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Introduction

The determinant of a matrix was originally invented to find solutions of systems of linear algebraic equations. The initial efforts were made by many great mathematicians to formulating and proving the so-called Cramer's rule, Laplace expansion, and Cauchy-Binet determinantal identity, and these led them to find many interesting algebraic identities [START_REF] Brualdi | Determinantal identities: Gauss, Schur, Cauchy[END_REF]. The basic idea behind all these determinantal identities is to express the determinant of a matrix in terms of determinants of lower orders. These subdeterminants together with their corresponding signs are called cofactors. From algorithmic viewpoint finding combinatorial interpretations of determinants are more desirable than their linear algebraic manipulations for designing efficient parallel algorithms for computing the determinant [START_REF] Valiant | Why is Boolean complexity is difficult?[END_REF] . In particular, in the graph-theoretical setting, the computation of the determinant of a matrix A amounts to evaluating the signed weighted sum of cycle covers [START_REF] Brualdi | A combinatorial approach to matrix theory and its applications[END_REF] of its associated digraph D(A). Moreover, cofactors are also interpreted as the signed weighted sum of generalized cycle covers [START_REF] Teimoori | A multiset version of determinants and the coin arrangements lemma[END_REF]. Lyndon words play a central role in theory of combinatorics of words [START_REF] Lothaire | Combinatorics of words[END_REF] as a subfield of formal languages and automata theory [START_REF] Shallit | A second course in formal languages and automata theory[END_REF]. The author in [START_REF] Teimoori | A multiset version of determinants and the coin arrangements lemma[END_REF] has already obtained a multiset analogue of the classic determinant of a matrix by extending the idea of cycle covers to Lyndon covers. The basic idea behind the multiset analogue is to replace a sequence of disjoint cycles with a sequence of distinct Lyndon words. As a by product of combinatorial interpretation of determinants of matrices indexed by a multiset, he has also obtained a weighted generalization of the coin arrangements lemma [START_REF] Sherman | Combinatorial aspects of the Ising model of ferromagnetism. I. a conjecture of Feynman on paths and graphs[END_REF] which is a key lemma for proving Feynman conjecture about combinatorial interpretation of two-dimensional Ising model. The main goal of this paper is to find a multiset analogue of cofactors of a given matrix based on the idea of the generalized Lyndon covers. We will do this simply by passing from the combinatorics of permutations to the combinatorics of words. The paper will organize as follows. In Section 2, we first quickly review the basic definitions and notions related to the theory of combinatorics of permutations. Then, we review the graph-theoretical interpretations of determinants and cofactors as signed weighted sum over cycle covers and the generalized cycle covers, respectively. In Section 3, we first review the basic definitions form the theory of multisets and combinatorics of words. Then, we overview the multiset analogue of determinants by generalizing the idea of cycle covers to Lyndon covers. Finally, in Section 4, we give a multiset analogue of the graph-theoretical interpretation of cofactors based on the idea of the generalized Lyndon covers.

Basic Definitions and Notation

In this section, we first very briefly review the combinatorics of permutations from the reference [START_REF] Bona | Combinatorics of permutations[END_REF]. Then we briefly review the graph-theoretical interpretations of the determinant and cofactors of a matrix A based on the idea of cycle covers and the generalized cycle covers of the associated digraph D(A), respectively. For more information the reader may refer to the book [START_REF] Brualdi | A combinatorial approach to matrix theory and its applications[END_REF]. From here on, we will denote the set {1, 2, . . . , n} by [n]. Recall that any bijective function π :

[n] → [n] is a permutation. The representation of π as π = π 1 π 2 • • • π n is called the one-line representation of the permutation π. Definition 2.1. Let π = π 1 π 2 • • • π n be a permutation.
An inversion of π is a pair i, j of integers with 1 ≤ i < j ≤ n such that π i > π j . The number of inversions of π will be denoted by inv(π).

Definition 2.2. Let

π = π 1 π 2 • • • π n be a permutation of [n]. Let A = (a ij )
be a square matrix of order n. The sign sgn(π) of the permutation π is defined as sgn(π) = (-1) inv (π) . The weight wt(π) of the permutation π is defined to be wt

(π) = a 1π 1 a 2π 2 • • • a nπn .
Next, we give the classical definition of the determinant of a matrix. Here, we will denote the set of all permutations of the set [n] by S n . Definition 2.3. Let A = (a ij ) be a square matrix of order n. Then we define the determinant of A denoted by det(A), as follows

det(A) = ∑ π=π 1 π 2 •••πn∈Sn sgn(π)wt(π),
where π runs over the set of all permutations of the set [n]. Now, suppose A = (a ij ) is a square matrix of order n. We associate a digraph D = D(A) with the matrix A which plays an essential role in the graph-theoretical interpretations of the determinant of the matrix A. We have the following formal definition. Definition 2.4. For a given square matrix A = (a ij ) of order n, its associated digraph D = D(A) is defined as a digraph with the vertex set [n] and there is an arc from vertex i to vertex j, if a ij ̸ = 0. Whenever a ii ̸ = 0, we have a loop at vertex i. Definition 2.5. A linear subdigraph L of a digraph D is a spanning subdigraph of D in which each vertex has in-degree 1 and out-degree 1. Thus, by directed cycle decomposition of Eulerian digraphs, a linear subdigraph L consists of a spanning collection of pairwise vertex-disjoint cycles. The number of cycles contained in L is denoted by c(L). For a given square matrix A = (a ij ), the weight wt(L) of a linear subdigraph L of D(A) is defined as the product of the weights of its arcs and the weight of any arc (i, j) is defined to be a ij . Definition 2.6. Let A = (a ij ) be a square matrix of order n and D = D(A) its associated digraph. The sequence c = (c 1 , c 2 , . . . , c l ) of vertex-disjoint cycles of D such that ∑ l i=1 |c i | = n where |c i | is the length of the cycle c i is called a cycle cover of D. The sign sgn(c) of a cycle cover c is defined as sgn(c) = (-1) n-l . We also define the weight wt(c) of c to be the product of weights of its cycles and the weight wt(c i ) of each cycle

c i = (k 1 k 2 • • • k s-1 k s ) of length s is defined as wt(c i ) = a k 1 k 2 a k 2 k 3 • • • a k s-1 ks a ksk 1 .
We also need the following technical lemma due to Cauchy (see [START_REF] Brualdi | A combinatorial approach to matrix theory and its applications[END_REF]). We denote the number of cycles in the cyclic decomposition of π by cyc(π).

Lemma 2.1. Let π = π 1 π 2 • • • π n be a permutation of [n].
Then inv(π) and n -cyc(π) have the same parity. Therefore,

(-1) n-cyc(π) = (-1) inv(π) .
As a direct consequence of the Cauchy lemma and the cyclic decomposition of permutations, we have the following two equivalent graph-theoretical interpretations of the determinant of the matrix A. Lemma 2.2. Let A = (a ij ) be a square matrix of order n. Then

det(A) = ∑ L∈Lin(A) (-1) n-c(L) wt(L) = ∑ c∈Cyc(A)

sgn(c)wt(c), where Lin(A) is the set of all linear subdigraphs of D(A) and Cyc(A) is the set of all cycle covers of D(A).

Definition 2.7. Let A = (a ij ) be a square matrix of order n and

D = D(A) its associated digraph. The sequence c = (c 1 , c 2 , . . . , c l ) of disjoint cycles of D is called a partial cycle cover of D, if |c 1 | + • • • + |c l | ≤ n. A partial cycle cover c = (c 1 , c 2 , . . . , c l ) with k = |c 1 | + • • • + |c l | is also called an k-cycle cover of D.
The weight of an k-cycle cover c = (c 1 , c 2 , . . . , c l ) is defined as the product of the weights of its arcs and its sign is defined to be (-1) k-l .

Note that in the above definition, by convention, an empty sequence is a partial cycle cover or 0-cycle cover with the weight equal to 1.

Recall that for a matrix A of order n, its principal submatrix of order k,(k = 1, 2, . . . , n), is defined as a submatrix of A whose rows and columns are indexed by the same k-element subset of [n]. As a classical result, due to Laplace [START_REF] Brualdi | A combinatorial approach to matrix theory and its applications[END_REF], we know that the coefficient of t n-k in det(tI -A) is (-1) k times the sum of the determinants of the principal k × k submatrices of A. Thus, considering Lemma 2.2, we get the following well-known result.

Lemma 2.3. Let A = (a ij ) be a square matrix of order n. Then

det(I -A) = ∑ c=(c 1 ,...,c l )∈Cycp (-1) l wt(c),
where Cyc p (A) is the set of all partial cycle covers of D(A).

Recall from matrix theory that the (i, j)-minor M ij of the matrix A is the determinant of a matrix of size n -1 obtained from A by crossing out the ith row and the jth column of A. Moreover, the (i, j)-cofactor C ij corresponding to the entry a ij of the matrix A is defined, as follows (2.1)

C ij = (-1) i+j M ij .
Next, we give a graph-theoretical interpretation of the (i, j)-cofactor using the idea of 1-connection of vertex i to vertex j in associated digraph D(A) of A or equivalently, the generalized cycle cover in the digraph D(A). First, we start with the definition of 1-connection of a digraph. The first idea comes from [START_REF] Coates | Flow graph solutions of linear algebraic equations[END_REF] where the author associate with a matrix A = (a ij ), its Coates digraph which is a weighted digraph with the vertex set [n] and the weight of the arc (i, j) is a ji . Note that the weighted digraph D(A) has the weight a ij for the arc (i, j). We recall that the weight of a linear subdigraph of D(A) is defined as the product of the weights of its arcs. If i ̸ = j, then • exactly one arc leaves, but no arc enters, vertex i;

• exactly one arc enters, but no arc leaves, vertex j;

• for each vertex k ̸ = i, j, exactly one arc enters, and exactly one arc leaves, vertex k.

If i = j, then
• no arc enters or leaves vertex i;

• for each vertex k ̸ = i, exactly one arc enters, and exactly one arc leaves, vertex k.

Note that it is not hard to see that a 1-connection D[i → j] is a spanning subdigraph of D consisting of a path form i to j (of length zero, if i = j) and a (possibly empty) collection of the pairwise vertex-disjoint cycles having no vertex in common with the path. We will denote the number of those cycles in 1-connection D[i → j] by c(D[i → j]). The following lemma will be key in understanding of the connection between the graph-theoretical interpretations of the determinant of the matrix A and its (i, j)-cofactor. Lemma 2.4. Let (i, j) be an arc of digraph D(A). There is a bijection between the set of all linear subdigraphs of D(A) containing the arc (i, j) and all 1-connections of vertex j to vertex i of D(A).

Proof. Let L be an arbitrary linear subdigraph of D(A) containing the arc form vertex i to vertex j (the arc (i, j)). By the definitions of a linear subdigraph and a 1-connection, deleting the arc (i, j) from L yields a 1-connection D[j → i]. If i = j, the deleted arc is a loop at vertex i. Conversely, by adding an arc (i, j) to a given 1-connection D[j → i] we get a linear subdigraph L of D(A) containing the arc (i, j). □

The above lemma immediately implies that:

wt(L) = a ij wt(D[j → i]), c(L) = c(D[j → i]) + 1, (2.2)
where the weight of 1-connection D[i → j] is defined in similar way to its associated linear subdigraph as the product of the weights of its arcs. Next, we formally define a generalized (i, j)-cycle cover, as follows.

Definition 2.9. Let A = (a ij ) be a square matrix of order n and D = D(A) its associated digraph. For a ij ̸ = 0, the sequence c ij = ⟨p ij , c 1 , . . . , c l ⟩ is called the generalized (i, j)-cycle cover of the digraph D, if

• The sequence (c 1 , . . . , c l ) is a partial cycle cover of D and p ij is a path from vertex i to vertex j with no common vertex with the cycles c i (i = 1, 2, . . . , l), The weight wt(c ij ) is defined to be wt(c ij ) = wt(p ij )wt(c 1 ) • • • wt(c l ) and the weight of a path simply defined as the product of the weights of its arcs. The sign sgn(c ij ) is defined to be (-1) (n-1)-l .

• |p ij | + |c 1 | + • • • + |c l | = n -1,
If in Definition 2.9 the sequence (c 1 , . . . , c l ) is empty, we set l = 0. In this case the generalized (i, j)-cycle cover is just a path form vertex i to vertex j. Next, we need another key lemma. Recall that by the Laplace expansion formula for rows, we have

(2.3) det(A) = n ∑ j=1 a ij C ij .
Lemma 2.5. The cofactor C ij corresponding to the element a ij ̸ = 0 of A is the coefficient of a ij in the expansion of the determinant of A along the row i. Furthermore, we have

a ij C ij = ∑ L∈Lin ij (A) (-1) n-c(L) wt(L),
where Lin ij (A) is the set of all linear subdigraphs of D(A) containing the arc (i, j).

Proof. Considering the Laplace expansion formula (2.3), the first part is obvious. Now, by Lemma 2.2, we have

(2.4) det(A) = ∑ L∈Lin(A) (-1) n-c(L) wt(L) = n ∑ j=1 ∑ L∈Lin ij (A) (-1) n-c(L) wt(L),
for every fixed i ∈ [n], where Lin(A) is the set of all linear subdigraphs of D(A). Since a ij ̸ = 0, by subtracting formula (2.3) from (2.4) and considering the equalities in formula (2.2), we finally get

a ij C ij = ∑ L∈Lin ij (A) (-1) n-c(L) wt(L), as required. □ □
Now, we are ready to give two equivalent graph-theoretical interpretations of (i, j)-cofactor C ij . Theorem 2.6. Let A = (a ij ) be a square matrix of order n and D(A) its associated digraph. Let C ij be the cofactor corresponding to the element a ij ̸ = 0 of the matrix A. Then, we have

C ij = ∑ D[j→i]∈D ji (A) (-1) n-c(D[j→i])-1 wt(D[j → i]), = ∑ c ji =⟨p ji ,c 1 ,...,c l ⟩∈Cyc ji (A) sgn(c ji )wt(c ji ),

where D ji (A) is the set of all 1-connections from vertex j to vertex i of D(A) and Cyc ji (A) is the set of all generalized (j, i)-cycle covers of D(A).

Proof. The proof of the first interpretation is straight forward, considering Lemmas (2.4) and (2.5) and relations in (2.2). The two interpretations are equivalent based on Lemma (2.4) and the fact that there is a bijection between the set of all linear subdigraphs of D(A) and the set of all cycle covers of D(A), hence there is a bijection between the set of all linear subdigraphs of D(A) containing the are (i, j) and the set of all generalized (j, i)-cycle covers of D(A), as required.

□ □

Multiset Analogue of Determinants

In this section, we first quickly review the basics of the multiset theory and the combinatorics of words. Then, we briefly review a multiset analogue of the classical determinant of a matrix, based on the idea of word systems [START_REF] Teimoori | A multiset version of determinants and the coin arrangements lemma[END_REF]. We first recall that for a given ground set A, a multiset M over A is defined as a pair of ⟨A, f ⟩ where f : A → N 0 is a function. Here by N 0 we mean the set of all nonnegative integers. For each a ∈ A, the value f (a) is called the multiplicity of a. The cardinality of M = ⟨A, f ⟩ is defined to be N = ∑ a∈A f (a) . Definition 3.1. Let M 1 = ⟨A, f ⟩ and M 2 = ⟨A, g⟩ be two multisets over A. Then we say that M 1 is a submultiset of M 2 denoted by M 1 ⊆ M 2 if for all a ∈ A, we have f (a) ≤ g(a).

Definition 3.2.

Let M 1 = ⟨A, f ⟩ and M 2 = ⟨A, g⟩ be two multisets over A.

Then M 1 and M 2 are said to be equal, if for all a ∈ A f (a) = g(a).

Definition 3.3.

Let M be a multiset of cardinality N and let r be a positive integer satisfying r ≤ N . We define an r-permutation of M as an ordered arrangement of r objects of M . In particular, an N -permutation of M will also be called a permutation of M .

Next, we also need to have a quick review of combinatorics of words. The interested reader may consult the reference [START_REF] Lothaire | Combinatorics of words[END_REF].

For a finite alphabet A, a word is a (finite) sequence of elements of A. We denote the set of all words over alphabet A by A ⋆ . A sequence with no elements is called an empty word and is denoted by λ. We also denote the set of nonempty words over A by A + . A word u ∈ A ⋆ is a factor of a given word w, if there exists words w 1 and w 2 such that w = w 1 uw 2 . The factor u is called a proper factor of w if u ̸ = w. If w 1 (respectively w 2 ) is an empty word then u is called a prefix (respect. suffix) of the word w. A word w is primitive if it can not be written as a power of another smaller word. Two words w 1 and w 2 are said to be conjugate if one can obtain from the other by the cyclic shift of its elements. The binary relation of w 1 is conjugate with w 2 is an equivalence relation that partitions the set A ⋆ into conjugacy classes. The conjugacy class of a given word w denoted by (w) is called a circular word. A lexicographic order on the set of nonempty words A + is a total order on the alphabet A extended to words in the following way: For any w 1 , w 2 ∈ A ⋆ , w 1 ≺ w 2 if and only if either w 2 ∈ w 1 A + or w 1 = uap and w 2 = ubq, a ≺ b; a, b ∈ A; u, p, q ∈ A ⋆ . Definition 3.4. A Lyndon word is a primitive word that is minimal with respect to the lexicographic order in its conjugate class. We will denote the set of all Lyndon words with L.

Definition 3.5. Let M = {1 m 1 , . . . , n mn } be a multiset of cardinality N = ∑ n i=1 m i over [n]
. We associate a function f M with M which we call the set-indicator function of M , as follows

f M : [N ] → [n] f M (i l ) = l, i l ∈ [ ( l-1 ∑ j=1 m j ) + 1, l ∑ j=1 m j ], (1 ≤ l ≤ n),
where by convention we set ∑ 0 j=1 m j = 0 and for positive integers a and b, by [a, b] we mean the set of all integers between a and b including themselves.

Example 3.1. For M = {1 2 , 2 2 , 3 1 } of cardinality 5, we have f M : [5] → [3] f M (1) = 1, f M (2) = 1, f M (3) = 2, f M (4) = 2, f M (5) = 3.
Next, we define a matrix indexed by a multiset. Definition 3.6. Let M = {1 m 1 , . . . , n mn } be a multiset of cardinality N = ∑ n i=1 m i over the ground set [n]. We say that a square matrix A of order N is a matrix indexed by the multiset M if there is a square matrix A ′ of order n so that for all i, j ∈ [N ],

(A) ij = (A ′ ) f M (i)f M (j) .
Example 3.2. Let [3] = {1, 2, 3} be our ground set. For the multiset M = {1 2 , 2 2 , 3 1 } of cardinality 5, a matrix A = (a ij ) indexed by M in general has the following form ∑ n i=1 m i with the set-indicator function f M and let A = (a ij ) be a square matrix indexed by M . Assume that σ = σ 1 σ 2 • • • σ l is the cyclic decomposition of σ ∈ S N . We define the word system associated with the permutation σ as a multiset γ = ⟨γ 1 , γ 2 , . . . , γ l ⟩ of circular words, as follows. For each i (i = 1, 2, . . . , l), we associate with the cycle

A =      
σ i = (i 1 i 2 • • • i s ) of σ a circular word γ i = (f M (i 1 )f M (i 2 ) • • • f M (i s )
). The sign sgn(γ) of the word system γ = ⟨γ 1 , γ 2 , . . . , γ l ⟩, is defined to be sgn(γ) = (-1) N -l . The weight wt M (γ) of γ, is defined as the products of the weights of its circular words and the weight wt M (γ j ), j = 1, 2, . . . , l, of the circular word γ j = (j ⟨( 1 Hence, we get ) .

1 j 2 • • • j s ) is defined to be wt M (γ j ) = a j 1 j 2 a j 2 j 3 • • • a j s-1 js a jsj 1 .
mdet(A) = 2! ( ( - 
Remark 3.1. Note that in Example 3.4 the word systems inside the parentheses in the first sum are consisting of only distinct circular primitive words, i.e., those which are not powers of any smaller words. It is also straight forward to see that the second sum is zero. This fact is not a mere coincidence. It leads to a multiset analogue of the graph-theoretical interpretation of determinants.

Next, we define the multiset analogue of the cycle cover motivated by Remark 3.1. To do this, we simply replace each primitive word with its corresponding Lydon word. Here is the formal definition. Definition 3.9. A word system γ = ⟨γ 1 , γ 2 , . . . , γ l ⟩ is a Lyndon cover of the multiset M if all γ i 's are circular Lyndon words and distinct. The weight and the sign of a Lyndon cover are defined in the same way that they are defined for a word system.

The weight wt M (γ ij ) of the generalized (i, j)-Lyndon cover γ ij is defined as the product of the weights of its components. The sign sgn(γ ij ) of γ ij is defined to be sgn(γ ij ) = (-1) (N -1)-r . Remark 4.1. Note that in the above definition the sum

|η ij | + |γ 1 | + • • • + |γ r |
is defined to be N and not N -1. It is because the lengths of a non-circular word w and the circular word (w) obtained from it are the same. But in the case of the generalized (i, j)-cycle cover, the length of a path is one less than the length of the cycle on the same vertex set. There is a bijection between the set of all Lyndon covers of M containing the word segment ij and the set of all generalized (j, i)-Lyndon covers of M .

Proof. Let γ = ⟨γ 0 , γ 1 , . . . , γ r ⟩ be a Lyndon cover so that γ 0 contains the word segment ij. Then, consider the class of all cyclic-shifts of the word γ 0 . One of these primitive words, say η ji , starts with j and ends at i. Hence by replacing γ 0 with η ji , we get a generalized (j, i)-Lyndon cover γ ji = ⟨η ji , γ 1 , . . . , γ r ⟩. Conversely, starting with η ji and obtaining the class of all its cyclic-shifts and naming the minimal element of the class γ 0 (with respect to the lexicographic order) yields a Lyndon cover γ = ⟨γ 0 , γ 1 , . . . , γ r ⟩. Furthermore, we have (4.1) wt M (γ) = a ij wt M (γ ji ), sgn(γ) = sgn(γ ji ).

□

Note that the standard definition of the cofactor (the equality (2.1)) corresponding to the entry a ij of the matrix A = (a ij ) does not work in the case where A is a square matrix indexed by the multiset M . This is because, when we cross out the ith row and jth column of the matrix A, we may obtain a submatrix B of A such that its rows and columns are indexed by submultisets M r and M c of M with M r ̸ = M c . To solve this problem, we use the idea behind Lemma 2.5 to define the correct multiset version of a cofactor of a matrix.

Definition 2 . 8 .

 28 Let D be a digraph with the vertex-set [n]. Let i and j be vertices of D. A 1-connection of vertex i to vertex j is a spanning subdigraph D[i → j] of D with the following properties:

  where |p ij | and |c i | denote the usual length of a path and a cycle, respectively.

Example 3 . 3 .Definition 3 . 8 .Example 3 . 4 .

 333834 For the multiset M = {1 2 , 2 2 , 3 1 } of cardinality N = 5 and the permutation σ = (1)(23)(45) of S 5 , the word system γ associated with σ is γ = ⟨(1), (12), (23)⟩.We will denote the multiset of all N ! word systems associated with the set of all N ! permutations of [N ] by Γ sys . Next, we present a multiset analogue of the classical combinatorial definition of the determinant of a matrix, as follows. Let A = (a ij ) be a square matrix indexed by the multiset M = {1 m 1 , . . . , n mn } of cardinality N = ∑ n i=1 m i . Then we define the determinant of A denoted by mdet(A), as followsmdet(A) = ∑ γ=⟨γ 1 ,γ 2 ,...,γ l ⟩∈Γsys sgn(γ)wt M (γ),where γ runs over the multiset of all N ! word systems associated with S N . For the multiset M = {1 1 , 2 2 } of cardinality N = 3, we have cycle notation word system weight (1)(2)[START_REF] Brualdi | A combinatorial approach to matrix theory and its applications[END_REF] 

1 ) 3 - 1

 131 wt M (⟨(122)⟩) + (-1) 3-2 wt M (⟨(12), (2)⟩) ) + ( (-1) 3-3 wt M (⟨(1), (2), (2)⟩) + (-1) 3-2 wt M (⟨(1), (22)⟩)

Example 4 . 1 .Definition 4 . 4 .

 4144 Let M = {1 4 , 23 , 3 1 } be our multiset of cardinality N = 8 and let A = (a ij ) be a square matrix indexed by M . Then, clearlyγ 12 = ⟨1132, (112), (2)⟩, is a generalized (1, 2)-Lyndon cover of M , where η 12 = 1132 is (1, 2)-primitive word in M . We also have wt M (γ 12 ) = (a 11 a 13 a 32 )(a 11 a 12 a 21 )(a 22 ) and sgn(γ 12 ) = (-1) (8-1)-2 = -1.Next, we give a multiset version of Lemma 2.4. But, first we need one more definition. We say that the Lyndon cover γ = ⟨γ 1 , . . . , γ r ⟩ contains the word segment u, if one of γ i 's contains that word segment.

Lemma 4 . 1 .

 41 Let A = (a ij ) be a square matrix indexed by M with a ij ̸ = 0.

  a 11 a 11 a 12 a 12 a 13 a 11 a 11 a 12 a 12 a 13 a 21 a 21 a 22 a 22 a 23 a 21 a 21 a 22 a 22 a 23 a 31 a 31 a 32 a 32 a 33 Let M = {1 m 1 , . . . , n mn } be a multiset of cardinality N =

		
	    	.
	Definition 3.7.	

Finally, we state the main result of this section without proof. For the proof see the reference [START_REF] Teimoori | A multiset version of determinants and the coin arrangements lemma[END_REF]. Theorem 3.1. For any square matrix A = (a ij ) indexed by the multiset M = {1 m 1 , 2 m 2 , . . . , n mn } of cardinality N = ∑ n i=1 m i , we have

where Lyn(A) is the set of all Lyndon covers of the multiset M .

The Generalized Lydon Cover and Cofactors

It this section, we find the multiset version of the notion of the generalized (i, j)-cycle cover of M . For a circular word

not regarded as following i s and none of the cyclic shifts of w regarded as the same word. We can define the multiset version of the partial cycle cover, as follows.

Definition 4.1. A word system γ = ⟨γ 1 , γ 2 , . . . , γ l ⟩ is a partial Lyndon cover of the multiset M of cardinality N if all γ i 's are circular Lyndon words and distinct and the non-circular word

We also say that γ is an k-Lyndon cover of the multiset M . The weight of an k-Lyndon cover γ = ⟨γ 1 , γ 2 , . . . , γ l ⟩ of M is defined as the product of the weights of its distinct circular Lyndon words and its sign is defined to be (-1) k-l . Definition 4.2. Let A = (a ij ) be a square matrix indexed by the multiset

is a non-circular primitive word, and i 1 = i and i s = j. The weight wt(η ij ) of an (i, j)-primitive word

Now, we can define the appropriate multiset analogue of the generalized (i, j)-cycle cover of D(A). Definition 4.3. Let A = (a ij ) be a square matrix indexed by the multiset

• The sequence ⟨γ 1 , . . . , γ r ⟩ is a partial Lyndon cover of the multiset M , • η ij is (i, j)-primitive word in M and for each l (l = 1, 2, . . . , r) the Lyndon representation of (η ij ) is different from the Lyndon representation of the circular word γ l , 

where Lyn ij (A) is the set of all Lyndon covers of M containing the word segment ij.

Proof. By Definition 4.5, for each i ∈ [n], we have

Now, by Theorem 3.1, we have

where Lyn(A) is the set of all Lyndon covers of M and Lyn ij (A) is the set of all Lyndon covers of M containing the word segment ij. Since a ij ̸ = 0, by subtracting formula (4.2) from (4.3) and considering the equalities in formula (4.1), we finally get

sgn(γ)wt M (γ), as required. □ Thus, we arrive at the following multiset analogue of the graph-theoretical interpretation of (i, j)-cofactor of a matrix. □