
HAL Id: hal-01816375
https://hal.science/hal-01816375v1

Submitted on 15 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Coefficient Computation for Algebraic Power Series
in Positive Characteristic

Alin Bostan, Xavier Caruso, Gilles Christol, Philippe Dumas

To cite this version:
Alin Bostan, Xavier Caruso, Gilles Christol, Philippe Dumas. Fast Coefficient Computation for Alge-
braic Power Series in Positive Characteristic. ANTS-XIII - Thirteenth Algorithmic Number Theory
Symposium, Jul 2018, Madison, United States. pp.119-135, �10.2140/obs.2019.2-1�. �hal-01816375�

https://hal.science/hal-01816375v1
https://hal.archives-ouvertes.fr

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC

POWER SERIES IN POSITIVE CHARACTERISTIC

ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

Abstract. We revisit Christol’s theorem on algebraic power series in positive
characteristic and propose yet another proof for it. This new proof combines
several ingredients and advantages of existing proofs, which make it very well-
suited for algorithmic purposes. We apply the construction used in the new
proof to the design of a new efficient algorithm for computing the Nth coeffi-
cient of a given algebraic power series over a perfect field of characteristic p.
It has several nice features: it is more general, more natural and more efficient
than previous algorithms. Not only the arithmetic complexity of the new algo-
rithm is linear in logN and quasi-linear in p, but its dependency with respect
to the degree of the input is much smaller than in the previously best algo-
rithm. Moreover, when the ground field is finite, the new approach yields an
even faster algorithm, whose bit complexity is linear in logN and quasi-linear
in

√
p.

1. Introduction

Given a perfect field k of characteristic p > 0, we address the following question:
how quickly can one compute the Nth coefficient fN of an algebraic power series

f(t) =
∑

n≥0

fnt
n ∈ k[[t]],

where N is assumed to be a large positive integer? This question was recognized as
a very important one in complexity theory, as well as in various applications to algo-
rithmic number theory: Atkin-Swinnerton-Dyer congruences, integer factorization,
discrete logarithm and point-counting [10, 3].

As such, the question is rather vague; both the data structure and the computa-
tion model have to be stated more precisely. The algebraic series f will be specified
in k[[t]] as some root of a polynomial E(t, y) in k[t, y], of degree d = degy E ≥ 1
and of height h = degt E. To do this specification unequivocally, we will make
several assumptions. First, we assume that E is separable, that is E and its deriva-
tive Ey = ∂E/∂y are coprime in k(t)[y]. Second, we assume that E is irreducible1

in k(t)[y]. Note that both assumptions are satisfied if E is assumed to be the mini-
mal polynomial of f and that irreducibility implies separability as soon as we know
that E has at least one root in k[[t]]. The polynomial E might have several roots in
k[[t]]. In order to specify uniquely its root f , we further assume that we are given

1The first assumption is not always implied by the second one, as exemplified by E = yp − t ∈
Fp[t, y], and in general by any irreducible polynomial E in k[t, yp].

1

2 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

a nonnegative integer ρ together with f0, . . . , f2ρ in k such that

E(t, f0 + f1t+ · · ·+ f2ρt
2ρ) ≡ 0 (mod t2ρ+1),

Ey(t, f0 + f1t+ · · ·+ fρt
ρ) 6≡ 0 (mod tρ+1).

In other words, the data structure used to represent f is the polynomial E together
with the initial coefficients f0, . . . , f2ρ. (Actually ρ+1 coefficients are enough to
ensure the uniqueness of f . However 2ρ+1 coefficients are needed to ensure its
existence; for this reason, we will always assume the coefficients of f are given up
to index 2ρ.) We observe that it is always possible to choose ρ less than or equal to
the t-adic valuation of the y-resultant of E and Ey, hence a fortiori ρ ≤ (2d−1)h.

Under these assumptions, the classical Newton iteration [16] allows the compu-

tation of the first N coefficients of f in quasi-linear complexity Õ(N). Here, and in
the whole article (with the notable exception of Section 4), the algorithmic cost is
measured by counting the number of basic arithmetic operations (+,−,×,÷) and
applications of the Frobenius map (x 7→ xp) and of its inverse (x 7→ x1/p) in the

ground field k. The soft-O notation Õ(·) indicates that polylogarithmic factors in
the argument are omitted. Newton’s iteration thus provides a quasi-optimal algo-
rithm to compute f0, . . . , fN . A natural and important question is whether faster
alternatives exist for computing the coefficient fN alone.

With the exception of the rational case (d = 1), where the Nth coefficient can be
computed in complexity O(logN) by binary powering [13], the most efficient algo-

rithm currently known to compute fN in characteristic 0 has complexity Õ(
√
N) [9].

It relies on baby step / giant step techniques, combined with fast multipoint eval-
uation.

Surprisingly, in positive characteristic p, a radically different approach leads
to a spectacular complexity drop to O(logN). However, the big-O term hides a
(potentially exponential) dependency in p. The good behavior of this estimate with
respect to the index N results from two facts. First, if the index N is written in
radix p as (Nℓ−1 . . .N1N0)p, then the coefficient fN is given by the simple formula

(1) fN = [(SNℓ−1
· · · SN1

SN0
f)(0)]p

ℓ

,

where the Sr (0 ≤ r < p) are the section operators defined by

(2) Sr

∑

n≥0

gnt
n =

∑

n≥0

g
1/p
pn+rt

n.

Note that for the finite field Fp the exponents pℓ in (1) and 1/p in (2) are useless,
since the Frobenius map x 7→ xp is the identity map in this case.

Second, by Christol’s theorem [6, 7, 15], the coefficient sequence of an algebraic
power series f over a perfect field k of characteristic p > 0 is p-automatic: this
means that f generates a finite-dimensional k-vector space under the action of
the section operators. Consequently, with respect to a fixed k-basis of this vector
space, one can express f as a column vector C, the section operators Sr as square
matrices Ar (0 ≤ r < p), and the evaluation at 0 as a row vector R. Formula (1)
then becomes

(3) fN = [RANℓ−1
· · ·AN1

AN0
C]p

ℓ

.

Since ℓ is about logN , and since the size of the matrices Ar does not depend on N ,
formula (3) yields an algorithm of complexity O(logN). This observation (for any
p-automatic sequence) is due to Allouche and Shallit [1, Cor. 4.5]. However, this

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 3

last assertion hides the need to first find the linear representation (R, (Ar)0≤r<p, C).
As shown in [2, Ex. 5], already in the case of a finite prime field, translating the
p-automaticity in terms of linear algebra yields matrices Ar whose size can be about
d2hp2d. Thus, their precomputation has a huge impact on the cost with respect to
the prime number p.

In the particular case of a prime field k = Fp, and under the assumption
Ey(0, f0) 6= 0, this was improved in [2] by building on an idea originally intro-

duced by Christol in [6]: one can compute fN in complexity Õ((h+d)5hp)+O((h+
d)2h2 logN). So far, this was the best complexity result for this task.

Contributions. We further improve the complexity result from [2] down to

Õ(d2hp + dωh) + O(d2h2 logN) (Theorem 3.4, Section 3.2). Here ω is the ex-
ponent of matrix multiplication. In the case where k is a finite field, we propose an
even faster algorithm, with bit complexity linear in logN and quasi-linear in

√
p

(Theorem 4.1, Section 4). It is obtained by blending the approach in Section 3.2
with ideas and techniques imported from the characteristic zero case [9]. All these
successive algorithmic improvements are consequences of our main theoretical re-
sult (Theorem 2.2, Section 2.2), which can be thought of as an effective version of
Christol’s Theorem (and in particular reproves it).

2. Effective version of Christol’s theorem

We keep the notation of the introduction. Christol’s theorem is stated as follows.

Theorem 2.1 (Christol). Let f(t) in k[[t]] be a formal power series that is algebraic
over k(t), where k is a perfect field with positive characteristic. Then there exists a
finite-dimensional k-vector space containing f(t) and stable by the section operators.

The aim of this section is to state and to prove an effective version of Theorem 2.1,
on which our forthcoming algorithms will be built. Our approach follows the initial
treatment by Christol [6], which is based on Furstenberg’s theorem [14, Thm. 2]. For
the application we have in mind, it turns out that the initial version of Furstenberg’s
theorem will be inefficient; hence we will first need to strengthen it, considering
residues around the moving point f(t) instead of residues at 0. Another new input
we shall use is a globalization argument allowing us to compare section operators
at 0 and at f(t). This argument is formalized throught Frobenius operators and
is closely related to the Cartier operator used in a beautiful geometric proof of
Christol’s theorem due to Deligne [11] and Speyer [18], and further studied by
Bridy [5].

2.1. Frobenius and sections. Recall that the ground field k is assumed to be a
perfect field of prime characteristic p, for example a finite field Fq, where q = ps.
Let K = k(t) be the field of rational functions over k and let L = K[y]/(E).

Since k is a perfect field, the Frobenius endomorphism F : k → k defined by
x 7→ xp is an automorphism of k. It extends to a ring homomorphism, still denoted
by F, from L[t1/p] to L which raises an element of L[t1/p] = L1/p to the power p.
This homomorphism is an isomorphism and its inverse writes

(4) F
−1 =

p−1∑

r=0

tr/p Sr,

where each Sr, with 0 ≤ r < p, maps L onto itself.

4 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

The use in (4) of the same notation as in Formula (2) is not a mere coincidence.
The algebraic series f provides an embedding of L into the field of Laurent se-
ries k((t)), which is the evaluation of an element P (y) of L at the point y = f(t).
We will call evalf : L → k((t)) the corresponding map, which sends P (y) to P (f(t)).
The Frobenius operator extends from L to k((t)), and the same holds for the sec-
tions Sr (0 ≤ r < p). These extensions are exactly those of Eq. (2). The Sr’s in
Eq. (4) then appear as global variants of the Sr’s in Eq. (2). Moreover, global and
local operators are compatible, in the sense that they satisfy

(5) F ◦ evalf = evalf ◦ F, Sr ◦ evalf = evalf ◦ Sr .
As for rational functions, the Frobenius operator and the section operators

induce, respectively, a ring isomorphism F from K[t1/p] onto K and maps σr

(0 ≤ r < p) from K onto K such that F
−1 =

∑p−1
r=0 t

r/p σr. The operators F

and Sr (0 ≤ r < p) are not K-linear but only k-linear. More precisely, for any λ
in K[t1/p], µ in K, and z in L,

(6) F(λz) = F(λ)F(z) and Sr(µz) =

p−1∑

s=0

t⌊
r+s
p

⌋σs(µ)Sr−s(z).

In other words both F and F
−1 are actually semi-linear.

2.2. The key theorem. Let k[t, y]<h,<d be the set of polynomials P ∈ k[t, y] such
that degt P < h and degy P < d.

Theorem 2.2. For P ∈ k[t, y]<h,<d and for 0 ≤ r < p, there exists a (unique)
polynomial Q in k[t, y]<h,<d such that

(7) Sr

(
P

Ey

)
≡ Q

Ey
(mod E).

The rest of this subsection is devoted to the proof of Theorem 2.2. Although
mainly algebraic, the proof is based on the rather analytic remark that any algebraic
function in k(t)[f] can be obtained as the residue at T = f of some rational function
in k(t, T) (see Lemma 2.3). This idea was already used in Furstenberg [14], whose
work has been inspiring for us. The main new insight of our proof is the following:
we replace several small branches around zero by a single branch around a moving
point. In order to make the argument work, we shall need further to relate the
behavior of the section operators around 0 and around the aforementioned moving
point. This is where the reinterpretation of the Sr’s in terms of Frobenius operators
will be useful.

We consider the ring H = k((t))[[T]] of power series over k((t)). Its fraction field
is the field K = k((t))((T)) of Laurent series over k((t)). There is an embedding
k((t))[y] → H taking a polynomial in y to its Taylor expansion around f . Formally,
it is simply obtained by mapping the variable y to f+T . It extends to a field
extension k((t))(y) → K. We will often write P (t, f+T) for the image of P (t, y) ∈
k((t))(y) in K. The field K is moreover endowed with a residue map res : K → k((t)),
defined by res

(∑∞
i=v aiT

i
)
= a−1 (by convention, a−1 = 0 if v > −1). It is clearly

k((t))-linear.

Lemma 2.3. For any polynomial P ∈ k((t))[y], the following equality holds:

res

(
P (t, f+T)

E(t, f+T)

)
=

P (t, f)

Ey(t, f)
.

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 5

Proof. Since f is a simple root of E, the series E(t, f+T) has a simple zero at
T = 0. This means that it can be written E(t, f+T) = T · q(T) with q ∈ H,
q(0) 6= 0. Taking the logarithmic derivative with respect to T gives

Ey(t, f+T)

E(t, f+T)
=

1

T
+

q′(T)

q(T)
,

akin to [14, Formula (15), p. 276], from which we derive

P (t, f+T)

E(t, f+T)
=

g(T)

T
+ g(T)

q′(T)

q(T)
,

where g(T) = P (t, f+T)/Ey(t, f+T). Since Ey(t, f+T) does not vanish at T = 0,
the series g(T) has no pole at 0. Therefore, the residue of g(T)/T is nothing but
g(0). Besides the residue of the second summand g(T) q′(T)/q(T) vanishes. All in
all, the residue of P (t, f+T)/E(t, f+T) is g(0) + 0 = P (t, f)/Ey(t, f). �

We now introduce analogues of section operators over K. For this, we first ob-
serve that the Frobenius operator x 7→ xp defines an isomorphism F : K[t1/p, T 1/p] →
K. Moreover K[t1/p, T 1/p] is a field extension of K of degree p2. A basis of
K[t1/p, T 1/p] over K is of course (tr/p T s/p)0≤r,s<p, but it will be more convenient
for our purposes to use a different one. It is given by the next lemma.

Lemma 2.4. The family (tr/p (f+T)s/p)0≤r,s<p is a basis of K[t1/p, T 1/p] over K.

Proof. For simplicity, we set y = f+T ∈ K. We have:
(
1 y1/p · · · y(p−1)/p

)
=
(
1 T 1/p · · · T (p−1)/p

)
· U

where U is the square matrix whose (i, j) entry (for 0 ≤ i, j < p) is
(
j
i

)
f i/p. In

particular, U is upper triangular and all its diagonal entries are equal to 1. Thus
U is invertible and the conclusion follows. �

For r and s in {0, 1, . . . , p−1}, we define the section operators Sr,s : K → K by

F
−1 =

p−1∑

r=0

p−1∑

s=0

tr/p(f+T)s/p Sr,s .

(These operations look like those used in [2, §3.2], but they are not exactly the
same.) Clearly Sr,0 extends the operator Sr : k((t)) → k((t)) defined by Eq. (2)
and Sr,s(g

p
1g2) = g1 Sr,s(g2) for all g1, g2 ∈ K. We observe moreover that the Sr,s’s

stabilize the subrings k((t))[y] and k[t, y], since y corresponds to f+T .

Proposition 2.5. The following commutation relation holds over K:

Sr ◦ res = res ◦ Sr,p−1 .

Proof. Let us write g ∈ K as g =
∑∞

i=v aiT
i with v ∈ Z and ai ∈ k((t)) for all i ≥ v.

Its image under F−1 can be expressed in two different ways as follows:

F
−1(g) =

∞∑

i=v

F
−1(ai) T

i/p =

p−1∑

r=0

p−1∑

s=0

tr/p(f+T)s/p Sr,s(g).

We identify the coefficient in T−1/p. For doing so, we observe that the terms
obtained with s < p − 1 do not contribute, while the contribution of the term

6 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

tr/p(f+T)(p−1)/p Sr,p−1(g) is the residue of tr/p Sr,p−1(g). We then get

F
−1(a−1) =

p−1∑

r=0

res ◦ Sr,p−1(g) · tr/p.

Going back to the definition of Sr, we derive Sr(a−1) = res ◦ Sr,p−1(g), from which
the lemma follows. �

Proof of Theorem 2.2. Let P ∈ k[t, y] and 0 ≤ r < p. We set Q = Sr,p−1(PEp−1) ∈
k[t, y]. Combining Lemma 2.3 and Proposition 2.5, we derive the following equali-
ties:

Sr

(
P (t, f)

Ey(t, f)

)
= Sr ◦ res

(
P (t, f+T)

E(t, f+T)

)

= res ◦ Sr,p−1

(
P (t, f+T)

E(t, f+T)

)
= res

(
Q(t, f+T)

E(t, f+T)

)
=

Q(t, f)

Ey(t, f)

(compare with [2, §3.2]). The stability of k[t, y]/E(t, y) under Sr follows using the
fact that E is the minimal polynomial of f over K = k(t). If we know in addition
that P lies in k[t, y]<h,<d then P Ep−1 is in k[t, y]<ph,≤p(d−1) and, therefore, Q falls
in k[t, y]<h,<d as well. Theorem 2.2 is proved. �

Remark 2.6. It is possible to slightly vary the bounds on the degree and the
height, and to derive this way other stability statements. For example, starting
from a polynomial P (t, y) with degt P ≤ h and degy P ≤ d, we have:

Sr
P (t, f)

Ey(t, f)
=

Q(t, f)

Ey(t, f)

with degt Q ≤ h and degy P < d. Moreover degt Q < h provided that r > 0.
Another remark in this direction is the following: if P has degree at most d−2,

the section Sr,p−1(PEp−1) has degree at most d−2 for any r ∈ {0, 1, . . . , p−1}.
Indeed, PEp−1 has degree at most pd − 2 < p(d−1) + p − 1. In other words, the
subspace k[t, y]<h,≤d−2 is stable by the section operators Sr (0 ≤ r < p).

3. Application to algorithmics

Theorem 2.2 exhibits an easy-to-handle finite dimensional vector space which is
stable under the section operators. In this section, we derive from it two efficient
algorithms that compute the Nth term of f in linear time in logN . The first is less
efficient, but easier to understand; we present it mainly for pedagogical purposes.

3.1. First algorithm: modular computations. The first algorithm we will de-
sign follows rather straightforwardly from Theorem 2.2. It consists of the following
steps:

(1) we compute the matrix giving the action of the Frobenius F with respect to the
“modified monomial basis” B = (yj/Ey)0≤j≤d−1;

(2) we deduce the matrix of F−1 with respect to B;
(3) we extract from it the matrices of the section operators Sr;
(4) we compute the Nth coefficient of f using Formula (1).

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 7

M =

1 + 2t4 + 4t5 + 3t6 + 2t7 + 2t8 + 2t12 + 4t13 + 3t14 + t15 + 2t16 · · ·

t + 2t2 + 3t3 + 4t5 + 4t6 + 3t7 + 3t8 + 3t9 + t10 + 4t11 + t13 + 2t15 + t16 · · ·

1 + 2t + 3t2 + 3t5 + 2t6 + 2t7 + t8 + t9 + 3t10 + t11 + 3t12 + 3t14 + 4t15 + 3t16 · · ·

0 · · ·

(mod t17)

M−1 =

1 + 3t4 + t8 + t12 + t13 + t16 t4 + 2t8 t8 + t12 t12

2 + 2t + · · · + t9 + 3t12 3 + 2t + · · · + 2t13 + t16 3 + 4t + t5 + t8 1 + 4t4 + 3t5 + 2t9 + 2t12

4 + 2t + · · · + 2t9 + 4t12 4 + 2t + · · · + +2t9 + 4t12 1 + 2t + · · · + 3t13 + t16 2 + 4t + · · · + 4t5 + 2t8

0 0 0 1 + 4t + · · · + 4t13 + t16

Figure 1. Frobenius and its inverse in the “modified monomial basis”.

Let us be a bit more precise (though we will not give full details because we
will design in §3.2 below an even faster algorithm). Let M be the matrix of F

in the basis B; its jth column contains the coordinates of the vector F(yj

Ey
) =

ypj

Ep
y

in the basis B, which are also the coordinates of ypj/Ep−1
y in the monomial

basis (1, y, . . . , yd−1). It is easily seen that the matrix of F−1 with respect to B is
F
−1(M−1), which is, by definition, the matrix obtained by applying F

−1 to each
entry of M−1.

We now discuss the complexity of the computation of M−1. Thanks to Theo-
rem 2.2 and Eq. (4), we know that its entries are polynomials of degree at most
h(p−1). However, this bound is not valid for the entries of M . Indeed, in full gen-
erality, the latter are rational fractions whose numerators and denominators have
degrees of magnitude dhp. In order to save the extra factor d, we rely on modular
techniques: we choose a polynomial B of degree h(p−1) + 1 and perform all com-
putations modulo B. To make the method work, B must be chosen in such a way
that both M and M−1 make sense modulo B, i.e. B must be coprime with the
denominators of the entries of M . The latter condition discards a small number of
choices, so that a random polynomial B will be convenient with high probability.

Using fast polynomial and matrix algorithms, the computation of M modulo B
can be achieved within Õ(d2hp) operations in k, while the inversion of M modulo

B requires Õ(dωhp) operations in k, where ω ∈ [2, 3] is the matrix multiplication

exponent. Since we count an application of F−1 : k → k as a unique operation,
the cost of the first two steps is Õ(dωhp) as well. The third step is free as it only
consists in reorganizing coefficients. As for the evaluation of the formula (1), each
application of Sr has a cost of O(d2h2) operations in k. The total complexity of

our algorithm is then Õ(dωhp) +O(d2h2 logN) operations in k.

Remark 3.1. We do not need actually to apply the Frobenius inverse F−1 : k → k
since, at the end of the computation, we raise the last intermediate result at the
power pℓ. The complexity Õ(dωhp)+O(d2h2 logN) can then be reached even if we

do not count an application of F−1 as a single operation.

A detailed example. Consider k = F5 and the polynomial

E = (t4 + t+ 1)y4 + y2 + y − t4 ∈ k[t, y].

It admits a unique root f in k[[t]] which is congruent to 0 modulo t.

The matrix M of the Frobenius F with respect to the basis B = (1
Ey

, y
Ey

, y2

Ey
, y3

Ey
)

writes D−1 · M̃ , where D and the largest entry of M̃ have degrees 55 and 39,

8 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

respectively. However, by Theorem 2.2, we know that M−1 has polynomial entries
of degree at most 16. Noticing that 0 is not a root of the resultant of E and Ey , we
can compute M and its inverse modulo B(t) = t17. The result of this computation
is displayed partly on Figure 1. We observe that the maximal degree of the entries
of M−1 is 16 and reaches our bound h(p−1) (which is then tight for this example).
We furthermore observe that M is block triangular, as expected after Remark 2.6.

Let us now compute the images of y ∈ L under the section operators. For this,
we write y = E−1

y ·
(
4t4 + 2y + 3y2

)
in L. We then have to compute the product

M−1 · (4t4 2 3 0)T . As a result, we obtain:

t4 + 4t8 + 2t12 + 4t16 + 4t17 + 4t20

t + 3t4 + 2t5 + t8 + 3t9 + 4t10 + 3t12 + 3t13 + 4t16

1 + 2t2 + 3t3 + 4t4 + t5 + t6 + 4t7 + 4t8 + 3t9 + 2t10 + 2t13 + 4t16

0

.

Rearranging the terms, we finally find that

S0(y) = E−1
y ·

(
4t4 + (2t+ 4t2)y + (1 + t+ 2t2)y2

)

S1(y) = E−1
y ·

(
4t3 + (1 + 4t3)y + (t+ 4t3)y2

)

S2(y) = E−1
y ·

(
(2t2 + 4t3) + 3t2y + (2 + 4t)y2

)

S3(y) = E−1
y ·

(
4t+ (t+ 3t2)y + (3 + 4t+ 2t2)y2

)

S4(y) = E−1
y ·

(
1 + (3 + 3t)y + (4 + 3t)y2

)
.

To conclude this example, suppose that we want to compute the 70th coefficient
of f . Applying Eq. (1), we find that it is equal to the constant coefficient of
S2 S4 S0 f . Therefore we have to compute S2 S4 S0 y. Repeating twice what we have
done before, we end up with

S2 S4 S0 y = E−1
y ·

(
(2 + t2) + (4 + 3t+ 3t3)y + (2 + 4t2 + 2t3)y2

)
.

Plugging y = f in the above equality, we get S2 S4 S0 f = 2 + O(t), from which we
conclude that f70 = 2.

Remark 3.2. In the above example, only the constant coefficient of f was needed
to carry out the whole computation. This is related to the fact that Ey(f(t)) has
t-adic valuation 0. More generally if Ey(f(t)) has t-adic valuation ρ, we will need
the first ρ+1 coefficients of f since the final division by Ey will induce a loss of
t-adic precision of ρ “digits”. This does not change the complexity bound, since
ρ ≤ degt Resy(E,Ey) ∈ O(dh).

3.2. Second algorithm: Hermite–Padé approximation. For obvious reasons
related to the size of the computed objects, we cannot hope to achieve a complexity
lower than linear with respect to p using the approach of Section 3.1. However,
the exponent on d still can be improved. In order to achieve this, we return to
Theorem 2.2. The key idea is to leap efficiently from the polynomial P to the
polynomial Q in Formula (7).

Let P =
∑d−1

i=0 ai(t)y
i in k[t, y]<h,<d and 0 ≤ r < p. By Theorem 2.2, there

exists Q =
∑d−1

i=0 bi(t)y
i in k[t, y]<h,<d such that Sr(P/Ey) ≡ Q/Ey (mod E), or,

equivalently,

(8) Sr

(
d−1∑

i=0

ai(t)
f(t)i

Ey(t, f(t))

)
=

d−1∑

j=0

bj(t)
f(t)j

Ey(t, f(t))
.

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 9

The algorithmic question is to recover efficiently the bi’s starting from the ai’s.
Identifying coefficients in Eq. (8) yields a linear system over k in the coefficients of
the unknown polynomials bi. This system has hd unknowns and an infinite number
of linear equations. The point is that the following truncated version of Eq. (8)

(9) Sr

(
d−1∑

i=0

ai(t)
f(t)i

Ey(t, f(t))

)
≡

d−1∑

j=0

bj(t)
f(t)j

Ey(t, f(t))
(mod t2dh)

is sufficient to uniquely determine Q. This is a direct consequence of the following.

Lemma 3.3. If Q in k[t, y]<h,<d satisfies Q
Ey

(t, f(t)) ≡ 0 (mod t2dh), then Q = 0.

Proof. The resultant r(t) of E(t, y) and Q(t, y) with respect to y is a polynomial of
degree at most d(h−1) + h(d−1). On the other hand, we have a Bézout relation

E(t, y) u(t, y) +Q(t, y) v(t, y) = r(t),

where u(t, y) and v(t, y) are bivariate polynomials in k[t, y]. By evaluating the
previous equality at y = f(t) it follows that

r(t) ≡ Q(t, f(t)) v(t, f(t)) ≡ 0 (mod t2dh)

holds in k((t)), and therefore r = 0. Thus E and Q have a non-trivial common
factor; since E is irreducible, it must divide Q. But degy Q < degy E, so Q = 0. �

Solving Eq. (9) amounts to solving a Hermite–Padé approximation problem. In
terms of linear algebra, it translates into solving a linear system over k in the
coefficients of the unknown polynomials bi. This system has dh unknowns and N =
2dh linear equations. Moreover, it has a very special shape: it has a quasi-Toeplitz
structure, with displacement rank ∆ = O(d). Therefore, it can be solved using

fast algorithms for structured matrices [17, 4] in Õ(∆ω−1N) = Õ(dωh) operations
in k. These algorithms first compute a (quasi)-inverse of the matrix encoding the
homogenous part of the system, using a compact data-structure called displacement
generators (or, ΣLU representation); then, they apply it to the vector encoding the

inhomogeneous part. The first step has complexity Õ(∆ω−1N) = Õ(dωh), the

second step has complexity Õ(∆N) = Õ(d2h).
In our setting, we will need to solve logN systems of this type, each correspond-

ing to the current digit of N in radix p. An important feature is that these systems
share the same homogeneous part, which only depends on the coefficients of the

power series sj(t) = fj

Ey(t,f(t))
occurring on the right-hand side of (9). Only the

inhomogeneous parts vary: they depend on the linear combination
∑d−1

i=0 ai(t)si(t).
Putting these facts together yields Algorithm 1 and the following complexity result.

Theorem 3.4. Let k be a perfect field with characteristic p > 0. Let E(t, y) be
an irreducible polynomial in k[t, y] of height h and degree d. We assume that we
are given a nonnegative integer ρ and a polynomial f̄(t) such that E(t, f̄(t)) ≡ 0
(mod t2ρ+1) and Ey(t, f̄(t)) 6≡ 0 (mod tρ+1).

There there exists a unique series f(t) congruent to f̄(t) modulo tρ+1 for which
E(t, f(t)) = 0. Moreover, Algorithm 1 computes the N th coefficient of f for a cost

of Õ(d2hp+ dωh) +O(d2h2 logN) operations in k.

Proof. The first assertion is Hensel’s Lemma [12, Th. 7.3].

10 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

Algorithm Nth coefficient via Hermite-Padé.

Input: A polynomial E(t, y) = ed(t)y
d + · · ·+ e0(t) and a truncation

g = f0 + · · ·+O(tρ+1) of a series f such that E(t, g) = O(tρ+1).
Output: The Nth coefficient fN of the series f .

1. Precompute the first 2pdh coefficients of the series expansions sj
of f(t)j/Ey(t, f), 0 ≤ j < d.
2. Precompute the quasi-inverse of the Toeplitz matrix corresponding to the
Hermite–Padé approximation problem.
3. Expand N = (Nℓ−1 . . . N0)p with respect to the radix p.
4. Set g = y ∈ L written as E−1

y ·
(
−de0 − (d−1)e1y − · · · − ed−1y

d−1
)
.

5. For i = 0, 1, . . . , ℓ− 1,
(1) write g = P (t, f)/Ey(t, f) as a linear combination of the sj ’s,
(2) compute the section SNi

(g) at precision O(t2dh),
(3) recover Q such that SNi

(g) = Q/Ey by Hermite–Padé,
(4) redefine g as Q/Ey

6. Replace y by f̄(t) in g and call ḡ(t) the obtained result.
7. Expand ḡ(t) at precision O(t).
8. Set ḡ0 to the constant coefficient of ḡ(t).

9. Return ḡp
ℓ

0 .

Algorithm 1

The precomputation of sj(t) = f(t)j

Ey(t,f(t))
modulo t2dhp for 0 ≤ j < d can be

performed using Newton iteration, for a total cost of Õ(d2hp) operations in k. As
explained above, this is enough to set up the homogeneous part of the quasi-Toeplitz
system; its inversion has cost Õ(dωh).

Let us turn to the main body of the computation, which depends on the index N .
For each p-digit r = Ni of N , we first construct the inhomogeneous part of the

system. For this, we extract the coefficients of tpj+r in
∑d−1

i=0 ai(t)si(t), for 0 ≤ j <
d, for a total cost of O(d2h2) operations in k. We then apply the inverse of the
system to it, for a cost of O(d2h2) (using a naive matrix vector multiplication2).
This is done ℓ ≈ logN times. The other steps of the algorithm have negligible
cost. �

4. Improving the complexity with respect to p

As shown in Theorem 3.4, Algorithm 1 has a nice complexity with respect to the
parameters d, h and logN : it is polynomial with small exponents. However, the
complexity with respect to p is not that good, as it is exponential in log p, which is
the relevant parameter. Thus, when p is large (say > 105), Algorithm 1 runs slowly
and is no longer usable.

For this reason, it is important to improve the complexity with respect to p. In
this section, we introduce some ideas to achieve this. More precisely, our aim is to
design an algorithm whose complexity with respect to p and N is Õ(

√
p) · logN ,

and remains polynomial in all other relevant parameters. In the current state of

2One can actually achieve this step for a cost of Õ(d2h) operations in k using the quasi-Toeplitz
structure; however this is not that useful since the cost of the previous step was already O(d2h2).

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 11

knowledge, it seems difficult to decrease further the exponent on p; indeed, the
question addressed in this paper is related to other intensively studied questions
(e.g., counting points via p-adic cohomologies) for which the barrier Õ(

√
p) has not

been overcome yet.

Notations and assumptions. We keep the notation of previous sections. We make
one additional hypothesis: the ground field k is a finite field. We assume that k is
represented as (Z/pZ)[X]/π(X) where π is an irreducible monic polynomial over
Z/pZ of degree s. We choose a monic polynomial π̂ ∈ Z[X] of degree s lifting π.
We set W = Zp[X]/π̂(X) where Zp is the ring of p-adic integers.

The algorithm we are going to design is not algebraic in the sense that it does not
only perform algebraic operations in the ground field k, but will sometimes work
over W (or, more exactly, over finite quotients of W). For this reason, throughout
this section, we will use bit complexity instead of algebraic complexity.

We use the notation poly(n) to indicate a quantity whose growth is at most
polynomial in n. The precise result we will prove reads as follows.

Theorem 4.1. Under the assumptions of Theorem 3.4 and the above extra as-
sumptions, there exists an algorithm of bit complexity poly(dh)Õ(s

√
p) logN that

computes the N th coefficient of f .

If p is bounded by a (fixed) polynomial in d and h, then Theorem 4.1 has been
proved already. In the sequel, we will then always assume that p ≫ d, h.

Overview of the strategy. We reuse the structure of Algorithm 1 but speed up the
computation of the SNi

(g)’s. Precisely, in Algorithm 1, the drawback was the

computation of the fj

Ey(t,f)
’s or, almost equivalently, the computation of g = P (t,f)

Ey(t,f)

at sufficient precision. However, only a few (precisely 2dh) coefficients of g are
needed, since we are only interested in one of its sections. A classical method
for avoiding this overhead is to find a (small) recurrence on the coefficients on
g =

∑∞
n=0 git

i of the form:

(10) br(i)gi+r + br−1(i)gi+r−1 + · · ·+ b1(i)gi+1 + b0(i)gi = 0.

We then unroll it using matrix factorials (for which fast algorithms are available in
the literature [9] Unrolling the recurrence is straightforward as soon as the leading
coefficient br(i) does not vanish. On the contrary, when br(i) = 0, the value of gi+r

cannot be deduced from the previous ones. Unfortunately, it turns out that br(i)
does sometimes vanish in our setting.

We tackle this issue by lifting everything overW and performing all computations
over this ring. Divisions by p then become possible but induce losses of precision.
We then need to control the p-adic valuation of the denominators, that are the
p-adic valuations of the br(i)’s. We cannot expect to have a good control on them
in full generality; even worse, we can build examples where br(i) vanishes in W for
some i. There exists nevertheless a good situation—the so-called ordinary case—
where we can say a lot on the br(i)’s. With this extra input, we are able to lead
our strategy to its end.

The general case reduces to the ordinary one using a change of origin, i.e. replac-
ing t by u+α for some α ∈ k. This change of origin does not seem to be harmless a
priori. Indeed the Taylor expansion of g around α (the one we shall compute) has
in general nothing to do with the Taylor expansion of g around 0 (the one we are

12 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

interested in). The sections are nevertheless closely related (see Proposition 4.3).
This “miracle” is quite similar to what we have already observed in Proposition 2.5
and again can be thought of as an avatar of the Cartier operator.

4.1. From algebraic equations to recurrences. We consider a bivariate polyno-
mial P (t, y) ∈ k[t, y] with degt P < h and degy P < d. We fix moreover an integer r

is the range [0, p−1]. Our aim is to compute Sr

(P (t,f)
Ey(t,f)

)
at precision O(t2dh). Set

g = P (t,f)
Ey(t,f)

and write g =
∑∞

i=0 git
i. By definition Sr(g) =

∑∞
j=0 g

1/p
r+pjt

j , so that

we have to compute the coefficients gr+pj for j < 2dh.
We let L be the leading coefficient of E(t, y) and R be the resultant of E and Ey.

To begin with, we make the following assumption (which will be relaxed in §4.3):

(H1): Both L and R have t-adic valuation 0.

As explained above, we now lift the situation over W . We choose a polynomial

Ê ∈ W [t, f] of bidegree (h, d) lifting E. We define Êt = ∂Ê
∂t , Êy = ∂Ê

∂y . The

assumption (H1) implies that the series f lifts uniquely to a series f̂ ∈ W [[t]]

such that Ê(t, f̂) = 0. We define L̂ as the leading coefficient of Ê(t, y) and set

R̂ = Res(Ê, Êy). We introduce the ring WK = W [t, (L̂R̂)−1]. By (H1), WK

embeds canonically into W [[t]]. We pick a polynomial P̂ ∈ W [t, y] lifting P such

that degt P̂ < h and degy P̂ < d. We set ĝ = P̂ (t, f̂).
We now compute a linear differential equation satisfied by ĝ. For this, we observe

that the derivation ∂
∂t : W [[t]] → W [[t]] stabilizes the subring WL = WK [f̂]. Indeed

from the relation Ê(t, f̂) = 0, we deduce that ∂f̂
∂t = − Êt(t,f̂)

Êy(t,f̂)
. Thus ∂f̂

∂t ∈ WL

because Êy(t, f̂) is invertible in WL thanks to (H1). Using additivity and the

Leibniz relation, we finally deduce that ∂
∂t takes WL to itself. In particular, all the

successive derivatives of ĝ lie in WL. On the other hand, we notice that WL is free

of rank d over WK with basis (1, f̂ , . . . , f̂d−1). Let M be the d×d matrix whose jth

column (for 0 ≤ j < d) contains the coordinates of ∂j ĝ
∂tj with respect to the above

basis. Similarly let C be the column vector whose entries are the coordinates of
∂dĝ
∂td

. Let ∆d = detM . We solve the system MX = C using Cramer’s formulae and
find this way a linear differential equation of the form:

∆d
∂dĝ

∂td
+∆d−1

∂d−1ĝ

∂td−1
+ · · ·+∆1

∂ĝ

∂t
+∆0ĝ = 0,

where the other ∆i’s are defined as determinants as well. In particular, they all lie
in WK . Multiplying by the appropriate power of L̂R̂, we end up with a differential
equation of the form:

(11) âd
∂dĝ

∂td
+ âd−1

∂d−1ĝ

∂td−1
+ · · ·+ â1

∂ĝ

∂t
+ â0ĝ = 0

where the âi’s are polynomials in t. We can even be more precise. Indeed, following
the above constructions, we find that all entries of M and C are rational functions
whose degrees (of numerators and denominators) stay within poly(dh). We then de-

duce that the degrees of the ∆̂i’s and âi’s are in poly(dh) as well. Furthermore, they

can be computed for a cost of poly(dh) operations in k, that is poly(dh)Õ(s log p)
bit operations (recall that s denotes the degree of k over Fp)

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 13

We write ĝ =
∑∞

i=0 g̃i
ti

i! . The differential equation (11) translates to a recurrence
relation on the g̃i’s of the form:

(12) ∀n ≥ r, b̃0(n)g̃n + b̃1(n)g̃n−1 + b̃2(n)g̃n−2 + · · ·+ b̃r(n)g̃n−r = 0

where the b̃i’s are polynomials in n overW whose degrees are in poly(dh). Moreover
r is at most d+maxi deg âi. In particular, r ∈ poly(dh). Finally it is easy to write

down explicitly b̃0: it is the constant polynomial with value âd(0).

4.2. The ordinary case. In order to take advantage of Eq. (12), we make the
following extra assumption, corresponding to the so-called ordinary case:

(H2): âd(0) does not vanish modulo p.

Under (H2), b̃0(n) = âd(0) is invertible in W and there is no obstruction to un-
rolling the recurrence (12). Let us be more precise. We recall that we want to
compute the values of gr+pj for j up to 2dh. Clearly gn is the reduction modulo

p of g̃n
n! . In order to get gr+pj , we need to compute g̃r+pj modulo pv+1 where v is

the p-adic valuation of (r + 2dhp)!. Under our assumption that p is large enough
compared to d and h, we get v = 2dh. We will then work over the finite ring
W ′ = W/p2dh+1W .

We first compute the r first coefficients of f̂ modulo p2dh+1 by solving the equa-

tion Ê(t, f̂) = 0 (using a Newton iteration for example). Since r ∈ poly(dh),
this computation can be achieved for a cost of poly(dh) operations in W ′, that is

poly(dh)Õ(s log p) bit operations. We then build the companion matrix:

M(n) =

1
. . .

1
−b̃r(n)
âd(0)

−b̃r−1(n)
âd(0)

· · · −b̃1(n)
âd(0)

∈ (W ′[n])r×r.

Obviously,
(
g̃n−r+1 g̃n−r+2 · · · g̃n

)T
= M(n) ·M(n−1) · · ·M(r) ·

(
g̃0 g̃1 · · · g̃r−1

)T
,

and computing g̃n reduces to evaluating the matrix factorialM(n)·M(n−1) · · ·M(r).

Using [9], the latter can be computed within poly(dh)Õ(
√
n) operations in W ′,

that is poly(dh)Õ(
√
n · s log p) bit operations. All in all, we find that the gr+pj ’s

(0 ≤ j < 2dh) can all be computed for a cost of poly(dh)Õ(s
√
p) bit operations.

Plugging this input in Algorithm 1, we end up with an algorithm of bit complexity
poly(dh)Õ(s

√
p) logN . Theorem 4.1 is thus proved under the extra assumptions

(H1) and (H2).

4.3. Reduction to the ordinary case. We finally explain how (H1) and (H2)
can be relaxed. The rough idea is to translate the origin at some point where these
two hypotheses hold simultaneously.

The case of complete vanishing. Before proceeding, we need to deal with the case
where the whole polynomial âd vanishes modulo p. This case is actually very special;
this is shown by the next lemma, whose proof relies on the fact that for a generic
g, the minimal-order (homogeneous) linear differential equation over k(t) satisfied
by g has order exactly d [8].

14 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

Lemma 4.2. For a generic g ∈ L = k(t)[y]/E(t, y), the reduction of âd modulo p
does not vanish.

We say that an element g ∈ L is good if the corresponding âd does not vanish
modulo p. Lemma 4.2 ensures that goodness holds generically. It then holds with
high probability since we have assumed that the ground field k has a large cardi-
nality. Consequently, even if we were unlucky and g was not good, we can produce
with high probability a decomposition g = g1 + g2 where g1 and g2 are both good
(just by sampling g1 at random). Since moreover the section Sr is additive, we can
recover Sr(g) as Sr(g1) + Sr(g2).

For this reason, in what follows we will assume safely that g is good.

Change of origin. Let α̂ ∈ W be such that L̂(α̂) 6≡ 0 (mod p), R̂(α̂) 6≡ 0 (mod p),
âd(α̂) 6≡ 0 (mod p). Such an element exists (since k is assumed to be large) and can
be found for a cost of poly(dh) operations in k (e.g., by enumerating its elements).

We denote by α ∈ k the reduction of α̂ modulo p and assume that α 6= 0
(otherwise, we are in the ordinary case). We perform the change of variable τα :
t 7→ u+α. Note that τα induces isomorphisms k(t) → k(u) and k(t)[y]/E(t, y) →
k(u)[y]/E(u−α, y). Furthermore, the polynomial E(α, y) = 0 has d simple roots in
an algebraic closure of k. Let fα,0 be one of them. By construction, fα,0 lies in a
finite extension ℓ of k of degree at most d. Moreover, by Hensel’s Lemma, fα,0 lifts
uniquely to a solution:

fα = fα,0 + fα,1u+ · · ·+ fα,iu
i + · · · ∈ ℓ[[u]]

to the equation E(u−α, y) = 0. We emphasize that the morphism k(t)[y]/E(t, y) →
k(u)[y]/E(u−α, y) does not extend to a mapping k((t)) → ℓ((u)) sending f to fα.
The next diagram summarizes the previous discussion:

k(t) k(u)

k(t)[y]

E(t, y)

k(u)[y]

E(u−α, y)

k((t)) ℓ((u))

τα

τα

Sr Sr,u

Here Sr and Sr,u refer to the section operators defined in the usual way. We observe

that they stabilize the subfields k(t)[y]
E(t,y) and k(u)[y]

E(u+α,y) , respectively, since they can

alternatively be defined by the relations:

(13)
over k(t)[y]

E(t,y) : F
−1 =

∑p−1
r=0 t

r/p Sr

over k(u)[y]
E(u−α,y) : F

−1 =
∑p−1

r=0 u
r/p Sr,u

where F is the Frobenius map (see also Eq. (4)).

Proposition 4.3. The commutation Sp−1,u ◦ τα = τα ◦ Sp−1 holds over k(t)[y]
E(t,y) .

Proof. Clearly τα commutes with the Frobenius because it is a ring homomorphism.

From the relations (13), we then derive
∑p−1

r=0 u
r/p Sr,u ◦τα =

∑p−1
r=0(u+α)r/p τα◦Sr.

Identifying the coefficients in u
p−1

p , we get the announced result. �

FAST COEFFICIENT COMPUTATION FOR ALGEBRAIC POWER SERIES IN CHAR. > 0 15

We emphasize that the other section operators Sr,⋆ (with r < p−1) do not
commute with τα: the above phenomenon is specific to the index p−1. However,
we can relate Sr and Sp−1,u as follows.

Corollary 4.4. For all g ∈ k(t)[y]
E(t,y) , we have Sr(g) = τ−1

α ◦ Sp−1,u ◦ τα(tp−1−rg).

Proof. This follows from Proposition 4.3 and from Sr(g) = Sp−1(t
p−1−rg). �

A modified recurrence. In order to use Corollary 4.4, we need to check that τα(t
p−1−rg)

fits the ordinary case. Recall the differential equation satisfied by ĝ,

âd
∂dĝ

∂td
+ âd−1

∂d−1ĝ

∂td−1
+ · · ·+ â1

∂ĝ

∂t
+ â0ĝ = 0.

We set r′ = p− 1− r and Ĝ = tr
′

ĝ. Applying Leibniz formula to ĝ = t−r′Ĝ, we get:

∂j ĝ

∂tj
=

j∑

i=0

(−1)i
(
j

i

)
r′(r′ + 1) · · · (r′ + i − 1)t−r′−i ∂

jĜ

∂tj−i
,

from which we derive the following differential equation satisfied by Ĝ:

∑

0≤i≤j≤d

(−1)iâj

(
j

i

)
r′(r′ + 1) · · · (r′ + i− 1)t−r′−i ∂

j−iĜ

∂tj−i
.

Reorganizing the terms and multiplying by tr
′+d, we end up with:

(14)

d∑

j=0

d−j∑

i=0

(−1)iâi+j

(
i+ j

i

)
r′(r′ + 1) · · · (r′ + i− 1)td−i ∂

jĜ

∂tj
.

Set WL,u = W [u, y]/Ê(u+α, y) and define the ring homomorphism τα̂ : WL →
WL,u, t 7→ u+α̂, y 7→ y. Clearly τα̂ lifts τα. Applying τα̂ to Eq. (14) and noticing

that ∂
∂t =

∂
∂u , we obtain:

d∑

j=0

d−j∑

i=0

(−1)iτ̂α̂(ai+j)

(
i+ j

i

)
r′(r′ + 1) · · · (r′ + i− 1)(u+α̂)d−i ∂

jτα̂(Ĝ)

∂uj
.

Conclusion. The leading term of the latest differential equation (obtained only
with j = d and i = 0) is τα̂(âd) (u+α̂)d. Its value at u = 0 is then âd(α̂) α̂

d,
which is not congruent to 0 modulo p by assumption. Moreover the other coeffi-
cients are polynomials in u whose degrees stay within poly(dh). Therefore, we can
apply the techniques of §4.2 and compute Sp−1,u(ταG) at precision O(u2dh) for a

cost of poly(dh)Õ(s
√
p) bit operations. As explained in §3.2, we can reconstruct

Sp−1,u(ταG) as an element of k[u, y]/E(u+α, y) for a cost of poly(dh) operations
in k using Hermite–Padé approximations. Thanks to Corollary 4.4, it now just
remains to apply τ−1

α to get Sr(g). This last operation can be performed for a cost
of poly(dh) operations in k as well. All in all, we are able to compute Sr(g) for

a total bit complexity of poly(dh)Õ(s
√
p). Repeating this process logN times, we

obtain the complexity announced in Theorem 4.1.

16 ALIN BOSTAN, XAVIER CARUSO, GILLES CHRISTOL, AND PHILIPPE DUMAS

References

[1] J.-P. Allouche and J. Shallit. The ring of k-regular sequences. Theoret. Comput. Sci.,
98(2):163–197, 1992.

[2] A. Bostan, G. Christol, and P. Dumas. Fast computation of the Nth term of an algebraic
series over a finite prime field. In ISSAC’16, pages 119–126. ACM, 2016.

[3] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and ap-
plication to integer factorization and Cartier-Manin operator. SIAM Journal on Computing,
36(6):1777–1806, 2007.

[4] A. Bostan, C.-P. Jeannerod, and E. Schost. Solving structured linear systems with large
displacement rank. Theoret. Comput. Sci., 407(1-3):155–181, 2008.

[5] A. Bridy. Automatic sequences and curves over finite fields. Algebra & Number Theory,
11(3):685–712, 2017.

[6] G. Christol. Ensembles presque periodiques k-reconnaissables. Theoret. Comput. Sci.,
9(1):141–145, 1979.

[7] G. Christol, T. Kamae, M. Mendès France, and G. Rauzy. Suites algébriques, automates et
substitutions. Bull. Soc. Math. France, 108(4):401–419, 1980.

[8] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in power and
Puiseux series. I. J. Complexity, 2(4):271–294, 1986.

[9] D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multiplication ac-
cording to Ramanujan. In Ramanujan revisited (Urbana-Champaign, 1987), pages 375–472.
1988.

[10] D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra in the service of mathematical

physics and number theory. In Computers in mathematics (Stanford, 1986), volume 125 of
Lecture Notes in Pure and Appl. Math., pages 109–232. 1990.

[11] P. Deligne. Intégration sur un cycle évanescent. Invent. Math., 76(1):129–143, 1984.
[12] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry, volume 150 of

Graduate Texts in Mathematics. Springer, 1995.
[13] C. M. Fiduccia, An efficient formula for linear recurrences. SIAM J. Comput., 14(1):106–112,

1985.
[14] H. Furstenberg. Algebraic functions over finite fields. J. Algebra, 7:271–277, 1967.
[15] T. Harase. Algebraic elements in formal power series rings. Israel J. Math., 63(3):281–288,

1988.
[16] H. T. Kung and J. F. Traub. All algebraic functions can be computed fast. J. Assoc. Comput.

Mach., 25(2):245–260, 1978.
[17] V. Y. Pan. Structured matrices and polynomials. Birkhäuser Boston, Inc., Boston, MA;

Springer-Verlag, New York, 2001. Unified superfast algorithms.
[18] D. Speyer. Christol’s theorem and the Cartier operator. Blog post, 11 Feb 2010, Secret Blog-

ging Seminar, https://sbseminar.wordpress.com/2010/02/11/.

Inria, France

E-mail address: alin.bostan@inria.fr

CNRS, France

E-mail address: xavier.caruso@normalesup.org

IMJ, France

E-mail address: christol.gilles@gmail.com

Inria, France

E-mail address: philippe.dumas@inria.fr

https://sbseminar.wordpress.com/2010/02/11/

	1. Introduction
	2. Effective version of Christol's theorem
	2.1. Frobenius and sections
	2.2. The key theorem

	3. Application to algorithmics
	3.1. First algorithm: modular computations
	3.2. Second algorithm: Hermite–Padé approximation

	4. Improving the complexity with respect to p
	4.1. From algebraic equations to recurrences
	4.2. The ordinary case
	4.3. Reduction to the ordinary case

	References

