∈ I± , ±Y3 > 0 ,

∂Y3H
±
3 + ξj ∂θH

±
j = F±8 , y3 ∈ I± , ±Y3 > 0 ,

B+ U+|y3=Y3=0 +B−U−|y3=Y3=0 = G ,

with an obvious definition for the boundary source term G.

Since we have already constructed a solution to (3.28), we can subtract (3.12) and (3.28), and it
remains to construct a solution to the fast problem:

(3.29)


L ±
f (∂)U± = F±? , y3 ∈ I± , ±Y3 > 0 ,

∂Y3H
±

3 + ξj ∂θH
±
j = F±8,? , y3 ∈ I± , ±Y3 > 0 ,

B+ U+|y3=Y3=0 +B−U−|y3=Y3=0 = G−G︸ ︷︷ ︸
=:G?

,

8Of course all Y3-derivatives vanish in (3.29) since residual functions are independent of Y3.
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where the main gain with respect to (3.12) is that now all interior source terms are exponentially de-
caying at Y3 = ±∞. Subtracting (3.2e) and (3.27), we know that the source terms in (3.29) satisfy the
orthogonality condition:

(3.30)

∫
R+

e−|k|Y3 L +(k) q F̂+
? (t, y′, 0, k) dY3 −

∫
R−

e|k|Y3 L −(k) q F̂−? (t, y′, 0, k) dY3

+ `+1 Ĝ1,?(t, y
′, k) + `+2 Ĝ2,?(t, y

′, k) + `−1 Ĝ3,?(t, y
′, k) + `−2 Ĝ4,?(t, y

′, k) − i τ sgn(k) Ĝ5,?(t, y
′, k) = 0 .

By linearity, we also know that the source terms in (3.29) satisfy the compatibility condition on Γ0:

(3.31)

{
F+

6,?|y3=Y3=0 = −b+ ∂θG1,? + c+ ∂θG2,? ,

F−6,?|y3=Y3=0 = −b− ∂θG3,? + c− ∂θG4,? .

We shall also use the compatibility condition for the divergence of the magnetic field, which corresponds
to the projection on S±? of (3.2d), namely:

(3.32) ∂Y3F
±
6,? + ξj ∂θF

±
3+j,? − τ ∂θF±8,? = 0 .

In order to construct a solution to (3.29), we are going to find the expression for the k-th Fourier
coefficient of U±, which must be a solution to:

(3.33)


L±k Û±(k) = F̂±? , y3 ∈ I± , ±Y3 > 0 ,

∂Y3Ĥ
±

3 (k) + i k ξj Ĥ ±
j (k) = F̂±8,?(k) , y3 ∈ I± , ±Y3 > 0 ,

B+ Û+(k)|y3=Y3=0 +B− Û−(k)|y3=Y3=0 = Ĝ?(k) .

Making the fast equations explicit, we must solve (forgetting from now on the hat notation and the
reference to the index k for the solution):

(3.34)



i k c±U ±
j − i k b±H ±

j + i k ξj Q± = F̂±j,? − u
0,±
j F̂±7,? +H0,±

j F̂±8,? , j = 1, 2 ,

i k c±U ±
3 − i k b±H ±

3 + ∂Y3Q
± = F̂±3,? ,

−i k b±U ±
j + i k c±H ±

j = F̂±3+j,? −H
0,±
j F̂±7,? + u0,±

j F̂±8,? , j = 1, 2 ,

−i k b±U ±
3 + i k c±H ±

3 = F̂±6,? ,

∂Y3U
±

3 + i k ξj U ±
j = F̂±7,? ,

∂Y3H
±

3 + i k ξj H ±
j = F̂±8,? .

Using once again the divergence constraints on the velocity and the magnetic field, we find that the total
pressure must satisfy the differential equation:

∂2
Y3Q

± − k2 Q± = ∂Y3F̂
±
3,? − i k (a± + c±) F̂±7,? + 2 i k b± F̂±8,? + i k ξj F̂

±
j,? ,

= ∂Y3F̂
±
3,? +

2 b±

τ
∂Y3F̂

±
6,? − i k (a± + c±) F̂±7,? +

2 i k b±

τ
ξj F̂

±
3+j,? + i k ξj F̂

±
j,?︸ ︷︷ ︸

=: F±

,(3.35)

where the second equality comes from (3.32). The total pressure should also satisfy the boundary condi-
tions:

(3.36a) Q+|y3=Y3=0 − Q−|y3=Y3=0 = Ĝ5,? ,

(3.36b) ∂Y3Q
+|y3=Y3=0 = F̂+

3,?|y3=Y3=0 − i k c+ Ĝ1,? + i k b+ Ĝ2,? ,

40



(3.36c) ∂Y3Q
−|y3=Y3=0 = F̂−3,?|y3=Y3=0 − i k c− Ĝ3,? + i k b− Ĝ4,? ,

A solution (Q+,Q−) to (3.35), (3.36b), (3.36c) is given by:

(3.37) Q+ := κ+ e−|k|Y3 − 1

2 |k|

(∫ Y3

0
e−|k| (Y3−Y ) F+(Y ) dY +

∫ +∞

Y3

e−|k| (Y−Y3) F+(Y ) dY

)
,

(3.38) Q− := κ− e|k|Y3 − 1

2 |k|

(∫ Y3

−∞
e−|k| (Y3−Y ) F−(Y ) dY +

∫ 0

Y3

e−|k| (Y−Y3) F−(Y ) dY

)
,

where the coefficients κ±, which are actually functions of (t, y), must satisfy at this stage:
(3.39)

κ+|y3=0 = − 1

2 |k|

∫ +∞

0
e−|k|Y F+|y3=0(Y ) dY − 1

|k| F̂
+
3,?|y3=Y3=0 + i sgn(k) c+ Ĝ1,? − i sgn(k) b+ Ĝ2,? ,

(3.40) κ−|y3=0 = − 1

2 |k|

∫ 0

−∞
e|k|Y F−|y3=0(Y ) dY +

1

|k| F̂
−
3,?|y3=Y3=0−i sgn(k) c− Ĝ3,?+i sgn(k) b− Ĝ4,? .

The choice of the dependence of κ± on the slow normal variable y3 is completely free at this point since it
does not affect the fulfillment of (3.35). The question now is to determine whether this solution to (3.35),
(3.36b), (3.36c) also satisfies (3.36a) which will follow from (3.30) and (3.31). Indeed, we compute from
(3.37), (3.38) and (3.39), (3.40):

Q+|y3=Y3=0−Q−|y3=Y3=0

= κ+|y3=0 −
1

2 |k|

∫ +∞

0
e−|k|Y F+|y3=0(Y ) dY − κ−|y3=0 +

1

2 |k|

∫ 0

−∞
e|k|Y F−|y3=0(Y ) dY

= − 1

|k|

∫ +∞

0
e−|k|Y F+|y3=0(Y ) dY +

1

|k|

∫ 0

−∞
e|k|Y F−|y3=0(Y ) dY

− 1

|k|
(
F̂+

3,?|y3=Y3=0 + F̂−3,?|y3=Y3=0

)
+ i sgn(k)

(
c+ Ĝ1,? + c− Ĝ3,? − b+ Ĝ2,? − b− Ĝ4,?

)
.

At this stage, we go back to the expression of the source terms F± in the differential equations (3.35)
and we integrate by parts those two terms in the expression of F± that involve a Y3-derivative. Using
the expression (A.5) of the vectors L ±(k), we get:

Q+|y3=Y3=0 − Q−|y3=Y3=0

= − i sgn(k)

τ

∫ +∞

0
e−|k|Y L +(k) q F̂+

? |y3=0(Y, k) dY +
i sgn(k)

τ

∫ 0

−∞
e|k|Y L −(k) q F̂−? |y3=0(Y, k) dY

+
2

|k| τ
(
b+ F̂+

6,?|y3=Y3=0 + b− F̂−6,?|y3=Y3=0

)
+ i sgn(k)

(
c+ Ĝ1,? + c− Ĝ3,? − b+ Ĝ2,? − b− Ĝ4,?

)
= i sgn(k)

((
`+1
τ

+ c+

)
Ĝ1,? +

(
`+2
τ
− b+

)
Ĝ2,? +

(
`−1
τ

+ c−
)
Ĝ3,? +

(
`−2
τ
− b−

)
Ĝ4,?

)
+ Ĝ5,?

+
2

|k| τ
(
b+ F̂+

6,?|y3=Y3=0 + b− F̂−6,?|y3=Y3=0

)
= i sgn(k)

(
2 (b+)2

τ
Ĝ1,? −

2 c+ b+

τ
Ĝ2,? +

2 (b−)2

τ
Ĝ3,? −

2 c− b−

τ
Ĝ4,?

)
+ Ĝ5,?

+
2

|k| τ
(
b+ F̂+

6,?|y3=Y3=0 + b− F̂−6,?|y3=Y3=0

)
,
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where we have used the orthogonality condition (3.30) and the expression (3.21) of the coefficients `±1 , `
±
2 .

Using now (3.31), we obtain that the total pressure defined in (3.37), (3.38) satisfies (3.36a).
For convenience, we extend κ± to I± by choosing them to be independent of the slow normal variable

y3. This has no consequence as far as regularity and integrability are concerned, and we shall see in a
moment why this choice does not affect the solvability of (3.33).

Up to now, we have constructed the total pressure Q± as a solution to (3.35) and (3.36). We now
construct the tangential components of the velocity and the magnetic field. Namely, we set:

U ±
j := − c± ξj

(c±)2 − (b±)2
Q± +

c± (F̂±j,? − u
0,±
j F̂±7,?)

i k ((c±)2 − (b±)2)
+
b± (F̂±3+j,? −H

0,±
j F̂±8,?)

i k ((c±)2 − (b±)2)
+
c±H0,±

j + b± u0,±
j

i k ((c±)2 − (b±)2)
F̂±8,? ,

Hj := − b± ξj
(c±)2 − (b±)2

Q± +
b± (F̂±j,? − u

0,±
j F̂±7,?)

i k ((c±)2 − (b±)2)
+
c± (F̂±3+j,? −H

0,±
j F̂±7,?)

i k ((c±)2 − (b±)2)
+
c± u0,±

j + b±H0,±
j

i k ((c±)2 − (b±)2)
F̂±8,? ,

with j = 1, 2. In this way, we already satisfy the first and third equations in (3.34), namely the ‘tangential’
equations. In order to verify the divergence constraint, we have no choice but to set:

U −
3 :=

∫ Y3

−∞
F̂−7,? − i k ξj U −

j dY , U +
3 := −

∫ +∞

Y3

F̂+
7,? − i k ξj U +

j dY ,

H −
3 :=

∫ Y3

−∞
F̂−8,? − i k ξj H −

j dY , H +
3 := −

∫ +∞

Y3

F̂+
8,? − i k ξj H +

j dY .

We thus ensure at the same time the fifth and sixth equations in (3.34) and exponential decay with respect
to Y3 at infinity. It remains to verify that the second and fourth equations in (3.34) are satisfied (the
‘normal’ equations). At this stage we have defined all coordinates of the velocity and magnetic field so
we can only hope that our previous definitions will automatically yield the missing relations for verifying
(3.34) and the boundary conditions in (3.33).

Let us therefore verify that the second and fourth equations in (3.34) are satisfied. We compute:

∂Y3

(
i k b±U ±

3 − i k c±H ±
3 + F̂±6,?

)
= ∂Y3F̂

±
6,? + i k

(
b± F̂±7,? − c± F̂±8,?

)
+ i k

(
c± i k ξj H ±

j − b± i k ξj U ±
j

)
= ∂Y3F̂

±
6,? + i k ξj F̂

±
3+j,? − i k τ F̂±8,? = 0 .

Here we have used the compatibility condition (3.32). Since all functions U ±
3 , H ±

3 , F̂±6,? decay exponen-
tially with respect to Y3 at infinity, this means that we have:

i k b±U ±
3 − i k c±H ±

3 + F̂±6,? ≡ 0 ,

meaning that the fourth equation in (3.34) is satisfied. By the same argument (differentiation with respect
to Y3 and limit at infinity), we can also show that the second equation in (3.34) is satisfied. We now
explain why the boundary conditions in (3.33) are satisfied. Taking the double trace of the fourth equation
in (3.34), we first get:

(3.41)

{
−i k b+ U +

3 |y3=Y3=0 + i k c+ H +
3 |y3=Y3=0 = F̂+

6,?|y3=Y3=0 = −i k b+G1,? + i k c+G2,? ,

−i k b−U −
3 |y3=Y3=0 + i k c−H −

3 |y3=Y3=0 = F̂−6,?|y3=Y3=0 = −i k b−G3,? + i k c−G4,? ,

where we have used (3.31). We now take the double trace of the second equation in (3.34), and use
(3.36b), (3.36c):
(3.42){
i k c+ U +

3 |y3=Y3=0 − i k b+ H +
3 |y3=Y3=0 = F̂+

3,?|y3=Y3=0 − ∂Y3Q+|y3=Y3=0 = i k c+G1,? − i k b+G2,? ,

i k c−U −
3 |y3=Y3=0 − i k b−H −

3 |y3=Y3=0 = F̂−3,?|y3=Y3=0 − ∂Y3Q−|y3=Y3=0 = i k c−G3,? − i k b−G4,? .
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Combining (3.41) and (3.42), and (c±)2 − (b±)2 6= 0, we obtain:

U +
3 |y3=Y3=0 = G1,? , H +

3 |y3=Y3=0 = G2,? , U −
3 |y3=Y3=0 = G3,? , H −

3 |y3=Y3=0 = G4,? .

Together with (3.36a), which we have shown to be valid, this proves that the boundary conditions in
(3.33) are satisfied. In other words, we have completed the construction of a solution to the fast problem
(3.24). It remains to verify that the sum ∑

k 6=0

Û±(k) ei k θ ,

defines a function in S±? . This question is addressed in [Mar10, Lemma 4.2] in full details, so rather than
repeating the same arguments, we refer the reader to that reference (the integrals in (3.37), (3.38) are
exactly the quantities to which the result of [Mar10, Lemma 4.2] applies). This completes the proof of
Theorem 3.1.
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Chapter 4

Solving the WKB cascade I: the leading
amplitude

In this Chapter, we start solving the WKB cascade (2.15), (2.17), (2.21), (2.23) together with the nor-
malization conditions for the total pressure. Namely, we are going to construct the leading amplitude
(U1,±, ψ2) in the WKB ansatz (1.9a), (1.9b) by first identifying the degrees of freedom that we have,
and then by determining all functions at our disposal by imposing (some of) the necessary solvability
conditions (3.2) for the fast problem that must be satisfied by the first corrector (U2,±, ψ3). This is
the standard procedure in geometric optics, be it linear or weakly nonlinear, see, e.g., [Rau12], with the
main feature here that some of the solvability conditions (3.2) must come for free in the WKB cascade
since we shall have more constraints to satisfy than we have degrees of freedom at our disposal. These
compatibility -rather than solvability- conditions will not be examined in this Chapter but will play a key
role in the inductive corrector construction of Chapter 5.

Let us therefore begin with solving the WKB cascade. We focus in this Chapter on:

• the interior equations (2.15) for m = 0 and m = 1, where the source terms F 0,±, F 1,± are explicitly
given by (2.14),

• the fast divergence constraint (2.17) on the magnetic field for m = 0 and m = 1, where the source
terms F 0,±

8 , F 1,±
8 are given by evaluating the right hand side of (2.16b) for m = 0 and m = 1,

namely:

F 0,±
8 = 0 ,(4.1a)

F 1,±
8 = −∇ ·H1,± + ξj ∂θψ

2 ∂Y3H
1,±
j ,(4.1b)

• the boundary conditions (2.21) for m = 0 and m = 1, which read explicitly (2.18b), (2.18c),

• the top and bottom boundary conditions (2.23) for m = 0,

• the normalization condition (2.33) for the slow mean q̂ 1,±(0) of the total pressure.

Collecting (2.15), (2.17) for m = 0, and (2.18b), we first observe that the leading amplitude (U1,±, ψ2)
must satisfy the homogeneous fast problem:

(4.2)


L ±
f (∂)U1,± = 0 , y3 ∈ I± , ±Y3 > 0 ,

∂Y3H
1,±
3 + ξj ∂θH

1,±
j = 0 , y3 ∈ I± , ±Y3 > 0 ,

B+ U1,+|y3=Y3=0 +B− U1,−|y3=Y3=0 + ∂θψ
2 b = 0 .
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Let us recall that we denote U± = (u±, H±, q±)T and that (t, y′) enter (4.2) as parameters only. We
apply Proposition 3.2 and deduce that the leading profile can be decomposed as:

U1,±(t, y, Y3, θ) = U1,±(t, y) +
(
u1,±

1,? , u
1,±
2,? , 0, H

1,±
1,? , H

1,±
2,? , 0, 0

)T
(t, y, Y3)

+
∑

k∈Z\{0}

γ1,±(t, y, k) e∓|k|Y3+i k θ R±(k) ,(4.3)

where U1,± ∈ S± is independent of θ, u1,±
1,? , u

1,±
2,? , H

1,±
1,? , H

1,±
2,? ∈ S±? , the vectors R±(k) are given in (A.5),

the coefficients γ1,± satisfy γ1,±(t, y′, 0, k) = ±|k| ψ̂ 2(t, y′, k) for all (t, y′, k) ∈ [0, T ]× T2 × Z∗, and

γ1,±(t, y,−k) = γ1,±(t, y, k) ,

which ensures that the leading profile U1,± is real-valued. The slow mean U1,± should also satisfy the
boundary conditions on Γ0:

(4.4) u1,±
3 |y3=0 = H1,±

3 |y3=0 = 0 , q1,+|y3=0 = q1,−|y3=0 .

One point to keep in mind here is that we have not determined the final time T > 0 so far. The time
T > 0 appears in Definition 1.1 of the functional spaces S±, S±? . Fixing the time T > 0 will be done
once and for all later on in this Chapter when we prove the solvability of the leading amplitude equation
(4.33) below, together with a property of propagation of regularity in time. Hence the first part of this
Chapter is mostly a matter of using necessary conditions in order to determine the form of the leading
profile. At the very end, we shall show how to construct the leading profile and we shall clearly list which
(solvability) conditions for the first corrector construction are satisfied. We split the identification of the
various functions in the decomposition (4.3) in several Sections below. This splitting, in the exact same
order, will be used when constructing the correctors in the WKB ansatz (1.9a), (1.9b). This explains why
we give all details for the derivation of the leading amplitude equation (4.33), and we shall feel free to
shorten similar arguments in Chapter 5.

Another key point to keep in mind is that the mean of the leading front ψ̂ 2(0) does not appear in
(4.2), nor will it appear in the leading amplitude equation (4.33) that only involves the oscillating modes
of ψ2. The mean of the leading front will appear later on though as an extra degree of freedom that we
shall use to determine the slow mean of the first corrector Û2,±(0).

4.1 The slow mean of the leading profile

As identified in the decomposition (4.3), we have already seen that the residual component of the leading
amplitude does not depend on the fast variable θ, that is U1,± = U1,±(t, y). To avoid overloaded notation,
we feel free to omit from now on the reference to the zero Fourier mode in θ and keep the notation U1,±

rather than Û
1,±

(0). The decomposition (4.3) has a first important consequence for the top and bottom
boundary conditions. Indeed, we already see that in order to satisfy the conditions (2.23) for m = 0,
which are conditions on all Fourier modes with respect to θ, it is now sufficient to verify:

u1,±
3 |Γ± = H1,±

3 |Γ± = 0 ,

where, keeping the notation of (4.3), u1,±
3 , H1,±

3 are functions of (t, y) only. The validity of (2.23) -with
m = 0- for the non-zero Fourier modes is automatic. (See Chapter 5 for a similar statement for the
correctors in the WKB ansatz.) The slow mean U1,± should also satisfy the boundary conditions (4.4) on
Γ0. Let us eventually recall that we wish the total pressure to satisfy the normalization condition (2.33)
which, in the notation of (4.3), now reads:

(4.5) ∀ t ,
∫

Ω+
0

q1,+(t, y) dy +

∫
Ω−0

q1,−(t, y) dy = 0 .
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Recall that Ω±0 in (4.5) denote the sets T2 × I±.
The evolution equations that determine the slow mean of the leading profile are obtained by imposing

the solvability condition (3.2b) on the fast problem that must be satisfied by the first corrector. Let us
note indeed that, among several equations, the first corrector (U2,±, ψ3) must satisfy:

(4.6)


L ±
f (∂)U2,± = F 1,± , y ∈ Ω±0 , ±Y3 > 0 ,

∂Y3H
2,±
3 + ξj ∂θH

2,±
j = F 1,±

8 , y ∈ Ω±0 , ±Y3 > 0 ,

B+ U2,+|y3=Y3=0 +B− U2,−|y3=Y3=0 + ∂θψ
3 b = G1 ,

where F 1,± is given by (2.14b), F 1,±
8 is given by (4.1b), and G1 is given by (2.22) with m = 1. In order

to solve (4.6), by Theorem 3.1, we must necessarily have:

F̂
1,±

(0) ≡ 0 , F̂
1,±
8 (0) ≡ 0 .

Using (2.14b), (4.1b), of which we first compute the limit as Y3 tends to infinity and then take the mean
with respect to θ on T, we find1 that the slow mean U1,± should satisfy the linearized current vortex
sheet problem:

(4.7)



∂tu
1,± + u0,±

j ∂yju
1,± −H0,±

j ∂yjH
1,± +∇q1,± = 0 ,

∂tH
1,± + u0,±

j ∂yjH
1,± −H0,±

j ∂yju
1,± = 0 ,

∇ · u1,± = ∇ ·H1,± = 0 , (t, y) ∈ [0, T ]× Ω±0 ,

u1,±
3 = H1,±

3 =
[
q1
]

= 0 , y3 = 0 ,

u1,±
3 = H1,±

3 = 0 , y3 = ±1 .

We are now going to prove that the homogeneous system (4.7) admits a unique smooth solution, which
is identically zero if we choose to prescribe zero initial data2:

(u1,±, H1,±)|t=0 ≡ 0 .

This choice for the initial conditions of (4.7) is free, up to the obvious compatibility conditions for the
divergence and boundary conditions that need to be satisfied at the initial time. Consistently with our
choice (2.37) for the tangential components of the fast mean, we are going to choose the easiest possible
initial conditions for the slow means. In the case of the leading profile, the easiest possible choice of initial
data for (4.7) corresponds to prescribing zero initial data. This choice is indeed compatible with the
divergence constraints on u1,± and H1,± and with the boundary conditions in (4.7). We refer to Chapter
5 for the choice of initial data for the slow mean of the correctors (in that case, we shall not be able to
prescribe zero initial data any longer due to the divergence constraints and boundary conditions).

We can refer to Catania [Cat13] for an existence and uniqueness result in the space H1 for the linearized
incompressible current vortex sheet system, without the fixed top and bottom boundaries Γ± but with a
linearized front appearing in the boundary conditions on Γ0. The analysis below of the linearized system
(4.7) differs from [Cat13] and is somehow much simpler so we choose to give it here with all details. Let us
start by determining the total pressure (q1,+, q1,−) which must satisfy the following homogeneous linear
Laplace problem (where the time t ∈ [0, T ] plays the role of a parameter):

(4.8)


−∆ q1,± = 0 , in Ω±0 ,[

q1
]

= 0 ,[
∂y3q

1
]

= 0 , on Γ0 ,

∂y3q
1,± = 0, on Γ± .

1We see here why it was useful to start with the conservative form of the MHD system in order to use the symmetry
of the bilinear mappings Aα. Indeed this symmetry property allows to write some of the terms as partial derivatives with
respect to θ, which automatically have zero mean on T.

2Initial data for the total pressure should not be prescribed since the total pressure is defined, as we shall see below, as
the Lagrange multiplier associated with the divergence constraint on the velocity.
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The total pressure should also satisfy the normalization condition (4.5). Using the Lax-Milgram Theorem
[Eva10] in the Hilbert space:

H :=
{

(q+, q−) ∈ H1(Ω+
0 )×H1(Ω−0 )

∣∣∣ [ q ] = 0 and

∫
Ω+

0

q+ dy +

∫
Ω−0

q− dy = 0
}
,

we can prove that there exists a unique solution (q1,+, q1,−) to (4.8) in H , and since zero is an obvious
solution, we necessarily have q1,± ≡ 0 in (4.7).

To finish with system (4.7), it remains to determine (u1,±, H1,±). Since the total pressure vanishes,
the evolution equations in (4.7) can be rewritten under the form of the symmetric hyperbolic system:{

∂tu
1,± + u0,±

j ∂yju
1,± −H0,±

j ∂yjH
1,± = 0 ,

∂tH
1,± + u0,±

j ∂yjH
1,± −H0,±

j ∂yju
1,± = 0 .

Since we impose zero initial conditions for the velocity and magnetic field, the energy method [BGS07]
immediately implies u1,±, H1,± ≡ 0. No boundary condition is needed on Γ0 or Γ± since we have u0,±

3 =

H0,±
3 = 0 (this means actually that y3 is a parameter in the latter system).

Let us recall that prescribing zero initial conditions for the slow mean of the leading profile is only
done for the sake of simplicity, in order to focus on the surface wave component U1,±

? . In particular,
we shall explain in Chapter 5 why the compatibility conditions that are necessary for solving the WKB
cascade are independent of this specific choice of initial conditions.

4.2 The fast mean of the leading profile

Another necessary condition for solving the inhomogeneous fast problem (4.6) is (3.2c). Using the ex-
pression (2.14b), we have:

F̂ 1,±
? (0) = −L±s (∂)Û1,±

? (0) +
̂(

∂θψ2 A ± ∂Y3U
1,±
?

)
(0) − 1

2
∂Y3

̂(
A3(U1,±, U1,±)

)
(0) ,

and since we already know that our choice of initial data (2.37) implies U1,± = 0, we get3:

(4.9) F̂ 1,±
? (0) = −L±s (∂)Û1,±

? (0) +
̂(

∂θψ2 A ± ∂Y3(U1,±
? − Û1,±

? (0))
)

(0) − 1

2
∂Y3

̂(
A3(U1,±

? , U1,±
? )

)
(0) .

In a similar way, starting from (4.1b), we compute:

(4.10) F̂ 1,±
8,? (0) = −∇ · Ĥ1,±

? (0) +
̂(

ξj ∂θψ2 ∂Y3(H1,±
j,? − Ĥ

1,±
j,? (0))

)
(0) .

Let us split the expressions in (4.9), (4.10) in several pieces. We first introduce:

(4.11) F1,± :=
1

2
∂Y3

̂(
A3(U1,±

? , U1,±
? )

)
(0) , F1,±

8 := 0 .

Using the decomposition (4.3) and the explicit expression of the Hessian mapping A3 given in Appendix
A, we have:

A3

(
Û1,±
? (0), Û1,±

? (0)
)

= 0 ,

3The more general case U1,± 6= 0 can be dealt with the same arguments as the one we use. One just needs to take care
of a few extra terms but there is no new difficulty.
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independently of the determination of the tangential components u1,±
j,? , H

1,±
j,? in (4.3). We thus compute:

F1,± =
1

2
∂Y3

∑
k 6=0

e∓2 |k|Y3 A3

(
γ1,±(t, y, k) R±(k), γ1,±(t, y,−k) R±(−k)

)
= ∓

∑
k 6=0

e∓2 |k|Y3 |k|
∣∣γ1,±(t, y, k)

∣∣2 A3

(
R±,R±

)
,

where we have used (A.5), the symmetry of A3, and the reality condition:

γ1,±(t, y,−k) = γ1,±(t, y, k) .

Now using (A.3), we find that the vector A3

(
R±,R±

)
is proportional to the third vector of the canonical

basis of R7:

A3

(
R±,R±

)
= 2

(
0, 0, (c±)2 − (b±)2, 0, 0, 0, 0

)T
,

which means that the source terms F1,±,F1,±
8 defined in (4.11) automatically satisfy the linear system

(compare with (3.2c)): {
u0,±
j F1,±

7 −H0,±
j F1,±

8 = F1,±
j , j = 1, 2 ,

H0,±
j F1,±

7 − u0,±
j F1,±

8 = F1,±
3+j , j = 1, 2 ,

independently of the choice we can make for u1,±
j,? , H

1,±
j,? and γ1,± in the decomposition (4.3).

Let us go on with the splitting of the expressions in (4.9) and (4.10). We now introduce:

(4.12) F 1,± :=
̂(

∂θψ2 A ± ∂Y3(U1,±
? − Û1,±

? (0))
)

(0) , F 1,±
8 :=

̂(
ξj ∂θψ2 ∂Y3(H1,±

j,? − Ĥ
1,±
j,? (0))

)
(0) ,

and we compute:

F 1,± = ±
∑
k 6=0

i k |k| ψ̂ 2(t, y′,−k) γ1,±(t, y, k) e∓|k|Y3 A ±R±(k)

=
∑
k 6=0

k2 ψ̂ 2(t, y′,−k) γ1,±(t, y, k) e∓|k|Y3 A±3 R±(k) ,

with R±(k) given by (A.5) (here we have used the relation A ±R±(k) = ∓i sgn(k)A±3 R±(k)). We also
compute:

F 1,±
8 = ±

∑
k 6=0

i sgn(k) b± k2 ψ̂ 2(t, y′,−k) γ1,±(t, y, k) e∓|k|Y3 ,

and it is now a rather straightforward exercise to verify that the source terms in (4.12) automatically
satisfy the linear system (compare again with (3.2c)):{

u0,±
j F 1,±

7 −H0,±
j F 1,±

8 = F 1,±
j , j = 1, 2 ,

H0,±
j F 1,±

7 − u0,±
j F 1,±

8 = F 1,±
3+j , j = 1, 2 ,

independently of the choice we can make for ψ2 and γ1,± in (4.3).
Summarizing, the source terms given in (4.9) and (4.10) will satisfy the solvability condition (3.2c) as

long as there holds:

(4.13)

{
u0,±
j

(
−∇ · û1,±

? (0)
)
−H0,±

j

(
−∇ · Ĥ1,±

? (0)
)

=
(
− L±s (∂) Û1,±

? (0)
)
j
, j = 1, 2 ,

H0,±
j

(
−∇ · û1,±

? (0)
)
− u0,±

j

(
−∇ · Ĥ1,±

? (0)
)

=
(
− L±s (∂) Û1,±

? (0)
)

3+j
, j = 1, 2 .
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The latter condition is independent of the choice we can make for the leading front ψ2 and the coefficients
γ1,±. The evolution equations (4.13) can be equivalently rewritten as the symmetric hyperbolic system:

(4.14) ∂t


u1,±

1,?

u1,±
2,?

H1,±
1,?

H1,±
2,?

+


u0,±
j 0 −H0,±

j 0

0 u0,±
j 0 −H0,±

j

−H0,±
j 0 u0,±

j 0

0 −H0,±
j 0 u0,±

j

 ∂yj

u1,±

1,?

u1,±
2,?

H1,±
1,?

H1,±
2,?

 = 0 .

Let us observe that in (4.14), the slow and fast normal variables y3 ∈ I±, Y3 ∈ R± enter as parameters
since only tangential differentiation in t, y1, y2 occurs. Recalling now that we prescribe zero initial data
for the fast mean of the tangential components of the velocity and magnetic field, see (2.37), the system
(4.14) is assigned with zero initial data and we therefore have u1,±

1,? , u
1,±
2,? , H

1,±
1,? , H

1,±
2,? ≡ 0 by applying again

the energy method.
At this stage, we have already shown that prescribing zero initial data for the slow mean and for the

fast mean of the tangential components of the velocity and magnetic field simplifies the decomposition
(4.3) into:

(4.15) U1,±(t, y, Y3, θ) =
∑

k∈Z\{0}

γ1,±(t, y, k) e∓|k|Y3+i k θ R±(k) ,

with the boundary condition γ1,±(t, y′, 0, k) = ±|k| ψ̂ 2(t, y′, k) on Γ0. In the following Section, we are
going to show that imposing the solvability condition (3.2e) for the fast problem (4.6) verified by the first
corrector fully determines the evolution of the leading front ψ2 (or, more precisely, the evolution of its
oscillating modes).

4.3 The non-local Hamilton-Jacobi equation for the leading front

4.3.1 Derivation of the equation

Let us focus again on the inhomogeneous fast problem (4.6) that must be satisfied by the first corrector
(U2,±, ψ3). Applying Theorem 3.1, we know that a necessary condition for (4.6) to have a solution in
S±×H∞ is the orthogonality condition (3.2e) for all non-zero Fourier modes. Recalling the general form
(2.22) of the boundary source term in the WKB cascade, we see that a necessary condition for the validity
of the asymptotic expansion (1.9) is:

(4.16) ∀ k 6= 0 ,

∫
R+

e−|k|Y3 L +(k) q F̂ 1,+(k)|y3=0 dY3 −
∫
R−

e|k|Y3 L −(k) q F̂ 1,−(k)|y3=0 dY3

+ `+1 Ĝ
1,+
1 (k) + `+2 Ĝ

1,+
2 (k) + `−1 Ĝ

1,−
1 (k) + `−2 Ĝ

1,−
2 (k) = 0 ,

where, for simplicity, we omit to recall the slow variables (t, y′), which enter (4.16) as parameters. Let us
recall here that the expression of the functions G1,±

1 , G1,±
2 is given in (2.22b), (2.22c) (with m = 1), and

that the interior source term F 1,± is given in (2.14b). There is a subtlety here, which was absent from
[AH03] but already occurred in the related work [CW18]. Namely, from the expression (4.15), we can
compute the trace of the leading profile U1,± on Γ0 in terms of the leading front ψ2:

(4.17) U1,±(t, y′, 0, Y3, θ) = ±
∑

k∈Z\{0}

|k| ψ̂ 2(t, y′, k) e∓|k|Y3+i k θ R±(k) .

This allows us to write the source terms G1,±
1 , G1,±

2 in (4.16) in terms of the leading front ψ2, see below for
explicit calculations. From the expression (2.14b), we also see that the trace F 1,±|y3=0 can be expressed
in terms of U1,±|y3=0, and consequently in terms of ψ2, for almost all terms on the right hand side of
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(2.14b) but one (!). Indeed, the trace on Γ0 of the expression in (2.14b) involves the normal derivative
∂y3U

1,±|y3=0 and there is no reason why this term can be expressed in terms of ψ2. However, we are
going to see now that the contribution of these normal derivatives in (4.16) is zero, which does not seem
obvious at first sight (see [CW18] for a similar cancelation property in the context of elastodynamics).
Once this property is clarified, it will remain to compute all other terms in (4.16) as functions of ψ2.

The orthogonality condition (4.16) is a closed equation on the leading front. The goal in this
Paragraph is to examine more closely the quantity

−
∫
R+

e−|k|Y3 L +(k) qA+
3 ∂y3Û

1,+(k)|y3=0 dY3 +

∫
R−

e|k|Y3 L −(k) qA−3 ∂y3Û1,−(k)|y3=0 dY3 ,

with the aim of showing that each of these two integrals vanishes. Since all other quantities in F 1,±

involve partial derivatives that are tangent to the boundary Γ0, this will imply that (4.16) is a closed
equation on the leading front ψ2. We shall even see below that it is a closed equation on the oscillating
modes of ψ2 only.

Let us therefore consider some y3 ∈ I+ and Y3 ∈ R+. We recall that the leading profile U1,+ satisfies the
homogeneous fast problem (4.2), which means that each oscillating mode Û1,+(k) satisfies the differential
equation:

L+
k Û

1,+(k) = 0 , L+
k = A+

3 ∂Y3 + i kA + .

We perform the same integration by parts argument as the one that led us to (3.17), and obtain:

(4.18) 0 =

∫ +∞

Y3

V + qL+
k Û

1,+(k) dY =

∫ +∞

Y3

(L+
k )∗ V + q Û1,+(k) dY − V +(Y3) qA+

3 Û
1,+(Y3, k) .

If we specify furthermore to the choice (3.20) for the test function V +, the term (L+
k )∗ V + in (4.18)

vanishes and we are led to:
L +(k) qA+

3 Û
1,+(Y3, k) = 0 ,

which could have also been obtained -in our rather simple context- by just verifying the orthogonality
condition L +(k) qA+

3 R+(k) = 0 and using the decomposition (4.15). Differentiating the latter equality
with respect to y3 and taking the trace on Γ0, we obtain:∫

R+

e−|k|Y3 L +(k) qA+
3 ∂y3Û

1,+(k)|y3=0 dY3 = 0 ,

and the same argument applies on the opposite side of the current vortex sheet.
In other words, we can get rid of the terms A±3 ∂y3U

1,± in (4.16) and it remains to compute all the
contributions in (4.16) in terms of the Fourier coefficients of ψ2. This is split in five different cases, which
we shall eventually collect to derive the leading amplitude equation for ψ2. Unsurprisingly, we shall find
the same amplitude equation as in [AH03] with however the incorporation of the group velocity transport
with respect to the slow spatial variables y′ (slow modulation with respect to the space variables was not
considered in [AH03] and the original MHD equations in that earlier reference were two-dimensional).

The boundary terms in (4.16). Let us recall the expression (4.17) for the trace U1,±|y3=0, which
gives4:

(4.19) ∀ k 6= 0 , Û1,±(t, y′, 0, Y3, k) = Û1,±
? (t, y′, 0, Y3, k) = ± |k| ψ̂ 2(t, y′, k) e∓ |k|Y3 R±(k) ,

where the vectors R±(k) are defined in (A.5). In the following, we shall omit the variables (t, y′) which
play a role of parameters. We also recall that k is a non-zero integer since the orthogonality condition
(3.2e) only bears on non-zero Fourier modes.

4Recall that the residual oscillating modes of U1,± vanish because the matrix A ± is invertible.
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From the definition (2.22b) and using (4.19), we compute:

Ĝ1,±
1 (k) = ∂tψ̂

2(k) + u0,±
j ∂yj ψ̂

2(k) +
∑

k1+k2=k

i k2 ξj û
1,±
j |y3=Y3=0(k1) ψ̂ 2(k2)

= ∂tψ̂
2(k) + u0,±

j ∂yj ψ̂
2(k) ± i c±

∑
k1+k2=k

k1 |k2|+ k2 |k1|
2

ψ̂ 2(k1) ψ̂ 2(k2) .(4.20)

In the latter equality, we have symmetrized the kernel that arises in the bilinear Fourier multiplier that
acts on (ψ2, ψ2). We shall repeat this symmetrization argument in all bilinear expressions on the Fourier
modes of ψ2. With similar computations, we obtain from (2.22c) the expression:

(4.21) Ĝ1,±
2 (k) = H0,±

j ∂yj ψ̂
2(k) ± i b±

∑
k1+k2=k

k1 |k2|+ k2 |k1|
2

ψ̂ 2(k1) ψ̂ 2(k2) .

Using the definition (3.21) of the coefficients `±1 , `±2 together with (4.20) and (4.21), the contribution
of the boundary source terms in (4.16) reads:

(4.22)
(
`+1 Ĝ

1,+
1 + `+2 Ĝ

1,+
2 + `−1 Ĝ

1,−
1 + `−2 Ĝ

1,−
2

)
(k) =

(
2 (b+)2 + 2 (b−)2

)
− τ (c+ + c−)

)
∂tψ̂

2(k)

+
[(

2 (b+)2 − τ c+
)
u0,+
j +

(
2 (b−)2 − τ c−

)
u0,−
j − (a+ + c+) b+H0,+

j − (a− + c−) b−H0,−
j

]
∂yj ψ̂

2(k)

+
i τ

2

(
(b+)2 − (b−)2 − (c+)2 + (c−)2

) ∑
k1+k2=k

(
k1 |k2|+ k2 |k1|

)
ψ̂ 2(k1) ψ̂ 2(k2) .

Computation of the linear terms in the integrals of (4.16). Recalling the expression (2.14b) of
F 1,±, we see that the trace U1,±|y3=0 enters either linearly or quadratically in it. This means that as in
(4.22), the integrals in (4.16) will contribute to the amplitude equation in the form of either linear or
quadratic terms with respect to ψ2. In this Paragraph, we compute all expressions in the integrals of
(4.16) that contribute for linear terms in ψ2. Going back to (2.14b), we need to compute:

−
∫
R+

e−|k|Y3L +(k) q(A0 ∂t+A
±
j ∂yj ) Û

1,+(k)|y3=0 dY3+

∫
R−

e|k|Y3L −(k) q(A0 ∂t+A
±
j ∂yj ) Û

1,−(k)|y3=0 dY3

with Û1,+(k)|y3=0 given by (4.19). Computing the latter integrals explicitly, we get the expression:

− 1

2

(
L +(k) qA0 R+(k) + L −(k) qA0 R−(k)

)
∂tψ̂

2(k)

− 1

2

(
L +(k) qA+

j R+(k) + L −(k) qA−j R−(k)
)
∂yj ψ̂

2(k) ,

which can be further simplified by using the expressions (A.6) for the various Hermitian products arising
above. Eventually, the collection of all linear terms in ψ2 in the integrals on the left hand side of (4.16)
reads:

(4.23) −
(

2 (b+)2 + 2 (b−)2 + τ (c+ + c−)
)
∂tψ̂

2(k)

−
[(

2 (b+)2+τ c+
)
u0,+
j +

(
2 (b−)2+τ c−

)
u0,−
j −(2 τ+a++c+) b+H0,+

j −(2 τ+a−+c−) b−H0,−
j

]
∂yj ψ̂

2(k) .

To derive the expression (4.23), we have also used the relation (H4) to cancel part of the coefficient of
∂yj ψ̂

2(k). At this stage, the sum of the contributions in (4.22) and (4.23) reads:

(4.24) − 2 τ (c+ + c−) ∂tψ̂
2(k)− 2 τ

(
c+ u0,+

j + c− u0,−
j − b+H0,+

j − b−H0,−
j

)
∂yj ψ̂

2(k)

+
i τ

2

(
(b+)2 − (b−)2 − (c+)2 + (c−)2

) ∑
k1+k2=k

(
k1 |k2|+ k2 |k1|

)
ψ̂ 2(k1) ψ̂ 2(k2) .

We now turn to the computation of all quadratic expressions in the integrals of (4.16).
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The quadratic terms in the integrals of (4.16). I. In the decomposition (2.14b) of F 1,±, we isolate
the term with a ∂Y3 derivative, which contributes in (4.16) for:

− 1

2

∫
R+

e−|k|Y3 L +(k) q( ̂∂Y3A3(U1,+, U1,+)|y3=0

)
(k) dY3

+
1

2

∫
R−

e|k|Y3 L −(k) q( ̂∂Y3A3(U1,−, U1,−)|y3=0

)
(k) dY3 ,

and by integrating by parts, this contribution can be rewritten as:

1

2
L +(k) q( ̂A3(U1,+, U1,+)|y3=Y3=0

)
(k) +

1

2
L −(k) q( ̂A3(U1,−, U1,−)|y3=Y3=0

)
(k)

− |k|
2

∫
R+

e−|k|Y3 L +(k) q( ̂A3(U1,+, U1,+)|y3=0

)
(k) dY3

− |k|
2

∫
R−

e|k|Y3 L −(k) q( ̂A3(U1,−, U1,−)|y3=0

)
(k) dY3

=
1

2

∑
k1+k2=k

|k1| |k2|L +(k) qA3(R+(k1),R+(k2)) ψ̂ 2(k1) ψ̂ 2(k2)

+
1

2

∑
k1+k2=k

|k1| |k2|L −(k) qA3(R−(k1),R−(k2)) ψ̂ 2(k1) ψ̂ 2(k2)

− 1

2

∑
k1+k2=k

|k| |k1| |k2|
|k|+ |k1|+ |k2|

L +(k) qA3(R+(k1),R+(k2)) ψ̂ 2(k1) ψ̂ 2(k2)

− 1

2

∑
k1+k2=k

|k| |k1| |k2|
|k|+ |k1|+ |k2|

L −(k) qA3(R−(k1),R−(k2)) ψ̂ 2(k1) ψ̂ 2(k2)

=
1

2

∑
k1+k2=k

|k1| |k2| (|k1|+ |k2|)
|k|+ |k1|+ |k2|

L +(k) qA3(R+(k1),R+(k2)) ψ̂ 2(k1) ψ̂ 2(k2)

+
1

2

∑
k1+k2=k

|k1| |k2| (|k1|+ |k2|)
|k|+ |k1|+ |k2|

L −(k) qA3(R−(k1),R−(k2)) ψ̂ 2(k1) ψ̂ 2(k2) .

Using the expressions (A.7), we end up with the contribution:

(4.25) − i τ

2

(
(b+)2 − (b−)2 − (c+)2 + (c−)2

)
∑

k1+k2=k

|k1| |k2| (|k1|+ |k2|)
|k|+ |k1|+ |k2|

(
sgn(k1) + sgn(k2) + 2 sgn(k) sgn(k1) sgn(k2)

)
ψ̂ 2(k1) ψ̂ 2(k2) .

The sum of (4.24) and (4.25) can be simplified and now reads:

(4.26) − 2 τ (c+ + c−) ∂tψ̂
2(k)− 2 τ

(
c+ u0,+

j + c− u0,−
j − b+H0,+

j − b−H0,−
j

)
∂yj ψ̂

2(k)

− i τ

2

(
(b+)2 − (b−)2 − (c+)2 + (c−)2

)
sgn(k)×∑

k1+k2=k

(
2 k1 k2 −

|k1| |k2| |k|
|k|+ |k1|+ |k2|

(
sgn(k) (sgn(k1) + sgn(k2)) + 2 sgn(k1) sgn(k2)

))
ψ̂ 2(k1) ψ̂ 2(k2) .
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The quadratic terms in the integrals of (4.16). II. With rather similar calculations, we can
compute the contribution in (4.16) of the terms in (2.14b) with a ∂θ derivative:

− 1

2

∫
R+

e−|k|Y3 L +(k) q( ̂ξj ∂θAj(U1,+, U1,+)|y3=0

)
(k) dY3

+
1

2

∫
R−

e|k|Y3 L −(k) q( ̂ξj ∂θAj(U1,−, U1,−)|y3=0

)
(k) dY3 .

Using once again the expressions (A.7), we get the contribution:

(4.27)
i τ

2

(
(b+)2 − (b−)2 − (c+)2 + (c−)2

)
sgn(k)×∑

k1+k2=k

(
2
|k1| |k2| |k|

|k|+ |k1|+ |k2|
+

|k1| |k2| k
|k|+ |k1|+ |k2|

(
sgn(k1) + sgn(k2)

))
ψ̂ 2(k1) ψ̂ 2(k2) .

Adding (4.27) with (4.26), we get the expression:

− 2 τ (c+ + c−) ∂tψ̂
2(k)− 2 τ

(
c+ u0,+

j + c− u0,−
j − b+H0,+

j − b−H0,−
j

)
∂yj ψ̂

2(k)

(4.28)

+ i τ
(

(b+)2 − (b−)2 − (c+)2 + (c−)2
)

sgn(k)
∑

k1+k2=k

|k1| |k2| |k|
|k|+ |k1|+ |k2|

ψ̂ 2(k1) ψ̂ 2(k2)

− i τ
(

(b+)2 − (b−)2 − (c+)2 + (c−)2
)

sgn(k)×∑
k1+k2=k

(
k1 k2 −

|k1| |k2| |k|
|k|+ |k1|+ |k2|

(
sgn(k) (sgn(k1) + sgn(k2)) + sgn(k1) sgn(k2)

))
ψ̂ 2(k1) ψ̂ 2(k2) .

The quadratic terms in the integrals of (4.16). III. Conclusion. The last term to take into
account in (2.14b) for computing all the contributions in the integrals of (4.16) is ∂θψ

2 A ± ∂Y3U
1,±. We

thus need to compute:∫
R+

e−|k|Y3 L +(k) q( ̂∂θψ2 A ± ∂Y3U
1,+|y3=0

)
(k) dY3 −

∫
R−

e|k|Y3 L −(k) q( ̂∂θψ2 A ± ∂Y3U
1,+|y3=0

)
(k) dY3 .

Using the last equality in (A.6), we get the contribution:

(4.29) − i τ

2

(
(b+)2 − (b−)2 − (c+)2 + (c−)2

)
sgn(k)×∑

k1+k2=k

(
k2

1 k2

|k|+ |k1|
(
sgn(k)− sgn(k1)

)
+

k1 k
2
2

|k|+ |k2|
(
sgn(k)− sgn(k2)

))
ψ̂ 2(k1) ψ̂ 2(k2) ,

where we have symmetrized the kernel acting on (ψ2, ψ2) once again. Adding (4.29) with (4.28) and
dividing by −2 τ , we end up -after a little bit of further simplifications- with the leading amplitude
equation that must be satisfied by the non-zero Fourier modes of ψ2:

(4.30)
(
c+ + c−

)
∂tψ̂

2(k) +
(
c+ u0,+

j + c− u0,−
j − b+H0,+

j − b−H0,−
j

)
∂yj ψ̂

2(k)

+ i
(

(c+)2 − (c−)2 − (b+)2 + (b−)2
)

sgn(k)
∑

k1+k2=k

|k1| |k2| |k1 + k2|
|k1|+ |k2|+ |k1 + k2|

ψ̂ 2(k1) ψ̂ 2(k2) = 0 .

The main novelty here with respect to [AH03] is the slow modulation with respect to the spatial
tangential variables y1, y2. It is evidenced by the transport term in the first line of (4.30). Let us observe
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right away that the coefficients in front of ∂tψ̂
2(k) and ∂yj ψ̂

2(k) are real, which means that provided that
c+ + c− 6= 0, we shall have indeed a (constant coefficient) transport operator with respect to y1, y2. Let
us also observe that the ‘kernel’ :

(4.31) (k1, k2) 7−→ |k1| |k2| |k1 + k2|
|k1|+ |k2|+ |k1 + k2|

,

is well-defined for all relevant values of (k1, k2), that is for k1+k2 6= 0. In particular, the kernel vanishes on
all couples of the form (0, k2) and (k1, 0), which means that the equation (4.30) is an evolution equation for
the non-zero Fourier modes of ψ2 only. The kernel (4.31) is the same as the one arising in a simplified model
for weakly nonlinear Rayleigh wave modulation in elastodynamics, see [HIZ95], and in a related problem
of magnetohydrodynamics, namely the plasma-vacuum interface problem [Sec15]. Further consideration
on amplitude equations for weakly nonlinear surface waves may be found in [AHP02, AH13]. The kernel
in (4.31) coincides of course with the one derived in [AH03] in the two-dimensional case. This is not
surprising due to the isotropy of the MHD equations.

Let us also observe that the kernel in (4.31) can be written as:

Λ(k1, k2,−k1 − k2) , Λ(k1, k2, k3) :=
|k1| |k2| |k3|

|k1|+ |k2|+ |k3|
,

where Λ is symmetric with respect to (k1, k2, k3). As evidenced in [AHP02], this symmetry property
is linked with a (formal) Hamiltonian structure for (4.30), see further investigation of this property in
[BGC12, BGC17, AH13].

4.3.2 Solvability of the leading amplitude equation

In order to prove a (local) well-posedness result for (4.30), we first perform some reductions. Let us first
show that the coefficient c+ + c− in front of ∂tψ̂

2(k) is non-zero, which means that the equation (4.30)
is of evolutionary type. Indeed, we recall that the Lopatinskii determinant for the current vortex sheet
problem is defined in (3.11). Under Assumption (H1), ∆ has two simple real roots, and since we know
by Assumption (H4) that τ is one of these two roots, there holds ∂τ∆(τ, ξ1, ξ2) = 2 (c+ + c−) 6= 0. We
also compute

∂ξj∆(τ, ξ1, ξ2) = 2
(
c+ u0,+

j + c− u0,−
j − b+H0,+

j − b−H0,−
j

)
,

which means that (4.30) can be rewritten as:

(4.32) ∂tψ̂
2(k) +

∂ξj∆(τ, ξ1, ξ2)

∂τ∆(τ, ξ1, ξ2)
∂yj ψ̂

2(k)

+ i
(c+)2 − (c−)2 − (b+)2 + (b−)2

c+ + c−
sgn(k)

∑
k1+k2=k

|k1| |k2| |k1 + k2|
|k1|+ |k2|+ |k1 + k2|

ψ̂ 2(k1) ψ̂ 2(k2) = 0 .

The transport operator in (4.32) is governed by the group velocity associated with the manifold along
which the Lopatinskii determinant vanishes. This observation is a general fact that we can directly check
for our particular problem, see [Mar10, CW18, WW17]. Let us now define a bilinear symmetric operator
B that acts on C∞, 2π−periodic functions in θ as follows:

∀ k ∈ Z \ {0} , B̂(ϕ,ψ)(k) :=
∑

k1+k2=k

|k1| |k2| |k1 + k2|
|k1|+ |k2|+ |k1 + k2|

ϕ̂(k1) ψ̂(k2) .

The variables (t, y′) play here a role of parameters in ϕ,ψ. We do not need a definition for B̂(ϕ,ψ)(0).
Let us observe that the operator B preserves real valued functions. This property is used below since the
leading front ψ2 is meant to be real valued. Then (4.32) can be recast in the more compact form:

(4.33) ∂tψ̂
2(k) +

∂ξj∆(τ, ξ1, ξ2)

∂τ∆(τ, ξ1, ξ2)
∂yj ψ̂

2(k)− (b+)2 − (b−)2 − (c+)2 + (c−)2

c+ + c−
i sgn(k) ̂B(ψ2, ψ2)(k) = 0 ,
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where we recognize in the bilinear term the action of the so-called Hilbert transform H . In other words,
we can also rewrite (4.33) as:

∂tψ̂
2(k) +

∂ξj∆(τ, ξ1, ξ2)

∂τ∆(τ, ξ1, ξ2)
∂yj ψ̂

2(k) +
(b+)2 − (b−)2 − (c+)2 + (c−)2

c+ + c−
̂

H
(
B(ψ2, ψ2)

)
(k) = 0 ,

Let us observe that because of Assumption (H3), the coefficient in front of the bilinear nonlocal operator
is non-zero, for otherwise, combining with (H4), we would get (c±)2 = (b±)2 and it is proved in Appendix
A that (c±)2 6= (b±)2. Hence (4.33) is genuinely a nonlinear nonlocal equation of Hamilton-Jacobi type
(since the kernel defining B is homogeneous degree 2). The well-posedness of nonlocal equations of
the type (4.33) has been systematically studied in [Hun06, BG09, Mar10, CW18, WW17] in either the
pulse or wavetrain framework (k ∈ R or k ∈ Z). The most convenient references for our purpose here are
[Hun06, WW17] where the following result is proved5. For notational convenience, we introduce Hs

] , s ≥ 0,

as the Sobolev space of functions g ∈ Hs(T2
y′ × Tθ) with zero mean with respect to θ, and H∞] := ∩sHs

] .
The space Hs

] is equipped with the obvious norm defined with the help of Fourier coefficients in (y′, θ),
see, e.g., [BCD11].

Theorem 4.1 ([Hun06]). Let s > 7/2 and let g ∈ Hs
] . Then there exist a time T > 0 and a unique

solution ϕ ∈ C ([0, T ];Hs
] ) to the Cauchy problem:

(4.34)

∀ k 6= 0 , ∂tϕ̂(k) +
∂ξj∆(τ, ξ1, ξ2)

∂τ∆(τ, ξ1, ξ2)
∂yj ϕ̂(k)− (b+)2 − (b−)2 − (c+)2 + (c−)2

c+ + c−
i sgn(k) B̂(ϕ,ϕ)(k) = 0 ,

with ϕ|t=0 = g.
Moreover, if g ∈ H∞] (T3), then the unique zero mean solution ϕ to (4.34) belongs to C∞

(
[0, T ] ; H∞]

)
,

where T > 0 is given by the previous result with, for instance, s = 4.

The fact that the time T > 0 can be chosen to be independent of the Sobolev index s follows from
a tame estimate for the solutions to (4.34). Such a tame estimate is somehow hidden in [Hun06] but
a detailed proof is given in [WW17] with even the incorporation of spatial tangential variables. The
problem of global existence of solutions to (4.34), either in a weak or strong sense, is still open (see
[Hun06]); numerical simulations in [AH03] seem to reveal that some smooth solutions to (4.34) develop
singularities in finite time.

4.4 Construction of the leading profile

At this stage, Theorem 4.1 is sufficient to fully determine the oscillating modes of the leading profile ψ2.
For future use, let us indeed introduce the decomposition:

ψ2(t, y′, θ) = ψ̂ 2(t, y′, 0) + ψ2
] (t, y

′, θ) ,

where ψ2
] has zero mean with respect to the fast variable θ for all (t, y′). As follows from the expression

(4.32), the leading amplitude equation (4.32) only involves ψ2
] . Furthermore, in order to fulfill the initial

condition (1.8), we impose:
ψ2
] |t=0 = ψ2

0 , ψ̂ 2(0)|t=0 = 0 .

Consequently, the oscillating part ψ2
] of the leading profile ψ2 for the front is given by Theorem 4.1 as the

only solution, with zero mean with respect to θ, to (4.34) with initial condition ψ2
0. This fixes the time

T > 0, this final time depending only on a fixed Sobolev norm of the initial condition ψ2
0. Once we have

determined ψ2
] , we get thanks to (4.19) the expression of the leading profile U1,± at y3 = 0, that is on

5One can even consider more general kernels than the one in (4.33) but we rather refer the interested reader to the
references rather than quoting the corresponding results in full generality.
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the boundary Γ0. It then remains to lift U1,± to any value of y3 ∈ I±, with the only constraint that U1,±

should be of the general form (4.3) (meaning that we have only some scalar components γ1,±(k), k 6= 0,
at our disposal to lift ±|k| ψ̂ 2(k)). For simplicity, we lift the trace of γ1,± in the most simple way, that
is, we set:

(4.35) U1,±(t, y, Y3, θ) := ±
∑
k 6=0

|k| ψ̂ 2(t, y′, k)χ(y3) e∓ |k|Y3+i k θ R±(k) ,

where the vectors R±(k) are defined in (A.5). Let us recall again that χ is a fixed cut-off function
that equals 1 on [−1/3, 1/3] and that vanishes outside of [−2/3, 2/3]. In particular, the form (4.35) is
compatible with (4.3), and there holds U1,± = U1,±

? ∈ S±? . The lifting procedure (4.35) is the same as in
[Mar10].

Let us now summarize how we have constructed the leading profile (U1,±, ψ2) and which properties it
satisfies:

• Since the leading profile (U1,±, ψ2) must satisfy the homogeneous fast problem (4.2), we have ob-
tained its general decomposition (4.3).

• By imposing the (necessary) solvability conditions (3.2b), (3.2c) on the inhomogeneous fast problem
(4.6) satisfied by the first corrector (U2,±, ψ3), we have shown that the slow and fast means in (4.3)
vanish (this property is linked to our choice (2.37) of initial data for the fast mean and to the easiest
possible choice of initial data for the slow mean).

• By imposing the (necessary) solvability condition (3.2e) on the inhomogeneous fast problem (4.6)
satisfied by the first corrector (U2,±, ψ3), we have determined the evolution of the non-zero Fourier
modes of the leading front ψ2.

• The expression of the leading profile (U1,±, ψ2) for any value of the slow normal variable y3 is defined
by the simple lifting procedure (4.35).

We have thus solved the homogeneous fast problem (4.2), and enforced the solvability conditions
(3.2b), (3.2c), (3.2e) on the system (4.6). We have also satisfied the top and bottom boundary conditions
(2.23) for m = 0, and the normalization condition (2.33) for the slow mean of the total pressure. The
expression (4.35), as well as the fulfillment of (3.2b), (3.2c), (3.2e) on the system (4.6), are independent of
the slow mean ψ̂ 2(0) of the leading front. The latter function will be determined in the following Chapter
when constructing the slow mean of the corrector U2,±.

As a concluding remark, let us observe that the solvability conditions (3.2a), (3.2d) are not yet satisfied
at this stage for the inhomogeneous fast problem (4.6). Namely, we shall have to check the relations:

F 1,±
6 |y3=Y3=0 = −b± ∂θG1,±

1 + c± ∂θG
1,±
2 ,

∂Y3F
1,±
6 + ξj ∂θF

1,±
3+j − τ ∂θF

1,±
8 = 0 ,

see Lemma 5.1 and Lemma 5.2 in Chapter 5. Since we now only have the mean ψ̂ 2(0) of the leading front
which has not been fixed yet and this function does not enter the quantities involved in the previous two
relations, these solvability conditions will need to come ‘for free’.
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Chapter 5

Solving the WKB cascade II: the
correctors

In this Chapter, we complete the construction of a solution to the WKB cascade, namely we are going
to construct iteratively the corrector (Um+1,±, ψm+2), being given the collection of profiles (U1,±, ψ2),
. . . , (Um,±, ψm+1). This construction is based on an induction assumption stated as H(m) below. This
induction assumption includes several items, which we list as (H(m)− 1), . . . , (H(m)− 7) below.

The verification of the initial step H(1) has been performed in Chapter 4, as we shall recall below, and
our goal in this Chapter is to verify that H(m) implies H(m+ 1) for any integer m ≥ 1. At the very end
of this Chapter, we shall explain why the sequence of profiles (Um,±, ψm+1) allows for the construction of
an approximate solution to (1.3) with oscillating data.

Our induction assumption is the following: there exists a time T > 0 and a collection of profiles
(U1,±, ψ2), . . . , (Um−1,±, ψm), (Um,±, ψm+1

] ) that satisfy the following seven properties:

(H(m)− 1) (U1,±, ψ2) , . . . , (Um−1,±, ψm) , (Um,±, ψm+1
] ) ∈ S± ×H∞([0, T ]× T2 × T) ,

where the functional space S± in (H(m)− 1) is given by Definition 1.1,
(H(m)− 2)

∀µ = 1, . . . ,m ,


L ±
f (∂)Uµ,± = Fµ−1,± , y ∈ Ω±0 , ±Y3 > 0 ,

∂Y3H
µ,±
3 + ξj ∂θH

µ,±
j = Fµ−1,±

8 , y ∈ Ω±0 , ±Y3 > 0 ,

B+ Uµ,+|y3=Y3=0 +B− Uµ,−|y3=Y3=0 + ∂θψ
µ+1 b = Gµ−1 ,

where the source term Fµ−1,±, resp. Fµ−1,±
8 , is defined by (2.11) (with µ−1 rather than m as the index),

resp. the right hand side of (2.16b), and the boundary source term Gµ−1 is defined by (2.22) (with µ− 1
rather than m as the index),

(H(m)− 3) ∀µ = 1, . . . ,m , uµ,±3 |y3=±1 = Hµ,±
3 |y3=±1 = 0 .

(H(m)− 4) ∀µ = 1, . . . ,m , ∀ t ∈ [0, T ] , I µ(t) = 0 ,

with I µ defined by (2.30), (2.31) (once again, with µ rather than m as the index),

(H(m)− 5) F̂
m,±

(t, y, 0) = 0 , F̂
m,±
8 (t, y, 0) = 0 ,

(H(m)− 6)

u
0,±
j F̂m,±7,? (0)−H0,±

j F̂m,±8,? (0) = F̂m,±j,? (0) , j = 1, 2 ,

H0,±
j F̂m,±7,? (0)− u0,±

j F̂m,±8,? (0) = F̂m,±3+j,?(0) , j = 1, 2 ,
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(H(m)− 7)

∀ k 6= 0 ,

∫
R+

e−|k|Y3 L +(k) q F̂m,+(t, y′, 0, Y3, k) dY3 −
∫
R−

e|k|Y3 L −(k) q F̂m,−(t, y′, 0, Y3, k) dY3

+ `+1 Ĝ
m,+
1 (t, y′, k) + `+2 Ĝ

m,+
2 (t, y′, k) + `−1 Ĝ

m,−
1 (t, y′, k) + `−2 Ĝ

m,−
2 (t, y′, k) = 0 .

Several points should be emphasized. First of all, the time T in the induction assumption H(m)
should not depend on m. In the analysis below, we shall prove that if H(m) holds for some time T > 0,
then H(m+ 1) holds for the same time T > 0. This will give eventually a uniform positive lifespan for all
profiles. The lifespan is dictated by the solvability of the leading profile nonlinear equation (4.32). (Let us
recall that global existence for (4.32) is an open issue so far.) Another important point to notice is that,
in the induction assumption H(m), the profiles for the front ψ2, . . . , ψm are completely given, namely
both their oscillating modes in θ and their mean with respect to the fast variable θ, but the very last
profile ψm+1 is given only through its oscillating modes. The mean of ψm+1 with respect to θ does not
enter the definition of the source terms Fm,±, Fm,±8 , Gm in (H(m)− 5), (H(m)− 6), (H(m)− 7). The
determination of the mean of ψm+1 with respect to θ will be one of the main steps in the analysis below.

In the particular case m = 1, (H(1) − 1) should be understood as (U1,±, ψ2
] ) ∈ S± × H∞, which is

consistent with the analysis of Chapter 4 where we have only determined ψ2
] . We now briefly recall why

the analysis of Chapter 4 implies that H(1) is satisfied for some time T > 0.

5.1 The initial step of the induction

From Theorem 4.1, we know that the leading front ψ2
] belongs to H∞([0, T ] × T2 × T) for some time

T > 0, and consequently, from the expression (4.35), the leading profile U1,± belongs to S±. (It even
belongs to S±? .) Furthermore, the expression (4.35) shows that the leading profile (U1,±, ψ2) satisfies the
homogeneous fast problem (4.2) (independently of the determination of the mean ψ̂m+1(0) with respect
to θ). This means that for some time T > 0, (H(1)− 1) and (H(1)− 2) are satisfied.

The expression (4.35) shows that U1,± vanish, so (H(1)−3) is also clearly satisfied, as well as (H(1)−4)
since, recalling (2.30), (2.31), we have:

I 1(t) =

∫
Ω+

0

q̂1,+(t, y, 0) dy +

∫
Ω−0

q̂1,−(t, y, 0) dy = 0 .

In Chapter 4, we have enforced the necessary solvability conditions (3.2b), (3.2c) and (3.2e) on the
inhomogeneous fast problem (4.6). This means equivalently that (H(1)− 5), (H(1)− 6) and (H(1)− 7)
are satisfied for m = 1. With our choice of initial conditions for the slow and fast means, conditions
(3.2b) and (3.2c) even allowed us to conclude that the slow and fast means of U1,± had to vanish. We
have thus proved so far that there exists a time T > 0 such that H(1) is satisfied. All partial differential
equations to be solved later on will be linear, which is the reason why there will be no further restriction
on the final time T (see [Rau12] for the case of one phase weakly nonlinear geometric optics in the whole
space).

In what remains of this Chapter, we assume that H(m) is satisfied for some time T > 0 and some
integer m ≥ 1. We are going to show that H(m+ 1) is satisfied for the same time T > 0. Let us quickly
observe that, because of (H(m)− 2), the fast problems:

L ±
f (∂)Uµ,± = Fµ−1,± ,

∂Y3H
µ,±
3 + ξj ∂θH

µ,±
j = Fµ−1,±

8 ,

B+ Uµ,+|y3=Y3=0 +B− Uµ,−|y3=Y3=0 + ∂θψ
µ+1 b = Gµ−1 ,

µ = 1, . . . ,m ,
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have a solution in S± × H∞([0, T ] × T2 × T). Using Theorem 3.1, this means that the source terms
(F 0,±, G0), . . . , (Fm−1,±, Gm−1) satisfy the solvability conditions (3.2). This will be used in some cal-
culations below. Observe that at this point the source terms (Fm,±, Gm) do not satisfy all solvability
conditions (3.2). They only satisfy (3.2b) (because of (H(m)− 5)), (3.2c) (because of (H(m)− 6)) and
(3.2e) (because of (H(m)− 7)).

In order to prove thatH(m+1) is satisfied, we first need to show that we can solve the fast problem (5.1)
below, which corresponds to enforcing (H(m+ 1)− 2). Using Theorem 3.1 as well as the above remark,
being able to solve (5.1) reduces to verifying that the source terms (Fm,±, Gm) satisfy the solvability
conditions (3.2a) (compatibility at the boundary) and (3.2d) (compatibility for the divergence of the
magnetic field). The verification of these two remaining solvability conditions is the first task to achieve
in the induction process, and this will already determine a large part of the corrector Um+1,±. Note that
verifying (3.2a) and (3.2d) for (Fm,±, Gm) is independent of the mean ψ̂m+1(0). This function as well
as the remaining degrees of freedom in Um+1,± will be used to enforce the relations (H(m + 1) − 3),
(H(m+ 1)− 5), (H(m+ 1)− 6), (H(m+ 1)− 7).

5.2 Reduction to (almost) homogeneous equations

In order to show that H(m) implies H(m+ 1), the first task is to solve the fast problem:

(5.1)


L ±
f (∂)Um+1,± = Fm,± , y ∈ Ω±0 , ±Y3 > 0 ,

∂Y3H
m+1,±

3 + ξj ∂θH
m+1,±
j = Fm,±8 , y ∈ Ω±0 , ±Y3 > 0 ,

B+ Um+1,+|y3=Y3=0 +B−Um+1,−|y3=Y3=0 = Gm ,

which is possible if and only if the source terms satisfy the solvability conditions (3.2). Here we keep
the notation of Theorem 3.1 and look for a particular solution to the fast problem (5.1) of the form
Um+1,± = (U m+1,±,H m+1,±,Qm+1,±)T with no front in the jump conditions on Γ0. We recall that the
verification of (3.2) is partly included in (H(m)− 5), (H(m)− 6) and (H(m)− 7), but we still need to
verify that the source terms in (5.1) satisfy the conditions (3.2a) and (3.2d).

There is one point to keep in mind for later. Though the verification of (3.2a) and (3.2d) for the fast
problem (5.1) will be independent of the mean ψ̂m+1(0) (because it only involves ∂θG

m), the source term
Gm does involve ψ̂m+1(0) and therefore the solution Um+1,± to (5.1) must depend on ψ̂m+1(0). We shall
go back to this after proving Lemma 5.1 and Lemma 5.2.

We start with the compatibility condition (3.2a) at the boundary Γ0.

Lemma 5.1 (Compatibility of the source terms at the boundary). Under the induction assumption H(m),
there holds:

(5.2) Fm,±6 |y3=Y3=0 = −b± ∂θGm,±1 + c± ∂θG
m,±
2 .

Proof of Lemma 5.1. The proof of Lemma 5.1 follows from rather elementary algebraic manipulations,
which we make explicit for the sake of completeness. We recall that by the induction assumption H(m),
the profiles (U1,±, ψ2), . . . , (Um,±, ψm+1

] ) are given, and we then compute the source term Fm,± from
the definition (2.11). The boundary source term Gm is defined by (2.22). Once again, the expressions
of Gm,±1 , Gm,±2 do depend on the mean of ψm+1 with respect to θ, but the partial derivatives ∂θG

m,±
1

and ∂θG
m,±
2 do not. It follows from inspection of (2.11) that the source term Fm,± is uniquely defined in

terms of ψm+1
] . Hence the fulfillment of Lemma 5.1 is independent of how we shall determine the mean

of ψm+1 (which will be done in the following Section).
The verification of (5.2) is split in several steps. We first simplify the expression of the double

trace Fm,±6 |y3=Y3=0 by using the fast divergence constraints that follow from the previous steps in the
induction. After these reductions, the expression of Fm,±6 |y3=Y3=0 will only involve tangential derivatives

59



of the traces of uµ,±3 , Hµ,±
3 , µ = 1, . . . ,m, with respect to Γ0. The verification of (5.2) will then follow

from differentiation of the jump conditions on Γ0 at the previous steps of the induction. To make the
expressions below easier to read, we omit in all the proof of Lemma 5.1 the superscripts ±. This is of no
consequence since the expressions are absolutely identical on either side of the boundary Γ0.

• Preliminary reductions. We start from the general definition (2.11), of which we compute the sixth
coordinate (see Appendix A for details). We then compute the double trace on y3 = Y3 = 0, the main
effect of which being that the cut-off functions χ[`] vanish if ` ≥ 1, and χ[0] equals 1 at y3 = 0. We also
have χ̇[`]|y3=0 ≡ 0 for all ` ≥ 0, see (B.32) and (B.33) in Appendix B. We then get the expression:
(5.3)

−Fm6 |y3=Y3=0 =
(
∂t + u0

j ∂yj
)
Hm

3 −H0
j ∂yju

m
3 +

∑
`1+`2=m+2

∂θψ
`1
(
b ∂Y3u

`2
3 − c ∂Y3H`2

3

)
+

∑
`1+`2=m+1

∂θψ
`1
(
b ∂y3u

`2
3 − c ∂y3H`2

3

)
+

∑
`1+`2=m+1

H0
j ∂yjψ

`1 ∂Y3u
`2
3 −

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3H

`2
3

+
∑

`1+`2=m

H0
j ∂yjψ

`1 ∂y3u
`2
3 −

(
∂t + u0

j ∂yj
)
ψ`1 ∂y3H

`2
3

+
∑

`1+`2=m+1
`1≥1

ξj u
`1
j ∂θH

`2
3 +H`1

3 ξj ∂θu
`2
j − ξj H`1

j ∂θu
`2
3 − u`13 ξj ∂θH

`2
j

+
∑

`1+`2=m
`1≥1

u`1j ∂yjH
`2
3 +H`1

3 ∂yju
`2
j −H`1

j ∂yju
`2
3 − u`13 ∂yjH

`2
j

+
∑

`1+`2+`3=m+2
`2≥1

∂θψ
`1
(
u`23 ξj ∂Y3H

`3
j + ξj H

`2
j ∂Y3u

`3
3 −H`2

3 ξj ∂Y3u
`3
j − ξj u`2j ∂Y3H`3

3

)
+

∑
`1+`2+`3=m+1

`2≥1

∂yjψ
`1
(
u`23 ∂Y3H

`3
j +H`2

j ∂Y3u
`3
3 −H`2

3 ∂Y3u
`3
j − u`2j ∂Y3H`3

3

)
+

∑
`1+`2+`3=m+1

`2≥1

∂θψ
`1
(
u`23 ξj ∂y3H

`3
j + ξj H

`2
j ∂y3u

`3
3 −H`2

3 ξj ∂y3u
`3
j − ξj u`2j ∂y3H`3

3

)
+

∑
`1+`2+`3=m

`2≥1

∂yjψ
`1
(
u`23 ∂y3H

`3
j +H`2

j ∂y3u
`3
3 −H`2

3 ∂y3u
`3
j − u`2j ∂y3H`3

3

)
,

where it is understood that all functions on the right hand side of (5.3) are evaluated at y3 = Y3 = 0. We
use the induction assumption H(m), and more precisely the fast divergence constraints on the velocity
and magnetic field included in (H(m)− 2). This simplifies accordingly the blue and red terms in (5.3),
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and we get:

(5.4)

−Fm6 |y3=Y3=0 =
(
∂t + u0

j ∂yj
)
Hm

3 −H0
j ∂yju

m
3 +

∑
`1+`2=m+1

`1≥1

ξj u
`1
j ∂θH

`2
3 − ξj H`1

j ∂θu
`2
3

+
∑

`1+`2=m
`1≥1

u`1j ∂yjH
`2
3 −H`1

j ∂yju
`2
3

+
∑

`1+`2=m+2

∂θψ
`1
(
b ∂Y3u

`2
3 − c ∂Y3H`2

3

)
+

∑
`1+`2=m+1

∂θψ
`1
(
b ∂y3u

`2
3 − c ∂y3H`2

3

)
+

∑
`1+`2=m+1

H0
j ∂yjψ

`1 ∂Y3u
`2
3 −

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3H

`2
3

+
∑

`1+`2=m

H0
j ∂yjψ

`1 ∂y3u
`2
3 −

(
∂t + u0

j ∂yj
)
ψ`1 ∂y3H

`2
3

+
∑

`1+`2=m+1
`1≥1

u`13 ∂Y3H
`2
3 −H`1

3 ∂Y3u
`2
3 +

∑
`1+`2=m
`1≥1

u`13 ∂y3H
`2
3 −H`1

3 ∂y3u
`2
3

+
∑

`1+`2+`3=m+2
`2≥1

∂θψ
`1
(
ξj H

`2
j ∂Y3u

`3
3 − ξj u`2j ∂Y3H`3

3

)
+

∑
`1+`2+`3=m+1

`2≥1

∂yjψ
`1
(
H`2
j ∂Y3u

`3
3 − u`2j ∂Y3H`3

3

)
+

∑
`1+`2+`3=m+1

`2≥1

∂θψ
`1
(
ξj H

`2
j ∂y3u

`3
3 − ξj u`2j ∂y3H`3

3

)
+

∑
`1+`2+`3=m

`2≥1

∂yjψ
`1
(
H`2
j ∂y3u

`3
3 − u`2j ∂y3H`3

3

)
.

At this stage, we may use the boundary condition in (H(m)− 2) to further simplify all normal deriva-
tives. For instance we have highlighted in green all the fast normal derivatives ∂Y3u

`2
3 |y3=Y3=0, which are

simplified by using H`1
3 |y3=Y3=0 = G`1−1

2 for `1 ≤ m. Other groups of terms that simplify are highlighted
in pink, blue and orange. Relabeling the terms when necessary, we find that all normal derivatives in
(5.4) disappear thanks to the fulfillment of the boundary conditions in (H(m)− 2). In other words, we
are reduced to the amazingly simple expression:

−Fm6 |y3=Y3=0 =
(
∂t + u0

j ∂yj
)
Hm

3 −H0
j ∂yju

m
3

+
∑

`1+`2=m+1
`1≥1

ξj u
`1
j ∂θH

`2
3 − ξj H`1

j ∂θu
`2
3 +

∑
`1+`2=m
`1≥1

u`1j ∂yjH
`2
3 −H`1

j ∂yju
`2
3 ,(5.5)

and in (5.5), there are only tangential derivatives (∂t, ∂yj or ∂θ) with respect to the boundary {y3 = Y3 =
0}. This means that we can differentiate the boundary conditions in (H(m)− 2) and then substitute in
(5.5) in order to further transform the expression of Fm6 |y3=Y3=0. This substitution process is performed
below.

• Step 1. The linear terms. We split the right hand side of (5.5) in three pieces. The first piece
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gathers the ‘linear’ terms. Using the boundary conditions in (H(m)− 2), we get:

F1 :=
(
∂t + u0

j ∂yj
)
Hm

3 −H0
j ∂yju

m
3 =

(
∂t + u0

j ∂yj
)
(b ∂θψ

m+1)−H0
j ∂yj (c ∂θψ

m+1)

+
∑

`1+`2=m+1

ξj′ ∂θψ
`1
((
∂t + u0

j ∂yj
)
H`2
j′ −H0

j ∂yju
`2
j′

)
+

∑
`1+`2=m

∂yj′ψ
`1
((
∂t + u0

j ∂yj
)
H`2
j′ −H0

j ∂yju
`2
j′

)
(5.6)

+
∑

`1+`2=m+1
`2≥1

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ξj′ u

`2
j′

+
∑

`1+`2=m
`2≥1

(
∂t + u0

j ∂yj
)
∂yj′ψ

`1 H`2
j′ −H0

j ∂yj∂yj′ψ
`1 u`2j′ .

The first (pink) line in the above decomposition (5.6) of F1 will directly contribute to b ∂θG
m
1 − c ∂θGm2 .

The blue terms are highlighted in view of future cancellation. We now focus on the quadratic terms in
the second line of (5.5), which we are going to simplify with the blue term on the right hand side of (5.6).

• Step 2. The quadratic terms. (Fast derivatives.) Let us go on splitting the right hand side of (5.5)
and use the boundary conditions in (H(m)− 2) to get:

F2 :=
∑

`1+`2=m+1
`1≥1

ξj u
`1
j ∂θH

`2
3 − ξj H`1

j ∂θu
`2
3 =

∑
`1+`2=m+2

`2≥1

∂2
θψ

`1
(
b ξj u

`2
j − c ξj H`2

j

)
+

∑
`1+`2+`3=m+2

`2≥1

ξj′ ∂θψ
`1
(
ξj u

`2
j ∂θH

`3
j′ − ξj H`2

j ∂θu
`3
j′
)

+
∑

`1+`2+`3=m+1
`2≥1

∂yj′ψ
`1
(
ξj u

`2
j ∂θH

`3
j′ − ξj H`2

j ∂θu
`3
j′
)

(5.7)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yj′∂θψ
`1
(
ξj u

`2
j H

`3
j′ − ξj H`2

j u`3j′
)

+
∑

`1+`2=m+1
`2≥1

H0
j ∂yj∂θψ

`1 ξj′ u
`2
j′ −

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ .

The blue term in (5.6) simplifies with the last line in the decomposition (5.7) (also highlighted in blue).
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We thus get:

(5.8)

F1 + F2 =
(
∂t + u0

j ∂yj
)
(b ∂θψ

m+1)−H0
j ∂yj (c ∂θψ

m+1) +
∑

`1+`2=m+2
`2≥1

∂2
θψ

`1
(
b ξj u

`2
j − c ξj H`2

j

)
+

∑
`1+`2=m+1

ξj′ ∂θψ
`1
((
∂t + u0

j ∂yj
)
H`2
j′ −H0

j ∂yju
`2
j′

)
+

∑
`1+`2=m

∂yj′ψ
`1
((
∂t + u0

j ∂yj
)
H`2
j′ −H0

j ∂yju
`2
j′

)
+

∑
`1+`2=m
`2≥1

(
∂t + u0

j ∂yj
)
∂yj′ψ

`1 H`2
j′ −H0

j ∂yj∂yj′ψ
`1 u`2j′

+
∑

`1+`2+`3=m+2
`2≥1

ξj′ ∂θψ
`1
(
ξj u

`2
j ∂θH

`3
j′ − ξj H`2

j ∂θu
`3
j′
)

+
∑

`1+`2+`3=m+1
`2≥1

∂yj′ψ
`1
(
ξj u

`2
j ∂θH

`3
j′ − ξj H`2

j ∂θu
`3
j′
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yj′∂θψ
`1
(
ξj u

`2
j H

`3
j′ − ξj H`2

j u`3j′
)
.

Some terms in F1 + F2 are highlighted in green in view of further simplification with what remains of
the right hand side of (5.5).

• Step 3. The quadratic terms. (Slow derivatives.) We now consider the last term in (5.5), that is:

F3 :=
∑

`1+`2=m
`1≥1

u`1j ∂yjH
`2
3 −H`1

j ∂yju
`2
3 ,

so that with our previous definitions, (5.5) reads:

−Fm6 |y3=Y3=0 = F1 + F2 + F3 .

We simplify the expression of F3 by adding it with the green terms on the right hand side of (5.8) and
by using again the boundary conditions in (H(m)− 2). We get:

(5.9)

F3 +
∑

`1+`2=m
`2≥1

(
∂t + u0

j ∂yj
)
∂yj′ψ

`1 H`2
j′ −H0

j ∂yj∂yj′ψ
`1 u`2j′

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yj′∂θψ
`1
(
ξj u

`2
j H

`3
j′ − ξj H`2

j u`3j′
)

=
∑

`1+`2=m+1
`2≥1

∂yj∂θψ
`1
(
b u`2j − cH`2

j

)
+

∑
`1+`2+`3=m+1

`2≥1

ξj′ ∂θψ
`1
(
u`2j ∂yjH

`3
j′ −H`2

j ∂yju
`3
j′
)

+
∑

`1+`2+`3=m
`2≥1

∂yj′ψ
`1
(
u`2j ∂yjH

`3
j′ −H`2

j ∂yju
`3
j′
)
.
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Collecting (5.8) and (5.9), we have derived so far the expression:

(5.10)

−Fm6 |y3=Y3=0 =
(
∂t + u0

j ∂yj
)
(b ∂θψ

m+1)−H0
j ∂yj (c ∂θψ

m+1)

+
∑

`1+`2=m+2
`2≥1

∂2
θψ

`1
(
b ξj u

`2
j − c ξj H`2

j

)
+

∑
`1+`2=m+1

`2≥1

∂yj∂θψ
`1
(
b u`2j − cH`2

j

)
+

∑
`1+`2=m+1

ξj′ ∂θψ
`1
((
∂t + u0

j ∂yj
)
H`2
j′ −H0

j ∂yju
`2
j′

)
+

∑
`1+`2=m

∂yj′ψ
`1
((
∂t + u0

j ∂yj
)
H`2
j′ −H0

j ∂yju
`2
j′

)
+

∑
`1+`2+`3=m+2

`2≥1

ξj′ ∂θψ
`1
(
ξj u

`2
j ∂θH

`3
j′ − ξj H`2

j ∂θu
`3
j′
)

+
∑

`1+`2+`3=m+1
`2≥1

∂yj′ψ
`1
(
ξj u

`2
j ∂θH

`3
j′ − ξj H`2

j ∂θu
`3
j′
)

+
∑

`1+`2+`3=m+1
`2≥1

ξj′ ∂θψ
`1
(
u`2j ∂yjH

`3
j′ −H`2

j ∂yju
`3
j′
)

+
∑

`1+`2+`3=m
`2≥1

∂yj′ψ
`1
(
u`2j ∂yjH

`3
j′ −H`2

j ∂yju
`3
j′
)
.

• Step 4. Conclusion. Going back to the definitions (2.22b), (2.22c), we compute:

b ∂θG
m
1 − c ∂θGm2 =

(
∂t + u0

j ∂yj
)
(b ∂θψ

m+1)−H0
j ∂yj (c ∂θψ

m+1)

+
∑

`1+`2=m+2
`2≥1

∂2
θψ

`1
(
b ξj u

`2
j − c ξj H`2

j

)
+

∑
`1+`2=m+2

∂θψ
`1
(
b ξj ∂θu

`2
j − c ξj ∂θH`2

j

)
+

∑
`1+`2=m+1

`2≥1

∂yj∂θψ
`1
(
b u`2j − cH`2

j

)
+

∑
`1+`2=m+1

∂yjψ
`1
(
b ∂θu

`2
j − c ∂θH`2

j

)
.(5.11)

Comparing the decomposition (5.11) with the first two lines in (5.10) (identical terms are highlighted in
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pink), we see that the proof of the relation (5.2) reduces to showing the identity:∑
`1+`2=m+2

ξj ∂θψ
`1
(
b ∂θu

`2
j − c ∂θH`2

j

)
+

∑
`1+`2=m+1

∂yjψ
`1
(
b ∂θu

`2
j − c ∂θH`2

j

)
=

∑
`1+`2=m+1

ξj ∂θψ
`1
((
∂t + u0

j′ ∂yj′
)
H`2
j −H0

j′ ∂yj′u
`2
j

)
+

∑
`1+`2=m

∂yjψ
`1
((
∂t + u0

j′ ∂yj′
)
H`2
j −H0

j′ ∂yj′u
`2
j

)
+

∑
`1+`2+`3=m+2

`2≥1

ξj ξj′ ∂θψ
`1
(
u`2j ∂θH

`3
j′ −H`2

j ∂θu
`3
j′
)

(5.12)

+
∑

`1+`2+`3=m+1
`2≥1

∂yjψ
`1
(
ξj′ u

`2
j′ ∂θH

`3
j − ξj′ H`2

j′ ∂θu
`3
j

)
+

∑
`1+`2+`3=m+1

`2≥1

ξj ∂θψ
`1
(
u`2j′ ∂yj′H

`3
j −H`2

j′ ∂yj′u
`3
j

)
+

∑
`1+`2+`3=m

`2≥1

∂yjψ
`1
(
u`2j′ ∂yj′H

`3
j −H`2

j′ ∂yj′u
`3
j

)
.

As we are now going to show, the latter identity (5.12) is a consequence of the relation:

∀ j = 1, 2 , ∀µ = 1, . . . ,m , b ∂θu
µ
j − c ∂θH

µ
j =

(
∂t + u0

j′ ∂yj′
)
Hµ−1
j −H0

j′ ∂yj′u
µ−1
j

+
∑

`1+`2=µ
`1≥1

ξj′ u
`1
j′ ∂θH

`2
j − ξj′ H`1

j′ ∂θu
`2
j(5.13)

+
∑

`1+`2=µ−1
`1≥1

u`1j′ ∂yj′H
`2
j −H`1

j′ ∂yj′u
`2
j ,

which holds on the boundary {y3 = Y3 = 0}. Indeed, the relation (5.13) can be proved in a similar
way as we have derived the relation (5.5). (Observe the similarity between the right hand sides in those
formulas.) Namely, we consider the fourth and fifth equations in the fast problems (H(m)− 2), take the
double trace y3 = Y3 = 0 and use the fast divergence constraints on the velocity and magnetic field.
We then use the boundary conditions in (H(m)− 2), which make again all normal derivatives disappear.
We feel free to skip the details of these calculations since they are really similar to those that can be
found above for deriving (5.5). Eventually, we get the relation (5.13) for the tangential components of
the velocity and magnetic field.

Substituting the expression of b ∂θu
`2
j − c ∂θH`2

j in (5.13) on the left hand side of (5.12), we see for
instance that the light blue term on the left of (5.12) can be decomposed as the sum of all three light
blue terms on the right. The black term on the left of (5.12) can be also decomposed as the sum of the
three black terms on the right, which completes the proof of the validity of (5.12), and therefore of (5.2).
This means that the source terms in (5.1) satisfy the solvability condition (3.2a).

We are now going to prove the validity of the condition (3.2d) for the source terms of the fast problem
(5.1).

Lemma 5.2 (Compatibility of the divergence source term). Under the induction assumption H(m), there
holds:

(5.14) ∂Y3F
m,±
6 + ξj ∂θF

m,±
3+j − τ ∂θF

m,±
8 = 0 .
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Proof of Lemma 5.2. We start by recalling the expressions of the source terms Fm,±3+α and Fm,±8 . In all
the proof, we omit to recall the superscripts ± in order to clarify the expressions below. It should be
understood of course that the calculations are done on either side of the interface Γ0. The source term
Fm8 associated with the fast divergence constraint on the magnetic field reads:

Fm8 = −∇ ·Hm +
∑

`1+`2=m+2

∂θψ
`1 ∂Y3ξj H

`2
j +

∑
`1+`2=m+1

∂yjψ
`1 ∂Y3H

`2
j

+
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2 ∂y3ξj H

`3
j +

∑
`1+`2+`3=m

χ[`1] ∂yjψ
`2 ∂y3H

`3
j(5.15)

+
∑

`1+`2+`3=m

χ̇[`1] ψ`2 ∂y3H
`3
3 ,

while the tangential source terms Fm3+j read:

−Fm3+j =
(
∂t + u0

j′ ∂yj′
)
Hm
j −H0

j′ ∂yj′u
m
j − u0

j ∇ ·Hm +H0
j ∇ · um

+
∑

`1+`2=m+2

∂θψ
`1
(
b ∂Y3u

`2
j − c ∂Y3H`2

j −H0
j ∂Y3ξj′ u

`2
j′ + u0

j ∂Y3ξj′ H
`2
j′
)

+
∑

`1+`2=m+1

∂yj′ψ
`1
(
H0
j′ ∂Y3u

`2
j − u0

j′ ∂Y3H
`2
j −H0

j ∂Y3u
`2
j′ + u0

j ∂Y3H
`2
j′
)

−
∑

`1+`2=m+1

∂tψ
`1 ∂Y3H

`2
j

+
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2
(
b ∂y3u

`3
j − c ∂y3H`3

j −H0
j ∂y3ξj′ u

`3
j′ + u0

j ∂y3ξj′ H
`3
j′
)

+
∑

`1+`2+`3=m

χ[`1] ∂yj′ψ
`2
(
H0
j′ ∂y3u

`3
j − u0

j′ ∂y3H
`3
j −H0

j ∂y3u
`3
j′ + u0

j ∂y3H
`3
j′
)

−
∑

`1+`2+`3=m

χ[`1] ∂tψ
`2 ∂y3H

`3
j +

∑
`1+`2+`3=m

χ̇[`1] ψ`2
(
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+`2=m+1
`1,`2≥1

∂θ
(
ξj′ u

`1
j′ H

`2
j − ξj′ H`1

j′ u
`2
j

)
+ ∂Y3

(
u`13 H`2

j −H`1
3 u`2j

)
(5.16)

+
∑

`1+`2=m
`1,`2≥1

∇ ·
(
H`1
j u`2 − u`1j H`2

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ξj′ ∂Y3

(
u`2j H

`3
j′ −H`2

j u`3j′
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yj′ψ
`1 ∂Y3

(
u`2j H

`3
j′ −H`2

j u`3j′
)

+
∑

`1+···+`4=m+1
`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3

(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+
∑

`1+···+`4=m
`3,`4≥1

χ[`1] ∂yj′ψ
`2 ∂y3

(
u`3j H

`4
j′ −H`3

j u`4j′
)

+
∑

`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
u`3j H

`4
3 −H`3

j u`43
)
.

In (5.16) and in all what follows, the symbol ∇· refers to the divergence with respect to the y variable.
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Eventually, the normal source term Fm6 reads:

−Fm6 =
(
∂t + u0

j ∂yj
)
Hm

3 −H0
j ∂yju

m
3 +

∑
`1+`2=m+2

∂θψ
`1
(
b ∂Y3u

`2
3 − c ∂Y3H`2

3

)
+

∑
`1+`2=m+1

H0
j ∂yjψ

`1 ∂Y3u
`2
3 −

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3H

`2
3

+
∑

`1+`2+`3=m+1

χ[`1] ∂θψ
`2
(
b ∂y3u

`3
3 − c ∂y3H`3

3

)
+

∑
`1+`2+`3=m

χ[`1]
(
H0
j ∂yjψ

`2 ∂y3u
`3
3 −

(
∂t + u0

j ∂yj
)
ψ`2 ∂y3H

`3
3

)
+

∑
`1+`2=m+1
`1,`2≥1

ξj ∂θ
(
u`1j H

`2
3 −H`1

j u`23
)

+
∑

`1+`2=m
`1,`2≥1

∂yj
(
u`1j H

`2
3 −H`1

j u`23
)

(5.17)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ξj ∂Y3

(
u`23 H`3

j −H`2
3 u`3j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂Y3

(
u`23 H`3

j −H`2
3 u`3j

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ[`1] ∂θψ
`2 ξj ∂y3

(
u`33 H`4

j −H`3
3 u`4j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3

(
u`33 H`4

j −H`3
3 u`4j

)
.

We now define the quantity:

Dm := ∂Y3F
m
6 + ξj ∂θF

m
3+j − τ ∂θFm8 ,

and the goal of course is to show that Dm vanishes under the induction assumption H(m). The calculation
splits again in several steps.

• Step 1. Collecting the terms.
Let us first observe that the above highlighted blue terms in Fm3+α contribute to zero in the calculation

of Dm (since they correspond to a fast curl of which we take the fast divergence). We also note that the
red terms in Fm3+j drop out for symmetry reasons when we compute the linear combination ξj F

m
3+j , and

the green terms also drop out when we compute ξj F
m
3+j − τ Fm8 . For the following calculations, it is also

useful to recall that the profiles ψµ only depend on (t, y′, θ), the functions χ[`] depend on (t, y, θ), and the
profiles U `,± depend on all variables (t, y, Y3, θ). Using the fast problems (H(m)− 2) that are satisfied at
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the previous steps of the induction, we are left (!) with the following expression for Dm:

Dm = −∂tFm−1
8 + ∂yαF

m−1
3+α −

∑
`1+`2=m+1

∂θψ
`1 ∂Y3

(
ξj F

`2
3+j − τ F `28

)
+

∑
`1+`2=m+1

∂t∂θψ
`1 ξj ∂Y3H

`2
j +

∑
`1+`2=m

∂tψ
`1 ∂Y3F

`2
8

+
∑

`1+`2=m+1

∂yj∂θψ
`1
(
u0
j ξj′ ∂Y3H

`2
j′ −H0

j ξj′ ∂Y3u
`2
j′ + b ∂Y3u

`2
j − c ∂Y3H`2

j

)
−

∑
`1+`2=m

∂yjψ
`1 ∂Y3F

`2
3+j −

∑
`1+`2+`3=m

χ[`1] ∂θψ
`2 ∂y3

(
ξj F

`3
3+j − τ F `38

)
+

∑
`1+`2+`3=m

χ[`1] ∂t∂θψ
`2 ξj ∂y3H

`3
j +

∑
`1+`2+`3=m−1

χ[`1] ∂tψ
`2 ∂y3F

`3
8

+
∑

`1+`2+`3=m

χ[`1] ∂yj∂θψ
`2
(
u0
j ξj′ ∂y3H

`3
j′ −H0

j ξj′ ∂y3u
`3
j′ + b ∂y3u

`3
j − c ∂y3H`3

j

)
−

∑
`1+`2+`3=m−1

χ[`1] ∂yjψ
`2 ∂y3F

`3
3+j

+
∑

`1+`2=m
`1,`2≥1

∂yj∂Y3
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2=m
`1,`2≥1

∇ · ∂θ
(
ξj u

`1
j H

`2 − ξj H`1
j u`2

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂2

Y3

(
H`2

3 ξj u
`3
j − u`23 ξj H

`3
j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂2

Y3

(
H`2

3 u`3j − u`23 H`3
j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂θ∂Y3

(
u`2j ξj′ H

`3
j′ −H`2

j ξj′ u
`3
j′
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yj∂θψ
`1 ∂Y3

(
u`2j ξj′ H

`3
j′ −H`2

j ξj′ u
`3
j′
)(5.18)

+
∑

`1+···+`4=m+1
`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3∂Y3

(
H`3

3 ξj u
`4
j − u`33 ξj H

`4
j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂Y3

(
H`3

3 u`4j − u`33 H`4
j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂θ

(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+
∑

`1+···+`4=m
`3,`4≥1

χ[`1] ∂yj∂θψ
`2 ∂y3

(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+
∑

`1+`2+`3=m

∂θχ
[`1] ∂tψ

`2 ξj ∂y3H
`3
j

+
∑

`1+`2+`3=m

∂θχ
[`1] ∂yjψ

`2
(
u0
j ξj′ ∂y3H

`3
j′ −H0

j ξj′ ∂y3u
`3
j′ + b ∂y3u

`3
j − c ∂y3H`3

j

)
+

∑
`1+···+`4=m
`3,`4≥1

∂θχ
[`1] ∂yjψ

`2 ∂y3
(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+ ∂θ

{ ∑
`1+`2+`3=m

χ̇[`1] ψ`2
(
b ∂y3u

`3
3 − c ∂y3H`3

3

)
+

∑
`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
ξj H

`3
j u`43 − ξj u`3j H`4

3

)}
.
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• Step 2. Substituting in the fast derivatives.
There is now a series of substitutions that we need to make in order to use the fast problems that

have already been solved at the previous steps of the induction. Namely, we proceed with the following
manipulations in the decomposition (5.18) of Dm by using (5.16) and (5.15):

• we collect the green terms and substitute the value of ξj F
`2
3+j − τ F `28 ,

• we collect the brown terms and substitute the value of F `23+j ,

• we substitute the value of F `28 in the orange term.

For possible intermediate verification of the interested reader, let us give the detailed expression of these
first manipulations. We isolate the green, brown and orange terms in Dm, and therefore introduce the
quantity:

Dm
1 := −

∑
`1+`2=m+1

∂θψ
`1 ∂Y3

(
ξj F

`2
3+j − τ F `28

)
−

∑
`1+`2=m

∂yjψ
`1 ∂Y3F

`2
3+j − ∂tψ`1 ∂Y3F `28

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ∂2

Y3

(
H`2

3 ξj u
`3
j − u`23 ξj H

`3
j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂2

Y3

(
H`2

3 u`3j − u`23 H`3
j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂θ∂Y3

(
u`2j ξj′ H

`3
j′ −H`2

j ξj′ u
`3
j′
)
.

After substituting, we get:

Dm
1 = −

∑
`1+`2=m

∂tψ
`1 ∇ · ∂Y3H`2 +

∑
`1+`2=m+1

∂θψ
`1 ξj ∂t∂Y3H

`2
j +

∑
`1+`2=m

∂yjψ
`1 ∂t∂Y3H

`2
j

+
∑

`1+`2=m+1

∂θψ
`1
(
u0
j ξj′ ∂yj∂Y3H

`2
j′ −H0

j ξj′ ∂yj∂Y3u
`2
j′ + b∇ · ∂Y3u`2 − c∇ · ∂Y3H`2

)
+

∑
`1+`2=m

∂yjψ
`1
(
u0
j′ ∂yj′∂Y3H

`2
j −H0

j′ ∂yj′∂Y3u
`2
j +H0

j ∇ · ∂Y3u`2 − u0
j ∇ · ∂Y3H`2

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂θψ
`1 ∇ · ∂Y3

(
ξj H

`2
j u`3 − ξj u`2j H`3

)
+

∑
`1+`2+`3=m
`2,`3≥1

∂yjψ
`1 ∇ · ∂Y3

(
H`2
j u`3 − u`2j H`3

)
(5.19)

+
∑

`1+···+`4=m+1

χ̇[`1] ψ`2 ∂θψ
`3
(
c ∂y3∂Y3H

`4
3 − b ∂y3∂Y3u`43

)
+

∑
`1+···+`4=m

χ̇[`1] ψ`2
((
∂t + u0

j ∂yj
)
ψ`3 ∂y3∂Y3H

`4
3 −H0

j ∂yjψ
`3 ∂y3∂Y3u

`4
3

)
+

∑
`1+···+`5=m+1

`4,`5≥1

χ̇[`1] ψ`2 ∂θψ
`3 ∂y3∂Y3

(
H`4

3 ξj u
`5
j − u`43 ξj H

`5
j

)
+

∑
`1+···+`5=m
`4,`5≥1

χ̇[`1] ψ`2 ∂yjψ
`3 ∂y3∂Y3

(
H`4

3 u`5j − u`43 H`5
j

)
.
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Some terms in the decomposition (5.19) have been highlighted in red in order to exhibit as clearly as
possible a cancellation with the decomposition for the next term Dm

2 which we are just going to introduce
now.

• Step 3. Substituting in the slow derivatives.

In the previous step, we have made all substitutions in the terms ∂Y3F
`, and collected various other

terms that cancel after making these substitutions. Once this is done, we now need to make substitutions
in some slow derivatives. The first, and actually longest, task is to substitute the expressions of Fm−1

3+α

and Fm−1
8 in the pink terms of (5.18), using again (5.15), (5.16), (5.17). Since some cancellations are

going to appear, it is useful to incorporate the blue terms of (5.18) with the pink. In other words, we
introduce the quantity:

Dm
2 := − ∂tFm−1

8 + ∂yαF
m−1
3+α +

∑
`1+`2=m+1

∂t∂θψ
`1 ξj ∂Y3H

`2
j +

∑
`1+`2+`3=m

χ[`1] ∂t∂θψ
`2 ξj ∂y3H

`3
j

+
∑

`1+`2=m+1

∂yj∂θψ
`1
(
u0
j ξj′ ∂Y3H

`2
j′ −H0

j ξj′ ∂Y3u
`2
j′ + b ∂Y3u

`2
j − c ∂Y3H`2

j

)
+

∑
`1+`2+`3=m

χ[`1] ∂yj∂θψ
`2
(
u0
j ξj′ ∂y3H

`3
j′ −H0

j ξj′ ∂y3u
`3
j′ + b ∂y3u

`3
j − c ∂y3H`3

j

)
+

∑
`1+`2=m
`1,`2≥1

∂yj∂Y3
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2=m
`1,`2≥1

∇ · ∂θ
(
ξj u

`1
j H

`2 − ξj H`1
j u`2

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yj∂θψ
`1 ∂Y3

(
u`2j ξj′ H

`3
j′ −H`2

j ξj′ u
`3
j′
)

+
∑

`1+···+`4=m
`3,`4≥1

χ[`1] ∂yj∂θψ
`2 ∂y3

(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)
.

Substituting the expressions of Fm−1
3+α and Fm−1

8 in the above definition of Dm
2 and rearranging, Dm

2
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decomposes as follows:

Dm
2 =

∑
`1+`2=m

∂tψ
`1 ∇ · ∂Y3H`2 −

∑
`1+`2=m+1

∂θψ
`1 ξj ∂t∂Y3H

`2
j −

∑
`1+`2=m

∂yjψ
`1 ∂t∂Y3H

`2
j

+
∑

`1+`2=m+1

∂θψ
`1
(
H0
j ξj′ ∂yj∂Y3u

`2
j′ − u0

j ξj′ ∂yj∂Y3H
`2
j′ + c∇ · ∂Y3H`2 − b∇ · ∂Y3u`2

)
+

∑
`1+`2+`3=m

χ[`1] ∂θψ
`2
(
H0
j ξj′ ∂yj∂y3u

`3
j′ − u0

j ξj′ ∂yj∂y3H
`3
j′ + c∇ · ∂y3H`3 − b∇ · ∂y3u`3

)
+

∑
`1+`2=m

∂yjψ
`1
(
H0
j′ ∂yj′∂Y3u

`2
j − u0

j′ ∂yj′∂Y3H
`2
j + u0

j ∇ · ∂Y3H`2 −H0
j ∇ · ∂Y3u`2

)
+

∑
`1+`2+`3=m−1

χ[`1] ∂yjψ
`2
(
H0
j′ ∂yj′∂y3u

`3
j − u0

j′ ∂yj′∂y3H
`3
j + u0

j ∇ · ∂y3H`3 −H0
j ∇ · ∂y3u`3

)
+

∑
`1+`2+`3=m−1

χ[`1] ∂tψ
`2 ∇ · ∂y3H`3 +

∑
`1+`2+`3=m−1

∂yαχ
[`1] ∂tψ

`2 ∂y3H
`3
α

+
∑

`1+`2+`3=m

∂yjχ
[`1] ∂θψ

`2
(
H0
j ξj′ ∂y3u

`3
j′ − u0

j ξj′ ∂y3H
`3
j′ + c ∂y3H

`3
j − b ∂y3u`3j

)
+

∑
`1+`2+`3=m−1

∂yj′χ
[`1] ∂yjψ

`2
(
H0
j′ ∂y3u

`3
j − u0

j′ ∂y3H
`3
j + u0

j ∂y3H
`3
j′ −H0

j ∂y3u
`3
j′
)

+
∑

`1+`2+`3=m

∂y3χ
[`1] ∂θψ

`2
(
c ∂y3H

`3
3 − b ∂y3u`33

)
+

∑
`1+`2+`3=m−1

∂y3χ
[`1] ∂yjψ

`2
(
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂θψ
`1 ∇ · ∂Y3

(
ξj u

`2
j H

`3 − ξj H`2
j u`3

)
+

∑
`1+`2+`3=m
`2,`3≥1

∂yjψ
`1 ∇ · ∂Y3

(
u`2j H

`3 −H`2
j u`3

)
(5.20)

+
∑

`1+···+`4=m
`3,`4≥1

χ[`1] ∂θψ
`2 ∇ · ∂y3

(
ξj u

`3
j H

`4 − ξj H`3
j u`4

)
−

∑
`1+`2+`3=m

χ[`1] ∂θψ
`2 ξj ∂t∂y3H

`3
j

+
∑

`1+···+`4=m−1
`2,`3≥1

χ[`1] ∂yjψ
`2 ∇ · ∂y3

(
u`3j H

`4 −H`3
j u`4

)
−

∑
`1+`2+`3=m−1

χ[`1] ∂yjψ
`2 ∂t∂y3H

`3
j

+
∑

`1+···+`4=m
`3,`4≥1

∂yαχ
[`1] ∂θψ

`2 ∂y3
(
ξj u

`3
j H

`4
α − ξj H`3

j u`4α
)

+
∑

`1+···+`4=m−1
`2,`3≥1

∂yαχ
[`1] ∂yjψ

`2 ∂y3
(
u`3j H

`4
α −H`3

j u`4α
)

+ ∂yj

{ ∑
`1+`2+`3=m−1

χ̇[`1] ψ`2
(
H0
j ∂y3u

`3
3 − u0

j ∂y3H
`3
3

)}
+ ∂yj

{ ∑
`1+···+`4=m−1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
H`3
j u`43 − u`3j H`4

3

)}
−

∑
`1+`2+`3=m

∂tχ
[`1] ∂θψ

`2 ξj ∂y3H
`3
j

−
∑

`1+`2+`3=m−1

∂tχ
[`1] ∂yjψ

`2 ∂y3H
`3
j − ∂t

{ ∑
`1+`2+`3=m−1

χ̇[`1] ψ`2 ∂y3H
`3
3

}
.

Those terms in the decomposition (5.20) that have been highlighted in red cancel exactly with their
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opposite which has also been highlighted in red in the decomposition (5.19). Other colors used to highlight
some of the terms in (5.20) will be explained in the following step of the proof.

• Step 4. Simplifying and rearranging.
Up to now, we have decomposed the quantity Dm into the sum of three quantities, namely we have

written:
Dm = Dm

1 + Dm
2 + Dm

3 ,

where Dm
1 is given by (5.19), Dm

2 is given by (5.20), and Dm
3 is the sum of all black terms in (5.18), that

is:

Dm
3 := −

∑
`1+`2+`3=m

χ[`1] ∂θψ
`2 ∂y3

(
ξj F

`3
3+j − τ F `38

)
+

∑
`1+`2+`3=m−1

χ[`1] ∂tψ
`2 ∂y3F

`3
8

−
∑

`1+`2+`3=m−1

χ[`1] ∂yjψ
`2 ∂y3F

`3
3+j +

∑
`1+···+`4=m+1

`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3∂Y3

(
H`3

3 ξj u
`4
j − u`33 ξj H

`4
j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂Y3

(
H`3

3 u`4j − u`33 H`4
j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂θ

(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+
∑

`1+`2+`3=m

∂θχ
[`1] ∂tψ

`2 ξj ∂y3H
`3
j(5.21)

+
∑

`1+`2+`3=m

∂θχ
[`1] ∂yjψ

`2
(
u0
j ξj′ ∂y3H

`3
j′ −H0

j ξj′ ∂y3u
`3
j′ + b ∂y3u

`3
j − c ∂y3H`3

j

)
+

∑
`1+···+`4=m
`3,`4≥1

∂θχ
[`1] ∂yjψ

`2 ∂y3
(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+ ∂θ

{ ∑
`1+`2+`3=m

χ̇[`1] ψ`2
(
b ∂y3u

`3
3 − c ∂y3H`3

3

)}
+ ∂θ

{ ∑
`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
ξj H

`3
j u`43 − ξj u`3j H`4

3

)}
.

It is now time to regroup some of the terms from Dm
2 and Dm

3 together in order to further substitute
and simplify Dm. Observe that all terms in the expressions (5.19), (5.20) and (5.21) involve the functions
χ[`] or χ̇[`], whose symmetry properties will be crucial for the final argument of the proof. But before
exhibiting those symmetry properties, let us rearrange the expression of Dm. We are now going to
decompose the quantity Dm under the form:

Dm = Em
1 + Em

2 + Em
3 + Em

4 ,

where:

• Em
1 corresponds to the collection of the blue terms in Dm

2 and Dm
3 ,

• Em
2 corresponds to the collection of the green terms in Dm

2 and Dm
3 ,

• Em
3 corresponds to the collection of the orange terms in Dm

2 and Dm
3 ,

• Em
4 corresponds to the collection of all remaining (black) terms in Dm

1 , Dm
2 and Dm

3 .
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In other words, we set:

Em
1 := −

∑
`1+`2+`3=m

χ[`1] ∂θψ
`2 ∂y3

(
ξj F

`3
3+j − τ F `38

)
−

∑
`1+`2+`3=m

χ[`1] ∂θψ
`2 ξj ∂t∂y3H

`3
j∑

`1+`2+`3=m

χ[`1] ∂θψ
`2
(
H0
j ξj′ ∂yj∂y3u

`3
j′ − u0

j ξj′ ∂yj∂y3H
`3
j′ + c∇ · ∂y3H`3 − b∇ · ∂y3u`3

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3∂Y3

(
H`3

3 ξj u
`4
j − u`33 ξj H

`4
j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂θψ
`2 ∇ · ∂y3

(
ξj u

`3
j H

`4 − ξj H`3
j u`4

)
,

Em
2 := −

∑
`1+`2+`3=m−1

χ[`1] ∂yjψ
`2 ∂y3F

`3
3+j −

∑
`1+`2+`3=m−1

χ[`1] ∂yjψ
`2 ∂t∂y3H

`3
j

+
∑

`1+`2+`3=m−1

χ[`1] ∂yjψ
`2
(
H0
j′ ∂yj′∂y3u

`3
j − u0

j′ ∂yj′∂y3H
`3
j + u0

j ∇ · ∂y3H`3 −H0
j ∇ · ∂y3u`3

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂Y3

(
H`3

3 u`4j − u`33 H`4
j

)
+

∑
`1+···+`4=m
`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂θ

(
u`3j ξj′ H

`4
j′ −H`3

j ξj′ u
`4
j′
)

+
∑

`1+···+`4=m−1
`2,`3≥1

χ[`1] ∂yjψ
`2 ∇ · ∂y3

(
u`3j H

`4 −H`3
j u`4

)
,

Em
3 :=

∑
`1+`2+`3=m−1

χ[`1] ∂tψ
`2 ∂y3

(
F `38 +∇ ·H`3

)
,
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and according to the expressions (5.19), (5.20) and (5.21), the final term Em
4 reads:

Em
4 :=

∑
`1+`2+`3=m−1

(
∂yjχ

[`1] ∂tψ
`2 − ∂tχ[`1] ∂yjψ

`2
)
∂y3H

`3
j +

∑
`1+`2+`3=m−1

∂y3χ
[`1] ∂tψ

`2 ∂y3H
`3
3

+
∑

`1+`2+`3=m

(
∂θχ

[`1] ∂tψ
`2 − ∂tχ[`1] ∂θψ

`2
)
ξj ∂y3H

`3
j

+
∑

`1+`2+`3=m

(
∂yjχ

[`1] ∂θψ
`2 − ∂θχ[`1] ∂yjψ

`2
) (
H0
j ξj′ ∂y3u

`3
j′ − u0

j ξj′ ∂y3H
`3
j′ + c ∂y3H

`3
j − b ∂y3u`3j

)
+

∑
`1+`2+`3=m

∂y3χ
[`1] ∂θψ

`2
(
c ∂y3H

`3
3 − b ∂y3u`33

)
+

∑
`1+`2+`3=m−1

∂yj′χ
[`1] ∂yjψ

`2
(
H0
j′ ∂y3u

`3
j − u0

j′ ∂y3H
`3
j + u0

j ∂y3H
`3
j′ −H0

j ∂y3u
`3
j′
)

+
∑

`1+`2+`3=m−1

∂y3χ
[`1] ∂yjψ

`2
(
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+···+`4=m
`3,`4≥1

(
∂yjχ

[`1] ∂θψ
`2 − ∂θχ[`1] ∂yjψ

`2
)
∂y3
(
H`3
j ξj′ u

`4
j′ − u`3j ξj′ H`4

j′
)

+
∑

`1+···+`4=m
`3,`4≥1

∂y3χ
[`1] ∂θψ

`2 ∂y3
(
ξj u

`3
j H

`4
3 − ξj H`3

j u`43
)

+
∑

`1+···+`4=m−1
`3,`4≥1

∂yj′χ
[`1] ∂yjψ

`2 ∂y3
(
u`3j H

`4
j′ −H`3

j u`4j′
)(5.22)

+
∑

`1+···+`4=m−1
`3,`4≥1

∂y3χ
[`1] ∂yjψ

`2 ∂y3
(
u`3j H

`4
3 −H`3

j u`43
)

+ ∂yj

{ ∑
`1+`2+`3=m−1

χ̇[`1] ψ`2
(
H0
j ∂y3u

`3
3 − u0

j ∂y3H
`3
3

)}
+ ∂yj

{ ∑
`1+···+`4=m−1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
H`3
j u`43 − u`3j H`4

3

)}
− ∂t

{ ∑
`1+`2+`3=m−1

χ̇[`1] ψ`2 ∂y3H
`3
3

}

+ ∂θ

{ ∑
`1+`2+`3=m

χ̇[`1] ψ`2
(
b ∂y3u

`3
3 − c ∂y3H`3

3

)
+

∑
`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
ξj H

`3
j u`43 − ξj u`3j H`4

3

)}

+
∑

`1+···+`4=m+1

χ̇[`1] ψ`2 ∂θψ
`3
(
c ∂y3∂Y3H

`4
3 − b ∂y3∂Y3u`43

)
+

∑
`1+···+`4=m

χ̇[`1] ψ`2
((
∂t + u0

j ∂yj
)
ψ`3 ∂y3∂Y3H

`4
3 −H0

j ∂yjψ
`3 ∂y3∂Y3u

`4
3

)
+

∑
`1+···+`5=m+1

`4,`5≥1

χ̇[`1] ψ`2 ∂θψ
`3 ∂y3∂Y3

(
H`4

3 ξj u
`5
j − u`43 ξj H

`5
j

)
+

∑
`1+···+`5=m
`4,`5≥1

χ̇[`1] ψ`2 ∂yjψ
`3 ∂y3∂Y3

(
H`4

3 u`5j − u`43 H`5
j

)
.

Some terms in the expression of Em
4 have been highlighted in blue in order to exhibit some symmetry

properties. These terms will be dealt with later on thanks to some specific structure of the functions χ[`].
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• Step 5. Substituting in the slow derivatives, and (partially) simplifying.

We use again the expressions (5.16), (5.15) of F `3+j and F `8 to simplify the expressions of Em
1 and Em

2 .
Going straight to the final result, we end up with:

Em
1 = −

∑
`1+···+`4=m+1

χ[`1] ∂tψ
`2 ∂θψ

`3 ξj ∂y3∂Y3H
`4
j

+
∑

`1+···+`4=m+1

χ[`1] ∂yjψ
`2 ∂θψ

`3
(
H0
j ξj′ ∂y3∂Y3u

`4
j′ − u0

j ξj′ ∂y3∂Y3H
`4
j′ + c ∂y3∂Y3H

`4
j − b ∂y3∂Y3u`4j

)
−

∑
`1+···+`5=m

χ[`1] ∂tψ
`2 ∂θψ

`3 ∂y3

(
χ[`4] ∂y3

(
ξj H

`5
j

))
+

∑
`1+···+`5=m

χ[`1] ∂yjψ
`2 ∂θψ

`3 ∂y3

(
χ[`4]

(
H0
j ξj′ ∂y3u

`5
j′ − u0

j ξj′ ∂y3H
`5
j′ + c ∂y3H

`5
j − b ∂y3u`5j

))
+

∑
`1+···+`5=m+1

`4,`5≥1

χ[`1] ∂yjψ
`2 ∂θψ

`3 ∂y3∂Y3
(
H`4
j ξj′ u

`5
j′ − u`4j ξj′ H`5

j′
)

+
∑

`1+···+`6=m
`5,`6≥1

χ[`1] ∂yjψ
`2 ∂θψ

`3 ∂y3

(
χ[`4] ∂y3

(
H`5
j ξj′ u

`6
j′ − u`5j ξj′ H`6

j′
))

+
∑

`1+···+`5=m

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4]

(
c ∂y3H

`5
3 − b ∂y3u`53

))
+

∑
`1+···+`6=m
`5,`6≥1

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 ξj u
`6
j − u`53 ξj H

`6
j

))
,

and

Em
2 = −

∑
`1+···+`4=m

χ[`1] ∂tψ
`2 ∂yjψ

`3 ∂y3∂Y3H
`4
j

−
∑

`1+···+`4=m+1

χ[`1] ∂yjψ
`2 ∂θψ

`3
(
H0
j ξj′ ∂y3∂Y3u

`4
j′ − u0

j ξj′ ∂y3∂Y3H
`4
j′ + c ∂y3∂Y3H

`4
j − b ∂y3∂Y3u`4j

)
−

∑
`1+···+`5=m−1

χ[`1] ∂tψ
`2 ∂yjψ

`3 ∂y3
(
χ[`4] ∂y3H

`5
j

)
−

∑
`1+···+`5=m

χ[`1] ∂yjψ
`2 ∂θψ

`3 ∂y3

(
χ[`4]

(
H0
j ξj′ ∂y3u

`5
j′ − u0

j ξj′ ∂y3H
`5
j′ + c ∂y3H

`5
j − b ∂y3u`5j

))
−

∑
`1+···+`5=m+1

`4,`5≥1

χ[`1] ∂yjψ
`2 ∂θψ

`3 ∂y3∂Y3
(
H`4
j ξj′ u

`5
j′ − u`4j ξj′ H`5

j′
)

−
∑

`1+···+`6=m
`5,`6≥1

χ[`1] ∂yjψ
`2 ∂θψ

`3 ∂y3

(
χ[`4] ∂y3

(
H`5
j ξj′ u

`6
j′ − u`5j ξj′ H`6

j′
))

+
∑

`1+···+`5=m−1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4]

(
u0
j ∂y3H

`5
3 −H0

j ∂y3u
`5
3

))
+

∑
`1+···+`6=m−1

`5,`6≥1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 u`6j − u`53 H`6
j

))
.

Let us observe that in the above expressions of Em
1 and Em

2 , the pink terms in the decomposition of Em
1

cancel exactly with the pink terms in the decomposition of Em
2 .
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We also use the expression of F `8 in Em
3 and get:

Em
3 =

∑
`1+···+`4=m+1

χ[`1] ∂tψ
`2 ∂θψ

`3 ξj ∂y3∂Y3H
`4
j +

∑
`1+···+`5=m

χ[`1] ∂tψ
`2 ∂θψ

`3 ∂y3

(
χ[`4] ∂y3

(
ξj H

`5
j

))
+

∑
`1+···+`4=m

χ[`1] ∂tψ
`2 ∂yjψ

`3 ∂y3∂Y3H
`4
j +

∑
`1+···+`5=m−1

χ[`1] ∂tψ
`2 ∂yjψ

`3 ∂y3
(
χ[`4] ∂y3H

`5
j

)
+

∑
`1+···+`5=m−1

χ[`1] ψ`2 ∂tψ
`3 ∂y3

(
χ̇[`4] ∂y3H

`5
3

)
.

The green terms in the decomposition of Em
3 cancel exactly with the green terms in the decompositions

of Em
1 and Em

2 . Summing the contributions Em
1 , Em

2 , Em
3 , and canceling the terms with the same color,

we get:

Dm = Em
4 +

∑
`1+···+`5=m

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4]

(
c ∂y3H

`5
3 − b ∂y3u`53

))
+

∑
`1+···+`6=m
`5,`6≥1

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 ξj u
`6
j − u`53 ξj H

`6
j

))

+
∑

`1+···+`5=m−1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4]

(
u0
j ∂y3H

`5
3 −H0

j ∂y3u
`5
3

))
(5.23)

+
∑

`1+···+`6=m−1
`5,`6≥1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 u`6j − u`53 H`6
j

))

+
∑

`1+···+`5=m−1

χ[`1] ψ`2 ∂tψ
`3 ∂y3

(
χ̇[`4] ∂y3H

`5
3

)
.

• Step 6. The first symmetry formula.
In order to go further in the simplification of the quantity Dm, we need to exhibit some relations

between the functions χ[`] and the profiles ψµ. Until now, we have never used any relation between these
functions, which is the reason why there remain so many terms in the decompositions (5.22), (5.23). Let
us recall that the functions χ[`] are defined as the coefficients in the asymptotic expansion (2.8), where
t, y′, x3, y3, θ are related by (2.7) (which needs to be inverted in order to get x3 as a function of all other
variables). In particular, it should be kept in mind that χ[`] can be expressed as a sum of products of the
functions ψ2, . . . , ψ`. The first symmetry formula is as follows.

Lemma 5.3 (The first symmetry formula). The functions χ[`] and ψµ satisfy the relation:

(5.24) ∀ ` ≥ 0 ,
∑

`1+`2=`

∂θχ
[`1] ∂tψ

`2 =
∑

`1+`2=`

∂tχ
[`1] ∂θψ

`2 ,

and similar relations with any couple of tangential partial derivatives chosen among {∂t, ∂y1 , ∂y2 , ∂θ}.
For convenience, we have used in (5.24) the convention ψ0 = ψ1 = 0, see (1.5). Since χ[0] = χ(y3),

both sums actually run over the couples of integers (`1, `2) with `1 ≥ 1, `2 ≥ 2 and `1 + `2 = `.

We postpone the proof of Lemma 5.3 to Appendix B and rather examine right now its implications
on the decomposition (5.22). Applying Lemma 5.3 and possibly using a change of index j ↔ j′, we find
that all blue terms in the decomposition (5.22) vanish. In view of (5.23), this means that Dm can be
written as the sum of the black terms on the right hand side of (5.22) and of the right hand side of (5.23).
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Expanding some of the partial derivatives on the right hand side of (5.22) and regrouping, we derive the
expression:

Dm =
∑

`1+`2+`3=m

(
∂y3χ

[`1] ∂θψ
`2 − ∂θ(χ̇[`1] ψ`2)

) (
c ∂y3H

`3
3 − b ∂y3u`33

)
+

∑
`1+`2+`3=m

(
∂y3χ

[`1] ∂yjψ
`2 − ∂yj (χ̇[`1] ψ`2)

) (
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+`2+`3=m

(
∂y3χ

[`1] ∂tψ
`2 − ∂t(χ̇[`1] ψ`2)

)
∂y3H

`3
3

+
∑

`1+···+`4=m
`3,`4≥1

(
∂y3χ

[`1] ∂θψ
`2 − ∂θ(χ̇[`1] ψ`2)

)
∂y3
(
ξj u

`3
j H

`4
3 − ξj H`3

j u`43
)

+
∑

`1+···+`4=m−1
`3,`4≥1

(
∂y3χ

[`1] ∂yjψ
`2 − ∂yj (χ̇[`1] ψ`2)

)
∂y3
(
u`3j H

`4
3 −H`3

j u`43
)

+
∑

`1+`2+`3=m

χ̇[`1] ψ`2 ∂y3
(
b ∂θu

`3
3 − c ∂θH`3

3

)
+

∑
`1+`2+`3=m−1

χ̇[`1] ψ`2 ∂y3
(
H0
j ∂yju

`3
3 − (∂t + u0

j ∂yj )H
`3
3

)
+

∑
`1+···+`4=m
`3,`4≥1

χ̇[`1] ψ`2 ∂y3∂θ
(
ξj H

`3
j u`43 − ξj u`3j H`4

3

)
+

∑
`1+···+`4=m−1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3∂yj
(
H`3
j u`43 − u`3j H`4

3

)
+

∑
`1+···+`4=m+1

χ̇[`1] ψ`2 ∂y3

{
∂θψ

`3
(
c ∂Y3H

`4
3 − b ∂Y3u`43

)}
+

∑
`1+···+`4=m

χ̇[`1] ψ`2 ∂y3

{(
∂t + u0

j ∂yj
)
ψ`3 ∂Y3H

`4
3 −H0

j ∂yjψ
`3 ∂Y3u

`4
3

}
+

∑
`1+···+`5=m+1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3

{
∂θψ

`3 ∂Y3
(
ξj u

`4
j H

`5
3 − ξj H`4

j u`53
)}

+
∑

`1+···+`5=m
`3,`4≥1

χ̇[`1] ψ`2 ∂y3

{
∂yjψ

`3 ∂Y3
(
u`4j H

`5
3 −H`4

j u`53
)}

+
∑

`1+···+`5=m

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4]

(
c ∂y3H

`5
3 − b ∂y3u`53

))
+

∑
`1+···+`6=m
`5,`6≥1

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 ξj u
`6
j − u`53 ξj H

`6
j

))

+
∑

`1+···+`5=m−1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4]

(
u0
j ∂y3H

`5
3 −H0

j ∂y3u
`5
3

))
+

∑
`1+···+`6=m−1

`5,`6≥1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 u`6j − u`53 H`6
j

))

+
∑

`1+···+`5=m−1

χ[`1] ψ`2 ∂tψ
`3 ∂y3

(
χ̇[`4] ∂y3H

`5
3

)
.

In the above first orange term, we use the relation b ∂θu
`3
3 − c ∂θH`3

3 = −F `3−1
6 , which cancels all other
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orange terms and introduces five new remainders. Once this final (!) substitution has been performed,
the expression of Dm reads:

Dm =
∑

`1+`2+`3=m

(
∂y3χ

[`1] ∂θψ
`2 − ∂θ(χ̇[`1] ψ`2)

) (
c ∂y3H

`3
3 − b ∂y3u`33

)
+

∑
`1+`2+`3=m−1

(
∂y3χ

[`1] ∂yjψ
`2 − ∂yj (χ̇[`1] ψ`2)

) (
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+`2+`3=m−1

(
∂y3χ

[`1] ∂tψ
`2 − ∂t(χ̇[`1] ψ`2)

)
∂y3H

`3
3

+
∑

`1+···+`4=m
`3,`4≥1

(
∂y3χ

[`1] ∂θψ
`2 − ∂θ(χ̇[`1] ψ`2)

)
∂y3
(
ξj u

`3
j H

`4
3 − ξj H`3

j u`43
)

+
∑

`1+···+`4=m−1
`3,`4≥1

(
∂y3χ

[`1] ∂yjψ
`2 − ∂yj (χ̇[`1] ψ`2)

)
∂y3
(
u`3j H

`4
3 −H`3

j u`43
)

+
∑

`1+···+`5=m

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4]

(
c ∂y3H

`5
3 − b ∂y3u`53

))
+

∑
`1+···+`5=m−1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4]

(
u0
j ∂y3H

`5
3 −H0

j ∂y3u
`5
3

))
+

∑
`1+···+`5=m−1

χ[`1] ψ`2 ∂tψ
`3 ∂y3

(
χ̇[`4] ∂y3H

`5
3

)
+

∑
`1+···+`6=m
`5,`6≥1

χ[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 ξj u
`6
j − u`53 ξj H

`6
j

))

+
∑

`1+···+`6=m−1
`5,`6≥1

χ[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ̇[`4] ∂y3

(
H`5

3 u`6j − u`53 H`6
j

))

−
∑

`1+···+`5=m

χ̇[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ[`4]

(
c ∂y3H

`5
3 − b ∂y3u`53

))
−

∑
`1+···+`5=m−1

χ̇[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ[`4]

(
u0
j ∂y3H

`5
3 −H0

j ∂y3u
`5
3

))
−

∑
`1+···+`5=m−1

χ̇[`1] ψ`2 ∂tψ
`3 ∂y3

(
χ[`4] ∂y3H

`5
3

)
−

∑
`1+···+`6=m
`5,`6≥1

χ̇[`1] ψ`2 ∂θψ
`3 ∂y3

(
χ[`4] ∂y3

(
H`5

3 ξj u
`6
j − u`53 ξj H

`6
j

))

−
∑

`1+···+`6=m−1
`5,`6≥1

χ̇[`1] ψ`2 ∂yjψ
`3 ∂y3

(
χ[`4] ∂y3

(
H`5

3 u`6j − u`53 H`6
j

))
.

There are overall fifteen terms, which we can match into five groups, each of three terms. For instance,
the two first groups have been highlighted in red and green. Once a last cancellation in the y3-derivative
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has been made, we are led to the final expression of Dm:

Dm =
∑

`1+`2=m

X`1θ
(
c ∂y3H

`2
3 − b ∂y3u`23

)
+

∑
`1+`2=m−1

X`1j
(
u0
j ∂y3H

`2
3 −H0

j ∂y3u
`2
3

)
+

∑
`1+`2=m−1

X`1t ∂y3H
`3
3 +

∑
`1+`2+`3=m
`2,`3≥1

X`1θ ∂y3
(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m−1
`2,`3≥1

X`1j ∂y3
(
u`2j H

`3
3 −H`2

j u`33
)
,

with

(5.25) ∀ ` = 0, . . . ,m− 1 ,

X`θ :=
∑

`1+`2=`

∂y3χ
[`1] ∂θψ

`2 − ∂θ
(
χ̇[`1] ψ`2

)
+

∑
`1+···+`4=`

(
χ[`1] ∂y3χ̇

[`2] − χ̇[`1] ∂y3χ
[`2]
)
ψ`3 ∂θψ

`4 ,

and similar definitions for X`1, X`2, X`t by just considering another tangential derivative acting on the front
profiles ψ`2 or ψ`4 in (5.25).

• Step 7. The second symmetry formula. Conclusion.
The final argument comes from a second symmetry formula which relates the y3-derivatives of the

functions χ[`] and χ̇[`] together with tangential derivatives of the front profiles ψµ.

Lemma 5.4 (The second symmetry formula). The functions X`θ defined in (5.25) vanish, and similarly,
the functions X`1, X`2, X`t also vanish.

Since both Lemma 5.3 and Lemma 5.4 rely on combinatorial arguments that are independent of the
analysis of this Chapter, we also postpone the proof of Lemma 5.4 to Appendix B. (As the reader will see
in Appendix B, the result of Lemma 5.3 and Lemma 5.4 even holds if the first profile ψ1 does not vanish.)

Because of our final decomposition for the quantity Dm, the result of Lemma 5.4 implies Dm = 0,
which was exactly the relation we were aiming at. This completes the proof of Lemma 5.2 and shows that
the source terms of the fast problem (5.1) satisfy the solvability condition (3.2d).

We now know that the source terms (Fm,±, Fm,±8 , Gm) in (5.1) satisfy all five solvability conditions
(3.2) of Theorem 3.1. Since the solvability condition (3.2) does not involve the mean of the boundary
source term Ĝm(0), the existence of a solution to (5.1) does not depend on the choice of ψ̂m+1(0). However,
the solution itself will depend on the choice of ψ̂m+1(0), which is the reason why below we deal separately
with the zero Fourier mode of Um+1,±.

Rather than solving the fast problem (5.1) for all Fourier modes in θ, it is convenient to first solve
(5.1) for all non-zero Fourier modes in θ. Namely, we set:

Fm,±] :=
∑
k 6=0

F̂m,±(k) ei k θ , Fm,±8,] :=
∑
k 6=0

F̂m,±8 (k) ei k θ , Gm] :=
∑
k 6=0

Ĝm(k) ei k θ .

Observe in particular that Gm] is fully determined at this stage since it is independent of ψ̂m+1(0), which is
still unknown. Since the solvability conditions (3.2) represent linear conditions (with constant coefficients)
on the Fourier modes of the source terms for (3.1), we know from the induction assumption (H(m)),
Lemma 5.1 and Lemma 5.2 that the source terms (Fm,±] , Fm,±8,] , Gm] ) also satisfy the solvability conditions

(3.2) of Theorem 3.1. By applying Theorem 3.1, we can therefore construct a solution Um+1,± ∈ S± to
the following fast problem (observe the slight difference with (5.1)):

(5.26)


L ±
f (∂)Um+1,± = Fm,±] , y ∈ Ω±0 , ±Y3 > 0 ,

∂Y3H
m+1,±

3 + ξj ∂θH
m+1,±
j = Fm,±8,] , y ∈ Ω±0 , ±Y3 > 0 ,

B+ Um+1,+|y3=Y3=0 +B−Um+1,−|y3=Y3=0 = Gm] .
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Let us already state the following result, which is crucial in view of showing that the condition
(H(m)− 3) will be satisfied for µ = m+ 1.

Lemma 5.5 (The top and bottom boundary conditions for non-zero Fourier modes). The solution
Um+1,± ∈ S± to (5.26) satisfies:

∂θU
m+1,±
3 |y3=±1 = ∂θH

m+1,±
3 |y3=±1 = 0 .

Proof of Lemma 5.5. The source term Fm,±] in (5.26) collects the non-zero Fourier modes in θ of Fm,±

whose expression is given in (2.11). Computing the limit Y3 → ±∞ and restricting to |y3| > 2/3 (recall
that all functions χ[`], χ̇[`] vanish for |y3| > 2/3 since the original cut-off function χ in (2.7) has compact
support in [−2/3, 2/3], see (B.32) and (B.33) in Appendix B), we get:

Fm,± = −(L±s (∂)Um,±)−
∑

`1+`2=m+1
`1,`2≥1

ξj Aj(U `1,±, ∂θU `2,±)−
∑

`1+`2=m
`1,`2≥1

Aα(U `1,±, ∂yαU
`2,±) .

We know furthermore from (H(m)− 2) that the functions U1,±, . . . , Um,± satisfy for |y3| > 2/3:

∀µ = 1, . . . ,m , A ± ∂θU
µ,± = Fµ−1,± .

The argument is now the following: since F 0,± = 0 and since A ± are invertible (see Appendix A), we
have ∂θU

1,± = 0 for |y3| > 2/3. Specifying the above expression of Fm,± to m = 1 shows that ∂θF
1,± = 0

for |y3| > 2/3, hence ∂2
θU

2,± = 0 for |y3| > 2/3 and therefore ∂θU
2,± = 0 (which implies in particular

F 1,± = 0 for |y3| > 2/3). We then show inductively that ∂θU
1,± = · · · = ∂θU

m,± = 0 for |y3| > 2/3, and
this implies ultimately ∂θF

m,± = 0 for |y3| > 2/3. By computing the limit Y3 → ±∞ in (5.26), we have:

A ± ∂θUm+1,± = Fm,± ,

and therefore ∂θUm+1,± = 0 for |y3| > 2/3. This proves the result of Lemma 5.5 (and actually even
more).

The next corrector (Um+1,±, ψm+2) in the induction process will be constructed in the following way:

(5.27) Um+1,± := Um+1,± + Ûm+1,±(0)±
∑
k 6=0

|k| ψ̂m+2(t, y′, k)χ(y3) e∓ |k|Y3+i k θ R±(k) ,

where the vectors R±(k) are defined in (A.5), and we still need to explain how we construct ψ̂m+1(0) ∈
H∞, Ûm+1,±(0) ∈ S± and ψm+2

] ∈ H∞] . To make sure that (5.1) is satisfied, we need ψ̂m+1(0) and

Ûm+1,±(0) to verify:

(5.28)


A±3 ∂Y3Û

m+1,±(0) = F̂m,±(0) , y ∈ Ω±0 , ±Y3 > 0 ,

∂Y3Ĥ
m+1,±
3 (0) = F̂m,±8 (0) , y ∈ Ω±0 , ±Y3 > 0 ,

B+ Ûm+1,+(0)|y3=Y3=0 +B− Ûm+1,−(0)|y3=Y3=0 = Ĝm(0) .

Because of the compatibility conditions (H(m)− 6), solving the fast differential equations in (5.28)
amounts to solving:

∂Y3 q̂
m+1,±(0) = F̂m,±3 (0) , ∂Y3 û

m+1,±
3 (0) = F̂m,±7 (0) ,

∂Y3Ĥ
m+1,±
3 (0) = F̂m,±8 (0) ,(5.29)

which is possible because we know from (H(m)− 5) that F̂m,±3 (0), F̂m,±7 (0) and F̂m,±8 (0) actually belong

to S±? . We thus define the functions q̂m+1,±
? (0), ûm+1,±

3,? (0), Ĥm+1,±
3,? (0) as the unique solutions in S±? to

the ordinary differential equations:

∂Y3 q̂
m+1,±
? (0) = F̂m,±3 (0) , ∂Y3 û

m+1,±
3,? (0) = F̂m,±7 (0) , ∂Y3Ĥ

m+1,±
3,? (0) = F̂m,±8 (0) .
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Whatever choice we make for the remaining functions ûm+1,±
j,? (0) and Ĥm+1,±

j,? (0) (j = 1, 2), and for the

slow mean Û
m+1,±

(0), we shall verify the fast differential equations in (5.28). Observe however that the
functions q̂m+1,±

? (0), ûm+1,±
3,? (0), Ĥm+1,±

3,? (0) enter the boundary conditions on Γ0 of (5.28).

In the following Section, we explain how we construct the slow mean Û
m+1,±

(0) together with the
slow mean of the front profile ψ̂m+1(0). The remaining fast means, namely ûm+1,±

j,? (0) and Ĥm+1,±
j,? (0)

(j = 1, 2), will be dealt with afterwards.

5.3 The slow mean

In this Section, we explain how we construct both Û
m+1,±

(0) and ψ̂m+1(0).

5.3.1 Collecting the equations

In order to verify the fast system (H(m)− 2) for µ = m+ 1, we have seen in the previous Section that it
remains to verify the boundary conditions:

B+ Ûm+1,+(0)|y3=Y3=0 +B− Ûm+1,−(0)|y3=Y3=0 = Ĝm(0) ,

which equivalently reads:

(5.30)


ûm+1,±

3 (0)|y3=0 = Ĝm,±1 (0)− ûm+1,±
3,? (0)|y3=Y3=0 ,

Ĥ
m+1,±
3 (0)|y3=0 = Ĝm,±2 (0)− Ĥm+1,±

3,? (0)|y3=Y3=0 ,

q̂m+1,+(0)|y3=0 − q̂m+1,−(0)|y3=0 = −q̂m+1,+
? (0)|y3=Y3=0 + q̂m+1,−

? (0)|y3=Y3=0 .

For future use, we use short notation to denote the source terms in (5.30), and rewrite (5.30) as:

(5.31)


ûm+1,±

3 (0)|y3=0 = Gm,±
1 ,

Ĥ
m+1,±
3 (0)|y3=0 = Gm,±

2 ,

q̂m+1,+(0)|y3=0 − q̂m+1,−(0)|y3=0 = Gm
5 .

At this stage, only Gm
5 is known since Gm,±

1 and Gm,±
2 incorporate in their definition the slow mean

ψ̂m+1(0) which has not been fixed yet.
The boundary conditions on the top and bottom boundaries Γ± for the slow mean correspond to

enforcing the condition (H(m)− 3) for µ = m+ 1 and for the zero Fourier mode only, that is:

(5.32) ûm+1,±
3 (0)|Γ± = Ĥ

m+1,±
3 (0)|Γ± = 0 .

The evolution equations inside the domains Ω±0 correspond to enforcing the condition (H(m)− 5) for
µ = m+ 1. Let us make this point clear. Recalling the general expression (2.13), we have:

Fm+1,± = − L±s (∂)Um+1,± +
∑

`1+`2+`3=m+2

χ[`1] ∂θψ
`2 A ± ∂y3U

`3,±

+
∑

`1+`2+`3=m+1

χ[`1] (∂tψ
`2 A0 + ∂yjψ

`2 A±j ) ∂y3U
`3,± +

∑
`1+`2+`3=m+1

χ̇[`1] ψ`2 A±3 ∂y3U
`3,±

−
∑

`1+`2=m+2
`1,`2≥1

ξj Aj(U `1,±, ∂θU `2,±)−
∑

`1+`2=m+1
`1,`2≥1

Aα(U `1,±, ∂yαU
`2,±)

+
∑

`1+···+`4=m+2
`3,`4≥1

χ[`1] ∂θψ
`2 ξj Aj(U `3,±, ∂y3U `4,±)

+
∑

`1+···+`4=m+1
`3,`4≥1

χ[`1] ∂yjψ
`2 Aj(U `3,±, ∂y3U `4,±) +

∑
`1+···+`4=m+1

`3,`4≥1

χ̇[`1] ψ`2 A3(U `3,±, ∂y3U
`4,±) ,
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where we have highlighted in blue and red the only quantities that are not completely known at this
stage. Let us first remark that the above red term has zero mean with respect to θ on T whatever choice

we make below for Û
m+1,±

(0) (use the symmetry of the Aj ’s). In other words, enforcing the condition
(H(m)− 5) for µ = m+ 1 corresponds to verifying the linearized (inhomogeneous) MHD equations:

(5.33)

{
L±s (∂) Û

m+1,±
(0) = Fm,± , y ∈ Ω±0 ,

∇ · Ĥm+1,±
(0) = Fm,±8 , y ∈ Ω±0 ,

with:

Fm,± := c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 A ± ∂y3U

`3,±

+
∑

`1+`2+`3=m+1

χ[`1] (∂tψ
`2 A0 + ∂yjψ

`2 A±j ) ∂y3U
`3,± +

∑
`1+`2+`3=m+1

χ̇[`1] ψ`2 A±3 ∂y3U
`3,±

−
∑

`1+`2=m+1
`1,`2≥1

Aα(U `1,±, ∂yαU
`2,±) +

∑
`1+···+`4=m+2

`3,`4≥1

χ[`1] ∂θψ
`2 ξj Aj(U `3,±, ∂y3U `4,±)(5.34)

+
∑

`1+···+`4=m+1
`3,`4≥1

χ[`1] ∂yjψ
`2 Aj(U `3,±, ∂y3U `4,±) +

∑
`1+···+`4=m+1

`3,`4≥1

χ̇[`1] ψ`2 A3(U `3,±, ∂y3U
`4,±)

}
,

and

Fm,±8 := c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ∂y3ξj H

`3,±
j +

∑
`1+`2+`3=m+1

χ[`1] ∂yjψ
`2 ∂y3H

`3,±
j(5.35)

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3H
`3,±
3

}
.

Let us recall that the operators L±s (∂) in (5.33) are defined by:

L±s (∂) = A0 ∂t +A±α ∂yα ,

and the expressions of the matrices A±α are given in Appendix A.
The evolution equations (5.33) and boundary conditions (5.31), (5.32) are supplemented with the

initial conditions:

(5.36) ûm+1,±(0)|t=0 = um+1,±
0 , Ĥ

m+1,±
(0)|t=0 = Hm+1,±

0 ,

for which we still need to explain how they are chosen.

5.3.2 Solvability of the linearized current vortex sheet system

In this Paragraph, we consider the linearized current vortex sheet system in its general form, that is, with
arbitrary source terms. In the following Paragraph, we shall specify to the source terms that are explicitly
given in (5.33), (5.30), (5.32) and we shall explain why Proposition 5.6 below allows us to construct both

ψ̂m+1(0) and Û
m+1,±

(0).
In what follows, the vector U still denotes the collection of unknowns (u,H, q) ∈ R7. We consider the

following linearized MHD equations in the fixed domains Ω±0 :

(5.37)

{
L±s (∂)U± = F± , y ∈ Ω±0 ,

∇ ·H± = F±8 , y ∈ Ω±0 ,
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which reads explicitly:

(5.38)



(
∂t + u0,±

j ∂yj
)
u±α + u0,±

α ∇ · u± −H0,±
j ∂yjH

±
α −H0,±

α ∇ ·H± + ∂yαq
± = F±α , α = 1, 2, 3 ,(

∂t + u0,±
j ∂yj

)
H±α − u0,±

α ∇ ·H± −H0,±
j ∂yju

±
α +H0,±

α ∇ · u± = F±3+α , α = 1, 2, 3 ,

∇ · u± = F±7 ,
∇ ·H± = F±8 .

The top, bottom and intermediate boundary conditions are:

(5.39) u±3 |Γ± = H±3 |Γ± = 0 ,

(5.40)


u±3 |y3=0 = G±1 ,
H±3 |y3=0 = G±2 ,
q+|y3=0 − q−|y3=0 = G5 ,

where the source terms F±,F±8 considered in (5.37) belong to H∞([0, T ] × Ω±0 ), and the source terms
G±1 ,G

±
2 ,G5 in (5.40) belong to H∞([0, T ]× T2). Our goal is to understand the compatibility conditions

on these source terms and on the initial data for (u±, H±) that ensure the existence and uniqueness of a
solution in H∞([0, T ]× Ω±0 ) to (5.37), (5.39), (5.40). Our result is the following.

Proposition 5.6 (Solvability of the linearized current vortex sheet system). Let u±0 , H
±
0 ∈ H∞(Ω±0 ).

The problem (5.37), (5.39), (5.40) supplemented with the initial conditions:

(u±, H±)|t=0 = (u±0 , H
±
0 ) ,

has a unique solution in H∞([0, T ]× Ω±0 ) if and only if the following conditions hold:

• F±6 |y3=±1 = 0 (compatibility at the top and bottom boundaries),

• F±6 |y3=0 = (∂t + u0,±
j ∂yj )G

±
2 −H0,±

j ∂yjG
±
1 (compatibility on Γ0),

• ∂tF±8 = ∂yαF±3+α (compatibility for the divergence of the magnetic field),

• ∇ · u±0 = F±7 |t=0 and ∇ ·H±0 = F±8 |t=0 (compatibility for the divergence of the initial conditions),

• u±0,3|y3=±1 = H±0,3|y3=±1 = 0, u±0,3|y3=0 = G±1 |t=0, H±0,3|y3=0 = G±2 |t=0 (compatibility of the initial
conditions at the boundaries),

• for all time t ∈ [0, T ], the Laplace problem:

(5.41)


−∆ q± = −∂yαF±α + (∂t + 2u0,±

j ∂yj )F
±
7 − 2H0,±

j ∂yjF
±
8 , in Ω±0 ,

∂y3q
±|y3=±1 = F±3 |y3=±1 ,

∂y3q
±|y3=0 = F±3 |y3=0 − (∂t + u0,±

j ∂yj )G
±
1 +H0,±

j ∂yjG
±
2 ,

q+|y3=0 − q−|y3=0 = G5 ,

has a solution (q+, q−) ∈ H∞(Ω+
0 )×H∞(Ω−0 ).

Let us observe that the elliptic problem (5.41) looks a little over-determined, as will become perhaps
even more clear in the following Paragraph. Indeed, on each domain Ω±0 , we impose Neumann boundary
conditions for q± but we also impose a jump condition across Γ0. As in [SWZ18], this is precisely this
coupling equation which will govern the evolution of the slow mean of the front profile.
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Proof of Proposition 5.6. The proof is quite simple so we sketch it quickly. That the conditions stated
in Proposition 5.6 are necessary follows from classical manipulations on (5.38). For instance, taking the
divergence of the first three evolution equations yields the Laplace problem for the total pressure, and
taking the divergence for the evolution equations for the magnetic field yields the compatibility condition
∂tF±8 = ∂yαF±3+α. The other conditions are rather straightforward.

Let us therefore now assume that all conditions stated in Proposition 5.6 are satisfied. We wish to
show that the problem (5.37), (5.39), (5.40) has a unique solution in H∞([0, T ] × Ω±0 ). Let the total
pressure (q+, q−) be defined as the solution to (5.41). (This is precisely part of our assumptions that
the latter problem has a solution.) We then determine the velocity and magnetic field by solving the
hyperbolic system:{(

∂t + u0,±
j ∂yj

)
u±α −H0,±

j ∂yjH
±
α = F±α − u0,±

α F±7 +H0,±
α F±8 − ∂yαq± , α = 1, 2, 3 ,(

∂t + u0,±
j ∂yj

)
H±α −H0,±

j ∂yju
±
α = F±3+α + u0,±

α F±8 −H0,±
α F±7 , α = 1, 2, 3 ,

with initial data:
(u±, H±)|t=0 = (u±0 , H

±
0 ) .

There is no boundary condition required on ∂Ω±0 because the vector fields u0,±
j ∂yj and H0,±

j ∂yj are both

tangent to the boundaries Γ± and Γ0 (which means that the normal variable y3 is a parameter). At this
stage, we have determined (u±, H±, q±) and we need to verify that all equations in (5.37), (5.39), (5.40)
are satisfied. Applying the divergence operator and making use of the elliptic system satisfied by the total
pressure, we get:{(

∂t + u0,±
j ∂yj

)
∇ · u± −H0,±

j ∂yj∇ ·H± =
(
∂t + u0,±

j ∂yj
)
F±7 −H0,±

j ∂yjF
±
8 ,(

∂t + u0,±
j ∂yj

)
∇ ·H± −H0,±

j ∂yj∇ · u± =
(
∂t + u0,±

j ∂yj
)
F±8 −H0,±

j ∂yjF
±
7 .

Since the initial conditions u±0 , H
±
0 have compatible divergence with F±7 |t=0, F±8 |t=0, we get by the energy

method:
∀ t ∈ [0, T ] , ∇ · u± = F±7 , ∇ · u± = F±8 ,

which already proves that we have indeed solved (5.37).
Restricting to the top and bottom boundaries Γ± and using the compatibility condition on the source

terms F±6 as well as the Neumann condition satisfied by the total pressure, we get:{(
∂t + u0,±

j ∂yj
)
u±3 |y3=±1 −H0,±

j ∂yjH
±
3 |y3=±1 = 0 ,(

∂t + u0,±
j ∂yj

)
H±3 |y3=±1 −H0,±

j ∂yju
±
3 |y3=±1 = 0 .

By the compatibility conditions satisfied by the initial data, we get (5.39). The verification of the first
four conditions in (5.40) is in the same spirit. (The fifth condition in (5.40) is already included in (5.41)
and is therefore satisfied.) To complete the proof of Proposition 5.6, it remains to examine the smoothness
of the solution. From all previous arguments, we see that it is sufficient to prove that the solution to
the coupled Laplace problem (5.41) can be chosen smoothly. This is true indeed because the solution
to (5.41), if it exists (which depends on compatibility conditions for the source terms in (5.41)), can be
explicitly determined thanks to the Fourier series decomposition with respect to the variable y′. We do
not pursue this issue here since we shall perform such a Fourier series decomposition in the following
Paragraph in order to derive the evolution equation that governs the slow mean of the front profile.

5.3.3 Determining the slow mean of the front profile

In this Paragraph, we explain why part of the result of Proposition 5.6 determines the evolution of the
mean (with respect to θ) of the front profile ψm+1. Indeed, we focus on the problem (5.33), (5.31), (5.32)
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(the source terms in (5.31) correspond to the right hand side of (5.30)). Applying Proposition 5.6, a
necessary condition for the solvability of (5.33), (5.31), (5.32) is that the coupled Laplace problem:

(5.42)


−∆ q̂m+1,±(0) = −∂yαFm,±α + (∂t + 2u0,±

j ∂yj )F
m,±
7 − 2H0,±

j ∂yjF
m,±
8 , in Ω±0 ,

∂y3 q̂
m+1,±(0)|y3=±1 = Fm,±3 |y3=±1 ,

∂y3 q̂
m+1,±(0)|y3=0 = Fm,±3 |y3=0 − (∂t + u0,±

j ∂yj )G
m,±
1 +H0,±

j ∂yjG
m,±
2 ,

q̂m+1,+(0)|y3=0 − q̂m+1,−(0)|y3=0 = Gm
5 ,

has a solution in H∞(Ω+
0 ) × H∞(Ω−0 ). We therefore examine the solvability of (5.42) by splitting the

analysis between the non-zero tangential Fourier modes and the zero tangential Fourier mode (that is,
the mean with respect to y′).

• Solving the coupled Laplace problem for the non-zero Fourier modes.

Due to the very simple geometry of the domains Ω±0 = T2× I±, there is no difficulty in solving (5.42).
Indeed, we decompose the functions q̂m+1,±(0) into Fourier series in y′:

q̂m+1,±(0) =
∑
j′∈Z2

cj′
(
q̂m+1,±(0)

)
(y3) ei j

′·y′ .

For the non-zero Fourier modes j′ 6= 0, the Laplace operator ∆ is uniformly elliptic, hence the Neumann
boundary conditions on Γ± and Γ0 uniquely determine cj′(q̂

m+1,±(0)). We obtain the expressions:

cj′
(
q̂m+1,+(0)

)
= ν+

j′ e|j
′| y3 + ω+

j′ e
−|j′| y3 +

1

2 |j′|

(∫ y3

0
e−|j

′| (y3−z) cj′(F
m,+) dz +

∫ 1

y3

e|j
′| (y3−z) cj′(F

m,+) dz

)
,

and

cj′
(
q̂m+1,−(0)

)
= ν−j′ e|j

′| y3 + ω−j′ e
−|j′| y3 +

1

2 |j′|

(∫ y3

−1
e−|j

′| (y3−z) cj′(F
m,−) dz +

∫ 0

y3

e|j
′| (y3−z) cj′(F

m,−) dz

)
,

where Fm,± stand for the source terms in the Laplace equations of (5.42), that is:

Fm,± := −∂yαFm,±α + (∂t + 2u0,±
j ∂yj )F

m,±
7 − 2H0,±

j ∂yjF
m,±
8 ,

and the coefficients ν±j′ , ω
±
j′ are obtained by solving the (invertible) linear system:

|j′| e|j′| ν+
j′ − |j′| e−|j

′| ω+
j′ =

1

2

∫ 1

0
e−|j

′| (1−z) cj′(F
m,+) dz + cj′(Fm,+3 )(1) ,

|j′| ν+
j′ − |j′|ω+

j′ = − 1

2

∫ 1

0
e−|j

′| z cj′(F
m,+) dz + cj′(Fm,+3 )(0)

− cj′
(
(∂t + u0,+

j ∂yj )G
m,+
1 −H0,+

j ∂yjG
m,+
2

)
,

|j′| ν−j′ − |j′|ω−j′ =
1

2

∫ 0

−1
e|j
′| z cj′(F

m,−) dz + cj′(Fm,−3 )(0)

− cj′
(
(∂t + u0,−

j ∂yj )G
m,−
1 −H0,−

j ∂yjG
m,−
2

)
,

|j′| e−|j′| ν+
j′ − |j′| e|j

′| ω+
j′ = − 1

2

∫ 0

−1
e−|j

′| (1+z) cj′(F
m,−) dz + cj′(Fm,−3 )(−1) .

85



Since we have the expression of cj′(q̂
m+1,±(0)) on the whole interval I±, solving (5.42) for the non-zero

Fourier modes in y′ simply amounts to imposing the solvability condition:

cj′
(
q̂m+1,+(0)

)
(0)− cj′

(
q̂m+1,−(0)

)
(0) = cj′

(
Gm

5

)
.

Solving the above linear systems and restricting to y3 = 0, we thus find that solving the coupled Laplace
problem (5.42) for the non-zero Fourier modes in y′ is possible if and only if the source terms satisfy the
relation:

(5.43) cj′
((
∂t + u0,+

j ∂yj
)
Gm,+

1 +
(
∂t + u0,−

j ∂yj
)
Gm,−

1 −H0,+
j ∂yjG

m,+
2 −H0,−

j ∂yjG
m,−
2

)
= |j′| tanh(|j′|) cj′

(
Gm

5

)
+ cj′(Fm,+3 )(0) + cj′(Fm,−3 )(0)− 1

cosh(|j′|)
(
cj′(Fm,+3 )(1) + cj′(Fm,−3 )(−1)

)
−
∫ 1

0

cosh(|j′|(1− z))
cosh(|j′|) cj′(F

m,+) dz +

∫ 0

−1

cosh(|j′|(1 + z))

cosh(|j′|) cj′(F
m,−) dz .

It remains to make more explicit the equation (5.43) which we are going to show to be a wave type
equation on Γ0 for (the mean free part of) the front profile ψ̂m+1(0). Indeed, we recall that the source
terms Gm,±

1 , Gm,±
2 are defined, see (5.30), by:

Gm,±
1 := Ĝm,±1 (0)− ûm+1,±

3,? (0)|y3=Y3=0 , Gm,±
2 := Ĝm,±2 (0)− Ĥm+1,±

3,? (0)|y3=Y3=0 ,

with Gm,±1 , Gm,±2 defined in (2.22b), (2.22c). Let us recall that at this stage, the only unknown quantity

is ψ̂m+1(0) which enters the expression of Ĝm,±1 (0) and Ĝm,±2 (0). We can thus rewrite (5.43) as:

(5.44)
(
∂t + u0,+

j ∂yj
) (
∂t + u0,+

j′ ∂yj′
)
Ψm+1 +

(
∂t + u0,−

j ∂yj
) (
∂t + u0,−

j′ ∂yj′
)
Ψm+1

−H0,+
j H0,+

j′ ∂yj∂yj′Ψ
m+1 −H0,−

j H0,−
j′ ∂yj∂yj′Ψ

m+1 = Gm ,

where Ψm+1 denotes the mean free part (in y′) of the slow mean (in θ) ψ̂m+1(0):

Ψm+1(t, y′) :=
∑

j′∈Z2\{0}

cj′
(
ψ̂m+1(0)

)
ei j
′·y′ ,

and the source term Gm on the right hand side of (5.44) is already determined in terms of all previous
profiles. The exact expression of Gm is useless. The only important property to keep in mind is that Gm

belongs to H∞([0, T ]× T2) and has zero mean with respect to y′.
The wave like operator on the left hand side of (5.44) has already been highlighted in [SWZ18].

Unsurprisingly, its symbol corresponds to the Lopatinskii determinant (3.11). Observe also that several
terms in (5.43) correspond to the action of the Dirichlet-Neumann operator (this is recognized by the
symbol |j′| tanh(|j′|)), which is also reminiscent of several terms ocurring in the analysis of [SWZ18].
The main point is that, under the assumption (H1), the wave operator on the left hand side of (5.44) is
hyperbolic in the time direction. We therefore easily get the following result:

Lemma 5.7. There exists a unique function Ψm+1 ∈ H∞([0, T ]× T2) with zero mean with respect to y′

that satisfies (5.44) together with:

Ψm+1|t=0 = 0 , ∂tΨ
m+1|t=0 = 0 .

Let us recall that solving (5.44) amounts to solving the original coupled Laplace problem (5.42) for the
non-zero Fourier modes. At this stage, we have thus fixed the mean free part in y′ of ψ̂m+1(0) and ensured
part of the solvability of (5.42).
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Let us observe that the prescription of initial conditions for (5.44) is arbitrary. Once again, we have
chosen in the statement of Theorem 1.2 to stick to the easiest possible case, but we could equally well
consider more general initial data for ψ̂m+1(0) and the oscillating modes in y′ of ∂tψ̂

m+1(0).

• Solving the coupled Laplace problem for the mean.

It remains to determine the mean on T2 of ψ̂m+1(0), which is a function of time only. Integrating
(5.42) on T2 and using some obvious cancellations, we need to find a solution to the problem:

(5.45)


−∆ p± = −∂y3 c0 (Fm,±3 ) + ∂t c0 (Fm,±7 ) , in Ω±0 ,

∂y3p
±(±1) = c0 (Fm,±3 )(±1) ,

∂y3p
±(0) = c0 (Fm,±3 )(0)− ∂t c0 (Gm,±

1 ) ,

p+(0)− p−(0) = c0 (Gm
5 ) ,

where p± is a short notation for c0 (q̂m+1,±(0)), and the reader should be careful that in (5.45), c0 refers
to the zero Fourier coefficient with respect to y′ (the source terms to which we apply c0 in (5.45) are
themselves means with respect to the fast variable θ of some quantities !).

The solvability of (5.45) is submitted to the fulfillment of the Fredholm condition:

(5.46)
d

dt

(∫
Ω±0

Fm,±7 dy ±
∫

Γ0

Gm,±
1 dy′

)
= 0 .

Let us make it clear that the condition (5.46) should be satisfied on either side of the current vortex
sheet, that is both for the + and for the − sides. In Lemma 5.8 below, we examine the quantities involved
in (5.46) and derive a necessary and sufficient condition on the front profile ψm+1 for the verification of
(5.46).

Lemma 5.8. The source terms in (5.31), (5.33) satisfy:

∀ t ∈ [0, T ] ,

∫
Ω±0

Fm,±7 dy ±
∫

Γ0

Gm,±
1 dy′ = ±

∫
Γ0

∂tψ̂
m+1(0) dy′ ,∫

Ω±0

Fm,±8 dy ±
∫

Γ0

Gm,±
2 dy′ = 0 .

Consequently the Fredholm condition (5.46) holds on either side of the current vortex sheet if and only if:

d2

dt2

∫
Γ0×T

ψm+1(t, y′, θ) dy′ dθ = 0 .

Proof of Lemma 5.8. We give the proof for the relation between Fm,±7 and Gm,±
1 , and leave the other

(easier) case for the magnetic field to the interested reader. Let us recall the expressions1:

Fm,±7 = c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ∂y3ξj u

`3,±
j +

∑
`1+`2+`3=m+1

χ[`1] ∂yjψ
`2 ∂y3u

`3,±
j

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3u
`3,±
3

}
,

1We warn the reader that in all the proof of Lemma 5.8, the notation c0 refers to the zero Fourier coefficient with respect
to the fast variable θ.
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see (5.35) for the similiar expression associated with the divergence of the magnetic field, and:

Gm,±
1 =

(
∂t + u0,±

j ∂yj
)
ψ̂m+1(0)

+ c0

{ ∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj u

`2,±
j +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 u`2,±j

}
|y3=Y3=0 − ûm+1,±

3,? (0)|y3=Y3=0 .

Splitting inside the expression of Gm,±
1 between the residual and surface wave components, we obtain the

decomposition: ∫
Ω±0

Fm,±7 dy ±
∫

Γ0

Gm,±
1 dy′ = ±

∫
Γ0

∂tψ̂
m+1(0) dy′ + Im,±1 ± Jm,±? ,

where we have used the following notation:

Im,±1 :=

∫
Ω±0 ×T

∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ξj ∂y3u

`3,±
j +

∑
`1+`2+`3=m+1

χ[`1] ∂yjψ
`2 ∂y3u

`3,±
j(5.47)

− ∂y3
( ∑
`1+`2+`3=m+2

`3≥1

χ[`1] ∂θψ
`2 ξj u

`3,±
j +

∑
`1+`2+`3=m+1

`3≥1

χ[`1] ∂yjψ
`2 u`3,±j

)

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3u
`3,±
3 dy dθ ,

and

(5.48) Jm,±? :=

∫
Γ0

(
c0

{ ∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj u

`2,±
j,? +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 u`2,±j,?

}
− ûm+1,±

3,? (0)
)∣∣∣
y3=Y3=0

dy′ .

To complete the proof of Lemma 5.8, we see that it is sufficient to prove that the quantities Im,±1 and
Jm,±? defined in (5.47) and (5.48) vanish, which is done below separately for each of these two quantities.

• The surface wave integral. Let y3 ∈ I± satisfy |y3| < 1/3, and let Y3 ∈ R±. We then define:

Jm,±(y3, Y3) :=

∫
Γ0

c0

{ ∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj u

`2,±
j,? +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 u`2,±j,?

}
− ûm+1,±

3,? (0) dy′ ,

in such a way that the definition of Jm,±? in (5.48) coincides with Jm,±(0, 0). Thanks to the exponential
decay at infinity of profiles in S±? , we easily see that for any given y3, the function Jm,±(y3, ·) decays
exponentially at infinity. We now compute the partial derivative ∂Y3J

m,±(y3, Y3). Using the equation:

∂Y3 û
m+1,±
3,? (0) = c0

(
Fm,±7,?

)
,

and the expression of Fm,±7,? , we obtain:

∂Y3J
m,±(y3, Y3) =

∫
Γ0

c0

{ ∑
`1+`2=m+2

∂θψ
`1 ξj ∂Y3u

`2,±
j,? +

∑
`1+`2=m+1

∂yjψ
`1 ∂Y3u

`2,±
j,? − F

m,±
7,?

}
dy′

=

∫
Γ0×T

∂y3u
m,±
3,? −

∑
`1+`2=m+1

∂θψ
`1 ξj ∂y3u

`2,±
j,? −

∑
`1+`2=m

∂yjψ
`1 ∂y3u

`2,±
j,? dy′ dθ

= − ∂y3
∫

Γ0×T

∑
`1+`2=m+1

`2≥1

∂θψ
`1 ξj u

`2,±
j,? +

∑
`1+`2=m
`2≥1

∂yjψ
`1 u`2,±j,? − u

m,±
3,? dy′ dθ

= − ∂y3Jm−1,±(y3, Y3) .
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Inductively, we obtain:
∂mY3J

m,±(y3, Y3) = (−1)m ∂my3J
0,±(y3, Y3) = 0 .

Thanks to the exponential decay of Jm,±(y3, ·), we obtain Jm,±(y3, Y3) = 0 for all y3, Y3 and in particular
at y3 = Y3 = 0. This means that the integral Jm,±? in (5.48) vanishes.

• The residual integral. From the definition (5.47), we have

Im,±1 =

∫
Ω±0 ×T

∑
`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3u
`3,±
3 −

∑
`1+`2+`3=m+2

`3≥1

∂y3χ
[`1] ∂θψ

`2 ξj u
`3,±
j

−
∑

`1+`2+`3=m+1
`3≥1

∂y3χ
[`1] ∂θψ

`2 ξj u
`3,±
j dy dθ ,

and more generally, we define for any integer n ∈ N:

Im,±n :=

∫
Ω±0 ×T

∑
`1+···+`2n+1=m+1

χ̇[`1] · · · χ̇[`n] ψ`n+1 · · · ψ`2n ∂y3u`2n+1,±
3

− n
∑

`1+···+`2n+1=m+2
`2n+1≥1

χ̇[`1] · · · χ̇[`n−1] ∂y3χ
[`n] ψ`n+1 · · · ψ`2n−1 ∂θψ

`2n ξj u
`2n+1,±
j

− n
∑

`1+···+`2n+1=m+1
`2n+1≥1

χ̇[`1] · · · χ̇[`n−1] ∂y3χ
[`n] ψ`n+1 · · · ψ`2n−1 ∂yjψ

`2n u
`2n+1,±
j dy dθ .

By performing integration by parts and a substitution, we are going to prove the relation Im,±n = Im,±n+1

for all n ≥ 1, which, by choosing n large enough, will imply Im,±n = 0. We first use the second symmetry
formula (Corollary B.3 in Appendix B) for the green terms in the above definition of Im,±n to get2:

Im,±n =

∫
Ω±0 ×T

∑
`1+···+`2n+1=m+1

χ̇[`1] · · · χ̇[`n] ψ`n+1 · · · ψ`2n ∂y3u`2n+1,±
3

−
∑

`1+···+`2n+1=m+2
`2n+1≥1

χ̇[`1] · · · χ̇[`n] ∂θ
(
ψ`n+1 · · · ψ`2n

)
ξj u

`2n+1,±
j

−
∑

`1+···+`2n+1=m+1
`2n+1≥1

χ̇[`1] · · · χ̇[`n] ∂yj
(
ψ`n+1 · · · ψ`2n

)
u
`2n+1,±
j

− n
∑

`1+···+`2n+3=m+2
`2n+3≥1

χ̇[`1] · · · χ̇[`n] ∂y3χ
[`n+1] ψ`n+2 · · · ψ`2n+1 ∂θψ

`2n+2 ξj u
`2n+3,±
j

− n
∑

`1+···+`2n+3=m+1
`2n+3≥1

χ̇[`1] · · · χ̇[`n] ∂y3χ
[`n+1] ψ`n+2 · · · ψ`2n+1 ∂yjψ

`2n+2 u
`2n+3,±
j dy dθ .

2Note that we have symmetrized some terms that involve tangential derivatives of the front profiles.
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We now integrate by parts in the second and third sum with respect to θ and yj to get:

Im,±n =

∫
Ω±0 ×T

∑
`1+···+`2n+1=m+1

χ̇[`1] · · · χ̇[`n] ψ`n+1 · · · ψ`2n
(
F
`2n+1,±
7 +∇ · u`2n+1,±)

+ n
∑

`1+···+`2n+1=m+2
`2n+1≥1

χ̇[`1] · · · χ̇[`n−1] ∂θχ̇
[`n] ψ`n+1 · · · ψ`2n ξj u`2n+1,±

j

+ n
∑

`1+···+`2n+1=m+1
`2n+1≥1

χ̇[`1] · · · χ̇[`n−1] ∂yj χ̇
[`n] ψ`n+1 · · · ψ`2n u`2n+1,±

j

− n
∑

`1+···+`2n+3=m+2
`2n+3≥1

χ̇[`1] · · · χ̇[`n] ∂y3χ
[`n+1] ψ`n+2 · · · ψ`2n+1 ∂θψ

`2n+2 ξj u
`2n+3,±
j

− n
∑

`1+···+`2n+3=m+1
`2n+3≥1

χ̇[`1] · · · χ̇[`n] ∂y3χ
[`n+1] ψ`n+2 · · · ψ`2n+1 ∂yjψ

`2n+2 u
`2n+3,±
j dy dθ .

We then substitute the expression of F
`2n+1,±
7 and use the second symmetry formula (Proposition B.4 in

Appendix B) for the blue terms ∂θχ̇
[`n] and ∂yj χ̇

[`n], which yields:

Im,±n = Im,±n+1+

∫
Ω±0 ×T

∑
`1+···+`2n+3=m+2

χ̇[`1] · · · χ̇[`n] χ[`n+1] ψ`n+2 · · · ψ`2n+1 ∂θψ
`2n+2 ξj ∂y3u

`2n+3,±
j

+ n
∑

`1+···+`2n+3=m+2
`2n+3≥1

χ̇[`1] · · · χ̇[`n−1] ∂y3χ̇
[`n] χ[`n+1] ψ`n+2 · · · ψ`2n+1 ∂θψ

`2n+2 ξj u
`2n+3,±
j

+
∑

`1+···+`2n+3=m+2
`2n+3≥1

χ̇[`1] · · · χ̇[`n] ∂y3χ
[`n+1] ψ`n+2 · · · ψ`2n+1 ∂θψ

`2n+2 ξj u
`2n+3,±
j

+
∑

`1+···+`2n+3=m+1

χ̇[`1] · · · χ̇[`n] χ[`n+1] ψ`n+2 · · · ψ`2n+1 ∂yjψ
`2n+2 ∂y3u

`2n+3,±
j

+ n
∑

`1+···+`2n+3=m+1
`2n+3≥1

χ̇[`1] · · · χ̇[`n−1] ∂y3χ̇
[`n] χ[`n+1] ψ`n+2 · · · ψ`2n+1 ∂yjψ

`2n+2 u
`2n+3,±
j

+
∑

`1+···+`2n+3=m+1
`2n+3≥1

χ̇[`1] · · · χ̇[`n] ∂y3χ
[`n+1] ψ`n+2 · · · ψ`2n+1 ∂yjψ

`2n+2 u
`2n+3,±
j dy dθ

= Im,±n+1+

∫
Ω±0 ×T

∂y3

( ∑
`1+···+`2n+3=m+2

`2n+3≥1

χ̇[`1] · · · χ̇[`n] χ[`n+1] ψ`n+2 · · · ψ`2n+1 ∂θψ
`2n+2 ξj u

`2n+3,±
j

)

+ ∂y3

( ∑
`1+···+`2n+3=m+2

`2n+3≥1

χ̇[`1] · · · χ̇[`n] χ[`n+1] ψ`n+2 · · · ψ`2n+1 ∂yjψ
`2n+2 u

`2n+3,±
j

)
dy dθ

= Im,±n+1+ ,

where the conclusion follows from the fact that all functions χ̇[`] vanish on Γ± and Γ0 (and n ≥ 1 so
there is always at least one function χ̇[`] in each product). We thus have Im,±1 = Im,±n for all n ≥ 1 and,
choosing n large enough (recall that ψ0 and ψ1 vanish), we thus get Im,±1 = 0. This completes the proof
of Lemma 5.8.

At this stage, the front profile ψm+1 is fixed as follows. The oscillating modes in θ that compose ψm+1
]
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are given by the induction assumption H(m), and the slow mean ψ̂m+1(0) is given by:

ψ̂m+1(0) = Ψm+1 ,

where the function Ψm+1 is given by Lemma 5.7, and we have chosen the mean (with respect to y′) of
ψ̂m+1(0) to be zero in order to match the initial condition (1.8) and the second order differential equation
imposed by Lemma 5.8 (see the following Paragraph for a discussion on the choice of the time derivative
at t = 0 of the slow mean of the front profile). With the above choice for ψ̂m+1(0), we ensure solvability
in H∞(Ω+

0 )×H∞(Ω−0 ) of the Laplace problem (5.42). Moreover, up to adding a function of time only to
the solution to (5.42), we can fix the mean value:∫

Ω+
0

q̂m+1,+(0) dy +

∫
Ω−0

q̂m+1,−(0) dy

as we want. In other words, we can always choose the solution to (5.42) such that the constraint Im+1(t) =
0 for the slow mean of the total pressure is satisfied (we recall that the quantity I µ for any integer µ
is given by (2.30), (2.31)). In other words, we have already managed to enforce (H(m + 1) − 4). In the
following Paragraph, we are going to examine the remaining steps in the determination of the slow mean

Û
m+1,±

(0).

5.3.4 Determining the slow mean of the corrector

In order to construct the slow mean Û
m+1,±

(0) of the corrector Um+1,±, we need to verify that the source
terms in (5.33), (5.31), (5.32) satisfy the solvability conditions of Proposition 5.6. The corresponding
items of Proposition 5.6 are examined one by one below.

Compatibility at the top and bottom boundaries. Recalling the definition (5.34), we have:

Fm,±|y3=±1 = − c0

{ ∑
`1+`2=m+1
`1,`2≥1

Aα(U `1,±, ∂yαU
`2,±)|y3=±1

}
,

which gives (the Hessian mappings Aα are given in Appendix A):

Fm,±6 |y3=±1 = − c0

{ ∑
`1+`2=m+1
`1,`2≥1

∂yj
(
u`1,±j H`2,±

3 −H`1,±
j u`2,±3

)}
= 0 ,

where we have used the boundary conditions (H(m)− 3) and the fact that only tangential derivatives
with respect to Γ± are involved.

Compatibility on Γ0. The verification of the conditions:

Fm,±6 |y3=0 =
(
∂t + u0,±

j ∂yj
)
Gm,±

2 −H0,±
j ∂yjG

m,±
1 ,

is performed in Appendix B, see Lemma B.7. The (long) proof is in the same spirit as the proof of Lemma
5.1 above so we have thought it more convenient to refer the interested reader to Appendix B and proceed
with those ingredients that are new in the analysis. We just emphasize the fact that the verification of
the latter relation is actually independent of our previous determination of the slow mean of the front
profile ψ̂m+1(0). In particular, verifying this compatibility condition is independent of our choice of initial
conditions for the front profiles ψµ.
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Compatibility for the divergence of the magnetic field. Once again, the proof of the relation:

∂tFm,±8 = ∂yαF
m,±
3+α ,

is postponed in Appendix B (we refer the interested reader to Lemma B.9).

Existence of compatible initial conditions. We now explain why it is possible to find compatible
initial data (5.36) for the slow mean system (5.33), (5.31), (5.32). We recall that at time t = 0, we wish to
have ψ̂m+1(0) = 0 because of (1.8). In particular, the initial condition Hm+1,±

0 in (5.36) for the magnetic
field should satisfy the following relations:

(5.49)


∇ · Hm+1,±

0 = Fm,±8 |t=0 , in Ω±0 ,

Hm+1,±
0,3 |y3=±1 = 0 ,

Hm+1,±
0,3 |y3=0 = Gm,±

2 |t=0 ,

where:

Gm,±
2 |t=0 = c0

{ ∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj H

`2,±
j +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 H`2,±

j

}
|t=y3=Y3=0 − Ĥm+1,±

3,? (0)|t=y3=Y3=0

= c0

{
∂θψ

2
0 ξj H

m,±
j + ∂yjψ

2
0 H

m−1,±
j

}
|t=y3=Y3=0 − Ĥm+1,±

3,? (0)|t=y3=Y3=0 .

The existence of a solution to the divergence problem (5.49) is equivalent to the fulfillment of the condition:∫
Ω±0

Fm,±8 |t=0 dy ±
∫
T2

Gm,±
2 |t=0 dy′ = 0 .

Applying Lemma 5.8, we know that the latter condition holds not only at time t = 0 but also at any time
t ∈ [0, T ]. Since the domain Ω±0 has an infinitely smooth boundary and the source terms in (5.49) have

H∞ regularity, we can indeed find a solution Hm+1,±
0 ∈ H∞(Ω±0 ) to (5.49). There are of course infinitely

many possible choices, and each choice will give rise to one solution to (5.33), (5.31), (5.32). (This is the
reason why we have not claimed any uniqueness property in Theorem 1.2.)

Let us now examine the existence of a compatible initial condition for the velocity field. The system
to solve for um+1,±

0 reads:

(5.50)


∇ · um+1,±

0 = Fm,±7 |t=0 , in Ω±0 ,

um+1,±
0,3 |y3=±1 = 0 ,

um+1,±
0,3 |y3=0 = Gm,±

1 |t=0 ,

where:

Gm,±
1 |t=0 = ∂tψ̂

m+1(0)|t=0

+ c0

{ ∑
`1+`2=m+2

`2≥1

∂θψ
`1 ξj u

`2,±
j +

∑
`1+`2=m+1

`2≥1

∂yjψ
`1 u`2,±j

}
|t=y3=Y3=0 − ûm+1,±

3,? (0)|t=y3=Y3=0

= ∂tψ̂
m+1(0)|t=0 + c0

{
∂θψ

2
0 ξj u

m,±
j + ∂yjψ

2
0 u

m−1,±
j

}
|t=y3=Y3=0 − ûm+1,±

3,? (0)|t=y3=Y3=0 .

The existence of a solution to the divergence problem (5.50) is equivalent to the fulfillment of the condition:∫
Ω±0

Fm,±7 |t=0 dy ±
∫
T2

Gm,±
1 |t=0 dy′ = 0 .
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Applying Lemma (5.8), we see that a necessary and sufficient condition for solving (5.50) is to impose:

d

dt

∫
Γ0×T

ψm+1 dy′ dθ
∣∣∣
t=0

= 0 .

Let us observe that when we have determined the mean free part (in y′) of ψ̂m+1(0), the choice that was
made in Lemma 5.7, namely ∂tΨ

m+1|t=0 = 0, was purely a matter of convenience. However, the choice
we make here for the initial velocity of the mean is not a matter of convenience; it is imposed by the
solvability condition for the divergence problem (5.50). A similar constraint on the mean of the front
arises in [SWZ18]. The initial condition (1.8) for the front profiles together with the solvability condition
for the divergence problem (5.50) and the Laplace problem (5.42) impose that we take:

∀ t ∈ [0, T ] ,

∫
Γ0×T

ψm+1 dy′ dθ := 0 ,

which explains the decomposition of the front profile ψm+1:

ψm+1(t, y′, θ) = ψm+1
] (t, y′, θ) + Ψm+1(t, y′) .

Let us recall again that the mean (in θ) Ψm+1 is obtained by solving the wave type equation (5.44) on Γ0

and that Ψm+1 has zero mean in y′ on T2. Our choice for ψm+1 implies that we can construct a solution
um+1,±

0 ∈ H∞(Ω±0 ) to the divergence problem (5.50). Applying then Proposition 5.6, we have all the
ingredients to solve the slow mean problem (5.33), (5.31), (5.32).

Summary. Let us now summarize what we have done so far and which relations of H(m+ 1) we have
already satisfied. We have first solved the oscillating modes in θ of the fast problem (5.1), which has given
rise to the functions Um+1,± that are part of the decomposition (5.27) of the corrector Um+1,±. This first
step automatically gave the boundary conditions (H(m+ 1)− 3) for the non-zero Fourier modes in θ. We
have then defined the fast means of the normal velocity, normal magnetic field and total pressure so that
the differential equations in (5.28) are satisfied. From there on, no matter what we do for the remaining
degrees of freedom in (5.27), the corrector Um+1,± will satisfy:{

L ±
f (∂)Um+1,± = Fm,± , y ∈ Ω±0 , ±Y3 > 0 ,

∂Y3H
m+1,±
3 + ξj ∂θH

m+1,±
j = Fm,±8 , y ∈ Ω±0 , ±Y3 > 0 .

We have then studied the problem that should be satisfied by the slow mean of Um+1,± which led us
to also determine the mean ψ̂m+1(0) in order to be able to solve an overdetermined coupled Laplace
problem for the total pressure (q̂m+1,+(0), q̂m+1,−(0)). When determining the slow mean of Um+1,±, we
have enforced the jump conditions in (5.28), the boundary conditions (H(m+ 1)− 3) for the zero Fourier
mode in θ, the normalization condition (H(m+ 1)− 4) and the slow mean conditions (H(m+ 1)− 5).

Independently of our future determination of what remains in (5.27), we have thus already obtained
(H(m+ 1)− 2), (H(m+ 1)− 3), (H(m+ 1)− 4) and (H(m+ 1)− 5). Moreover, the remaining degrees
of freedom in (5.27) are the fast means of the tangential components of the velocity and magnetic fields,
as well as the oscillating modes of the front profile ψm+2. In the following Section, we explain how we
choose he fast means of the tangential components of the velocity and magnetic fields. After that, there
will only remain to determine ψm+2

] .

5.4 The tangential components of the fast mean

We are going to determine the fast means ûm+1,±
j,? (0), Ĥm+1,±

j,? (0) by imposing the condition (H(m+1)−6)

together with the initial conditions (2.37). Recalling the general definition (2.11) of the source term Fµ,±
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and specifying to the case µ = m+ 1, we get:

Fm+1,± = − L±s (∂)Um+1,± + ∂θψ
2 A ± ∂Y3U

m+1,± + ∂θψ
m+2 A ± ∂Y3U

1,±

− ξj Aj(U1,±, ∂θU
m+1,±)− ξj Aj(Um+1,±, ∂θU

1,±)

− A3(U1,±, ∂Y3U
m+1,±)− A3(Um+1,±, ∂Y3U

1,±) + F̃m,± ,

where we have first kept all those terms in Fm+1,± that depend on Um+1,± (and are therefore not fully
determined at this point), and where F̃m,± is entirely given in terms of all previously determined profiles.
Computing the zero Fourier coefficient with respect to θ, we thus get:

F̂m+1,±
? (0) = − L±s (∂)Ûm+1,±

? (0) +
( ̂∂θψ2 A ± ∂Y3U

m+1,±
)
(0) +

( ̂∂θψm+2 A ± ∂Y3U
1,±
)
(0)

− ̂A3(U1,±, ∂Y3U
m+1,±)(0)− ̂A3(Um+1,±, ∂Y3U

1,±)(0) + F̃m,± ,

where, again, F̃m,± denotes a function in S± that is entirely computable in terms of all previously
determined profiles (but whose precise expression is useless for our purpose, which explains why we feel
free to use the same notation from one line to the other even though the functions are not the same).
Similarly, we have:

F̂m+1,±
8,? (0) = −∇ · Ĥm+1,±

? (0) +
( ̂∂θψ2 ξj ∂Y3H

m+1,±
j,?

)
(0) +

( ̂∂θψm+2 ξj ∂Y3H
1,±
j,?

)
(0) + F̃m,±8 ,

At this stage, the general decomposition (5.27) can be rewritten as:

Um+1,± = Ũm+1,± +
(
0, ûm+1,±

1,? (0), ûm+1,±
2,? (0), 0, Ĥm+1,±

1,? (0), Ĥm+1,±
2,? (0), 0

)T
(5.51)

±
∑
k 6=0

|k| ψ̂m+2(t, y′, k)χ(y3) e∓ |k|Y3+i k θ R±(k) ,

where Ũm+1,± ∈ S± gathers all previously determined quantities, and the remaining unknown quantities
are the fast means of the tangential components and the front profile ψm+2

] (or equivalently ∂θψ
m+2). We

now wish to make explicit the constraint (H(m+ 1)− 6) and perform more or less the same calculations
as in the analogous Section of Chapter 4. Namely, we first define:

Fm+1,± := ∂Y3
̂(

A3(U1,±
? , Um+1,±

? )
)

(0) , Fm+1,±
8 := 0 .

The explicit expression of the Hessian mapping A3 given in Appendix A gives3:

A3

(
Û1,±
? (0),Π Ûm+1,±

? (0)
)

= 0 ,

independently of the determination of the tangential components Π Ûm+1,±
? (0).

Using the above decomposition (5.51) of Um+1,± and the decomposition (4.35) of the leading profile
U1,±, we thus compute:

Fm+1,± = ∓2χ(y3)2
∑
k 6=0

e∓2 |k|Y3 |k|3 ψ̂ 2(k) ψ̂m+2(−k)A3

(
R±,R±

)
+ F̃m,± ,

where the last term F̃m,± is a known function (meaning that it can be expressed in terms of previously
determined profiles). Recalling the expression:

A3

(
R±,R±

)
= 2

(
0, 0, (c±)2 − (b±)2, 0, 0, 0, 0

)T
,

3This property would hold even if we had chosen non-zero initial conditions in (2.37).
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we obtain that the source terms Fm+1,±,Fm+1,±
8 defined above satisfy the linear system:{

u0,±
j Fm+1,±

7 −H0,±
j Fm+1,±

8 = Fm+1,±
j + F̃m,±j , j = 1, 2 ,

H0,±
j Fm+1,±

7 − u0,±
j Fm+1,±

8 = Fm+1,±
3+j + F̃m,±3+j , j = 1, 2 ,

independently of the choice we can make for the tangential components Π Ûm+1,±
? (0) and for the front

profile ψm+2
] in the decomposition (5.51). Again, here, we use the notation F̃m,± for known quantities.

Going on with the remaining terms in the above decomposition of F̂m+1,±
? (0) and F̂m+1,±

8,? (0) (the
calculations are similar to those in Chapter 4 so we feel free to shorten the details), we eventually obtain
that the fulfillment of the condition (H(m + 1) − 6) is equivalent to the verification of a system of four
partial differential equations that reads:{

u0,±
j

(
−∇ · ûm+1,±

? (0)
)
−H0,±

j

(
−∇ · Ĥm+1,±

? (0)
)

=
(
− L±s (∂) Ûm+1,±

? (0)
)
j

+ Fm,±
j,? ,

H0,±
j

(
−∇ · ûm+1,±

? (0)
)
− u0,±

j

(
−∇ · Ĥm+1,±

? (0)
)

=
(
− L±s (∂) Ûm+1,±

? (0)
)

3+j
+ Fm,±

3+j,? ,

where Fm,±
j,? ,Fm,±

3+j,? ∈ S±? are known source terms. The latter system is independent of the choice we can

make for the front profile ψm+2
] , and it can be equivalently rewritten as the symmetric hyperbolic system:

(5.52) ∂t


ûm+1,±

1,? (0)

ûm+1,±
2,? (0)

Ĥm+1,±
1,? (0)

Ĥm+1,±
2,? (0)

+


u0,±
j 0 −H0,±

j 0

0 u0,±
j 0 −H0,±

j

−H0,±
j 0 u0,±

j 0

0 −H0,±
j 0 u0,±

j

 ∂yj

ûm+1,±

1,? (0)

ûm+1,±
2,? (0)

Ĥm+1,±
1,? (0)

Ĥm+1,±
2,? (0)

 =


F̃m,±

1,?

F̃m,±
2,?

F̃m,±
4,?

F̃m,±
5,?

 ,

for appropriately computed source terms F̃m,±
j,? , F̃m,±

3+j,? that incorporate, for instance, that part of

L±s (∂) Ûm+1,±
? (0) that depends on the fast mean of the normal velocity, normal magnetic field and total

pressure.
The symmetric hyperbolic system (5.52) is solved with the initial conditions:

Π Ûm+1,±
? (0)

∣∣
t=0

= 0 ,

in order to be consistent with (2.37). Since y3 ∈ I± and Y3 ∈ R± are parameters in (5.52), there is no
real difficulty to show that the solution Π Ûm+1,±

? (0) to (5.52) belongs to S±? . We have thus constructed
Π Ûm+1,±

? (0) ∈ S±? , satisfied (H(m + 1) − 6) and it only remains to determine the front profile ψm+2
] to

close the decomposition (5.51).

5.5 The linearized non-local Hamilton-Jacobi equation for the front

Unsurprisingly, we are going to determine the oscillating modes in θ of the front profile ψm+2 by imposing
the condition (H(m+1)−7). Let us recall indeed that a necessary condition for the existence of a solution
to the fast problem:

L ±
f (∂)Um+2,± = Fm+1,± ,

∂Y3H
m+2,±
3 + ξj ∂θH

m+2,±
j = Fm+1,±

8 ,

B+ Um+2,+|y3=Y3=0 +B− Um+2,−|y3=Y3=0 + ∂θψ
m+3 b = Gm+1 ,

is that the source terms Fm+1,±, Gm+1 should satisfy the orthogonality condition (3.2e) of Theorem 3.1.
Let us also recall that our corrector Um+1,± has the form (5.51), where the only unknown quantity at
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this stage are the Fourier modes ψ̂m+2(k), k 6= 0. Moreover, the source term Fm+1,± has the expression:

Fm+1,± = − L±s (∂)U̇m+1,± + ∂θψ
2 A ± ∂Y3U̇

m+1,± + ∂θψ
m+2 A ± ∂Y3U

1,±

− ξj Aj(U1,±, ∂θU̇
m+1,±)− ξj Aj(U̇m+1,±, ∂θU

1,±)

− A3(U1,±, ∂Y3U̇
m+1,±)− A3(U̇m+1,±, ∂Y3U

1,±) + F̃m,± ,

where F̃m,± is entirely given in terms of all previously determined profiles, and U̇m+1,± denotes the only
still unknown part in (5.51), that is:

U̇m+1,± := ±
∑
k 6=0

|k| ψ̂m+2(t, y′, k)χ(y3) e∓ |k|Y3+i k θ R±(k) .

Restricting to y3 = 0, all terms but one in Fm+1,±|y3=0 can be expressed in terms of the front profile
ψm+2 or its partial derivatives. The only undetermined term, or at least the only term that depends on
our choice for the lifting from {y3 = 0} to y3 ∈ I±, is A±3 ∂y3U̇

m+1,± but as in Chapter 4, this term will
cancel in the orthogonality condition (H(m+ 1)− 7) due to the relation:

∀ k 6= 0 , L ±(k) qA±3 R±(k) = 0 .

Let us also examine the boundary term Gm+1, whose components read (see (2.22)):

Gm+1,±
1 = ∂tψ

m+2 + u0,±
j ∂yjψ

m+2 + ∂θψ
2 ξj u̇

m+1,±
j |y3=Y3=0 + ∂θψ

m+2 ξj u
1,±
j |y3=Y3=0 + G̃m,±1 ,

Gm+1,±
2 = H0,±

j ∂yjψ
m+2 + ∂θψ

2 ξj Ḣ
m+1,±
j |y3=Y3=0 + ∂θψ

m+2 ξj H
1,±
j |y3=Y3=0 + G̃m,±2 ,

where G̃m,±1 and G̃m,±2 are given in terms of all previously determined profiles.
It remains to plug the above expressions in the orthogonality condition (H(m+ 1)− 7) and to follow

the calculations that have been given in full details in Chapter 4 and that we shall therefore not repeat
here. It is eventually found that (H(m+ 1)− 7) equivalently reads (here k is a non-zero integer):

(5.53)
(
c+ + c−

)
∂tψ̂

m+2(k) +
(
c+ u0,+

j + c− u0,−
j − b+H0,+

j − b−H0,−
j

)
∂yj ψ̂

m+2(k)

+ 2 i
(

(c+)2 − (c−)2 − (b+)2 + (b−)2
)

sgn(k)
∑

k1+k2=k

|k1| |k2| |k1 + k2|
|k1|+ |k2|+ |k1 + k2|

ψ̂ 2(k1) ψ̂m+2(k2) = 0 ,

which corresponds to the linearization of (4.30) around the leading front profile ψ2.
The solvability of (5.53) in the space C∞([0, T ];H∞] ) follows from the linear analogue of Theorem

4.1, which we shall omit to state precisely but the reader will easily fill the gaps. (Namely, the reader
may follow the arguments in [Hun06] and verify that the linear analogue of Theorem 4.2 in that reference
can be proved with similar arguments as those given in [Hun06], the proof being actually simpler since
lifespan is not an issue for linear equations). We can thus construct a solution ψm+2

] to (5.53) in such a

way that the profile Um+1,± ∈ S± in (5.51) now satisfies (H(m+ 1)− 7). This completes the proof of our
induction, meaning that with the positive time T being fixed by Theorem 4.1, the induction assumption
(H(m)− 1), . . . , (H(m)− 7) holds for all m ≥ 1. In particular, we have almost given the entire proof of
Theorem 1.2, the last point to examine being the accuracy of the approximate solutions.

5.6 High order approximate solutions

We follow the notation of Theorem 1.2 and define the approximate solutions:

ψapp,M
ε (t, x′) := ψ0 + εψ1 +

M+1∑
m=2

εm ψm
(
t, x′,

τ t+ ξ′ · x′
ε

)
,

Uapp,M,±
ε (t, x) := U0,± +

M∑
m=1

εm Um,±

(
t, x′, x3 − χ(x3)ψapp,M

ε ,
x3 − ψapp,M

ε

ε
,
τ t+ ξ′ · x′

ε

)
,
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where the profiles (Uµ+1,±, ψµ+1)µ=0,...,M satisfy the condition (H(M)) stated at the beginning of Chapter

5, and in the definition of Uapp,M,±
ε , the approximate front ψapp,M

ε is evaluated at (t, x′) (as should be
clear, at least we hope so).

Let us start with the easiest estimate, which is the one on Γ±. Restricting to x3 = 1 in the definition
of uapp,M,±

3,ε , we get:

uapp,M,±
3,ε =

M∑
m=1

εm um,±3

(
t, x′, 1,

1

ε
,
τ t+ ξ′ · x′

ε

)
=

M∑
m=1

εm um,±3,?

(
t, x′, 1,

1

ε
,
τ t+ ξ′ · x′

ε

)
,

where the second equality follows from (H(M) − 3). Using the exponential decay in Y3 of functions in
S±? , the conclusion of Theorem 1.2 on the error terms R3,±

b,ε and R4,±
b,ε follows immediately.

Let us proceed with the error terms for the jump conditions on the (approximate) current vortex
sheet. We compute:

Happ,M,±
ε |

Γapp,M,±
ε

·Napp,M
ε = Happ,M,±

3,ε |
Γapp,M,±
ε

− ∂xjψapp,M
ε Happ,M,±

j,ε |
Γapp,M,±
ε

=

M∑
m=1

εmHm,±
3

(
t, x′, 0, 0,

τ t+ ξ′ · x′
ε

)

− ∂xjψapp,M
ε

(
H0,±
j +

M∑
m=1

εmHm,±
j

(
t, x′, 0, 0,

τ t+ ξ′ · x′
ε

))
,

where we have used the relation χ(ψapp,M
ε ) = 1 which holds for any sufficiently small ε. Expanding the

partial derivative ∂xjψ
app,M
ε with respect to ε:

∂xjψ
app,M
ε =

M∑
m=1

εm ξj ∂θψ
m+1

(
t, x′,

τ t+ ξ′ · x′
ε

)
+

M+1∑
m=2

εm ∂yjψ
m

(
t, x′,

τ t+ ξ′ · x′
ε

)
,

and collecting terms, we end up with:

Happ,M,±
ε |

Γapp,M,±
ε

·Napp,M
ε =

M∑
m=1

εm
(
Hm,±

3 |y3=Y3=0 − b± ∂θψm+1 −Gm−1,±
2

)(
t, x′,

τ t+ ξ′ · x′
ε

)
+O(εM+1) = O(εM+1) ,

where the final conclusion comes from the fast that the profiles (Uµ+1,±, ψµ+1)µ=0,...,M satisfy the fast
problems (H(M)− 2). With the notation of Theorem 1.2, we have obtained:

sup
(t,x)∈Γapp,M

ε

|R2,±
b,ε | = O(εM+1) ,

and the estimate for R1,±
b,ε follows similarly.

It remains to estimate the error terms in the partial differential equations that should be satisfied on
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either side of the current vortex sheet. We begin with the divergence constraints and compute:

∇ · uapp,M,±
ε =

M−1∑
m=0

εm
(
∂Y3u

m+1,±
3 + ξj ∂θu

m+1,±
j +∇ · um,±

−
∑

`1+`2=m+2

∂θψ
`1 ξj ∂Y3u

`2,±
j −

∑
`1+`2=m+1

∂yjψ
`1 ∂Y3u

`2,±
j

 (...)

−
M−1∑
m=1

εm χ(x3) ∂y3u
m,±
j (...) ∂xjψ

app,M
ε

(
t, x′,

τ t+ ξ′ · x′
ε

)

−
M−1∑
m=1

εm χ′(x3) ∂y3u
m,±
3 (...)ψapp,M

ε

(
t, x′,

τ t+ ξ′ · x′
ε

)
+O(εM ) ,

where the short notation (...) is a substitute for the evaluation at:(
t, x′, x3 − χ(x3)ψapp,M

ε ,
x3 − ψapp,M

ε

ε
,
τ t+ ξ′ · x′

ε

)
.

It remains to expand χ(x3) and χ′(x3) with respect to ε by using the inverse map of:

x3 7−→ y3 := x3 − χ(x3)ψapp,M
ε (t, x′) .

The expansion of χ(x3) and χ′(x3) with respect to ε is given by the so-called Lagrange inversion formula,
which is recalled in Lemma B.5 of Appendix B, and which ultimately gives:

∇ · uapp,M,±
ε =

M−1∑
m=0

εm
(
∂Y3u

m+1,±
3 + ξj ∂θu

m+1,±
j − Fm,±7

)
(...) +O(εM ) = O(εM ) ,

where the final conclusion comes again from the fast that the profiles (Uµ+1,±, ψµ+1)µ=0,...,M satisfy the
fast problems (H(M)− 2). We have thus obtained the estimate:

sup
t∈[0,T ] ,x∈Ωapp,M,±

ε (t)

|R3,±
ε | = O(εM ) ,

and the estimate for the error term R4,±
ε follows similarly.

Since we already have L∞ estimates for the divergence of the vector fields uapp,M,±
ε and Happ,M,±

ε , the
estimate for the error terms R1,±

ε and R2,±
ε of Theorem 1.2 will follow from an estimate of the type:

sup
t∈[0,T ] , x∈Ωapp,M,±

ε (t)

∣∣A0 ∂tU
app,M,±
ε + ∂xαfα(Uapp,M,±

ε )
∣∣ = O(εM ) ,

where we recall that the fluxes fα correspond to the conservative form of the incompressible MHD equa-
tions (2.1). Since the fluxes fα are quadratic, we have:

fα(Uapp,M,±
ε ) = fα(U0,±) +A±α · (Uapp,M,±

ε − U0,±) +
1

2
Aα(Uapp,M,±

ε − U0,±, Uapp,M,±
ε − U0,±) .

It then remains to expand the quantity:

A0 ∂tU
app,M,±
ε + ∂xαfα(Uapp,M,±

ε ) ,

with respect to ε (expanding also χ(x3) and χ′(x3) with respect to ε), and use once again the fact that
the profiles satisfy the fast problems (H(M)− 2). We feel free to skip the details and leave them to the
interested reader. We have thus completed the proof of Theorem 1.2.
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Chapter 6

The rectification phenomenon

The aim of this Chapter is to examine whether one can construct a solution to the WKB cascade that
is purely localized near the boundary at any amplitude scale. To be more precise, we are going to show
that without any requirement on the initial front profile ψ2

0, the residual component of the first corrector
U2,± vanishes (with, of course, suitably chosen initial data for several components). We can thus achieve
U1,± = U2,± = 0 though, as we explain below, it seems unlikely to have simultaneously:

U1,± = U2,± = U3,± = 0 .

However, we have not succeeded to get a complete proof of this fact. We note still that the situation
is quite different from the one in elastodynamics [Mar11] where the first corrector generically has a
non-zero residual component. This will not happen here due to the specific form of the leading profile
(4.35) and orthogonality properties between some of its components. We therefore examine how the first
corrector U2,± is constructed and explain why the residual component U2,± vanishes. We then examine
the construction of the other correctors.

6.1 The first corrector

In the proof of Theorem 1.2, we have first in Chapter 4 identified the leading profile U1,±. By imposing,
which was shown to be compatible with all other constraints, the initial conditions:

Û
1,±

(0)
∣∣
t=0

= 0 , Π Û1,±
? (0)

∣∣
t=0

= 0 ,

we have been led to the decomposition (4.35) for U1,±. In particular, the leading profile satisfies:

U1,± = U1,±
? , Û1,±

? (0) = 0 .

The oscillating modes of the leading front ψ2 are governed by a nonlocal Hamilton-Jacobi equation and
the initial condition ψ2

0 for ψ2 is a non-zero function in H∞] (the space of H∞ zero mean in θ functions).

As observed in Chapter 4, the choice of how we have lifted U1,± from y3 = 0 to y3 ∈ I± contained some
arbitrariness, but it presents the nice property, which we shall use below, of satisfying ∂y3U

1,±|y3=0 = 0.
Using the expression (4.35) as well as (A.5), we get:

(6.1) Û1,±(t, y′, 0, Y3, k) = Û1,±
? (t, y′, 0, Y3, k)

= ± ψ̂ 2(t, y′, k)
(
|k| ξ1 c

±, |k| ξ2 c
±,±i k c±, |k| ξ1 b

±, |k| ξ2 b
±,±i k b±, |k| ((b±)2 − (c±)2)

)T
e∓ |k|Y3 .

Let us now examine how we have constructed the first corrector U2,± and explain why our choice of
initial conditions in Theorem 1.2 yields U2,± = 0. This means that rectification, if it occurs, does not
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arise at the level of the first corrector. This is one major difference with elastodynamics [Mar11]. The
construction of U2,± splits in several steps.

• Step 1. The oscillating modes of the residual component U2,±. Recalling the expression (2.14b)

of F 1,± and the fact that U1,± vanishes, we obtain F 1,± = 0. Since the residual component U2,± must
satisfy:

A ± ∂θU
2,± = F 1,± = 0 ,

and since A ± is invertible, we get ∂θU
2,± = 0. This means that residual component U2,± of the first

corrector U2,± reduces to the slow mean Û
2,±

(0).

• Step 2. Collecting the equations for the slow mean. We are now going to examine the equations that

must be satisfied by the slow mean Û
2,±

(0). Using the expression (2.13) for m = 2, a necessary condition

for solving (2.15) with m = 2 is F̂
2,±

(0) = 0 together with the divergence constraint F̂
2,±
8 (0) = 0 for the

magnetic field. Since we already know that the residual component U1,± vanishes, we obtain the linear
homogeneous system:

(6.2)

{
L±s (∂)Û

2,±
(0) = 0 ,

∇ · Ĥ2,±
(0) = 0 ,

which corresponds, with the notation of (5.33), to F1,± = 0 and F1,±
8 = 0. The boundary conditions

on Γ± for Û
2,±

(0) correspond to imposing (2.23) with m = 1 and for the zero Fourier mode in θ only,
namely:

(6.3) û2,±
3 (0)|Γ± = Ĥ

2,±
3 (0)|Γ± = 0 .

The boundary conditions (5.30) on Γ0, for m = 1, read explicitly:

(6.4)


û2,±

3 (0)|y3=0 = (∂t + u0,±
j ∂yj )ψ̂

2(0) + c0

{
∂θψ

2 ξj u
1,±
j |y3=Y3=0

}
− û2,±

3,? (0)|y3=Y3=0 ,

Ĥ
2,±
3 (0)|y3=0 = H0,±

j ∂yj ψ̂
2(0) + c0

{
∂θψ

2 ξj H
1,±
j |y3=Y3=0

}
− Ĥ2,±

3,? (0)|y3=Y3=0 ,

q̂ 2,+(0)|y3=0 − q̂ 2,−(0)|y3=0 = −q̂ 2,+
? (0)|y3=Y3=0 + q̂ 2,−

? (0)|y3=Y3=0 .

Let us eventually recall that the normalization condition (2.34) for the total pressure reduces to:

∀ t ∈ [0, T ] ,

∫
Ω+

0

q̂ 2,+(t, y, 0) dy +

∫
Ω−0

q̂ 2,−(t, y, 0) dy = 0 ,

because the fast mean of the leading profile vanishes.

In order to go further in the determination of the slow mean Û
2,±

(0), we need to compute the source
terms on the right hand side in (6.4), and therefore determine the non-characteristic components of the
fast mean of U2,±.

• Step 3. The non-characteristic components of the fast mean. Recalling the expression (4.1b) of the

source term F 1,±
8 , we have:

∂Y3Ĥ
2,±
3,? (0)

∣∣
y3=0

= −
(
∇ · Ĥ1,±

? (0)
)∣∣
y3=0

+ c0

{
∂θψ

2 ξj ∂Y3H
1,±
j,?

}∣∣
y3=0

= ∂Y3 c0

{
∂θψ

2 ξj H
1,±
j,?

}∣∣
y3=0

,
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where we have used the fact that the fast mean of the leading profile vanishes. Integrating with respect
to Y3 with the zero limit at infinity, we get:

Ĥ2,±
3,? (0)

∣∣
y3=0

= c0

{
∂θψ

2 ξj H
1,±
j,?

}∣∣
y3=0

,

and using the expression (6.1), this yields:

Ĥ2,±
3,? (0)

∣∣
y3=0

= ∓b±
∑
k 6=0

(
i k ψ̂ 2(−k)

) (
|k| ψ̂ 2(k)

)
e∓ |k|Y3 = 0 ,

where the conclusion follows from the change of index k → −k. In the same way, we can obtain
û2,±

3,? (0)|y3=0 = 0. This orthogonality property is specific to the current vortex sheet problem we are
considering here and to the explicit form of the leading profile. This is where the analysis differs from
elastodynamics. Note that the two relations û2,±

3,? (0)|y3=0 = Ĥ2,±
3,? (0)|y3=0 = 0 hold not only for Y3 = 0

but for any Y3 ∈ R±.
Let us now study the fast mean of the total pressure. Recalling the expression (2.14b), of which we

compute the third component of the fast mean, we get:

∂Y3 q̂
2,±
? (0)

∣∣
y3=0

= F̂ 1,±
3,? (0)

∣∣
y3=0

= c0

{
∂θψ

2 A ± ∂Y3U
1,± − 1

2
∂Y3A3(U1,±, U1,±)

}
3

∣∣
y3=0

= ∂Y3 c0

{
∂θψ

2 A ± U1,± − 1

2
A3(U1,±, U1,±)

}
3

∣∣
y3=0

and we thus obtain the expression:

q̂ 2,±
? (0)

∣∣
y3=0

= c0

{
∂θψ

2
(
c± u1,±

3 − b±H1,±
3

)
+ (H1,±

3 )2 − (u1,±
3 )2

}∣∣
y3=0

=
(
(c±)2 − (b±)2

) ∑
k 6=0

k2 ψ̂ 2(−k) ψ̂ 2(k)
(
e∓ |k|Y3 − e∓ 2 |k|Y3) .

In particular, there holds:
q̂ 2,±
? (0)

∣∣
y3=Y3=0

= 0 .

Computing similarly two other terms on the right hand side of (6.4), we can rewrite (6.4) more simply
as:

(6.5)


û2,±

3 (0)|y3=0 =
(
∂t + u0,±

j ∂yj
)
ψ̂ 2(0) ,

Ĥ
2,±
3 (0)|y3=0 = H0,±

j ∂yj ψ̂
2(0) ,

q̂ 2,+(0)|y3=0 − q̂ 2,−(0)|y3=0 = 0 .

The fact that all source terms on the right hand side of (6.5) have been dropped out for orthogonality
reasons explains why the residual component of U2,± will ultimately vanish.

• Step 4. The Laplace problem for the total pressure. Making the equations in (6.2) explicit, the slow

mean Û
2,±

(0) must satisfy the linear system:
(
∂t + u0,±

j ∂yj
)
û2,±
α (0) + u0,±

α ∇ · û2,±(0)−H0,±
j ∂yjĤ

2,±
α (0)−H0,±

α ∇ · Ĥ2,±
α (0) + ∂yα q̂

2,±(0) = 0 ,(
∂t + u0,±

j ∂yj
)
Ĥ

2,±
α (0)− u0,±

α ∇ · Ĥ2,±
(0)−H0,±

j ∂yj û
2,±
α (0) +H0,±

α ∇ · û2,±
α (0) = 0 ,

∇ · û2,±(0) = ∇ · Ĥ2,±
(0) = 0 ,
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with the boundary conditions (6.3) and (6.5). We thus find that the total pressure corrector must satisfy
the coupled Laplace problem:

−∆ q̂ 2,±(0) = 0 , in Ω±0 ,

∂y3 q̂
2,±(0)|y3=±1 = 0 ,

∂y3 q̂
2,±(0)|y3=0 = −(∂t + u0,±

j ∂yj ) (∂t + u0,±
j′ ∂yj′ )ψ̂

2(0) +H0,±
j H0,±

j′ ∂yj∂yj′ ψ̂
2(0) ,

q̂ 2,+(0)|y3=0 − q̂ 2,−(0)|y3=0 = 0 .

Reproducing the same calculations as in the corresponding Section of Chapter 5, we find that the non-zero
Fourier modes in y′ of ψ̂ 2(0) must satisfy the linear wave equation:(

∂t + u0,+
j ∂yj

) (
∂t + u0,+

j′ ∂yj′
)
Ψ2 +

(
∂t + u0,−

j ∂yj
) (
∂t + u0,−

j′ ∂yj′
)
Ψ2

−H0,+
j H0,+

j′ ∂yj∂yj′Ψ
2 −H0,−

j H0,−
j′ ∂yj∂yj′Ψ

2 = 0 ,

on the boundary Γ0, and the mean of ψ̂ 2(0) on Γ0 vanishes. By choosing, as in Theorem 1.2, zero initial
conditions for the oscillating modes Ψ2, we end up with ψ̂ 2(0) = 0 and consequently q̂ 2(0) = 0 thanks to
the normalization condition (2.34).

• Step 5. Conclusion. Since the slow mean of the residual total pressure q2,± vanishes, it is not difficult

to show that (6.2) implies Û
2,±

(0) = 0. This is the same argument as when we have determined the slow
mean of the leading profile in Chapter 4. In other words, we have just shown that for any initial condition
ψ2

0 ∈ H∞] in (1.8), we can construct a solution to the WKB cascade that satisfies (so far):

• U1,± = U2,± = 0 and Û1,±
? = 0,

• û2,±
3,? (0)|y3=0 = Ĥ2,±

3,? (0)|y3=0 = q̂ 2,±
? (0)|y3=Y3=0 = 0.

We are now going to examine whether it is possible to construct a second corrector U3,± in the WKB
expansion (1.9a) that satisfies U3,± = 0.

6.2 The second corrector

We shall not give in this Section a rigorous proof of U3,± 6= 0 but we shall rather explain why this fact
is quite likely to happen. First of all, since both U1,± and U2,± vanish, we can compute F 2,± = 0 and
therefore the residual component of the second corrector U3,± reduces to the slow mean only:

U3,± = Û
3,±

(0) .

Computing the expression of F 3,± and F 3,±
8 , we then find that the slow mean Û

3,±
(0) satisfies the linear

homogeneous system: {
L±s (∂)Û

3,±
(0) = 0 ,

∇ · Ĥ3,±
(0) = 0 .

The boundary conditions for Û
3,±

read:

û3,±
3 (0)|Γ± = Ĥ

3,±
3 (0)|Γ± = 0 ,

and:

(6.6)


û3,±

3 (0)|y3=0 = Ĝ2,±
1 (0)− û3,±

3,? (0)|y3=Y3=0 ,

Ĥ
2,±
3 (0)|y3=0 = Ĝ2,±

2 (0)− Ĥ3,±
3,? (0)|y3=Y3=0 ,

q̂ 3,+(0)|y3=0 − q̂ 3,−(0)|y3=0 = −q̂ 3,+
? (0)|y3=Y3=0 + q̂ 3,−

? (0)|y3=Y3=0 .

102



If we follow the above arguments, the only hope for proving Û
3,±

(0) 6= 0 is to show that the right hand
side of (6.6) does not reduce to the linear terms in ψ̂ 3(0). This is where the algebra becomes quite
involved. Some terms can be made explicit though. For instance, the fast mean of the total pressure q3,±

is obtained by solving:
∂Y3 q̂

3,±
? (0) = F 2,±

3,? (0) ,

but unfortunately, this yields after integration with respect to Y3 (and quite a few more calculations):

q̂ 3,±
? (0)|y3=0 = c0

{
∂θψ

3
(
c± u1,±

3 − b±H1,±
3

)
+H1,±

3 H2,±
3 − u1,±

3 u2,±
3

+
(
∂t + u0,±

j ∂yj
)
ψ2 u1,±

3 −H0,±
j ∂yjψ

2H1,±
3

+ ∂θψ
2 ξj u

1,±
j u1,±

3 − ∂θψ2 ξj H
1,±
j H1,±

3

}∣∣
y3=0

,

and from the latter expression, we get:

q̂ 3,±
? (0)|y3=Y3=0 = 0 .

This means that the last boundary condition in (6.6) reads:

q̂ 3,+(0)|y3=0 − q̂ 3,−(0)|y3=0 = 0 .

Making the source terms Ĝ2,±
1 (0), Ĝ2,±

2 (0) as well as û3,±
3,? (0)|y3=Y3=0 and Ĥ3,±

3,? (0)|y3=Y3=0 explicit is

much more difficult. This gives ultimately a sum of terms that are either quadratic or cubic in ψ2 and
a sum of products between ψ2 and ψ3. It is likely that the final result will not be zero, though we have
not been able to complete the calculations. If one could prove indeed that the residual component U3,±

does not vanish, then the expression (2.13) shows that the source terms F 4,± will have non-zero Fourier
modes that do not vanish, due to the products ∂θψ

2 with ∂y3U
3,±. It is then likely that U5,± will have

non-zero Fourier modes, which explains why in Definition 1.1 we have considered residual components in
S± that also depend on the fast variable θ (as opposed for instance to [Mar10]).
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Appendix A

Linear and bilinear algebra

In this Appendix, we give explicit expressions for various matrices and right or left eigenvectors that are
involved in the analysis of the WKB cascade. It should be remembered, see (1.5), that the two constant
states U0,± defining the reference steady current vortex sheet are given by:

U0,± = (u0,±
1 , u0,±

2 , 0, H0,±
1 , H0,±

2 , 0, 0)T .

The fluxes fα are defined by (2.3). The Jacobian matrices A±α = dfα(U0,±), α = 1, 2, 3, are thus given
by:

A±1 =



2u0,±
1 0 0 −2H0,±

1 0 0 1

u0,±
2 u0,±

1 0 −H0,±
2 −H0,±

1 0 0

0 0 u0,±
1 0 0 −H0,±

1 0
0 0 0 0 0 0 0

H0,±
2 −H0,±

1 0 −u0,±
2 u0,±

1 0 0

0 0 −H0,±
1 0 0 u0,±

1 0
1 0 0 0 0 0 0


,

A±2 =



u0,±
2 u0,±

1 0 −H0,±
2 −H0,±

1 0 0

0 2u0,±
2 0 0 −2H0,±

2 0 1

0 0 u0,±
2 0 0 −H0,±

2 0

−H0,±
2 H0,±

1 0 u0,±
2 −u0,±

1 0 0
0 0 0 0 0 0 0

0 0 −H0,±
2 0 0 u0,±

2 0
0 1 0 0 0 0 0


,

A±3 =



0 0 u0,±
1 0 0 −H0,±

1 0

0 0 u0,±
2 0 0 −H0,±

2 0
0 0 0 0 0 0 1

0 0 H0,±
1 0 0 −u0,±

1 0

0 0 H0,±
2 0 0 −u0,±

2 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0


.
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In particular, we get from these expressions the matrices A ± = τ A0 + ξj A
±
j that enter the definition

(2.10) of the fast operators L ±
f (∂):

A ± =



c± + ξ1 u
0,±
1 ξ2 u

0,±
1 0 −(b± + ξ1H

0,±
1 ) −ξ2H

0,±
1 0 ξ1

ξ1 u
0,±
2 c± + ξ2 u

0,±
2 0 −ξ1H

0,±
2 −(b± + ξ2H

0,±
2 ) 0 ξ2

0 0 c± 0 0 −b± 0

−ξ2H
0,±
2 ξ2H

0,±
1 0 c± − ξ1 u

0,±
1 −ξ2 u

0,±
1 0 0

ξ1H
0,±
2 −ξ1H

0,±
1 0 −ξ1 u

0,±
2 c± − ξ2 u

0,±
2 0 0

0 0 −b± 0 0 c± 0
ξ1 ξ2 0 0 0 0 0


,

where we recall the notations:

c± := τ + ξj u
0,±
j , b± := ξj H

0,±
j .

We first collect several observations and useful formulas related to the above matrices.

• In many of the calculations below, we shall need to use the property (c±)2 − (b±)2 6= 0. We now
show why this property follows from Assumptions (H3) and (H4). Indeed let us assume for instance
(c+)2 − (b+)2 = 0. Then because of (H4), we also have simultaneously (c−)2 − (b−)2 = 0. Using
c± = τ + a±, we get τ + a+ = ϑ+ b+ and τ + a− = ϑ− b−, with ϑ+, ϑ− ∈ {−1, 1}. Subtracting, we get
a+ − a− = ϑ+ (b+ − ϑ+ ϑ− b−), which implies either |a+ − a−| = |b+ − b−| or |a+ − a−| = |b+ + b−|. In
any case, the latter relation is incompatible with (H3).

The property (c±)2−(b±)2 6= 0 is used below to parametrize some eigenspaces for some given matrices.
Were it not satisfied, these eigenspaces would not be one-dimensional any longer and this degeneracy would
seem to rule to out the validity of our weakly nonlinear expansion.

• Multiplying on the left the matrix A ± by the upper triangular matrix:

(A.1) P± :=



1 0 0 0 0 0 −u0,±
1

0 1 0 0 0 0 −u0,±
2

0 0 1 0 0 0 0

0 0 0 1 0 0 −H0,±
1

0 0 0 0 1 0 −H0,±
2

0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

we can easily show that both matrices A ± are invertible. Indeed, any vector (v±, B±, p±)T in the kernel
of A ± must satisfy: 

c± v±1 − b±B±1 −H0,±
1 ξ′ · (B′)± + ξ1 p

± = 0 ,

c± v±2 − b±B±2 −H0,±
2 ξ′ · (B′)± + ξ2 p

± = 0 ,

c± v±3 − b±B±3 = 0 ,

−b± v±1 + c±B±1 − u0,±
1 ξ′ · (B′)± = 0 ,

−b± v±2 + c±B±2 − u0,±
2 ξ′ · (B′)± = 0 ,

−b± v±3 + c±B±3 = 0 ,

ξ′ · (v′)± = 0 .

Adding ξ1 times the fourth line, ξ2 times the fifth line and −b± times the sixth line, we get ξ′ · (B′)± = 0
by using τ 6= 0 (this is the first occurence in this Appendix of this condition which will be used in several
other places). Taking the scalar product of the two first lines with ξ′ (recall that ξ′ has norm 1), we
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thus get p± = 0. Using then (c±)2 − (b±)2 6= 0, which we recall follows from (H3), (H4), we end up with
v± = B± = 0.

• We can also compute a right eigenvector for the eigenmode ∓1 of the differential system:

(A.2) A±3
dU±

dY3
+ iA ± U± = 0 , Y3 ∈ R± .

Namely, by using again the conditions τ 6= 0 and (c±)2 − (b±)2 6= 0, we can show that the vector spaces
Ker (∓A±3 + iA ±) have dimension 1 and are spanned by the vectors:

(A.3) R± :=
(
ξ1 c
±, ξ2 c

±,±i c±, ξ1 b
±, ξ2 b

±,±i b±, (b±)2 − (c±)2
)T
∈ C7 .

These expressions are to be compared with similar ones in [AH03] for the two-dimensional problem. It
should be noted that the vectors R± satisfy the additional condition:(

0 0 0 i ξ1 i ξ2 ∓1 0
)

R± = 0 ,

which is reminiscent of the divergence free constraint on the magnetic field.
When analyzing the WKB cascade, we have also made use of the dual problem associated with (A.2),

namely:

(A±3 )T
dU±

dY3
+ i (A ±)T U± = 0 , Y3 ∈ R± ,

which admits the same eigenmode ∓1. By using the conditions τ 6= 0 and (c±)2 − (b±)2 6= 0, we know
that the vector spaces Ker (∓A±3 + iA ±)T have dimension 1 and we can show that they are spanned by
the vectors:

(A.4) L± :=
(
ξ1 τ, ξ2 τ,±i τ, 2 ξ1 b

±, 2 ξ2 b
±,±2 i b±,−τ (a± + c±)

)T
∈ C7 .

The vectors R±(k),L ±(k) entering the definition of the profiles and the solvability condition for the
fast problem (3.1), are then defined by:

(A.5) ∀ k ∈ Z \ {0} , R±(k) :=

{
R± , if k > 0,

R± , if k < 0,
, L ±(k) :=

{
L± , if k > 0,

L± , if k < 0.

From (A.3) and (A.4), we get:

R±(k) =
(
ξ1 c
±, ξ2 c

±,±i sgn(k) c±, ξ1 b
±, ξ2 b

±,±i sgn(k) b±, (b±)2 − (c±)2
)T

,

L ±(k) =
(
ξ1 τ, ξ2 τ,±i sgn(k) τ, 2 ξ1 b

±, 2 ξ2 b
±,±2 i sgn(k) b±,−τ (a± + c±)

)T
,

where ‘sgn’ denotes the sign function, which we need only to define on Z \ {0}.
Using (A.5) and the above expressions for the matrices A±α , we can compute the Hermitian products,

where the equalities below hold for any pair of non-zero Fourier modes k1, k2:

(A.6)

〈L ±(k1);A0 R±(k2)〉 =
(
τ c± + 2 (b±)2

) (
1 + sgn(k1) sgn(k2)

)
,

〈L ±(k1);A±1 R±(k2)〉 = τ
(
u0,±

1 c± −H0,±
1 b±

) (
1 + sgn(k1) sgn(k2)

)
+ ξ1 τ

(
(b±)2 − (c±)2

)
+ 2 b±

(
u0,±

1 b± −H0,±
1 c±

) (
1 + sgn(k1) sgn(k2)

)
,

〈L ±(k1);A±2 R±(k2)〉 = τ
(
u0,±

2 c± −H0,±
2 b±

) (
1 + sgn(k1) sgn(k2)

)
+ ξ2 τ

(
(b±)2 − (c±)2

)
+ 2 b±

(
u0,±

2 b± −H0,±
2 c±

) (
1 + sgn(k1) sgn(k2)

)
,

〈L ±(k1); A ±R±(k2)〉 = τ
(
(b±)2 − (c±)2

) (
1− sgn(k1) sgn(k2)

)
.
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We recall that 〈 · ; · 〉 refers to the Hermitian product in C7:

∀U, V ∈ C7 , 〈U ;V 〉 :=

7∑
i=1

Ui Vi .

The expressions (A.6) have been used to derive the leading amplitude equation (4.33) in Chapter 4.

• We now give the expression of the Hessian mappings defined in (2.5). For any pair of vectors in R7:

U = (u1, u2, u3, H1, H2, H3, q)
T , V = (v1, v2, v3, B1, B2, B3, p)

T ,

there holds:

A1(U, V ) =



2u1 v1 − 2H1B1

u1 v2 + u2 v1 −H1B2 −H2B1

u1 v3 + u3 v1 −H1B3 −H3B1

0
u1B2 +H2 v1 − u2B1 −H1 v2

u1B3 +H3 v1 − u3B1 −H1 v3

0


,

A2(U, V ) =



u2 v1 + u1 v2 −H2B1 −H1B2

2u2 v2 − 2H2B2

u2 v3 + u3 v2 −H2B3 −H3B2

u2B1 +H1 v2 −H2 v1 − u1B2

0
u2B3 +H3 v2 −H2 v3 − u3B2

0


,

A3(U, V ) =



u3 v1 + u1 v3 −H3B1 −H1B3

u3 v2 + u2 v3 −H3B2 −H2B3

2u3 v3 − 2H3B3

u3B1 +H1 v3 −H3 v1 − u1B3

u3B2 +H2 v3 −H3 v2 − u2B3

0
0


.

Using again (A.5) and the latter expressions for the mappings Aα, we can compute for any triple of
non-zero Fourier modes k1, k2, k3:

(A.7)

〈L ±(k1);A1 (R±(k2),R±(k3))〉 = τ ξ1

(
(c±)2 − (b±)2

) (
2 + sgn(k1) (sgn(k2) + sgn(k3))

)
,

〈L ±(k1);A2 (R±(k2),R±(k3))〉 = τ ξ2

(
(c±)2 − (b±)2

) (
2 + sgn(k1) (sgn(k2) + sgn(k3))

)
,

〈L ±(k1);A3 (R±(k2),R±(k3))〉 = ± i τ
(
(c±)2 − (b±)2

)(
sgn(k2) + sgn(k3) + 2 sgn(k1) sgn(k2) sgn(k2)

)
.

The expressions (A.7) have also been used to derive the leading amplitude equation (4.33) in Chapter 4.

107



Appendix B

Compatibility conditions for the
construction of correctors

This Appendix is devoted to the proof of the symmetry relations between the functions χ[`] and the
profiles ψm that have been used in the proof of Lemma 5.2. We also collect in this Appendix the proof of
several intermediate results that have been used in Chapter 5 for the inductive construction of correctors
in the WKB expansion (1.9).

B.1 General considerations

In this first Section, we recall the definition of the functions χ[`], χ̇[`], ` ≥ 0, which can be achieved in
a slightly more general framework than what has been considered in Chapter 2. We make the general
form of χ[`] and χ̇[`] explicit, which will reduce the proof of Lemma 5.3 and Lemma 5.4 -the so-called
first and second symmetry formulas- to verifying certain ‘invariance’ and ‘recursive’ properties in the
decompositions (B.8), (B.9) of χ[`] and χ̇[`] below. These properties will be proved by means of some
basic or more advanced combinatorial arguments.

In all this Appendix, we consider sequences µ = (µ1, µ2, . . . ) of integers (µ` ∈ N for all ` ≥ 1) of finite
‘length’, that is:

|µ| :=
∑
`≥1

µ` < +∞ .

For such sequences, we define the ‘weight’ of µ by setting:

〈µ〉 :=
∑
`≥1

` µ` < +∞ ,

and we shall also use the notation:
µ ! :=

∏
`≥1

µ` ! ,

where the product is taken over finitely many indices, hence is well-defined, for the considered sequences.
Any sequence of finite length is a sum of finitely many ‘elementary’ sequences em, m ≥ 1, which are
defined by:

∀m, ` ≥ 1 , (em)` := δm` ,

with δ the Kronecker symbol. In particular, em is the only sequence of length 1 and weight m for any
m ≥ 1. Eventually, we write ν ≤ µ for two sequences ν,µ if there holds ν` ≤ µ` for all ` ≥ 1.

In what follows, we consider a sequence of C∞ functions (ψ1, ψ2, . . . ) defined on [0, T ]t×T2
(y1,y2)×Tθ,

the final time T > 0 being fixed. The sequence of functions is given here. In particular, we do not
assume that the first element, namely ψ1, is identically zero. However, when the results in this Appendix

108



are applied to the context of incompressible current vortex sheets, ψ1 is zero and the other functions
ψ2, ψ3, . . . correspond to the profiles in the asymptotic expansion (1.9b). We shall use the notation:

ψµ :=
∏
`≥1

(
ψ`
)µ` ,

which will be useful in several expressions below. Again, the product is taken over finitely many indices
for the considered sequences. We use the convention ψµ = 1 if µ is the ‘zero’ sequence, that is µ` = 0 for
all ` ≥ 1. We prove our main results, Corollary B.2, Corollary B.3 and Proposition B.4 below in the more
general context where ψ1 may be non-zero since this could be useful for other geometric optics problems
with (possibly curved) free boundaries, see, e.g., [Wil99].

In Chapter 2, we have been considering the change of variable (2.7). In our more general framework
here, we consider a function ψ(ε, t, y′, θ) that is smooth with respect to ε ∈ R near the origin, and that
verifies ψ(0, ·) ≡ 0 and:

∀m ≥ 1 ,
∂mψ

∂εm
(0, ·) = m !ψm .

Thanks to the Borel summation procedure, such a function exists. Then for sufficiently small ε, the
relation:

(B.1) y3 = x3 − χ(x3)ψ(ε, t, y′, θ) ,

defines implicitly x3 in terms of (ε, t, y, θ). Recall the notation y = (y′, y3). We write the asymptotic
expansion of x3 with respect to ε as follows:

(B.2) x3 ∼
∑
`≥0

ε`X[`](t, y, θ) .

Even without any further knowledge on the X[`]’s, we can substitute the asymptotic expansion of x3 into
χ(x3), and write:

χ(x3) ∼
∑
`≥0

ε` χ[`](t, y, θ) ,

in agreement with the notation (2.8). The functions χ̇[`] are defined similarly by substituting x3 in the
first derivative χ′ rather than in χ. Identifying the asymptotic expansions with respect to ε in the relation
(B.1), we immediately get the relations:

X[0](t, y, θ) = y3 , χ[0](t, y, θ) = χ(y3) , χ̇[0](t, y, θ) = χ′(y3) ,(B.3)

∀ ` ≥ 1 , X[`] =
∑

`1+`2=`

χ[`1] ψ`2 ,(B.4)

where in (B.4) we use the convention ψ0 ≡ 0. In particular, the function X[`+1] is obtained from (B.4) as
long as we have already determined χ[0], . . . , χ[`]. In order to close the loop and to determine inductively
all functions X[`] and χ[`], the last ingredient is the so-called Faà di Bruno formula [Com74]. Indeed,
plugging the asymptotic expansion (B.2) in the function χ and expanding with respect to ε, the Faà di
Bruno formula yields:

∀m ≥ 1 , χ[m](t, y, θ) =
∑
〈µ〉=m

1

µ !
χ(|µ|)(y3)

∏
k≥1

(
X[k](t, y, θ)

)µk
,(B.5)

χ̇[m](t, y, θ) =
∑
〈µ〉=m

1

µ !
χ(1+|µ|)(y3)

∏
k≥1

(
X[k](t, y, θ)

)µk
.(B.6)

109



Since µk = 0 for k ≥ m + 1 in (B.5), because 〈µ〉 = m, we see that the function χ[m] can be fully
determined as long as we already know the functions X[0], . . . ,X[m]. Hence the following global induction
procedure, which is initialized by (B.3): assuming that the functions X[0], . . . ,X[`], χ[0], . . . , χ[`] have
already been determined, one first computes X[`+1] from (B.4) and then uses this expression, as well as
that of X[0], . . . ,X[`], in (B.5) in order to determine χ[`+1]. Once all functions X[`] have been determined,
thanks to the ‘auxiliary’ sequence of the χ[`]’s, the functions χ̇[m] are given for all m ≥ 1 by (B.6).

Let us observe that the decompositions (B.5), (B.6) also hold for m = 0 with, still, the convention
(X[k])0 = 1. One can compute for instance the first expressions of X[`], χ[`], χ̇[`] and get:

X[0] = y3 , χ[0] = χ ,

χ̇[0] = χ′ ,

X[1] = χψ1 , χ[1] = χχ′ ψ1 ,

χ̇[1] = χχ′′ ψ1 ,

X[2] = χχ′
(
ψ1
)2

+ χψ2 , χ[2] =

(
χ2 χ′′

2
+ χ

(
χ′
)2) (

ψ1
)2

+ χχ′ ψ2 ,

χ̇[2] =

(
χ2 χ′′′

2
+ χχ′ χ′′

) (
ψ1
)2

+ χχ′′ ψ2 ,

where it is understood that all functions χ, χ′, χ′′ . . . are evaluated at y3, and all functions ψ1, ψ2, . . . are
evaluated at (t, y′, θ). The latter expressions are consistent with what we have found in Chapter 2 (recall
that in Chapter 2, ψ1 is zero hence several simplifications).

From a straightforward induction argument, based on the relations (B.4), (B.5), (B.6), we can decom-
pose the functions X[m], χ[m], χ̇[m] as follows1:

∀m ≥ 0 , X[m](t, y, θ) =
∑
〈µ〉=m

1

µ !
Xµ(y3) ψµ(t, y′, θ) ,(B.7)

χ[m](t, y, θ) =
∑
〈µ〉=m

1

µ !
Fµ(y3) ψµ(t, y′, θ) ,(B.8)

χ̇[m](t, y, θ) =
∑
〈µ〉=m

1

µ !
Ḟµ(y3) ψµ(t, y′, θ) .(B.9)

The case m = 0 in (B.7), (B.8), (B.9) is only a matter of rewriting (B.3), with the notation:

X(0,0,... )(y3) := y3 , F(0,0,... )(y3) := χ(y3) , Ḟ(0,0,... )(y3) := χ′(y3) .

The proof of (B.7), (B.8), (B.9) then follows by induction on m. For instance, the relation (B.4) connects
the functions Xµ in (B.7) to the functions Fµ in (B.8) as follows:

(B.10) ∀m ≥ 1 , Xem = χ , (the case of length 1 sequences)

and if |µ| ≥ 2, we get:

(B.11) Xµ =
∑
ν≤µ

|ν|=|µ|−1

µ !

ν!
Fν .

The relation that gives Fµ in terms of the Xν ’s is less easy to analyze and follows from the Faà di Bruno
formula (B.5) (or (B.6) for the relation that gives Ḟµ in terms of the Xν ’s). In the following Section,
we prove a fundamental property of the functions Xµ, Fµ, Ḟµ by precisely analyzing the Faà di Bruno
formula (Lemma B.1 below). This fundamental property will easily imply the first symmetry formula
(5.24) which was used in the proof of Lemma 5.2.

1Normalizing with the constant factor µ ! will be useful later on.
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B.2 The first symmetry formula

The proof of Lemma 5.3 and (half) the proof of Lemma 5.4 relies on an ‘invariance’ property of the
functions Xµ, Fµ, Ḟµ in the decompositions (B.7), (B.8), (B.9) above, which we prove now.

Lemma B.1 (Invariance). The functions Xµ, Fµ, Ḟµ in (B.7), (B.8), (B.9) only depend on |µ|. In other
words, there holds Xµ = Xν if |µ| = |ν| (and similarly for the Fµ’s and Ḟµ’s).

An easy case of Lemma B.1 can be observed in the expressions we have given above for X[1], X[2], χ[1],
χ[2] and so on. In these expressions, the ‘coefficients’ of ψ1 and ψ2 are equal (they are highlighted in the
same color). These coefficients correspond to the elementary sequences e1, e2 which are both of length 1.
If one computes the expression of χ[3], it will be found that the coefficient of ψ1 ψ2 equals

χ2 χ′′ + 2χ
(
χ′
)2
,

which is consistent with the result of Lemma B.1 since this coefficient F(1,1,0,... ) should be equal to F(2,0,0,... )

which is twice the coefficient of (ψ1)2 in the decomposition of χ[2] (keep in mind the µ ! normalizing factor).
In all this Appendix, we shall use the notation:

(B.12) Xµ = X|µ| , Fµ = F|µ| , Ḟµ = Ḟ|µ| ,

when we need to use the invariance of the functions Xµ, Fµ, Ḟµ. The functions Xm, Fm, Ḟm in (B.12)
are indexed by integers while the functions Xµ, Fµ, Ḟµ are indexed by sequences.

Proof of Lemma B.1. The proof of Lemma B.1 proceeds by induction on the length of µ. The case of
sequences of length 0 is trivial since there is only one such sequence, the zero sequence. We thus ‘initialize’
the sequences of functions (Xm)m∈N, (Fm)m∈N, (Ḟm)m∈N by setting:

X0(y3) := y3 , F0(y3) := χ(y3) , Ḟ0(y3) := χ′(y3) .

Let us now examine the case |µ| = 1, that is when µ is an elementary sequence em for some m ≥ 1.
The relation (B.10) already shows that Xem is independent of m and equals χ. Let us now show that
Fem does not depend on m. Since em ! = 1, the function Fem is nothing but the coefficient of ψm in the
decomposition (B.8) of χ[m]. The complete expression of χ[m] is given by (B.5), which we can rewrite as
follows:

(B.13) χ[m] =
∑
〈µ〉=m

1

µ !
χ(|µ|)

∏
k≥1

∑
〈ν〉=k

1

ν !
Xν ψ

ν

µk

.

The term Fem ψ
m in the decomposition (B.8) is split into (possibly) several contributions on the right

hand side of (B.13). Namely, each time that we can decompose the sequence em as:

em =
∑
k≥1

µk∑
κ=1

ν(k, κ) , 〈ν(k, κ)〉 = k , 〈µ〉 = m,

this contributes to Fem for:

1

µ !
χ(|µ|)

∏
k≥1

µk∏
κ=1

Xν(k,κ)

ν(k, κ) !
.

Since the only possible such decomposition of em is obtained with µ = em and ν(m, 1) = em, we get
(here we use Xem = χ):

(B.14) ∀m ≥ 1 , Fem = χχ′ .
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We could have obtained in the same way:

(B.15) ∀m ≥ 1 , Ḟem = χχ′′ ,

and it obviously follows from (B.14), (B.15) that Fem and Ḟem are independent of m. Hence the result of
Lemma B.1 is valid for sequences of length 1. Moreover, we can recast (B.10), (B.14), (B.15) as:

X1 := χ , F1 := χχ′ , Ḟ1 := χχ′′ .

Let us now deal with the general step of the induction. We assume that up some integer L ≥ 1, there
holds:

|µ| = ` ≤ L =⇒ Xµ = X` , Fµ = F` , Ḟµ = Ḟ` ,

for some appropriate functions X1, . . . ,XL and so on. We now consider a sequence µ of length L + 1.
Let us start by looking at the relation (B.11). Since in that decomposition of Xµ, all sequences ν on the
right hand side have length L, we can use the induction assumption and get:

Xµ =
∑
ν≤µ

|ν|=|µ|−1

µ !

ν!
FL = |µ|FL = (L+ 1) FL .

In particular, Xµ only depends on |µ| and, keeping consistent notations with those above, we have
obtained the relation XL+1 = (L+ 1) FL. (This relation can be verified in the case L = 1 on the above
expression for X[2].)

The goal now is to show that Fµ only depends on |µ|. We proceed in two steps. The first step is to
show that Fµ reads:

(B.16) Fµ =
L+1∑
N=1

∑
(ν1,··· ,νN )∈P(µ,N)

µ !

ν1 ! · · · νN !
χ(N)

N∏
n=1

X|νn| ,

where we denote by P(µ, N) the set of all possible partitions of µ into N (nontrivial) subsequences, that
is:

µ = ν1 + · · ·+ νN , min
n
|νn| ≥ 1 ,

and we do not take the order of the νn’s into account (for instance (ν1,ν2) accounts for the same
partition of ν1 + ν2 as (ν2,ν1) if N = 2 and ν1 6= ν2). The second step is to infer from (B.16) that
Fµ = Fe1+···+eL+1 , from which we can deduce that Fµ only depends on |µ|. We shall also deduce a useful
‘recursive’ formula which gives FL+1 in terms of X1, . . . ,XL+1 (hence in terms of F0, . . . ,FL).

Let us therefore prove the validity of (B.16). For a partition (ν1, · · · ,νN ) of µ into N subsequences,
we define a sequence of integers θ = (θ1, θ2, . . . ) by:

∀ j ≥ 1 , θj := #
{

1 ≤ n ≤ N / 〈νn〉 = j
}
,

so that we have |θ| = N and 〈θ〉 = 〈µ〉. Then there are θ ! possible ways to construct a decomposition
(here the order plays a role !):

µ =
∑
j≥1

θj∑
k=1

ν(j, k) , 〈ν(j, k)〉 = j ,

where the set of all ν(j, k)’s equals the set of all νn’s (with same multiplicity). From the Faà di Bruno
formula (B.13), each such decomposition of µ contributes to Fµ for:

µ !

θ !
χ(|θ|)

∏
j,k≥1

Xν(j,k)

ν(j, k) !
=
µ !

θ !
χ(N)

∏
j,k≥1

X|ν(j,k)|

ν(j, k) !
=

µ !

θ !ν1 ! · · · νN !
χ(N)

N∏
n=1

X|νn| ,
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where we have used the induction assumption. Hence any partition (ν1, · · · ,νN ) of µ into N subsequences
contributes to Fµ for:

µ !

ν1 ! · · · νN !
χ(N)

N∏
n=1

X|νn| ,

whence the relation (B.16). In particular, another way to write (B.16) in the particular case µ = e1 +
· · ·+ eL+1 is:

(B.17) Fe1+···+eL+1 =

L+1∑
N=1

∑
(L1,··· ,LN )∈P (L+1,N)

χ(N)
N∏
n=1

X#Ln ,

where P (L + 1, N) denotes the set of partitions of {1, . . . , L + 1} into N (nontrivial) pieces [Com74]
(once again, the order of the Ln’s is not taken into account here). Indeed, partitions of e1 + · · · + eL+1

correspond in a unique way to partitions of {1, . . . , L+ 1} by setting:

νn =
∑
`∈Ln

e` , Ln = {` ≥ 1 / (νn)` = 1} .

It remains at this stage to verify that Fµ equals Fe1+···+eL+1 and the proof of Lemma B.1 will be
complete. We fix a mapping:

σ : {1, . . . , L+ 1} −→ N∗ ,

such that for all ` ≥ 1, µ` = #{j / σ(j) = `}. This is possible since |µ| = L + 1. Then given a partition
(L1, · · · ,LN ) ∈ P (L+ 1, N), we can define:

∀n = 1, . . . , N , νn :=
∑
`∈Ln

eσ(`) ,

so that the νn’s form a partition of µ into N subsequences with |νn| = #Ln. Conversely, given a partition
(ν1, . . . ,νN ) of µ into N subsequences, the problem is to determine how many partitions (L1, · · · ,LN ) ∈
P (L+ 1, N) yield (ν1, . . . ,νN ) in the above process. First we need to choose among the µ1 integers that
are mapped onto 1 by σ, a decomposition into (ν1)1, . . . , (νN )1 packets. This gives:

µ1 !

(ν1)1 ! · · · (νN )1 !

possibilities. The first (ν1)1 integers contribute to L1 and so on. Repeating the argument for each ` ≥ 1,
we need to decompose the µ` integers that are mapped onto ` by σ into (ν1)`, . . . , (νN )` packets. Overall,
this gives:

µ !

ν1 ! · · ·νN !

possible partitions (L1, · · · ,LN ) ∈ P (L+1, N) that yield the same partition (ν1, . . . ,νN ) of µ. Collecting
in the expression (B.17) of Fe1+···+eL+1 all partitions that correspond to the same (ν1, . . . ,νN ), and
comparing with (B.16), we end up with Fe1+···+eL+1 = Fµ, which completes the induction argument. (We

leave the case of the functions Ḟµ to the interested reader.)
For future use, let us state here that we have proved the relations:

∀L ≥ 1 , FL =

L∑
N=1

χ(N)
∑

(L1,··· ,LN )∈P (L,N)

N∏
n=1

X#Ln ,(B.18)

ḞL =

L∑
N=1

χ(1+N)
∑

(L1,··· ,LN )∈P (L,N)

N∏
n=1

X#Ln ,(B.19)

and XL = LFL−1 for any L ≥ 1 (with the convention F0 = χ).
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Corollary B.2 (The first symmetry formula). The functions χ[`] and ψm satisfy the relation:

∀ ` ≥ 0 ,
∑

`1+`2=`

∂θχ
[`1] ∂tψ

`2 =
∑

`1+`2=`

∂tχ
[`1] ∂θψ

`2 ,

and similar relations with any couple of tangential partial derivatives chosen among {∂t, ∂y1 , ∂y2 , ∂θ}. (We
keep using the convention ψ0 = 0.)

Corollary B.2 is a more general statement than Lemma 5.3 since we do not assume ψ1 = 0 here. Hence
we shall obtain the claim of Lemma 5.3 as long as we prove Corollary B.2. (We expect that generalizing
to the case ψ1 6= 0 might be useful in other contexts.)

Proof of Corollary B.2. Let us first observe that the result of Corollary B.2 is immediate if ` = 0 or ` = 1
for we have ψ0 = 0 and χ[0] = χ(y3) hence ∂θχ

[0] = ∂tχ
[0] = 0. We thus assume ` ≥ 2 from now on, and

use ∂θχ
[0] = 0 to simplify: ∑

`1+`2=`

∂θχ
[`1] ∂tψ

`2 =
∑

`1+`2=`
`1,`2≥1

∂θχ
[`1] ∂tψ

`2 .

We now use the decomposition (B.8) of the functions χ[`] to get:∑
`1+`2=`

∂θχ
[`1] ∂tψ

`2 =
∑

`1+`2=`
`1,`2≥1

∂tψ
`2
∑
〈µ〉=`1

1

µ !
Fµ ∂θ

(
ψµ
)

=
∑

`1+`2=`
`1,`2≥1

∑
k≥1

∂tψ
`2 ∂θψ

k
∑
〈µ〉=`1
µ≥ek

1

(µ− ek) !
Fµψ

µ−ek

=
∑

m1,m2≥1

∂tψ
m1 ∂θψ

m2
∑

〈ν〉=`−m1−m2

1

ν !
Fν+em2

ψν ,

where we have used the fact that only tangential derivatives act here, so ∂θFµ = 0, and it is understood
that if m1 + m2 > `, the very last sum is zero since it contains no term. We now apply Lemma B.1,
which gives Fν+em2

= Fν+em1
for any sequence ν and any couple of integers m1,m2 (since |ν + em2 | =

|ν + em1 | = |ν| + 1). We can then ‘rewind’ the previous calculations and get by an obvious change of
indices:∑

`1+`2=`

∂θχ
[`1] ∂tψ

`2 =
∑

m1,m2≥1

∂θψ
m1 ∂tψ

m2
∑

〈ν〉=`−m1−m2

1

ν !
Fν+em2

ψν =
∑

`1+`2=`

∂tχ
[`1] ∂θψ

`2 ,

which completes the proof of Corollary B.2.

B.3 The second symmetry formula

Lemma B.1 has another consequence in the case where the normal derivative ∂y3 acts on χ[`]. The result
is the following.

Corollary B.3 (The second symmetry formula. I). The functions χ[`], χ̇[`] and ψm satisfy the relation:

(B.20) ∀ ` ≥ 0 , ∂y3χ
[`] − χ̇[`] =

∑
`1+`2+`3=`

∂y3χ
[`1] χ̇[`2] ψ`3 .
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Proof of Corollary B.3. Let us first look at the case ` = 0 in (B.20). We have:

∂y3χ
[0] − χ̇[0] = χ′ − χ′ = 0 ,

and the right hand side in (B.20) vanishes since `3 must be zero. We therefore assume ` ≥ 1 from now
on, and use the decompositions (B.8), (B.9) to compute:

∂y3χ
[`] − χ̇[`] =

∑
〈µ〉=`

1

µ !

(
F ′µ − Ḟµ

)
ψµ =

(
F ′1 − Ḟ1

)
ψ` +

∑
〈µ〉=`
|µ|≥2

1

µ !

(
F ′|µ| − Ḟ|µ|

)
ψµ ,

where we have kept the notation introduced in the proof of Lemma B.1, namely Fµ = F|µ|, Ḟµ = Ḟ|µ|.
Observe that in the very last sum, |µ| ≥ 2, hence ψµ is at least a quadratic term in the ψm’s. In other
words, we have isolated the linear term which will immediately cancel with part of the right hand side of
(B.20). Since F1 = χχ′ and Ḟ1 = χχ′′, there holds F ′1 − Ḟ1 = (χ′)2, and we have thus obtained:

(B.21) ∂y3χ
[`] − χ̇[`] =

(
χ′
)2
ψ` +

∑
〈µ〉=`
|µ|≥2

1

µ !

(
F ′|µ| − Ḟ|µ|

)
ψµ .

We now decompose the right hand side of (B.20) as:∑
`1+`2+`3=`

∂y3χ
[`1] χ̇[`2] ψ`3 = ∂y3χ

[0] χ̇[0] ψ` +
∑

`1+`2+`3=`
min(`1,`2)≥1

∂y3χ
[`1] χ̇[`2] ψ`3

=
(
χ′
)2
ψ` +

∑
`1+`2+`3=`
min(`1,`2)≥1

∂y3χ
[`1] χ̇[`2] ψ`3 .(B.22)

Comparing the right hand side of (B.21) with that of (B.22), we see that the linear terms in the ψm’s
cancel, which is a first step in the proof of (B.20). It remains to see why all other quadratic, cubic and
so on terms cancel. To prove this, we first need to express the sum on the right hand side of (B.22) as a
function of the F`’s and the Ḟ`’s. Using the decompositions (B.8), (B.9) with he result of Lemma B.1,
we have: ∑

`1+`2+`3=`
min(`1,`2)≥1

∂y3χ
[`1] χ̇[`2] ψ`3 =

∑
`1+`2+`3=`
min(`1,`2)≥1

∑
〈µ〉=`1
〈ν〉=`2

1

µ !

1

ν !
F ′|µ| Ḟ|ν|ψ

µ+ν+e`3

=
∑
〈µ〉=`
|µ|≥2


∑
ν≤µ

|ν|=|µ|−1

1

ν !

∑
θ≤ν

ν !

θ ! (ν − θ) !
F ′|θ| Ḟ|ν|−|θ|

 ψµ .(B.23)

In the interior sum on the right hand side of (B.23), we collect the sequences θ by increasing length, and
use the so-called van der Monde convolution equalities [Com74] to derive:

(B.24)
∑
θ≤ν

ν !

θ ! (ν − θ) !
F ′|θ| Ḟ|ν|−|θ| =

|ν|∑
ν=0


∑
θ≤ν
|θ|=ν

ν !

θ ! (ν − θ) !

 F ′ν Ḟ|ν|−ν =

|ν|∑
ν=0

(|ν|
ν

)
F ′ν Ḟ|ν|−ν .
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Plugging in the right hand side of (B.23), we get:

∑
`1+`2+`3=`
min(`1,`2)≥1

∂y3χ
[`1] χ̇[`2] ψ`3 =

∑
〈µ〉=`
|µ|≥2


∑
ν≤µ

|ν|=|µ|−1

1

ν !



|µ|−1∑
ν=0

(|µ| − 1

ν

)
F ′ν Ḟ|µ|−1−ν

 ψµ

=
∑
〈µ〉=`
|µ|≥2

1

µ !

|µ|
|µ|−1∑
ν=0

(|µ| − 1

ν

)
F ′ν Ḟ|µ|−1−ν

 ψµ .

Substituting the latter expression in (B.22) and then subtracting (B.21) and (B.22), we have obtained so
far:

∂y3χ
[`] − χ̇[`] −

∑
`1+`2+`3=`

∂y3χ
[`1] χ̇[`2] ψ`3

=
∑
〈µ〉=`
|µ|≥2

1

µ !

F ′|µ| − Ḟ|µ| − |µ|
|µ|−1∑
ν=0

(|µ| − 1

ν

)
F ′ν Ḟ|µ|−1−ν

 ψµ .

In order to prove the validity of (B.20), we see that it is necessary and sufficient to prove the following
relation between the functions F` and Ḟ`:

∀L ≥ 2 , F ′L − ḞL − L
L−1∑
ν=0

(
L− 1

ν

)
F ′ν ḞL−1−ν = 0 .

which is equivalent to:

(B.25) ∀L ≥ 2 ,
1

L !
F ′L −

1

L !
ḞL −

L−1∑
ν=0

1

ν !
F ′ν

1

(L− 1− ν) !
ḞL−1−ν = 0 .

Let us observe that the relation (B.25) obviously holds for L = 0 and L = 1 (use F0 = χ, F1 = χχ′,
Ḟ0 = χ′, Ḟ1 = χχ′′), hence it will hold eventually for any L ∈ N and not only for L ≥ 2. To prove the
validity of (B.25), we need to go back to the recursive relations (B.18), (B.19). We first need to make
these expressions a little bit more explicit by counting how many partitions (L1, . . . ,LN ) ∈ P (L,N) give
rise to the same product

∏
n X#Ln . Let therefore (L1, . . . ,LN ) ∈ P (L,N) and arrange the cardinals of

the Ln’s as:
c1︸︷︷︸

N1 times

< · · · < cJ︸︷︷︸
NJ times

,

with N1 + · · · + NJ = N and Nj cj = L. The group of permutations SL acts on the set of parti-
tions P (L,N) by acting (on the left hand side) on {1, . . . , L} and therefore on its subsets. The orbit
{σ · (L1, . . . ,LN ) / σ ∈ SL} consists of all partitions (L ′

1, . . . ,L
′
N ) that share the same cardinals with

(L1, . . . ,LN ) (counting cardinals with multiplicity). Hence the number of partitions with same cardinals
as (L1, . . . ,LN ) equals (use the orbit-stabilizer theorem):

L !

N1 ! · · ·NJ ! (c1 !)N1 · · · (cJ !)NJ
.
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Hence the recursive formulas (B.18) and (B.19) reduce to:

∀L ≥ 1 ,
1

L !
FL =

∑
1n1+···+LnL=L

1

n1 ! · · ·nL !
χ(n1+···+nL)

L∏
ν=1

(
Fν−1

(ν − 1) !

)nν
,(B.26)

1

L !
ḞL =

∑
1n1+···+LnL=L

1

n1 ! · · ·nL !
χ(1+n1+···+nL)

L∏
ν=1

(
Fν−1

(ν − 1) !

)nν
,(B.27)

where we have used the relation Xν = νFν−1.
It is rather straightforward now to obtain (B.25). This is mostly a matter of rewriting (B.26) and

(B.27) in a convenient way. We introduce the notation FL := FL/(L !) and ḞL := ḞL/(L !) for all L ≥ 0.
Then (B.26) and (B.27) can be rewritten as:

∀L ≥ 1 , FL =
∑
〈n〉=L

1

n !
χ(|n|)

(
F0,F1, · · ·

)n
,(B.28)

ḞL =
∑
〈n〉=L

1

n !
χ(1+|n|)

(
F0,F1, · · ·

)n
,(B.29)

where n = (n1, n2, . . . ) denotes a sequence of integers with finite length, and:(
F0,F1, · · ·

)n
:=

∏
m≥1

(
Fm−1

)nm ,
the product involving finitely many terms. Let us observe that (B.28), (B.29) also hold for L = 0 with
the convention (F0,F1, · · · )n = 1 if n is the zero sequence. We now rewrite the left hand side of (B.25)
using these new functions FL and Ḟ` and use the recursive formulas (B.28), (B.29):

F ′L
L !
− ḞL

L !
−
L−1∑
ν=0

F ′ν
ν !

ḞL−1−ν
(L− 1− ν) !

= F′L − ḞL −
L−1∑
ν=0

F′ν ḞL−1−ν

=
∑
k≥0

F′k
∑
〈n〉=L
n≥ek+1

1

(n− ek+1) !
χ(|n|)

(
F0,F1, · · ·

)n−ek+1

−
L−1∑
ν=0

F′ν
∑

〈m〉=L−1−ν

1

m !
χ(1+|m|)

(
F0,F1, · · ·

)m
= 0 .

We have thus proved the validity of (B.25), and this completes the proof of Corollary B.3.

The last result we need to prove the second symmetry formula (Lemma 5.4) is the following.

Proposition B.4 (The second symmetry formula. II). The functions χ[`], χ̇[`] and ψm satisfy the relation:

(B.30) ∀ ` ≥ 0 , ∂θχ̇
[`] =

∑
`1+`2+`3=`

χ[`1] ∂y3χ̇
[`2] ∂θψ

`3 ,

and similar relations with any other tangential partial derivative chosen among {∂t, ∂y1 , ∂y2}. (We keep
using the convention ψ0 = 0.)

Proof of Proposition B.4. Let us first observe that (B.30) is clearly satisfied for ` = 0 since ∂θχ̇
[0] = 0 and

ψ0 = 0, and (B.30) also holds for ` = 1 since we can compute:

∂θχ̇
[1] = Ḟ1 ∂θψ

1 = χχ′′ ∂θψ
1 ,∑

`1+`2+`3=1

χ[`1] ∂y3χ̇
[`2] ∂θψ

`3 = χ[0] ∂y3χ̇
[0] ∂θψ

1 = χχ′′ ∂θψ
1 .
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The equality between the left and right hand sides in (B.30) for ` = 1 follows here from the relation
Ḟ1 = F0 Ḟ ′0, a generalization of which will yield (B.30) for any ` ≥ 2.

Let us now assume ` ≥ 2, and simplify the right hand side of (B.30):∑
`1+`2+`3=`

χ[`1] ∂y3χ̇
[`2] ∂θψ

`3 = χχ′′ ∂θψ
` +

∑
`1+`2+`3=`
`1+`2≥1

χ[`1] ∂y3χ̇
[`2] ∂θψ

`3

= χχ′′ ∂θψ
` +

∑
`1+`2+`3=`
`1+`2≥1

∂θψ
`3
∑
〈µ〉=`1
〈ν〉=`2

1

µ !

1

ν !
Fµ Ḟ

′
ν ψ

µ+ν

= χχ′′ ∂θψ
` +

∑
k≥1

∂θψ
k

∑
〈µ+ν〉=`−k
|µ+ν|≥1

1

µ !

1

ν !
Fµ Ḟ

′
ν ψ

µ+ν

= χχ′′ ∂θψ
` +

∑
k≥1

∂θψ
k

∑
〈ν〉=`−k
|ν|≥1

1

ν !

 |ν|∑
ν=0

(|ν|
ν

)
Fν Ḟ ′|ν|−ν

 ψν ,

where we have again used the calculation (B.24) to obtain the final expression.
We use the decomposition (B.9) to get a similar expression of the left hand side of (B.30):

∂θχ̇
[`] =

∑
〈µ〉=`

1

µ !
Ḟµ ∂θ

(
ψµ
)

= Ḟ1 ∂θψ
` +

∑
k≥1

∂θψ
k

∑
〈µ〉=`

µ≥ek , |µ|≥2

1

(µ− ek) !
Ḟµψ

µ−ek

= χχ′′ ∂θψ
` +

∑
k≥1

∂θψ
k

∑
〈ν〉=`−k
|ν|≥1

1

ν !
Ḟ|ν|+1ψ

ν ,

and we thus get:

∂θχ̇
[`] −

∑
`1+`2+`3=`

χ[`1] ∂y3χ̇
[`2] ∂θψ

`3 =
∑
k≥1

∂θψ
k

∑
〈ν〉=`−k
|ν|≥1

1

ν !

Ḟ|ν|+1 −
|ν|∑
ν=0

(|ν|
ν

)
Fν Ḟ ′|ν|−ν

 ψν .

The result of Proposition B.4 will therefore be valid if we can prove the identity:

(B.31) ∀L ≥ 1 , ḞL+1 =
L∑
`=0

(
L

`

)
Ḟ ′` FL−` .

The problem at this stage is that the latter formula does not seem to follow (at least, not in an obvious way
and despite repeated efforts...) from the recursive formulas (B.28), (B.29). We thus need to find another
representation for the functions F` and Ḟ` in order to derive (B.31). Hopefully the solution is provided by
the so-called Lagrange inversion formula [Hen64, Com74], or rather one of its direct consequences which
we recall right now.

Lemma B.5 ([Com74], Theorem C, p.150). Let F be a formal series and let y denote the formal series
in x such that:

y = y0 + xF (y) ,

with y0 a constant term. Then for any formal series G, there holds:

G(y) = G(y0) +
∑
n≥1

xn

n !

dn−1

dyn−1
0

{
G′(y0)Fn(y0)

}
.
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Let us apply Lemma B.5 to (B.1). We first invert the equation:

y3 = x3 − ψ χ(x3) ,

and obtain thanks to Lemma B.5 (in the sense of formal series in ψ):

χ(x3) = χ(y3) +
∑
n≥1

ψn

n !

dn−1

dyn−1
3

{
χ′(y3)χn(y3)

}
,

χ′(x3) = χ′(y3) +
∑
n≥1

ψn

n !

dn−1

dyn−1
3

{
χ′′(y3)χn(y3)

}
.

It then remains to substitute
ψ =

∑
m≥1

εm ψm ,

and to recollect the previous expressions as formal series in ε. From the definition of the functions χ[m],
χ̇[m], we get:

∀m ≥ 1 , χ[m] =

m∑
n=1

1

n !

dn−1

dyn−1
3

{
χ′(y3)χn(y3)

} ∑
`1+···+`n=m

ψ`1 · · ·ψ`n ,

χ̇[m] =

m∑
n=1

1

n !

dn−1

dyn−1
3

{
χ′′(y3)χn(y3)

} ∑
`1+···+`n=m

ψ`1 · · ·ψ`n ,

where the sums run over all n-tuples (`1, . . . , `n) ∈ Nn such that mini `i ≥ 1 and `1 + · · ·+ `n = m (and
the families are ordered, meaning for instance that both couples (1, 2) and (2, 1) are taken into account
for m = 3, n = 2). Taking multiplicities into account, we end up with the decompositions2:

∀m ≥ 1 , χ[m] =

m∑
n=1

dn−1

dyn−1
3

{
χ′(y3)χn(y3)

} ∑
〈µ〉=m
|µ|=n

1

µ !
ψµ ,(B.32)

χ̇[m] =
m∑
n=1

dn−1

dyn−1
3

{
χ′′(y3)χn(y3)

} ∑
〈µ〉=m
|µ|=n

1

µ !
ψµ .(B.33)

Comparing with the decompositions (B.8), (B.9), we have thus derived the expressions:

∀µ , Fµ(y3) =
d|µ|−1

dy
|µ|−1
3

{
χ′(y3)χ|µ|(y3)

}
, Ḟµ(y3) =

d|µ|−1

dy
|µ|−1
3

{
χ′′(y3)χ|µ|(y3)

}
,

from where the invariance result of Lemma B.1 looks incredibly simple ! With the notation (B.12), we
get:

∀L ≥ 1 , FL =
dL−1

dyL−1
3

{
χ′(y3)χL(y3)

}
=

1

L+ 1

dL

dyL3

{
χL+1(y3)

}
,(B.34)

ḞL =
dL−1

dyL−1
3

{
χ′′(y3)χL(y3)

}
.(B.35)

2In particular, we can directly check on the expressions (B.32), (B.33) that the functions χ[m] and χ̇[m] vanish on Γ0 and
Γ± for any m ≥ 1.
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Let us observe that the expression (B.34) also holds for L = 0 since we have F0 = χ. Using Ḟ0 = χ′, we
also deduce from (B.35) the relation:

∀L ≥ 0 , Ḟ ′L =
{
χ′′ χL

}(L)
.

Therefore, proving the validity of (B.31) amounts to showing the formula:

(B.36) ∀L ≥ 1 , (L+ 1)
{
χ′′ χL+1

}(L)
=

L∑
`=0

(
L+ 1

`

){
χ′′ χ`

}(`) {
χL+1−`}(L−`)

,

which looks like some (weird) kind of Leibniz formula. Let us recall that in (B.36), χ is a C∞ function
on R with compact support. We have not found a (short) combinatorial proof of (B.36) and we therefore
propose an alternative method which consists in proving (B.36) on the Fourier side (just like the Leibniz
formula can also be obtained by using the binomial identity after performing a Fourier transform). For a
given (fixed) integer L ≥ 1, we define the function:

Θ := (L+ 1)
{
χ′′ χL+1

}(L) −
L∑
`=0

(
L+ 1

`

){
χ′′ χ`

}(`) {
χL+1−`}(L−`)

,

and compute its Fourier transform. We get:

(B.37) Θ̂(ξ0) = (2π)L+1 iL+2

∫
RL+1

(ξ0 − ξ1)2

(
(L+ 1) ξL0 −

L∑
`=0

(
L+ 1

`

)
(ξ0 − ξ`+1)` ξL−``+1

)
×

× χ̂(ξ0 − ξ1) χ̂(ξ1 − ξ2) · · · χ̂(ξL − ξL+1) χ̂(ξL+1) dξ1 · · · dξL+1 .

For future use, we define the polynomial:
(B.38)

Q(η0, η1, . . . , ηL+1) := (L+ 1)
(
η0 + · · ·+ ηL+1

)L − L∑
`=0

(
L+ 1

`

)(
η0 + · · ·+ η`

)` (
η`+1 + · · ·+ ηL+1

)L−`
,

so (B.37) reads:

(B.39) Θ̂(ξ0) = (2π)L+1 iL+2

∫
RL+1

(ξ0 − ξ1)2Q(ξ0 − ξ1, ξ1 − ξ2, . . . , ξL − ξL+1, ξL+1)×

× χ̂(ξ0 − ξ1) χ̂(ξ1 − ξ2) · · · χ̂(ξL − ξL+1) χ̂(ξL+1) dξ1 · · · dξL+1 .

The important observation now is that affine changes of variables with respect to (ξ2, . . . , ξL+1) allow to
symmetrize Q with respect to its last L+1 arguments, while leaving the frequencies (ξ0, ξ1), hence ξ0−ξ1,
unchanged. For instance, the change of variables:

(ξ1, . . . , ξL+1) 7−→ (ξ1, ξ1 − ξ2 + ξ3, ξ3, . . . , ξL+1) ,

leaves the product
(ξ0 − ξ1)2 χ̂(ξ0 − ξ1) χ̂(ξ1 − ξ2) · · · χ̂(ξL − ξL+1) χ̂(ξL+1) ,

in (B.39) unchanged but modifies the factor Q(ξ0 − ξ1, . . . , ξL − ξL+1, ξL+1) into3

Q(ξ0 − ξ1, ξ2 − ξ3, ξ1 − ξ2, ξ3 − ξ4, . . . , ξL − ξL+1, ξL+1) .

3Observe the permutation highlighted in blue.

120



Other changes of variables (all with jacobian one in absolute value) allow for any transposition, and
consequently any permutation, with respect to the last L+ 1 arguments of Q in (B.39). In other words,
we can rewrite (B.39) as:

(B.40) Θ̂(ξ0) = (2π)L+1 iL+2

∫
RL+1

(ξ0 − ξ1)2Q](ξ0 − ξ1, ξ1 − ξ2, . . . , ξL − ξL+1, ξL+1)×

× χ̂(ξ0 − ξ1) χ̂(ξ1 − ξ2) · · · χ̂(ξL − ξL+1) χ̂(ξL+1) dξ1 · · · dξL+1 ,

where the polynomial Q] in (B.40) is obtained from the polynomial Q in (B.38) by averaging with respect
to the last L+ 1 arguments on the group of permutations SL+1:

Q](η0, η1, . . . , ηL+1) :=
1

(L+ 1) !

∑
σ∈SL+1

Q(η0, ησ(1), . . . , ησ(L+1)) .

Starting from (B.38), a little bit of combinatorial analysis yields:

Q](η0, η1, . . . , ηL+1) = (L+ 1)
(
η0 + · · ·+ ηL+1

)L − ∑
E⊂{1,...,L+1}

0≤]E≤L

(
η0 + η(E)

)]E (
η(Ec)

)]Ec−1
,

where we have used the notation:
η(E) :=

∑
j∈E

ηj ,

for any subset E of {1, . . . , L+ 1}, and Ec stands for the complementary set of E in {1, . . . , L+ 1}. We
can rewrite the expression of Q] into the even more symmetric form4:

(B.41) Q](η0, η1, . . . , ηL+1) = (L+ 1)
(
η0 + · · ·+ ηL+1

)L − 1

2

∑
F⊂{0,...,L+1}

1≤]F≤L+1

(
η(F )

)]F−1 (
η(F c)

)]F c−1
,

from where it follows that Q] is a homogeneous degree L, symmetric expression of all its arguments. It
remains to deduce from the formula (B.41) that Q] vanishes, which will imply in the relation (B.40) that
Θ vanishes (and this will eventually prove the validity of (B.36) and complete the proof of Proposition
B.4 !).

We now show that the polynomial Q], whose expression is given by (B.41), is zero. This is proved by
an induction argument that passes from L to L+ 2, so we first examine the cases L = 1 and L = 2. For
L = 1, we have:

Q](η0, η1, η2) = 2 (η0 + η1 + η2) − 1

2

(
(η1 + η2) + (η0 + η2) + (η0 + η1)

)
− 1

2

(
(η1 + η2) + (η0 + η2) + (η0 + η1)

)
= 0 ,

and for L = 2, we have5:

Q](η0, . . . , η3) = 3 (η0 + η1 + η2 + η3)2

− (η1 + η2 + η3)2 − (η0 + η2 + η3)2 − (η0 + η1 + η3)2 − (η0 + η1 + η2)2

− (η0 + η1) (η2 + η3)− (η0 + η2) (η1 + η3)− (η0 + η3) (η1 + η2) = 0 .

4To prove that the right hand side of (B.41) and the previous expression of Q] coincide, start from (B.41) and divide the
subsets F of {0, . . . , L+ 1} into those that contain 0 and those that do not. For the latter, parametrize the sum by F c rather
than by F .

5To prove that the expression is 0, just compute the η20 and η0 η1 terms and use the symmetry with respect to all arguments.
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Let us therefore assume that up to some integer L, there holds:

(B.42) (L+ 1)
(
η0 + · · ·+ ηL+1

)L
=

1

2

∑
F⊂{0,...,L+1}

1≤]F≤L+1

(
η(F )

)]F−1 (
η(F c)

)]F c−1
,

and we are now going to try that the same property holds with L + 2 instead of L. In other words, we
wish to prove the formula:

(B.43) (L+ 3)
(
η0 + · · ·+ ηL+3

)L+2 − 1

2

∑
F⊂{0,...,L+3}

1≤]F≤L+3

(
η(F )

)]F−1 (
η(F c)

)]F c−1
= 0 .

The expression on the left hand side of (B.43) is a symmetric polynomial function of (η0, . . . , ηL+3), hence
can be represented as a polynomial function of the elementary symmetric expressions of (η0, . . . , ηL+3),
see [Lan02]. Since furthermore the left hand side of (B.43) is homogeneous degree L + 2 while having
L+ 4 arguments, we can write6:

(L+ 3)
(
η0 + · · ·+ ηL+3

)L+2 − 1

2

∑
F⊂{0,...,L+3}

1≤]F≤L+3

(
η(F )

)]F−1 (
η(F c)

)]F c−1

= Q
(
e1(η0, . . . , ηL+3), . . . , eL+2(η0, . . . , ηL+3)

)
,

for some suitable polynomial Q. Introducing now some complex numbers η̃0, . . . , η̃L+1 such that:

e1(η̃0, . . . , η̃L+1) = e1(η0, . . . , ηL+3) , . . . eL+2(η̃0, . . . , η̃L+1) = eL+2(η0, . . . , ηL+3) ,

we get7:

(L+ 3)
(
η0 + · · ·+ ηL+3

)L+2 − 1

2

∑
F⊂{0,...,L+3}

1≤]F≤L+3

(
η(F )

)]F−1 (
η(F c)

)]F c−1

= Q
(
e1(η̃0, . . . , η̃L+1, 0, 0), . . . , eL+2(η̃0, . . . , η̃L+1, 0, 0)

)
= (L+ 3)

(
η̃0 + · · ·+ η̃L+1

)L+2 − 1

2

∑
F⊂{0,...,L+3}

1≤]F≤L+3

(
η̃(F )

)]F−1 (
η̃(F c)

)]F c−1
,(B.44)

where we use in (B.44) the convention η̃L+2 = η̃L+3 = 0. In other words, we have reduced to the case
where (at least) two of the ηj ’s, say the last two, are zero. We now divide the subsets F of {0, . . . , L+ 3}
into those that are contained in {0, . . . , L+ 1}, those that contain only one element among {L+ 2, L+ 3},
and those that contain both L+2 and L+3. We can decompose the sum on the right hand side of (B.44)

6Observe that only the elementary symmetric functions up to L + 2 come into play and not the two last ones, namely
eL+3 and eL+4.

7Here we use the fact that ej(η̃0, . . . , η̃L+1) coincides with ej(η̃0, . . . , η̃L+1, 0, 0) for any j.
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as follows: ∑
F⊂{0,...,L+3}

1≤]F≤L+3

(
η̃(F )

)]F−1 (
η̃(F c)

)]F c−1
=

∑
E⊂{0,...,L+1}

1≤]E≤L+2

(
η̃(E)

)]E−1 (
η̃(Ec)

)]Ec+1

+ 2
∑

E⊂{0,...,L+1}
0≤]E≤L+2

(
η̃(E)

)]E (
η̃(Ec)

)]Ec

+
∑

E⊂{0,...,L+1}
0≤]E≤L+1

(
η̃(E)

)]E+1 (
η̃(Ec)

)]Ec−1

=
∑

E⊂{0,...,L+1}
1≤]E≤L+1

(
η̃(E)

)]E−1 (
η̃(Ec)

)]Ec+1

+ 2
∑

E⊂{0,...,L+1}
0≤]E≤L+2

(
η̃(E)

)]E (
η̃(Ec)

)]Ec

+
∑

E⊂{0,...,L+1}
1≤]E≤L+1

(
η̃(E)

)]E+1 (
η̃(Ec)

)]Ec−1
.

Observe the modifications (in red) in two of the terms on the right hand side, which correspond to deleting
two terms that contribute for zero. It remains to collect and rewrite some terms to get:∑

F⊂{0,...,L+3}
1≤]F≤L+3

(
η̃(F )

)]F−1 (
η̃(F c)

)]F c−1
=

∑
E⊂{0,...,L+1}

1≤]E≤L+1

(
η̃(E)

)]E−1 (
η̃(Ec)

)]Ec−1 (
η̃(E) + η̃(Ec)

)2

+ 4
(
η̃0 + · · ·+ η̃L+1

)L+2

= (2L+ 6)
(
η̃0 + · · ·+ η̃L+1

)L+2
,

where we have used the induction assumption (B.42). Going back to (B.44), we have thus obtained:

(L+ 3)
(
η0 + · · ·+ ηL+3

)L+2 − 1

2

∑
F⊂{0,...,L+3}

1≤]F≤L+3

(
η(F )

)]F−1 (
η(F c)

)]F c−1
= 0 ,

which completes the induction argument for proving that the polynomial Q] in (B.41) is zero.

Corollary B.3 and Proposition B.4 immediately imply the result of Lemma 5.4, namely the second sym-
metry formula which we have used to complete the proof of Lemma 5.2.

Corollary B.6 (The second symmetry formula). The functions χ[`], χ̇[`] and ψm satisfy the relation:

(B.45) ∀ ` ≥ 0 ,
∑

`1+`2=`

∂y3χ
[`1] ∂θψ

`2−∂θ
(
χ̇[`] ψ`2

)
=

∑
`1+···+`4=`

(
∂y3χ

[`1] χ̇[`2]−χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂θψ

`4 ,

and similar relations with any other tangential partial derivative chosen among {∂t, ∂y1 , ∂y2}. (We keep
using the convention ψ0 = 0.)

Proof of Corollary B.6. Using Corollary B.3, we first get:

∀ ` ≥ 0 ,
∑

`1+`2=`

∂y3χ
[`1] ∂θψ

`2 − χ̇[`1] ∂θψ
`2 −

∑
`1+···+`4=`

∂y3χ
[`1] χ̇[`2] ψ`3 ∂θψ

`4 = 0 ,
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and using Proposition B.4, we also get:

∀ ` ≥ 0 ,
∑

`1+`2=`

∂θχ̇
[`1] ψ`2 −

∑
`1+···+`4=`

χ[`1] ∂y3χ̇
[`2] ψ`3 ∂θψ

`4 = 0 .

Subtracting the latter two relations, we end up showing (B.45), or equivalently that the function X`θ in
(5.25) is zero. The same argument applies when the tangential derivative ∂θ is replaced by any other
tangential derivative, namely ∂y1 , ∂y2 or ∂t.

Before turning to the verification of even more compatibility conditions on the source terms for the
WKB cascade, let us observe that the explicit expressions (B.34), (B.35) allow us to rewrite the inductive
formula (B.25), which we have shown to hold not only for L ≥ 2 but for any L ≥ 0. Combining the proofs
of Corollary B.3 and Proposition B.4, we have indeed obtained the formula:

∀L ≥ 1 ,
1

L+ 1

{
χL+1

}(L+1) − χ′
{
χL
}(L)

=
L−1∑
`=0

(
L

`

){
χ`
}(`) {

χ′′ χL−`
}(L−1−`)

,

or, equivalently:

(B.46) ∀L ≥ 1 ,
{
χ′ χL

}(L) − χ′
{
χL
}(L)

=
L−1∑
`=0

(
L

`

){
χ`
}(`) {

χ′′ χL−`
}(L−1−`)

.

We do not know whether the relations (B.36) and (B.46) -which definitely have a ‘Leibniz flavor’- have
been noticed/proved before or whether they could be useful in other contexts.

B.4 Compatibility of the source terms for the slow mean problem

B.4.1 Compatibility for the magnetic field at the boundary

Let us first recall the result we aim at proving here:

Lemma B.7 (Compatibility at the boundary for the slow mean problem). The source terms in (5.33),
(5.31) satisfy:

(B.47) Fm,±6 |y3=0 =
(
∂t + u0,±

j ∂yj
)
Gm,±

2 −H0,±
j ∂yjG

m,±
1 ,

independently of the choice of the slow mean ψ̂m+1(0).

The verification of the compatibility condition (B.47) at the boundary Γ0 for the slow mean problem relies
on a preliminary decomposition which we prove right now.

Lemma B.8 (A preliminary decomposition). Let ûm+1
3,? (0), Ĥm+1

3,? (0) be defined as the unique solutions
in S? to the differential equations:

∂Y3 û
m+1,±
3,? (0) = F̂m,±7,? (0) , ∂Y3Ĥ

m+1,±
3,? (0) = F̂m,±8,? (0) , Y3 ∈ R± .
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Then there holds:(
∂t + u0,±

j ∂yj
)
Ĥm+1,±

3,? (0) −H0,±
j ∂yj û

m+1,±
3,? (0)

∣∣∣
y=3=Y3=0

= c0

{ ∑
`1+`2=m+2

`2≥1

(
∂t + u0,±

j ∂yj
)
∂θψ

`1 ξj′ H
`2,±
j′ −H0,±

j ∂yj∂θψ
`1 ξj′ u

`2,±
j′

+
∑

`1+`2=m+2

∂θψ
`1
(
τ F `2,±8 − ξj F `2,±3+j

)
+

∑
`1+`2=m+1

(
∂t + u0,±

j ∂yj
)
ψ`1 F `2,±8 −H0,±

j ∂yjψ
`1 F `2,±7

+
∑

`1+`2+`3=m+3
`2,`3≥1

∂θψ
`1 ∂Y3

(
ξj u

`2,±
j H`3,±

3 − ξj H`2,±
j u`3,±3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂yjψ
`1 ∂Y3

(
u`2,±j H`3,±

3 −H`2,±
j u`3,±3

)
+

∑
`1+`2=m+1

(
c± ∂θψ

`1+1 + (∂t + u0,±
j ∂yj )ψ

`1
)
∂y3H

`2,±
3,?(B.48)

−
∑

`1+`2=m+1

(
b± ∂θψ

`1+1 +H0,±
j ∂yjψ

`1
)
∂y3u

`2,±
3,?

+
∑

`1+`2=m+1
`1,`2≥1

∂yj
(
H`1,±
j u`2,±3 − u`1,±j H`2,±

3

)
?

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ∂y3

(
ξj u

`2,±
j H`3,±

3 − ξj H`2,±
j u`3,±3

)
?

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂y3

(
u`2,±j H`3,±

3 −H`2,±
j u`3,±3

)
?

}
,

where all functions on the right hand side of (B.48) are evaluated at y3 = Y3 = 0.

Proof of Lemma B.8. Actually, we shall prove in what follows a much more general result than (B.48),
but in the proof of Lemma B.7 which we shall give later on, we shall only be interested in the expression
of the left hand side of (B.48) on y3 = Y3 = 0. From now on, we omit the superscripts ± and restrict
the normal variable y3 to |y3| < 1/3. This means that all functions χ̇[`], ` ≥ 0, vanish, all functions χ[`],
` ≥ 1, also vanish and χ[0] equals 1. At the very end of the proof of Lemma B.8, we shall further restrict
to y3 = 0 but since we shall compute partial derivatives with respect to y3 in the core of the argument,
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it is necessary to keep y3 free, close to 0, for the time being. For any Y3, we set:

A :=
(
∂t + u0

j ∂yj
)
Ĥm+1

3,? (0) −H0
j ∂yj û

m+1
3,? (0) ,(B.49)

B := c0

{ ∑
`1+`2=m+2

`2≥1

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ξj′ u

`2
j′

+
∑

`1+`2=m+2

∂θψ
`1
(
τ F `28 − ξj F `23+j

)
+

∑
`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 F `28 −H0

j ∂yjψ
`1 F `27

+
∑

`1+`2+`3=m+3
`2,`3≥1

∂θψ
`1 ∂Y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1 ∂Y3

(
u`2j H

`3
3 −H`2

j u`33
)

+
∑

`1+`2=m+1

(
c ∂θψ

`1+1 + (∂t + u0
j ∂yj )ψ

`1
)
∂y3H

`2
3,?(B.50)

−
∑

`1+`2=m+1

(
b ∂θψ

`1+1 +H0
j ∂yj ψ

`1
)
∂y3u

`2
3,?

+
∑

`1+`2=m+1
`1,`2≥1

∂yj
(
H`1
j u`23 − u`1j H`2

3

)
?

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)
?

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂y3

(
u`2j H

`3
3 −H`2

j u`33
)
?

}
,

so that (B.48) reads (A −B)|y3=Y3=0 = 0. Actually, we shall prove below the even more general fact
A = B for |y3| < 1/3 and for all Y3, which will obviously yield the expected result. Proving the equality
A = B is achieved below by proving first ∂Y3A = ∂Y3B (for all relevant values of y3, Y3) and by then
computing the limit at infinity of A and B. We split again the analysis and the calculations in several
steps.

• Step 1. Using the induction assumption in a suitable way. We first try to derive a suitable expression
for the partial derivative ∂Y3A . Starting from the definition (B.49), we have:

∂Y3A =
(
∂t + u0

j ∂yj
)
∂Y3Ĥ

m+1
3,? (0) −H0

j ∂yj∂Y3 û
m+1
3,? (0) =

(
∂t + u0

j ∂yj
)
F̂m8,?(0) −H0

j ∂yj F̂
m
7,?(0) ,

and one could then substitute the expressions of F̂m8,?(0) and F̂m7,?(0). But rather than doing so, we use
the induction assumption (H(m)− 6) and (H(m)− 5), and get:

∂Y3A = ∂tF̂
m
8,?(0) − ∂yj F̂m3+j,?(0) = c0

{
∂tF

m
8 − ∂yjFm3+j

}
.
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Recalling the expressions (5.15) and (5.16), we obtain:

∂Y3A = c0

{
−∂y3

(
(∂t + u0

j ∂yj )H
m
3 −H0

j ∂yju
m
3

)
+

∑
`1+`2=m+2

∂θψ
`1 ∂Y3

(
(∂t + u0

j ∂yj )ξj′ H
`2
j′ −H0

j ∂yjξj′ u
`2
j′−c ∂yjH`2

j + b ∂yju
`2
j

)
+

∑
`1+`2=m+2

(∂t + u0
j ∂yj )∂θψ

`1 ∂Y3ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ∂Y3ξj′ u

`2
j′

−
∑

`1+`2=m+2

c ∂yj∂θψ
`1 ∂Y3H

`2
j − b ∂yj∂θψ`1 ∂Y3u`2j

+
∑

`1+`2=m+1

∂yj′ψ
`1 ∂Y3

(
(∂t + u0

j ∂yj )H
`2
j′ −H0

j ∂yju
`2
j′−u0

j′ ∂yjH
`2
j +H0

j′ ∂yju
`2
j

)
−

∑
`1+`2=m+1

∂tψ
`1 ∂Y3∂yjH

`2
j

+
∑

`1+`2=m+1

∂θψ
`1 ∂y3

(
(∂t + u0

j ∂yj )ξj′ H
`2
j′ −H0

j ∂yjξj′ u
`2
j′−c ∂yjH`2

j + b ∂yju
`2
j

)
+

∑
`1+`2=m+1

(∂t + u0
j ∂yj )∂θψ

`1 ∂y3ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ∂y3ξj′ u

`2
j′

−
∑

`1+`2=m+1

c ∂yj∂θψ
`1 ∂y3H

`2
j − b ∂yj∂θψ`1 ∂y3u`2j

+
∑

`1+`2=m

∂yj′ψ
`1 ∂y3

(
(∂t + u0

j ∂yj )H
`2
j′ −H0

j ∂yju
`2
j′−u0

j′ ∂yjH
`2
j +H0

j′ ∂yju
`2
j

)
−

∑
`1+`2=m

∂tψ
`1 ∂y3∂yjH

`2
j(B.51)

+
∑

`1+`2=m+1
`1,`2≥1

∂yj∂Y3
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2=m
`1,`2≥1

∂yj∂y3
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂yj∂Y3

(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂yj∂θψ
`1 ∂Y3

(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yj′ψ
`1 ∂yj∂Y3

(
H`2
j′ u

`3
j − u`2j′ H`3

j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂θψ
`1 ∂yj∂y3

(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yj∂θψ
`1 ∂y3

(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+

∑
`1+`2+`3=m
`2,`3≥1

∂yj′ψ
`1 ∂yj∂y3

(
H`2
j′ u

`3
j − u`2j′ H`3

j

)}
.

• Step 2. Substituting in ∂Y3A , integrating by parts and collecting terms. From the induction

assumption (H(m)− 5), we have F̂
m

6 (0) = 0, and using Lemma 5.2, we also get F̂m6,?(0) = 0. We thus
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have F̂m6 (0) = 0, and using the expression (5.17), this relation explicitly reads8:(
∂t + u0

j ∂yj
)
Ĥm

3 (0)−H0
j ∂yj û

m
3 (0) = c0

{ ∑
`1+`2=m+2

∂θψ
`1
(
c ∂Y3H

`2
3 − b ∂Y3u`23

)
+

∑
`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3H

`2
3 −H0

j ∂yjψ
`1 ∂Y3u

`2
3

+
∑

`1+`2=m+1

∂θψ
`1
(
c ∂y3H

`2
3 − b ∂y3u`23

)
+

∑
`1+`2=m

(
∂t + u0

j ∂yj
)
ψ`1 ∂y3H

`2
3 −H0

j ∂yjψ
`1 ∂y3u

`2
3

+
∑

`1+`2=m
`1,`2≥1

∂yj
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂Y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂Y3

(
u`2j H

`3
3 −H`2

j u`33
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂θψ
`1 ∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m
`2,`3≥1

∂yjψ
`1 ∂y3

(
u`2j H

`3
3 −H`2

j u`33
)}

.

We differentiate the latter relation with respect to y3 (hence the need to keep y3 free at least up to here),
substitute in the blue term on the right hand side of (B.51), observe first the cancelation of the red terms
and rearrange all green terms together. We also integrate by parts (with respect to θ) the pink terms in

8Recall that we restrict to |y3| < 1/3, hence all simplifications in the functions χ[`] and χ̇[`].
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(B.51). All these manipulations eventually yield:

∂Y3A = c0

{ ∑
`1+`2=m+2

∂θψ
`1 ∂Y3

(
(∂t + u0

j ∂yj ) ξj′ H
`2
j′ −H0

j ∂yj ξj′ u
`2
j′ − c∇ ·H`2 + b∇ · u`2

)
+

∑
`1+`2=m+2

(∂t + u0
j ∂yj )∂θψ

`1 ∂Y3ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ∂Y3ξj′ u

`2
j′

−
∑

`1+`2=m+2

c ∂yj∂θψ
`1 ∂Y3H

`2
j − b ∂yj∂θψ`1 ∂Y3u`2j

+
∑

`1+`2=m+1

∂yjψ
`1 ∂Y3

(
(∂t + u0

j′ ∂yj′ )H
`2
j −H0

j′ ∂yj′u
`2
j

)
−

∑
`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3∇ ·H`2 −H0

j ∂yjψ
`1 ∂Y3∇ · u`2

+
∑

`1+`2=m+1

∂θψ
`1 ∂y3

(
(∂t + u0

j ∂yj ) ξj′ H
`2
j′ −H0

j ∂yj ξj′ u
`2
j′ − c∇ ·H`2 + b∇ · u`2

)
−

∑
`1+`2=m+1

(∂t + u0
j ∂yj )ψ

`1 ∂y3∂θ ξj′ H
`2
j′ −H0

j ∂yjψ
`1 ∂y3∂θ ξj′ u

`2
j′

+
∑

`1+`2=m+1

∂yjψ
`1 ∂y3

(
c ∂θH

`2
j − b ∂θu`2j

)
+

∑
`1+`2=m

∂yjψ
`1 ∂y3

(
(∂t + u0

j′ ∂yj′ )H
`2
j −H0

j′ ∂yj′u
`2
j

)
−

∑
`1+`2=m

(
∂t + u0

j ∂yj
)
ψ`1 ∂y3∇ ·H`2 −H0

j ∂yjψ
`1 ∂y3∇ · u`2(B.52)

+
∑

`1+`2=m+1
`1,`2≥1

∂yj∂Y3
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂Y3∇ ·

(
ξj H

`2
j u`3 − ξj u`2j H`3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂yjψ
`1 ∂Y3∂θ

(
ξj′ u

`2
j′ H

`3
j − ξj′ H`2

j′ u
`3
j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂Y3∇ ·

(
H`2
j u`3 − u`2j H`3

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂θψ
`1 ∂y3∇ ·

(
ξj H

`2
j u`3 − ξj u`2j H`3

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1 ∂y3∂θ

(
ξj′ u

`2
j′ H

`3
j − ξj′ H`2

j′ u
`3
j

)
+

∑
`1+`2+`3=m
`2,`3≥1

∂yjψ
`1 ∂y3∇ ·

(
H`2
j u`3 − u`2j H`3

)}
.

• Step 3. Computing ∂Y3B and using the fast problems of the previous steps. Differentiating the
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definition (B.50) of B, we get:

∂Y3B = c0

{ ∑
`1+`2=m+2

(
∂t + u0

j ∂yj
)
∂θψ

`1 ∂Y3ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ∂Y3ξj′ u

`2
j′

+
∑

`1+`2=m+2

∂θψ
`1 ∂Y3

(
τ F `28 − ξj F `23+j

)
+

∑
`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3F

`2
8 −H0

j ∂yjψ
`1 ∂Y3F

`2
7

+
∑

`1+`2+`3=m+3
`2,`3≥1

∂θψ
`1 ∂2

Y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1 ∂2

Y3

(
u`2j H

`3
3 −H`2

j u`33
)

+
∑

`1+`2=m+1

(
c ∂θψ

`1+1 + (∂t + u0
j ∂yj )ψ

`1
)
∂Y3∂y3H

`2
3(B.53)

−
∑

`1+`2=m+1

(
b ∂θψ

`1+1 +H0
j ∂yj ψ

`1
)
∂Y3∂y3u

`2
3

+
∑

`1+`2=m+1
`1,`2≥1

∂yj∂Y3
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂Y3∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂Y3∂y3

(
u`2j H

`3
3 −H`2

j u`33
)}
.

Let us already observe that the orange terms in (B.52) and (B.53) will cancel when we compute ∂Y3A −
∂Y3B. The red terms will also cancel, but only after we integrate by parts the pink terms in (B.52).
Namely, by using the fast problems solved at the previous steps of the induction, we have:

∀µ = 1, . . . ,m , c ∂θH
µ
j − b ∂θu

µ
j = Fµ−1

3+j + u0
j F

µ−1
8 −H0

j F
µ−1
7 ,

and therefore, after integrating by parts, the pink term in (B.52) reads:

c0

{ ∑
`1+`2=m+2

c ∂yj∂θψ
`1 ∂Y3H

`2
j − b ∂yj∂θψ`1 ∂Y3u`2j

}
= − c0

{ ∑
`1+`2=m+1

∂yjψ
`1 ∂Y3

(
F `23+j + u0

j F
`2
8 −H0

j F
`2
7

)}
,

and the red terms in the latter expression will exactly cancel with those in (B.53) when we compute
∂Y3A −∂Y3B. At last, let us observe that when we compute the difference ∂Y3A −∂Y3B, the green terms
in (B.52) and (B.53) will yield the quantity:

c0

{ ∑
`1+`2=m

(∂t + u0
j ∂yj )ψ

`1 ∂y3F
`2
8 −H0

j ∂yjψ
`1 ∂y3F

`2
7

}
,

which will partially cancel (for the same reason as just above) with the brown term in (B.52).
Using all simplifications mentioned above, we end up with the following decomposition:

∂Y3A − ∂Y3B = T1 + T2 + T3 + T4 ,
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with:

T1 := c0

{ ∑
`1+`2=m+2

∂θψ
`1 ∂Y3

(
ξj F

`2
3+j − τ F `28

)
+

∑
`1+`2=m+2

∂θψ
`1 ∂Y3

(
(∂t + u0

j ∂yj ) ξj′ H
`2
j′ −H0

j ∂yj ξj′ u
`2
j′ − c∇ ·H`2 + b∇ · u`2

)
+

∑
`1+`2+`3=m+3

`2,`3≥1

∂θψ
`1 ∂2

Y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ∂Y3∇ ·

(
ξj H

`2
j u`3 − ξj u`2j H`3

)}
,

T2 := c0

{ ∑
`1+`2=m+1

∂θψ
`1 ∂y3

(
ξj F

`2
3+j − τ F `28

)
+

∑
`1+`2=m+1

∂θψ
`1 ∂y3

(
(∂t + u0

j ∂yj ) ξj′ H
`2
j′ −H0

j ∂yj ξj′ u
`2
j′ − c∇ ·H`2 + b∇ · u`2

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂Y3∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂θψ
`1 ∂y3∇ ·

(
ξj H

`2
j u`3 − ξj u`2j H`3

)}
,

T3 := c0

{ ∑
`1+`2=m+1

∂yjψ
`1 ∂Y3F

`2
3+j − ∂tψ`1 ∂Y3F `28

+
∑

`1+`2=m+1

∂yjψ
`1 ∂Y3

(
(∂t + u0

j′ ∂yj′ )H
`2
j −H0

j′ ∂yj′u
`2
j

)
−

∑
`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 ∂Y3∇ ·H`2 −H0

j ∂yjψ
`1 ∂Y3∇ · u`2

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1 ∂Y3

(
∂θ
(
ξj′ u

`2
j′ H

`3
j − ξj′ H`2

j′ u
`3
j

)
+ ∂Y3

(
H`2
j u`33 − u`2j H`3

3

))

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂Y3∇ ·

(
H`2
j u`3 − u`2j H`3

)}
,

and

T4 := c0

{ ∑
`1+`2=m

∂yjψ
`1 ∂y3F

`2
3+j − ∂tψ`1 ∂y3F `28

+
∑

`1+`2=m

∂yjψ
`1 ∂y3

(
(∂t + u0

j′ ∂yj′ )H
`2
j −H0

j′ ∂yj′u
`2
j

)
−

∑
`1+`2=m

(
∂t + u0

j ∂yj
)
ψ`1 ∂y3∇ ·H`2 −H0

j ∂yjψ
`1 ∂y3∇ · u`2

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂y3

(
∂θ
(
ξj′ u

`2
j′ H

`3
j − ξj′ H`2

j′ u
`3
j

)
+ ∂Y3

(
H`2
j u`33 − u`2j H`3

3

))

+
∑

`1+`2+`3=m
`2,`3≥1

∂yjψ
`1 ∂y3∇ ·

(
H`2
j u`3 − u`2j H`3

)}
.
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• Step 4. Substituting in T1 and T2. In both expressions of T1 and T2, we use (5.15) and (5.16) and

substitute accordingly the value of ξj F
`2
3+j − τ F `28 . This yields:

T1 = c0

{ ∑
`1+`2+`3=m+3

∂θψ
`1
(
(∂t + u0

j ∂yj )ψ
`2 ∂2

Y3ξj′ H
`3
j′ −H0

j ∂yjψ
`2 ∂2

Y3ξj′ u
`3
j′
)

+
∑

`1+`2+`3=m+3

∂yjψ
`1 ∂θψ

`2
(
b ∂2

Y3u
`3
j − c ∂2

Y3H
`3
j

)
+

∑
`1+`2+`3=m+2

∂θψ
`1
(
(∂t + u0

j ∂yj )ψ
`2 ∂Y3∂y3ξj′ H

`3
j′ −H0

j ∂yjψ
`2 ∂Y3∂y3ξj′ u

`3
j′
)

+
∑

`1+`2+`3=m+2

∂yjψ
`1 ∂θψ

`2
(
b ∂Y3∂y3u

`3
j − c ∂Y3∂y3H`3

j

)
+

∑
`1+···+`4=m+3

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂2
Y3

(
ξj′ H

`3
j′ u

`4
j − ξj′ u`3j′ H`4

j

)
+

∑
`1+···+`4=m+2

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂Y3∂y3
(
ξj′ H

`3
j′ u

`4
j − ξj′ u`3j′ H`4

j

)}
,

and

T2 = c0

{ ∑
`1+`2+`3=m+2

∂θψ
`1
(
(∂t + u0

j ∂yj )ψ
`2 ∂Y3∂y3ξj′ H

`3
j′ −H0

j ∂yjψ
`2 ∂Y3∂y3ξj′ u

`3
j′
)

+
∑

`1+`2+`3=m+2

∂yjψ
`1 ∂θψ

`2
(
b ∂Y3∂y3u

`3
j − c ∂Y3∂y3H`3

j

)
+

∑
`1+`2+`3=m+1

∂θψ
`1
(
(∂t + u0

j ∂yj )ψ
`2 ∂2

y3ξj′ H
`3
j′ −H0

j ∂yjψ
`2 ∂2

y3ξj′ u
`3
j′
)

+
∑

`1+`2+`3=m+1

∂yjψ
`1 ∂θψ

`2
(
b ∂2

y3u
`3
j − c ∂2

y3H
`3
j

)
+

∑
`1+···+`4=m+2

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂Y3∂y3
(
ξj′ H

`3
j′ u

`4
j − ξj′ u`3j′ H`4

j

)
+

∑
`1+···+`4=m+1

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂2
y3

(
ξj′ H

`3
j′ u

`4
j − ξj′ u`3j′ H`4

j

)}
,

• Step 5. Conclusion. At this point, it remains to substitute the expressions (5.15), (5.16) of F `28

and F `23+j in the definition of T3, and the previous expression of T1 gives T1 + T3 = 0. Similarly, the

substitution of F `28 and F `23+j in the definition of T4 yields T2 + T4 = 0. We have thus proved the relation
∂Y3(A −B) = 0.

We now go back to the definitions (B.49), (B.50). Since A −B do not depend on Y3, we have:

A −B = lim
Y3→∞

A −B = −c0

{ ∑
`1+`2=m+2

`2≥1

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ξj′ u

`2
j′

+
∑

`1+`2=m+2

∂θψ
`1
(
τ F `28 − ξj F `23+j

)
(B.54)

+
∑

`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 F `28 −H0

j ∂yjψ
`1 F `27

}
,
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and we need to show that the right hand side of (B.54) vanishes. Let us first consider the intermediate
blue term. Since we have already solved the fast problems (H(m)− 2), we can apply Theorem 3.1 and
we have:

∀µ = 1, . . . ,m− 1 , ∂Y3F
µ
6 + ξj ∂θF

µ
3+j = τ ∂θF

µ
8 ,

so we get (here we use again Theorem 3.1 for concluding that the slow mean vanishes):

∀µ = 1, . . . ,m− 1 , τ Fµ8 − ξj Fµ3+j = τ F̂
µ

8 (0)− ξj F̂
µ

3+j(0) = 0 .

Using Lemma 5.2, we have:
∂Y3F

m
6 + ξj ∂θF

m
3+j = τ ∂θF

m
8 ,

and combining with (H(m)− 5), we also get τ Fm8 − ξj Fm3+j = 0. This implies that the blue term in
(B.54) vanishes. We are then left with:

A −B = −c0

{ ∑
`1+`2=m+2

`2≥1

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ξj′ u

`2
j′

+
∑

`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 F `28 −H0

j ∂yjψ
`1 F `27

}
= −c0

{ ∑
`1+`2=m+2

`2≥1

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj∂θψ
`1 ξj′ u

`2
j′

+
∑

`1+`2=m+1

(
∂t + u0

j ∂yj
)
ψ`1 ∂θ ξj′ H

`2+1
j′ −H0

j ∂yjψ
`1 ∂θ ξj′ u

`2+1
j′

}
= 0 .

We then take the double trace of A −B on y3 = Y3 = 0 and the result of Lemma B.8 follows.

We now turn to the proof of Lemma B.7, which is crucial in view of determining the slow mean of the
corrector Um+1,±.

Proof of Lemma B.7. We keep dropping the superscript ±. Let us first recall the expression of the source
terms in the slow mean problem. The trace on Γ0 of the interior source term Fm6 is given by:

Fm6 |y3=0 = c0

{ ∑
`1+`2=m+1

(
c ∂θψ

`1+1 + (∂t + u0
j ∂yj )ψ

`1
)
∂y3H

`2
3 −

(
b ∂θψ

`1+1 +H0
j ∂yjψ

`1
)
∂y3u

`2
3

+
∑

`1+`2=m+1
`1,`2≥1

∂yj
(
H`1
j u

`2
3 − u`1j H`2

3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u
`3
3

)
(B.55)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂y3

(
u`2j H

`3
3 −H`2

j u
`3
3

)}
,

and the boundary source terms are given by:

Gm
1 = Ĝm1 (0)− ûm+1

3,? (0)|y3=Y3=0 , Gm
2 = Ĝm2 (0)− Ĥm+1

3,? (0)|y3=Y3=0 ,

where Gm1 , Gm2 are given in (2.22b), (2.22c), and the fast means ûm+1
3,? (0), Ĥm+1

3,? (0) are determined by
solving:

∂Y3 û
m+1
3,? (0) = F̂m7,?(0) , ∂Y3Ĥ

m+1
3,? (0) = F̂m8,?(0) ,

with the condition of exponential decay at infinity. We thus need to show the relation

(B.56) Fm6 |y3=0 +
(

(∂t + u0
j ∂yj ) Ĥ

m+1
3,? (0)−H0

j ∂yj û
m+1
3,? (0)

)∣∣
y=3=Y3=0

= (∂t + u0
j ∂yj ) Ĝ

m
2 (0)−H0

j ∂yj Ĝ
m
1 (0) ,
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and in this relation, the mean ψ̂m+1(0) only enters through Ĝm1 (0) and Ĝm2 (0). The verification of (B.56)
is done in several steps.

• Step 1. Using Lemma B.8 and collecting terms. Let us recall indeed the result of Lemma B.8 which
decomposes part of the left hand side of (B.56):(

(∂t + u0
j ∂yj ) Ĥ

m+1
3,? (0) −H0

j ∂yj û
m+1
3,? (0)

)∣∣∣
y=3=Y3=0

= c0

{ ∑
`1+`2=m+2

`2≥1

(∂t + u0
j ∂yj ) ∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj ∂θψ
`1 ξj′ u

`2
j′

+
∑

`1+`2=m+2

∂θψ
`1
(
τ F `28 − ξj F `23+j

)
+

∑
`1+`2=m+1

(∂t + u0
j ∂yj )ψ

`1 F `28 −H0
j ∂yjψ

`1 F `27

+
∑

`1+`2+`3=m+3
`2,`3≥1

∂θψ
`1 ∂Y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1 ∂Y3

(
u`2j H

`3
3 −H`2

j u`33
)

+
∑

`1+`2=m+1

(
c ∂θψ

`1+1 + (∂t + u0
j ∂yj )ψ

`1
)
∂y3H

`2
3,?(B.57)

−
∑

`1+`2=m+1

(
b ∂θψ

`1+1 +H0
j ∂yj ψ

`1
)
∂y3u

`2
3,?

+
∑

`1+`2=m+1
`1,`2≥1

∂yj
(
H`1
j u`23 − u`1j H`2

3

)
?

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)
?

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂y3

(
u`2j H

`3
3 −H`2

j u`33
)
?

}
.

We now decompose the left hand side of (B.56) as:

(B.58) Hm := Fm6 |y3=0 +
(

(∂t + u0
j ∂yj ) Ĥ

m+1
3,? (0)−H0

j ∂yj û
m+1
3,? (0)

)∣∣
y=3=Y3=0

= Hm
1 +Hm

2 +Hm
3 + Ḣm

1 ,

where Hm
1 incorporates Fm6 |y3=0, whose expression is given in (B.55), and the terms highlighted in blue

in (B.57), namely:

Hm
1 := c0

{ ∑
`1+`2=m+1

(
c ∂θψ

`1+1 + (∂t + u0
j ∂yj )ψ

`1
)
∂y3H

`2
3 −

(
b ∂θψ

`1+1 +H0
j ∂yjψ

`1
)
∂y3u

`2
3

+
∑

`1+`2=m+1
`1,`2≥1

∂yj
(
H`1
j u`23 − u`1j H`2

3

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1 ∂y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)

(B.59)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1 ∂y3

(
u`2j H

`3
3 −H`2

j u`33
)}
,
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and Hm
2 , Hm

3 , Ḣm
1 incorporate the remaining (black) terms in (B.57):

(B.60) Hm
2 := c0

{ ∑
`1+`2=m+2

∂θψ
`1
(
τ F `28 − ξj F `23+j

)
+

∑
`1+`2+`3=m+3

`2,`3≥1

∂θψ
`1 ∂Y3

(
ξj u

`2
j H

`3
3 − ξj H`2

j u`33
)}
,

(B.61)

Hm
3 := c0

{ ∑
`1+`2=m+1

(
∂t+u0

j ∂yj
)
ψ`1 F `28 −H0

j ∂yjψ
`1 F `27 +

∑
`1+`2+`3=m+2

`2,`3≥1

∂yjψ
`1 ∂Y3

(
u`2j H

`3
3 −H`2

j u`33
)}
,

(B.62) Ḣm
1 := c0

{ ∑
`1+`2=m+2

`2≥1

(
∂t + u0

j ∂yj
)
∂θψ

`1 ξj′ H
`2
j′ −H0

j ∂yj ∂θψ
`1 ξj′ u

`2
j′

}
.

The reason why Ḣm
1 is denoted differently from the other terms in the decomposition of Hm is that it is

easily recognizable as part of the right hand side of (B.56). We therefore keep it separate from the other
terms.

• Step 2. Two substitutions and several simplifications. We use the boundary conditions on Γ0 of
the previous steps in the induction and substitute accordingly in the first line of Hm

1 in (B.59) (the red
terms). After simplifying, this yields:

Hm
1 = c0

{ ∑
`1+`2=m+1

`1≥1

H`1
j ∂yju

`2
3 − u`1j ∂yjH`2

3 +
∑

`1+`2=m+1

u`13 ∇ ·H`2 −H`1
3 ∇ · u`2

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1
(
H`2

3 ξj ∂y3u
`3
j − u`23 ξj ∂y3H

`3
j

)
+

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1
(
H`2

3 ∂y3u
`3
j − u`23 ∂y3H

`3
j

)}
.

Since only tangential differentiation is involved in the above green term, we can use again the boundary
conditions on Γ0 of the previous steps in the induction. Defining for future use:

(B.63) Ḣm
2 := c0

{ ∑
`1+`2=m+1

`2≥1

(
∂t + u0

j ∂yj
)
∂yj′ψ

`1 H`2
j′ −H0

j ∂yj∂yj′ψ
`1 u`2j′

}
,

we get:

Hm
1 = Ḣm

2 + c0

{ ∑
`1+`2=m+1

u`13 ∇ ·H`2 −H`1
3 ∇ · u`2 +

∑
`1+`2=m+2

`1≥1

(cH`1
j − b u`1j ) ∂yj∂θψ

`2

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yj∂θψ
`1
(
ξj′ u

`2
j′ H

`3
j − ξj′ H`2

j′ u
`3
j

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1
(
H`2 · ∇(ξj u

`3
j )− u`2 · ∇(ξj H

`3
j )
)

(B.64)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1
(
H`2 · ∇u`3j − u`2 · ∇H`3

j

)}
.
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• Step 3. Integrating by parts. We integrate by parts (with respect to θ) the brown terms in the
decomposition (B.64). Let us observe that there holds c ∂θH

1
j − b ∂θu1

j ≡ 0, hence we get:

Hm
1 = Ḣm

2 + c0

{ ∑
`1+`2=m+1

u`13 ∇ ·H`2 −H`1
3 ∇ · u`2 +

∑
`1+`2=m+2

`2≥2

∂yjψ
`1 (b ∂θu

`2
j − c ∂θH`2

j )

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1 ∂θ

(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1
(
H`2 · ∇(ξj u

`3
j )− u`2 · ∇(ξj H

`3
j )
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1
(
H`2 · ∇u`3j − u`2 · ∇H`3

j

)}
.

Since we have already solved the fast problems (H(m)− 2) up to the step m, we can use in the latter
decomposition the relation:

b ∂θu
`2
j − c ∂θH`2

j = −F `2−1
3+j − u0

j F
`2−1
8 +H0

j F
`2−1
7 ,

which yields:

Hm
1 = Ḣm

2 + c0

{ ∑
`1+`2=m+1

u`13 ∇ ·H`2 −H`1
3 ∇ · u`2 −

∑
`1+`2=m+1

∂yjψ
`1 F `23+j

+
∑

`1+`2=m+1

H0
j ∂yjψ

`1 F `27 − u0
j ∂yjψ

`1 F `28

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1 ∂θ

(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂θψ
`1
(
H`2 · ∇(ξj u

`3
j )− u`2 · ∇(ξj H

`3
j )
)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1
(
H`2 · ∇u`3j − u`2 · ∇H`3

j

)}
.

It is now time to incorporate the quantity Hm
3 , whose expression is given in (B.61). Adding Hm

1 with Hm
3

cancels the orange term in the latter decomposition and we get:

Hm
1 + Hm

3 = Ḣm
2 + c0

{ ∑
`1+`2=m+1

u`13 ∇ ·H`2 −H`1
3 ∇ · u`2 +

∑
`1+`2=m+1

∂tψ
`1 F `28 − ∂yjψ`1 F `23+j

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1
(
∂θ
(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+ ∂Y3

(
u`2j H

`3
3 −H`2

j u`33
))

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1
(
H`2 · ∇(ξj u

`3
j )− u`2 · ∇(ξj H

`3
j )
)

(B.65)

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1
(
H`2 · ∇u`3j − u`2 · ∇H`3

j

)}
.
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• Step 4. Substituting in Hm
2 and recollecting the terms. We now substitute the quantity τ F `28 −ξj F `23+j

in Hm
2 , whose expression is given in (B.60). For future use, we define:

(B.66) Ḣm
3 := c0

{ ∑
`1+`2=m+2

∂θψ
`1
(

(∂t + u0
j ∂yj ) (ξj′ H

`2
j′ )−H0

j ∂yj (ξj′ u
`2
j′ )
)}

.

We then obtain:

Hm
2 = Ḣm

3 + c0

{ ∑
`1+`2=m+2

∂θψ
`1
(
b∇ · u`2 − c∇ ·H`2

)
−

∑
`1+`2+`3=m+3

∂tψ
`1 ∂θψ

`2 ξj ∂Y3H
`3
j

+
∑

`1+`2+`3=m+3

∂yjψ
`1 ∂θψ

`2
(
H0
j ∂Y3(ξj′ u

`3
j′ )− u0

j ∂Y3(ξj′ H
`3
j′ ) + c ∂Y3H

`3
j − b ∂Y3u`3j

)
+

∑
`1+`2+`3=m+2

∂yjψ
`1 ∂θψ

`2
(
H0
j ∂y3(ξj′ u

`3
j′ )− u0

j ∂y3(ξj′ H
`3
j′ ) + c ∂y3H

`3
j − b ∂y3u`3j

)
−

∑
`1+`2+`3=m+2

∂tψ
`1 ∂θψ

`2 ξj ∂y3H
`3
j(B.67)

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1 ∇ ·

(
ξj H

`2
j u`3 − ξj u`2j H`3

)
+

∑
`1+···+`4=m+3

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂Y3
(
ξj′ H

`3
j′ u

`4
j − ξj′ H`3

j′ u
`4
j

)
+

∑
`1+···+`4=m+2

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂y3
(
ξj′ H

`3
j′ u

`4
j − ξj′ H`3

j′ u
`4
j

)}
.

Observe the partial cancelation between the green terms in (B.65) and (B.67).
Going back to the definition (B.58) and using (B.65), (B.67), we can decompose Hm under the form:

Hm = Ḣm
1 + Ḣm

2 + Ḣm
3 + Hm

4 + Hm
5 + Hm

6 ,

where:

• Ḣm
1 , Ḣm

2 , Ḣm
3 are defined respectively in (B.62), (B.63), (B.66),

• Hm
4 incorporates the pink terms in (B.65) and (B.67),

• Hm
5 incorporates the blue terms in (B.65) and (B.67),

• Hm
6 incorporates all other terms in (B.65) and (B.67),

which corresponds to:

Hm
4 := c0

{ ∑
`1+`2=m+1

∂tψ
`1 F `28 −

∑
`1+`2+`3=m+3

∂tψ
`1 ∂θψ

`2 ξj ∂Y3H
`3
j

−
∑

`1+`2+`3=m+2

∂tψ
`1 ∂θψ

`2 ξj ∂y3H
`3
j

}
,
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Hm
5 := c0

{
−

∑
`1+`2=m+1

∂yjψ
`1 F `23+j

+
∑

`1+`2+`3=m+3

∂yjψ
`1 ∂θψ

`2
(
H0
j ∂Y3(ξj′ u

`3
j′ )− u0

j ∂Y3(ξj′ H
`3
j′ ) + c ∂Y3H

`3
j − b ∂Y3u`3j

)
+

∑
`1+`2+`3=m+2

∂yjψ
`1 ∂θψ

`2
(
H0
j ∂y3(ξj′ u

`3
j′ )− u0

j ∂y3(ξj′ H
`3
j′ ) + c ∂y3H

`3
j − b ∂y3u`3j

)
+

∑
`1+`2+`3=m+2

`2,`3≥1

∂yjψ
`1
(
∂θ
(
ξj′ H

`2
j′ u

`3
j − ξj′ u`2j′ H`3

j

)
+ ∂Y3

(
u`2j H

`3
3 −H`2

j u`33
))

+
∑

`1+`2+`3=m+1
`2,`3≥1

∂yjψ
`1
(
H`2 · ∇u`3j − u`2 · ∇H`3

j

)
+

∑
`1+···+`4=m+3

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂Y3
(
ξj′ H

`3
j′ u

`4
j − ξj′ H`3

j′ u
`4
j

)
+

∑
`1+···+`4=m+2

`3,`4≥1

∂yjψ
`1 ∂θψ

`2 ∂y3
(
ξj′ H

`3
j′ u

`4
j − ξj′ H`3

j′ u
`4
j

)}
,

Hm
6 := c0

{ ∑
`1+`2=m+1

(
u`13 − c ∂θψ`1+1

)
∇ ·H`2 −

(
H`1

3 − b ∂θψ`1+1
)
∇ · u`2

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1
(
ξj H

`2
j ∇ · u`3 − ξj u`2j ∇ ·H`3

)}
.

• Step 5. Substituting in Hm
4 and using boundary conditions. Substituting the value of F `28 in Hm

4 ,
we obtain:

Hm
4 = c0

{
−

∑
`1+`2=m+1

∂tψ
`1 ∇ ·H`2 +

∑
`1+`2+`3=m+2

∂tψ
`1 ∂yjψ

`2 ∂Y3H
`3
j

+
∑

`1+`2+`3=m+1

∂tψ
`1 ∂yjψ

`2 ∂y3H
`3
j

}
,

and we therefore get:

Hm
4 + Hm

6 = c0

{ ∑
`1+`2=m+1

(
u`13 − c ∂θψ`1+1 − ∂tψ`1

)
∇ ·H`2 −

(
H`1

3 − b ∂θψ`1+1
)
∇ · u`2

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂θψ
`1
(
ξj H

`2
j ∇ · u`3 − ξj u`2j ∇ ·H`3

)}

+ c0

{ ∑
`1+`2+`3=m+2

∂tψ
`1 ∂yjψ

`2 ∂Y3H
`3
j +

∑
`1+`2+`3=m+1

∂tψ
`1 ∂yjψ

`2 ∂y3H
`3
j

}
= c0

{ ∑
`1+`2=m+1

∂yjψ
`1
(
u0
j ∇ ·H`2 −H0

j ∇ · u`2
)

∑
`1+`2+`3=m+1

`2,`3≥1

∂yjψ
`1
(
u`2j ∇ ·H`3 −H`2

j ∇ · u`3
)

(B.68)

∑
`1+`2+`3=m+2

∂yjψ
`1 ∂tψ

`2 ∂Y3H
`3
j +

∑
`1+`2+`3=m+1

∂yjψ
`1 ∂tψ

`2 ∂y3H
`3
j

}
.
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where we have used again the boundary conditions on Γ0 of the previous steps in the induction.

• Step 6. Conclusion. We now substitute F `23+j in the expression of Hm
5 and get:

Hm
5 = c0

{ ∑
`1+`2=m+1

∂yjψ
`1
(

(∂t + u0
j′ ∂yj′ )H

`2
j −H0

j′ ∂yj′u
`2
j −u0

j ∇ ·H`2 +H0
j ∇ · u`2

)
−

∑
`1+`2+`3=m+2

∂yjψ
`1 ∂tψ

`2 ∂Y3H
`3
j −

∑
`1+`2+`3=m+1

∂yjψ
`1 ∂tψ

`2 ∂y3H
`3
j

+
∑

`1+`2+`3=m+2
`2,`3≥1

∂yjψ
`1
(
H`2
j ∇ · u`3 − u`2j ∇ ·H`3

)}
.

Combining with (B.68) cancels the green, blue and orange terms, and we are eventually left with:

Hm = Ḣm
1 + Ḣm

2 + Ḣm
3 + c0

{ ∑
`1+`2=m+1

∂yjψ
`1
(

(∂t + u0
j′ ∂yj′ )H

`2
j −H0

j′ ∂yj′u
`2
j

)}
.

Using the definitions (B.62), (B.63), (B.66) of Ḣm
1 , Ḣm

2 , Ḣm
3 as well as the expressions (2.22b), (2.22c) of

Gm1 , Gm2 , we obtain eventually:

Hm =
(
∂t + u0

j ∂yj
)
Ĝm2 (0)−H0

j ∂yj Ĝ
m
1 (0) ,

which completes the proof of Lemma B.7.

B.4.2 Compatibility for the divergence of the magnetic field

Let us first recall the result we aim at proving here:

Lemma B.9 (Compatibility for the divergence of the magnetic field in the slow mean problem). The
source terms in (5.33) satisfy:

(B.69) ∂t Fm,±8 = ∂yαF
m,±
3+α .

Proof of Lemma B.9. The verification of the compatibility condition (B.69) follows from the explicit ex-
pressions of the source terms Fm,±α and Fm,±8 and from the symmetry formulas (Corollary B.2, Corollary
B.3 and Proposition B.4 above). Let us first recall the expressions of the source terms. For simplicity, we
omit from now on the superscripts ±. We keep the notation c0 for the mean with respect to θ on T. The
source terms are given as follows:

Fm8 = c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ξj ∂y3H

`3
j +

∑
`1+`2+`3=m+1

χ[`1] ∂yjψ
`2 ∂y3H

`3
j

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3H
`3
3

}
,
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Fm3+j = c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2
(
c ∂y3H

`3
j − b ∂y3u`3j − u0

j ξj′ ∂y3H
`3
j′ +H0

j ξj′ ∂y3u
`3
j′
)

+
∑

`1+`2+`3=m+1

χ[`1] ∂yj′ψ
`2
(
u0
j′ ∂y3H

`3
j −H0

j′ ∂y3u
`3
j − u0

j ∂y3H
`3
j′ +H0

j ∂y3u
`3
j′
)

+
∑

`1+`2+`3=m+1

χ[`1] ∂tψ
`2 ∂y3H

`3
j

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2
(
H0
j ∂y3u

`3
3 − u0

j ∂y3H
`3
3

)
+

∑
`1+`2=m+1
`1,`2≥1

∇ ·
(
u`1j H

`2 −H`1
j u

`2
)

+
∑

`1+···+`4=m+2
`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3

(
ξj′ u

`3
j′ H

`4
j − ξj′ H`3

j′ u
`4
j

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ[`1] ∂yj′ψ
`2 ∂y3

(
u`3j′ H

`4
j −H`3

j′ u
`4
j

)
+ χ̇[`1] ψ`2 ∂y3

(
H`3
j u

`4
3 − u`3j H`4

3

)}
,

Fm6 = c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2
(
c ∂y3H

`3
3 − b ∂y3u`33

)
+

∑
`1+`2+`3=m+1

χ[`1]
((
∂t + u0

j ∂yj
)
ψ`2 ∂y3H

`3
3 −H0

j ∂yjψ
`2 ∂y3u

`3
3

)
+

∑
`1+`2=m+1
`1,`2≥1

∂yj
(
H`1
j u

`2
3 − u`1j H`2

3

)
+

∑
`1+···+`4=m+2

`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3

(
ξj u

`3
j H

`4
3 − ξj H`3

j u
`4
3

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3

(
u`3j H

`4
3 −H`3

j u
`4
3

)}
.

Several terms have been highlighted in blue or red in order to explain the calculations below.
We now define the quantity:

Dm := ∂yα Fm3+α − ∂t Fm8 ,

and the goal of course is to show that Dm vanishes under the induction assumption H(m), which will
prove (B.69). The calculation splits again in several steps.

• Step 1. Using the first symmetry formula and integration by parts. When applying a slow tangential
derivative ∂t, ∂y1 or ∂y2 , we can use the first symmetry formula (Corollary B.2 above) and obtain (here
∂tan corresponds to either ∂t, ∂y1 or ∂y2):

∂tan c0

{ ∑
`1+`2+`3=L

χ[`1] ∂θψ
`2 f `3

}
= c0

{ ∑
`1+`2+`3=L

χ[`1] ∂θψ
`2 ∂tanf

`3 −
∑

`1+`2+`3=L

χ[`1] ∂tanψ
`2 ∂θf

`3
}
,

where integration by parts in θ corresponds to the calculus rule:

c0

{
(∂θf) g

}
= −c0

{
f (∂θg)

}
.

The above rule for tangential differentiation is applied to deal with the terms highlighted in blue in the
above decompositions of Fm3+j and Fm8 . This operation makes fast derivatives in θ appear, and we then
use the fast problems solved at the previous steps of the induction:

∀ ` = 1, . . . ,m , ξj ∂θH
`
j = F `−1

8 ,

c ∂θH
`
j − b ∂θu`j − u0

j ∂θξj′ H
`
j′ +H0

j ∂θξj′ u
`
j′ = F `−1

3+j .
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The only subtlety here is that the mean ψ̂m+1(0) has not been defined yet. However, this is of no
consequence since the term involving ψm+1 in the integration by parts argument is:

c0

{
χ[0] ∂θψ

m+1 ξj ∂y3H
1
j

}
= χ(y3) c0

{
∂θψ

m+1
] ξj ∂y3H

1
j + ψm+1

] ξj ∂y3∂θH
1
j

}
= 0 .

Here we have used the very first (homogeneous) fast problem ξj ∂θH
1
j = 0. Hence the mean of ψm+1 is

not relevant here.
Let us also observe that the terms highlighted in red in Fm3+α correspond to a divergence free vector field,

hence they disappear when computing Dm. After collecting the terms, we get the following decomposition
for Dm:

Dm = Dm
1 + Dm

2 + Dm
3 ,

with:

Dm
1 := c0

{ ∑
`1+`2+`3=m+1

χ[`1] ∂tψ
`2 ∂y3

(
F `38 +∇ ·H`3

)
+
(
∂y3χ

[`1] ∂tψ
`2 − ∂t(χ̇[`1] ψ`2)

)
∂y3H

`3
3

}
,

Dm
2 := c0

{
−

∑
`1+`2+`3=m+1

χ[`1] ∂yjψ
`2 ∂y3F

`3
3+j

+
∑

`1+`2+`3=m+1

χ[`1] ∂yjψ
`2 ∂y3

(
u0
j ∇ ·H`3 −H0

j ∇ · u`3 − (∂t + u0
j′ ∂yj′ )H

`3
j +H0

j′ ∂yj′u
`3
j

)
+

∑
`1+`2+`3=m+1

(
∂y3χ

[`1] ∂yjψ
`2 − ∂yj (χ̇[`1] ψ`2)

) (
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+···+`4=m+2

`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3∂θ

(
ξj′ H

`3
j′ u

`4
j − ξj′ u`3j′ H`4

j

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ[`1] ∂yjψ
`2 ∂y3

(
∇ ·
(
u`3j H

`4 −H`3
j u

`4
))

+
∑

`1+···+`4=m+1
`3,`4≥1

(
∂y3χ

[`1] ∂yjψ
`2 − ∂yj (χ̇[`1] ψ`2)

)
∂y3
(
u`3j H

`4
3 −H`3

j u
`4
3

)}
,

Dm
3 := c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ∂y3

(
c∇ ·H`3 − b∇ · u`3 − (∂t + u0

j ∂yj ) ξj′ H
`3
j′ +H0

j ∂yj ξj′ u
`3
j′
)

+
∑

`1+···+`4=m+2
`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3∇ ·

(
ξj u

`3
j H

`4 − ξj H`3
j u

`4
)

+
∑

`1+`2+`3=m+2

∂y3χ
[`1] ∂θψ

`2 ∂y3
(
cH`3

3 − b u`33
)

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3
(
H0
j ∂yju

`3
3 − (∂t + u0

j ∂yj )H
`3
3

)
+

∑
`1+···+`4=m+2

`3,`4≥1

∂y3χ
[`1] ∂θψ

`2 ∂y3
(
ξj u

`3
j H

`4
3 − ξj H`3

j u
`4
3

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3∂yj
(
H`3
j u

`4
3 − u`3j H`4

3

)}
.
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• Step 2. Using the second symmetry formula to simplify Dm
1 . We recall the expression of F `8:

∀ ` = 1, . . . ,m , F `8 = −∇ ·H` +
∑

`1+`2+`3=`+1

χ[`1] ∂θψ
`2 ξj ∂y3H

`3
j

+
∑

`1+`2+`3=`

χ[`1] ∂yjψ
`2 ∂y3H

`3
j +

∑
`1+`2+`3=`

χ̇[`1] ψ`2 ∂y3H
`3
3 ,

which we use in the above expression for Dm
1 together with the second symmetry formula (or rather its

consequence):∑
`1+`2=`

∂y3χ
[`1] ∂tψ

`2 − ∂t
(
χ̇[`1] ψ`2

)
=

∑
`1+···+`4=`

(
χ̇[`1] ∂y3χ

[`2] − χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂tψ

`4 .

This simplifies the expression of Dm
1 and we get eventually:

Dm
1 = c0

{ ∑
`1+···+`5=m+2

χ[`1] ∂θψ
`2 ∂y3

(
χ[`3] ∂tψ

`4 ξj ∂y3H
`5
j

)
+

∑
`1+···+`5=m+1

χ[`1] ∂yjψ
`2 ∂y3

(
χ[`3] ∂tψ

`4 ∂y3H
`5
j

)
(B.70)

+
∑

`1+···+`5=m+1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂tψ

`4 ∂y3H
`3
3

)}
.

• Step 3. Using the second symmetry formula to simplify Dm
2 . We recall the expression of F `3+j :

∀ ` = 1, . . . ,m , −F `3+j =
(
∂t + u0

j′ ∂yj′
)
H`
j −H0

j′ ∂yj′u
`
j − u0

j ∇ ·H` +H0
j ∇ · u`

+
∑

`1+`2+`3=`+1

χ[`1] ∂θψ
`2
(
b ∂y3u

`3
j − c ∂y3H`3

j −H0
j ξj′ ∂y3u

`3
j′ + u0

j ξj′ ∂y3H
`3
j′
)

+
∑

`1+`2+`3=`

χ[`1] ∂yj′ψ
`2
(
H0
j′ ∂y3u

`3
j − u0

j′ ∂y3H
`3
j −H0

j ∂y3u
`3
j′ + u0

j ∂y3H
`3
j′
)

−
∑

`1+`2+`3=`

χ[`1] ∂tψ
`2 ∂y3H

`3
j +

∑
`1+`2+`3=`

χ̇[`1] ψ`2
(
u0
j ∂y3H

`3
3 −H0

j ∂y3u
`3
3

)
+

∑
`1+`2=`+1
`1,`2≥1

∂θ
(
ξj′ u

`1
j′ H

`2
j − ξj′ H`1

j′ u
`2
j

)
+

∑
`1+`2=`
`1,`2≥1

∇ ·
(
H`1
j u

`2 − u`1j H`2
)

+
∑

`1+···+`4=`+1
`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3

(
ξj′ H

`3
j′ u

`4
j − ξj′ u`3j′ H`4

j

)
+

∑
`1+···+`4=`
`3,`4≥1

χ[`1] ∂yj′ψ
`2 ∂y3

(
H`3
j′ u

`4
j − u`3j′ H`4

j

)
+

∑
`1+···+`4=`
`3,`4≥1

χ̇[`1] ψ`2 ∂y3
(
u`3j H

`4
3 −H`3

j u
`4
3

)
,

which we use in the above expression for Dm
2 (the blue terms in F `3+j cancel with the black terms in

Dm
2 and the red terms in F `3+j cancel when computing ∂yjψ

`2 F `33+j), together with the second symmetry
formula (for the terms highlighted in orange in that expression). After some computations, we end up
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with the final expression:

Dm
2 = c0

{ ∑
`1+···+`5=m+2

χ[`1] ∂θψ
`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3

(
b u`5j − cH`5

j −H0
j ξj′ u

`5
j′ + u0

j ξj′ H
`5
j′

))
+

∑
`1+···+`6=m+2

`5,`6≥1

χ[`1] ∂θψ
`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3

(
ξj′ H

`5
j′ u

`6
j − ξj′ u`5j′ H`6

j

))

−
∑

`1+···+`5=m+1

χ[`1] ∂yjψ
`2 ∂y3

(
χ[`3] ∂tψ

`4 ∂y3H
`5
j

)
(B.71)

+
∑

`1+···+`5=m+1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3
(
u0
j H

`5
3 −H0

j u
`5
3

))
+

∑
`1+···+`6=m+2

`5,`6≥1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3
(
u`5j H

`6
3 −H`5

j u
`6
3

))}
.

• Step 4. Recollecting the terms and integrating by parts again. Let us first observe that the green
terms in Dm

1 and Dm
2 cancel. We now recollect the terms in Dm

1 ,D
m
2 ,D

m
3 in order to benefit from future

cancellations. We rewrite Dm as:
Dm = Dm

4 + Dm
5 ,

where Dm
4 gathers all the black terms in Dm

1 ,D
m
2 ,D

m
3 , and Dm

5 gathers all magenta terms, namely:

Dm
4 := c0

{ ∑
`1+`2+`3=m+2

∂y3χ
[`1] ∂θψ

`2 ∂y3
(
cH`3

3 − b u`33
)

+
∑

`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3
(
H0
j ∂yju

`3
3 − (∂t + u0

j ∂yj )H
`3
3

)
+

∑
`1+···+`5=m+1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3
(
u0
j H

`5
3 −H0

j u
`5
3

))
+

∑
`1+···+`5=m+1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂tψ

`4 ∂y3H
`3
3

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3∂yj
(
H`3
j u

`4
3 − u`3j H`4

3

)
+

∑
`1+···+`6=m+2

`5,`6≥1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3
(
u`5j H

`6
3 −H`5

j u
`6
3

))

+
∑

`1+···+`4=m+2
`3,`4≥1

∂y3χ
[`1] ∂θψ

`2 ∂y3
(
ξj u

`3
j H

`4
3 − ξj H`3

j u
`4
3

)}
,
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Dm
5 := c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ∂y3

(
c∇ ·H`3 − b∇ · u`3 − (∂t + u0

j ∂yj ) ξj′ H
`3
j′ +H0

j ∂yj ξj′ u
`3
j′
)

+
∑

`1+···+`5=m+2

χ[`1] ∂θψ
`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3

(
b u`5j − cH`5

j −H0
j ξj′ u

`5
j′ + u0

j ξj′ H
`5
j′

))
+

∑
`1+···+`5=m+2

χ[`1] ∂θψ
`2 ∂y3

(
χ[`3] ∂tψ

`4 ξj ∂y3H
`5
j

)
+

∑
`1+···+`4=m+2

`3,`4≥1

χ[`1] ∂θψ
`2 ∂y3

(
∇ ·
(
ξj u

`3
j H

`4 − ξj H`3
j u

`4
))

+
∑

`1+···+`6=m+2
`5,`6≥1

χ[`1] ∂θψ
`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3

(
ξj′ H

`5
j′ u

`6
j − ξj′ u`5j′ H`6

j

))
.

We need to further simplify Dm
4 and for this, we use the second symmetry formula on the blue terms

in the above expression of Dm
4 :∑

`1+`2=`

∂y3χ
[`1] ∂θψ

`2 =
∑

`1+`2=`

∂θ
(
χ̇[`1] ψ`2

)
+

∑
`1+···+`4=`

(
χ̇[`1] ∂y3χ

[`2] − χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂θψ

`4 .

For the terms arising with the factor ∂θ
(
χ̇[`1] ψ`2

)
, we integrate by parts with respect to θ. Using the fast

equation c ∂θH
`
3 − b ∂θu`3 = −F `−1

6 , ` = 1, . . . ,m, we get:

Dm
4 = c0

{ ∑
`1+`2+`3=m+1

χ̇[`1] ψ`2 ∂y3
(
− F `36 +H0

j ∂yju
`3
3 − (∂t + u0

j ∂yj )H
`3
3

)
+

∑
`1+···+`5=m+1

χ̇[`1] ψ`2 ∂y3

(
χ[`3]

(
(∂t + u0

j ∂yj )ψ
`4 ∂y3H

`5
3 −H0

j ∂yjψ
`4 ∂y3u

`5
3

))
+

∑
`1+···+`4=m+2

`3,`4≥1

χ̇[`1] ψ`2 ∂y3∂θ
(
ξj H

`3
j u

`4
3 − ξj u`3j H`4

3

)
+

∑
`1+···+`4=m+1

`3,`4≥1

χ̇[`1] ψ`2 ∂y3∂yj
(
H`3
j u

`4
3 − u`3j H`4

3

)
+

∑
`1+···+`6=m+2

`5,`6≥1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂yjψ

`4 ∂y3
(
u`5j H

`6
3 −H`5

j u
`6
3

))

+
∑

`1+···+`5=m+2

(
∂y3χ

[`1] χ̇[`2] − χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂θψ

`4 ∂y3
(
cH`5

3 − b u`53
)

+
∑

`1+···+`6=m+2
`5,`6≥1

(
∂y3χ

[`1] χ̇[`2] − χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂θψ

`4 ∂y3
(
ξj u

`5
j H

`6
3 − ξj H`5

j u
`6
3

)}

= c0

{ ∑
`1+···+`5=m+2

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂θψ

`4 ∂y3
(
b u`53 − cH`5

3

))
+

∑
`1+···+`6=m+2

`5,`6≥1

χ̇[`1] ψ`2 ∂y3

(
χ[`3] ∂θψ

`4 ∂y3
(
ξj H

`5
j u

`6
3 − ξj u`5j H`6

3

))

+
∑

`1+···+`5=m+2

(
∂y3χ

[`1] χ̇[`2] − χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂θψ

`4 ∂y3
(
cH`5

3 − b u`53
)

+
∑

`1+···+`6=m+2
`5,`6≥1

(
∂y3χ

[`1] χ̇[`2] − χ[`1] ∂y3χ̇
[`2]
)
ψ`3 ∂θψ

`4 ∂y3
(
ξj u

`5
j H

`6
3 − ξj H`5

j u
`6
3

)}
,
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where we have used the expression of F `6. We thus end up with the expression:

Dm
4 = c0

{ ∑
`1+···+`5=m+2

χ[`1] ∂θψ
`2 ∂y3

(
χ̇[`3] ψ`4 ∂y3

(
b u`53 − cH`5

3

))
+

∑
`1+···+`6=m+2

`5,`6≥1

χ[`1] ∂θψ
`2 ∂y3

(
χ̇[`3] ψ`4 ∂y3

(
ξj H

`5
j u

`6
3 − ξj u`5j H`6

3

))}
.

• Step 5. Conclusion. Collecting the latter expression of Dm
4 with the definition of Dm

5 , we get (after
a few more lines of simplifications...):

Dm = c0

{ ∑
`1+`2+`3=m+2

χ[`1] ∂θψ
`2 ∂y3

(
ξj F

`3
3+j − τ F `38

)}
.

We are now going to prove that the functions ξj F
`
3+j − τ F `8, ` = 1, . . . ,m vanish, which will complete

the proof of Lemma B.9. For ` = m, we use Lemma 5.2, pass to the limit |Y3| = +∞, and get:

∂θ
(
ξj F

m
3+j − τ Fm8

)
= 0 .

This means that we have:

ξj F
m
3+j − τ Fm8 = ξj F̂

m

3+j(0)− τ F̂m8 (0) = 0 ,

where the final equality comes from the induction assumption (H(m)− 5). For ` = 1, . . . ,m − 1, the
argument is similar. We have already solved the fast problems (H(m)− 2). Hence, by Theorem 3.1, there
holds:

∂Y3F
`
6 − ξj ∂θF `3+j = τ ∂θF

`
8 , F̂

`

3+j(0) = F̂
`

8(0) = 0 .

By using the same argument as above, we get ξj F
`
3+j − τ F `8 = 0. We have thus proved Dm = 0 and the

proof of Lemma B.9 is complete.
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