
HAL Id: hal-01816353
https://hal.science/hal-01816353v1

Submitted on 15 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new hybrid Bayesian network approach for modeling
reliability

Florence Petiet, Olivier Francois, Laurent Bouillaut

To cite this version:
Florence Petiet, Olivier Francois, Laurent Bouillaut. A new hybrid Bayesian network approach for
modeling reliability. ESREL2018, European Safety and Reliability Conference, Jun 2018, Trondheim,
Norway. pp.765-771, �10.1201/9781351174664-95�. �hal-01816353�

https://hal.science/hal-01816353v1
https://hal.archives-ouvertes.fr


A new hybrid Bayesian network approach for modeling reliability

F. Petiet, O. François & L. Bouillaut
Grettia, Ifsttar, Univ. Paris Est, France

ABSTRACT: In this paper, a hybrid discrete-continuous Graphical Duration Models is proposed. Since the
interest of the Weibull density was demonstrated for reliability analysis, this paper focuses on the use of Weibull
densities for modeling sojourn times in each state of the system. This extension of the standard GDM requires a
specific structure that we call Weibull-Hybrid Graphical Duration Models (W-HGDM). The main contribution
of this study lays in the proposal of a specific inference algorithm for such hybrid networks. Finally, comparisons
of reliability estimation will be proposed for both standard GDM and W-HGDM.

1 GENERAL INTRODUCTION

Reliability analysis is an integral part of system de-
sign and operating, especially for systems performing
critical applications.

A wide range of works about reliability analysis is
available in the literature.

Most of the time, the system failure is caused by
the failure of one or more components. In this case, it
is possible to use statistical distributions as the expo-
nential distribution to model the lifetime. The Weibull
Distribution (Weibull 1951) allows to describe each
phase of the bathtub curve. In (Bertholon 2001) a new
modeling of aging is proposed.

These distributions do not allow to focus on the dy-
namics of degradation. They cannot be applied to a
system that is repaired when it fails. They cannot be
used to assess the expected number of failures during
the warranty period, or maintain a minimum mission
reliability, or determine when to replace or overhaul a
system. These methods are often called ”classics”.

Dynamic models explicitly take into account the
temporal aspect modeling the evolution of the degra-
dation of the system over time by stochastic methods
(Cocozza-Thivent 1997). In order to address the reli-
ability characteristics of complex repairable systems,
a process is often used instead of a distribution, such
as a Poisson process, a Gamma process, or a Weibull
process.

Rather than considering the different components
of the system, it is also possible to consider the whole
system. Several methods are commonly used to model
the different states of a dynamic system, in order to
analyze its reliability, such as Markov Chain, Petri
net, or Bayesian Network (Demri 2009).

Recent works have shown the interest of using
Bayesian networks (BN) (Jensen 1996) in the field
of reliability. For example (Boudali & Dugan 2005)
shows how to model the reliability of a complex sys-
tem using Bayesian networks.

(Weber & Jouffe 2003) explains how to use dy-
namic Bayesian networks (DBN) (Murphy 2002) to
study the reliability of a multi-state system that de-
pends on a certain context.

However DBN suppose that the sojourn time in
each state are exponentially distributed, whereas most
of the industrial applications underline non Marko-
vian behaviors. In these cases, a Markovian degrada-
tion process modeling can introduce non negligible
biases.

So an original Bayesian Network structure was pro-
posed, named Graphical Duration Models (GDM), in
order to fit systems whose sojourn time in each state
are not necessary exponentially distributed (Donat,
Leray, Bouillaut, & Aknin 2010). A GDM is charac-
terized by a duration variable, allowing the use of any
kind of distribution for modeling the sojourn time in
each state of the considered system.

However the complexity is directly related to the
size of the discrete space of the sojourn time vari-
able. It can induce some technical problems in terms
of storage capacity and computation time. A solution
could be to consider a continuous duration variable.

In the theory of Bayesian Networks, there are sev-
eral approaches that contain both continuous and dis-
crete variables.

In hybrid Bayesian networks, where both discrete
and continuous variables appear simultaneously, it is
possible to apply inference schemes similar to those
for discrete variables. The first model that allowed



exact inference in hybrid networks was based on the
conditional Gaussian (CG) distribution (Lauritzen &
Lauritzen 1992)

The restriction of discrete variables with continu-
ous parents in CG may also be partially lifted using
logit or probit function, generalized in the multino-
mial case by the softmax function (Murphy 1999)

Another way to lift the restriction caused by dis-
crete variables with continuous parents is the using of
a mixture of exponentials (Koller, Lerner, & Angelov
1999), but the inference is approximated.

The Mixture of Truncated Exponential model has
been introduced in (Moral, Rumı́, & Salmerón 2001).
The advantage with respect to CG is that discrete
nodes with continuous parents are allowed and infer-
ence can be exact (Cobb & Shenoy 2006).

Given that hybrid approaches thus exist in the
Bayesian Network framework, such a perspective
could be envisaged in a Graphical Duration Model.

According to expert feedback, sojourn-time vari-
ables follow a Weibull distribution in many systems
(Weibull 1951).

Our goal is to integrate sojourn-time variables fol-
lowing a Weibull distribution in a graphical duration
model by proposing a new approach.

First, this paper will briefly describe the formalisms
of the Bayesian Networks of the Graphical Duration
Models. We then introduce the our proposed formal-
ism named Weibull-Hybrid Graphical Duration Mod-
els (W-HGDM) and the inference algorithm associ-
ated.

Then a toy system is introduced. Before some con-
clusions and prospects, a comparison of reliability
analysis results, obtained from both Graphical Dura-
tion Models and Weibull-Hybrid Graphical Duration
Models approaches, will be done.

2 INTRODUCTION OF THE FORMALISM

2.1 Bayesian Network

Bayesian Networks (Jensen 1996) are mathematical
tools relying on the probability theory and the graph
theory. They allow to qualitatively and quantitatively
represent uncertain knowledge.

Bayesian Networks are Probabilistic Graphical
Models that allow to intuitively represent the distribu-
tion of a set of random variables X = (X1, . . . ,XN).
Basically, a BN is defined as a pair M =
(G, (pn)1≤n≤N). G = (X,E) is a Directed Acyclic
Graph in which each node i is associated to a random
variable Xi, that takes its values in a finite and count-
able set χi, and in which each directed arc (i, j) ∈ E
represents dependencies between random variables
Xi and Xj . (pn)1≤n≤N) is a set of Conditional Prob-
ability Distributions (CPD) such that each pn denote
the conditional probability distribution associated to
random variable Xn given its parents Xpa

n
, pan refer-

ring to the sequence of parents indices of the random

variable Xn in G.
The conditional independence relationships intro-

duced by the arcs of the graph enable to factor the
joint probability distribution of the set of random vari-
ables X as follows :

P (X) = P (X1, . . . ,XN) =
N∏
n=1

P (Xn|Xpa
n
) (1)

Besides, tools have been developed to automati-
cally learn the structure and the parameters of the
graph and those of the CPD from complete or incom-
plete data or if a priori knowledge is available (e.g.
expert opinion) (Neapolitan 2003).

Using BN is particularly interesting because of the
possibility to propagate knowledge through the net-
work. Indeed, various inference algorithms can be
used to compute marginal probabilities of the sys-
tem variables. One of the most classical inference
procedures relies on the use of a junction tree (Lau-
ritzen & Spiegelhalter 1988). Nevertheless, in our ex-
periments, we use the elimination algorithm (Dechter
1999). This choice is motivated by the simplicity and
the efficiency of the method.

2.2 Dynamic Bayesian Network

Inspired by the formalism of classical BN, the Dy-
namic Bayesian Networks (DBN) framework (Mur-
phy 2002) allowed to unify many approaches from
modeling of time series such as HMMs. A DBN aims
to model the probability distribution of a random vari-
ables set (Xt)1≤t≤T = (X1,t, . . . ,XN,t)1≤t≤T . It con-
sists of a pair of Bayesian Networks (M1,M→).M1

defines the prior distribution P (X1,1, . . . ,XN,1) as in
(1).M→ defines the transition model which describes
the dependencies between variables in slice t− 1 and
variables in slice t, i. e. the distribution of Xt|Xt−1.

P (Xt|Xt−1) = P (X1,t, . . . ,XN,t|X1,t−1, . . . ,XN,t−1)

=
N∏
n=1

P (Xn,t|Xpa
n,t

) (2)

where pan,t refers to the sequence of parents indices
of the random variable Xn,t in the graph ofM→.

A Dynamic Bayesian Network is actually a static
Bayesian Network, that is repeated several times. So
DBN inherit the convenient properties of static BN,
particularly with regard to learning and inference.

The state of the system at future time t+ 1, Xt+1,
is decided by the system state at the current time t,
Xt, and does not depend on the state at earlier time
instants 1, . . . , t− 1 ; and the conditional probability
distributions of M→ do not depend on the slice t ;
so the distribution of time spent in each state is geo-
metric. Whereas most of industrial applications have
not this behavior. Such a modeling can introduce non
negligible biases in the estimations.



Figure 1: Discrete Duration Graphical Model

2.3 Graphical Duration Model

A Graphical Duration Model (Donat, Leray, Bouil-
laut, & Aknin 2010) relies on the two following vari-
ables : the system state Xt and the duration variable
St describing the time spent in any system state (re-
maining sojourn time) (fig. 1).

Firstly, the Conditional Probability Distribution as-
sociated with the distribution of the initial system
state is defined as follows, over the discrete and finite
domain ΩX = {1, . . . ,NX} :

P (X1 = i) = PX1(i) (3)

The initial sojourn-time CPD gives the distributions
for each initial state. This CPD is defined over the dis-
crete and finite domain ΩS = {1, . . . ,NS} :

P (S1 = k|X1 = i) = PS1(i, k) (4)

Then, it is necessary to define the system state and
the Sojourn-time transition CPDs.

A transition occurs if and only if St−1 = 1.

P (Xt = j|Xt−1 = i, St−1 = 1) = Qsys(i, j) (5)

where Qsys is a NX .NX matrix, called static system
transition matrix.

A new sojourn-time is selected according to the fol-
lowing CPD :

P (St = k|Xt = i, St−1 = 1) = F sys(i, k) (6)

where F sys is a NX .NS matrix.
While there is no transition, the system determinis-

tically remains in the previous state i :

P (Xt = j|Xt−1 = i, St−1 ≥ 2) = I(i, j) (7)

and the sojourn-time in the current state is de-
creased deterministically by one unit :

P (St=k|Xt=i, St−1=k′ ≥ 2)=
{

1 if k = k′ − 1
0 otherwise (8)

2.4 Reliability computation

Let assume that the set of system state ΩX is parti-
tioned into two sets U and D respectively for ”up”
states and for ”down” states (i.e. OK and failure situ-
ations).

The discrete-time system reliability is defined as
the function R : N∗ 7→ [0,1] where R(t) represents the
probability that the system has always stayed in an up
state until moment t, i.e. R(t) = P (X1 ∈ U ; . . . ;Xt ∈
U).

In addition, it is possible to derive some interesting
metrics such as the failure rate or the MTTF (Pham
2006) from the reliability definition.

Hence, this issue boils down to an inference prob-
lem, i.e. to the computation of P (X1 ∈ U ; . . . ;Xt ∈
U)

The system cannot repair itself. The failure state is
absorbing. The reliability is then equal to the avail-
ability, ie P (X1 ∈ U ; . . . ;Xt ∈ U) = 1−P (Xt ∈ D).

Then the reliability computation is reduced to the
computation of the marginal distribution of Xt :

R(t) = P (Xt ∈ U)

= 1−
∑

X1,...,Xt−1
S1,...,St−1

P (Xt ∈ D,Xt−1, . . . ,X1, St−1, . . . ,X1)

= 1−
∑

X1,...,Xt−1
S1,...,St−1

t−1∏
u=1

P (Xu|pa(Xu))×P (Su|pa(Su))

= 1−
∑

X1,...,Xt−1
S1,...,St−1

t−1∏
u=1

P (Xu|pa(Xu))×P (Su|pa(Su)) (9)

2.5 Limitation of GDM

The larger NS is, the more accurate the represen-
tation of the sojourn-time distribution. On the other
hand, choosing a too large NS value will have imme-
diate consequences on both the space needed to store
the Conditional Probability Distributions, i.e. NX .NS

values, and the time complexity of inference.
That can induce some technical problems in terms

of storage capacity and computation time. A solution
could be to consider a continuous duration variable.
With c the number of parameters needed by the cho-
sen distribution, the CPD will be constituted of NX .c
values, so the space needed to store the continuous
CPD is smaller than if they are discrete.

Since the interest of the Weibull density was
demonstrated for reliability analysis (Weibull 1951),
this paper focuses on the use of Weibull densities for
modeling sojourn times in each state of the system.



Figure 2: Continuous Duration Graphical Model

3 WEIBULL-HYBRID GRAPHICAL
DURATION MODELS

In the following paragraphs, we propose a new for-
malism to represent the evolution of a dynamic sys-
tem over time, in order to estimate its reliability. This
particular model is called Weibull-Hybrid Graphical
Duration Models (W-HGDM). In the following, we
will describe its conditional probability distributions,
and an inference algorithm in order to compute the
reliability.

3.1 Generalities

The collection (Xt)1≤t≤T represents the system state
over a sequence of length T . The collection (St)1≤t≤T
represents the remaining time before a system state
modification. More clearly, we refer to the random
variable St as the remaining sojourn time in the cur-
rent system state. These variables are called duration
variables or sojourn-time variables. A Weibull-Hybrid
Graphical Duration Model is illustrated in figure 2.

Expressions (3), (4), (5), (6), (7) and (8) become
expressions (10), (11), (13), (14), (15) and (16).

The Conditional Probability Distribution associ-
ated with the distribution of initial system state must
be defined as follows, over the discrete and finite do-
main ΩX = 1, . . . ,NX :

P (X1 = i) = pinii (10)

The initial sojourn-time CPD gives the distribution
for each initial state, it is defined over the continuous
domain ΩS =]0,+∞[ :

fS1|X1=i = fWαi,βi
(11)

with

fWα,β
(s) =

β

α
(
s

α
)β−1e−( s

α
)β (12)

where α is the scale parameter and β the shape pa-
rameter.

Then, it is necessary to define the system state and
the sojourn-time transition CPD :

A transition occurs if and only if St−1 < 1.

P (Xt = j|Xt−1 = i, St−1 < 1) = Qsys(i, j) (13)

where Qsys is a NX .NX matrix, called static system
transition matrix.

A new sojourn-time is selected according to the fol-
lowing CPD :

fSt=s|St−1<1,Xt=i = fWαi,βi
(s) (14)

While there is no transition, the system determinis-
tically remains in the previous state i :

P (Xt = j|Xt−1 = i, St−1 > 1) = I(i, j) (15)

and the sojourn-time in the current state is de-
creased deterministically by one unit :

f(St = s|Xt=i, St−1 = s′>1)=
{

1 if s = s′−1
0 otherwise (16)

3.2 Inference

As shown in 2.4, the reliability of a non-repairable
system is equal to the availability of the system :

R(t) = P (Xt ∈ U)

= 1−
∫∑

X1,...,Xt−1
S1,...,St−1

P (Xt ∈ D,Xt−1, . . . ,X1, St−1, . . . ,X1)

= 1−
∫∑

X1,...,Xt−1
S1,...,St−1

t−1∏
u=1

P (Xu|pa(Xu))×f(Su|pa(Su))

= 1−
∫∑

X1,...,Xt−1
S1,...,St−1

t−1∏
u=1

P (Xu|pa(Xu))×f(Su|pa(Su)) (17)

We have to compute successively the following dis-
tributions :

• Φt,u = P (Xt|Xu, Su−1) for u ∈ [[2; t − 1]] and
Φt,1 = P (Xt|X1)

• Λt,u = P (Xt|Xu−1, Su−1) for u ∈ [[2; t]] and
Λt,1 = P (Xt)



The required distributions are expressed as follows:

For u ∈ [[2; t− 1]]

Φt,u=

∞∫
0

P (Xt|Xu,Su=su)f(Su=su|Xu, Su−1)dsu

=

∞∫
0

Λt,u+1 × f(Su=su|Xu, Su−1)dsu (18)

and

Λt,u=
∑

x∈ΩXu

P (Xt|Xu=x,Su−1)P (Xu=x|Xu−1,Su−1)

=
∑

x∈ΩXu

Φt,u × P (Xu=x|Xu−1,Su−1) (19)

For u = 1

Φt,1 =

∞∫
0

P (Xt|X1, S1 = s1)f(S1 = s1|X1) dsu

=

∞∫
0

Λt,2f(S1 = s1|X1) dsu (20)

and

Λt,1 =
∑

x∈ΩX1

P (Xt|X1 = x)P (X1 = x)

=
∑

x∈ΩX1

Φ1,1P (X1 = x) (21)

The elements required by the computation (18) are
given by (19), (14) and (16) ; and those required by
(20) are given by (19) and (11).

The elements required by the computation (19) are
given by (18), (13) and (15) ; and those required by
(21) are given by (18) and (10).

Equations 18, 19, 20, 21 define an iterative algo-
rithm, that give at the end : Λt,1 = P (Xt), that allows
to have the value of the reliability :

R(t) = 1− P (Xt ∈ D) =
∑
x∈U

P (Xt = x) (22)

The computation in (18) and (19) can be developed
as follows :

In (18) :

P (Xt|Xt−q, St−q−1 = s) = (23)



Q(q) if s < 1
Qsys ∗Q(q−1) if 1 < s < 2

. . .
Qsys ∗Q(q−j) if j < s < j + 1

. . .
Qsys if q < s < q + 1

I if q + 1 < s

(24)

with Q(q)(x, y) =
q∑

k=1

k∫
k−1

fWαx,βx
(s)ds ×

[QsysQ(q−k)](x, y) +
∞∫
q
fWαx,βx

(s)ds× I(x, y).

In (19) :

P (Xt|Xt−q−1, St−q−1 = s) = (25)



Qsys ∗Q(q) if s < 1
Qsys ∗Q(q−1) if 1 < s < 2

. . .
Qsys ∗Q(q−j) if j < s < j + 1

. . .
Qsys if q < s < q + 1

I if q + 1 < s

(26)

Qsys ×Q(q) is actually the natural transition of the
system between q slices.

4 ILLUSTRATIONS

The W-HGDM used has been implemented in
MATLAB R© environment, using the open source
Bayes Net Toolbox (BNT).

4.1 Test

To validate this algorithm, we consider a two-state
system, one of the states being ”up”, the other being
”down”. The reliability can be written as follows :

Rsys(t) = P (X1 ∈ U ∩ . . .∩Xt ∈ U)

= P (S1 ≥ t|X1 ∈ U)P (X1 ∈ U)

= 1− FWαU ,βU
(t)

= e
−( t

αU
)βU (27)

The application of the inference algorithm pre-
sented in 3.2 to such a model is supposed to return
a Weibull distribution.



Table 1: System transition Conditional Probability Table
State 1 State 2 State 3

state 1 0 0.9 0.1
state 2 0 0 1
state 3 0 0 1

Table 2: Sojourn-time distribution for each state
α β

State 1 30 1
State 2 20 1

The figure 3 shows that the estimated reliability is
exactly the reliability given by the Weibull distribu-
tion.

4.2 Comparison with standard GDM

Let’s illustrate our approach using a GDM model-
ing the behavior of a 3-states production machine, i.
e. ΩX = {1,2,3}, with D = {3}. The transition rate
between system states is given in table 1. The pa-
rameter of the Weibull distribution that characterize
the sojourn-time variable when a transition occurs are
given in table 2. The algorithm presented in subsec-
tion 3.2 was used to make the computations.

A standard GDM is then built. The state system
variable of this standard GDM model has the same
static system transition matrix as the W-HGDM (ta-
ble 1). The distribution of sojourn-time variable of
this standard GDM model is constructed by dis-
cretizing the continuous Weibull distribution, with the
same parameters as the W-HGDM (table 2), and with
NS = 150 (Donat, Bouillaut, Aknin, Leray, & Bon-
deux 2008).

The method presented in 3.2 has been used to com-
pute reliability estimations presented in figure 4.

We obtain the same results with both methods.

5 CONCLUSIONS

In this paper, a new hybrid approach for the dura-
tion model in which sojourn-time follows a Weibull
distribution, called Weibull-Hybrid Graphical Dura-
tion Model, has been proposed. An associated infer-
ence algorithm has been therefore developed and in-
troduced allowing the estimation of the reliability of
the system in such models.

Finally, first results introduced in this paper under-
line the feasibility of the proposed approach in terms
of inference accuracy. This validates the interest we
have had in proposing such a hybrid approach for the
modeling of degradation dynamics. Indeed, the ex-
pected advantage of W-HGDM leads mainly in the
non discretization of the sojourn variable in GDM that
can become a drag to reliability computation for com-
plexity reasons.

Now, many things can be done and investigated
through this new approach. The first perspective is
to go further in the algorithm validation, by compar-
ing the complexities and the speeds between stan-

dard GDM and W-HGDM. We also have planned to
add some nodes to the presented W-HGDM, such
as context variables, and, of course, maintenance ac-
tions. The long-term goal of this study is to im-
prove VirMaLab (Virtual Maintenance Laboratory,
fig. 5), a generic decision support tool developed by
the GRETTIA (Bouillaut, Aknin, Donat, & Bon-
deux 2011) in order to evaluate, optimize and com-
pare maintenance strategies for discrete state space
system, by allowing sojourn-time variables to follow
a Weibull distribution.
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Université d’Angers.

Donat, R., L. Bouillaut, P. Aknin, P. Leray, & S. Bondeux (2008,
June). Specific graphical models for analyzing the reliabil-
ity. In 2008 16th Mediterranean Conference on Control and
Automation, pp. 621–626.

Donat, R., P. Leray, L. Bouillaut, & P. Aknin (2010, January).
A dynamic bayesian network to represent discrete duration
models. Neurocomputing 73(4-6), 570–577.

Jensen, F. V. (1996). Introduction to Bayesian Networks (1st ed.).
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Koller, D., U. Lerner, & D. Angelov (1999). A general algorithm
for approximate inference and its application to hybrid bayes
nets. pp. 324–333.

Lauritzen, S. L. & S. L. Lauritzen (1992). Propagation of proba-
bilities, means and variances in mixed graphical association
models. Journal of the American Statistical Association 87,
1098–1108.

Lauritzen, S. L. & D. J. Spiegelhalter (1988). Local computa-
tions with probabilities on graphical structures and their ap-
plication to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological) 50(2), 157–224.

Moral, S., R. Rumı́, & A. Salmerón (2001). Mixtures of trun-
cated exponentials in hybrid bayesian networks. In Pro-
ceedings of the 6th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty,
ECSQARU ’01, London, UK, UK, pp. 156–167. Springer-
Verlag.

Murphy, K. P. (1999). A variational approximation for bayesian
networks with discrete and continuous latent variables. In
Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, UAI’99, San Francisco, CA, USA, pp.
457–466. Morgan Kaufmann Publishers Inc.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Represen-



0 5 10 15 20 25 30 35 40 45 50

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

(t
)

2-states system Reliability, with T= 50

estimation of system reliability,( , )
up

: (20,0.8)

Weibull Reliability for "up" state,( , )
up

: (20,0.8)

estimation of system reliability,( , )
up

: (20,1)

Weibull Reliability for "up" state,( , )
up

: (20,1)

estimation of system reliability,( , )
up

: (20,4)

Weibull Reliability for "up" state,( , )
up

: (20,4)

Figure 3: Reliability of a 2 states-sytem and of weibull distributions
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