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Abstract: In the agricultural frontiers of Brazil, the distinction between forested and deforested lands
traditionally used to map the state of the Amazon does not reflect the reality of the forest situation.
A whole gradient exists for these forests, spanning from well conserved to severely degraded.
For decision makers, there is an urgent need to better characterize the status of the forest resource
at the regional scale. Until now, few studies have been carried out on the potential of multisource,
freely accessible remote sensing for modelling and mapping degraded forest structural parameters
such as aboveground biomass (AGB). The aim of this article is to address that gap and to evaluate
the potential of optical (Landsat, MODIS) and radar (ALOS-1 PALSAR, Sentinel-1) remote sensing
sources in modelling and mapping forest AGB in the old pioneer front of Paragominas municipality
(Para state). We derived a wide range of vegetation and textural indices and combined them with in
situ collected AGB data into a random forest regression model to predict AGB at a resolution of 20 m.
The model explained 28% of the variance with a root mean square error of 97.1 Mg·ha−1 and captured
all spatial variability. We identified Landsat spectral unmixing and mid-infrared indicators to be
the most robust indicators with the highest explanatory power. AGB mapping reveals that 87% of
forest is degraded, with illegal logging activities, impacted forest edges and other spatial distribution
of AGB that are not captured with pantropical datasets. We validated this map with a field-based
forest degradation typology built on canopy height and structure observations. We conclude that the
modelling framework developed here combined with high-resolution vegetation status indicators
can help improve the management of degraded forests at the regional scale.

Keywords: forest degradation; multisource remote sensing; modelling aboveground biomass;
random forest; Brazilian Amazon
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1. Introduction

Deforestation and forest degradation are major sources of greenhouse gas emissions [1,2],
contributing to forest carbon losses [3], global climate change, affecting biodiversity [4] and the entire
forest ecosystem. While deforestation refers to the rapid conversion from forest to non-forest areas,
degradation implies changes in the forest structure with no change in land use [5,6]. In Amazonia,
over the last decades, deforestation and forest degradation have shaped the rural landscape, resulting
in a complex mosaic of fragmented forests associated with agricultural lands [7]. A total area of
766,448.5 km2 was cleared in 2015 [8], representing 20% of Amazonia [9,10].

Since 2005, deforestation in Brazil has drastically decreased thanks to coercive measures taken by
the Brazilian government associated with private initiatives (soy and beef moratoria), among other
factors [11]. However, these measures are not effective for reducing forest degradation [12,13]. Most
of the remaining forested lands are degraded due to the accumulation over time and space of severe
degradation processes mainly triggered by anthropogenic impacts through unsustainable logging
practices, fire, shifting cultivation and charcoal production [14,15].

Reducing forest degradation is a major challenge given the rapid need to reduce carbon emissions
to the atmosphere, conserve biodiversity, limit soil erosion and regulate the water cycle [16]. Forest
monitoring based on the forest/non-forest approach used to quantify deforestation is not relevant for
providing information on the forest status [17,18]. The biomass value of a forest is a relevant indicator
to quantify the intensity of degradation [19]. Forest biomass mapping is therefore a critical step to
reach the challenge [20].

At the pantropical scale, two maps of biomass density that present the spatial distribution of the
biomass of all forest types at a moderate resolution [21,22] have been used as baselines for the tropical
belt. More recently, a harmonized reference aboveground biomass (AGB) map has been released that
significantly improves the estimation and local distribution of AGB using the combination of in-situ
collected data, remote sensing and regional biomass maps [23].

At the local scale, most of the approaches integrate field-collected data with Light Detection and
Ranging (LIDAR) to scale up forest biomass natural distribution, which normally requires spatial
interpolation of in-situ biomass [24]. LIDAR can map the forest canopy in three dimensions and
can retrieve accurate forest biomass through forest canopy height and structure [25–29]. It is also
sensitive to the carbon density of the different types of degraded forests, from logging at a low
impact to forest stands burned multiple times [30]. Satellite LIDAR has been used in validating AGB
maps [31], calibrating local regressions between in situ AGB data and metrics derived from LIDAR
footprints and extrapolating using different remote sensing sources [28,32]. However, most airborne
and satellite LIDAR datasets are often difficult to access (acquisition cost) and to replicate in both time
and space [33].

At the meso-scale (regional), many studies demonstrated the potential of optical and radar remote
sensing-derived indicators to characterize degraded forests [34]. The study of degraded forests requires
the analysis of vertical and horizontal disturbances within the forest structure [5,33,35–37]. Optical
images can provide information on the photosynthetic activity and moisture of the forest canopy [38].
Spectral unmixing approaches are recognized to be the most effective method to assess the status
of degraded forests using the percentage of active vegetation, dead vegetation and bare soil at the
pixel scale [15,39,40]. Radar images are sensitive to the texture of the impacted forest canopy [41].
Canopy texture-derived indicators based on co-occurrence matrices use the variance of the signal in a
given window to spatially quantify the distribution of tree crowns structure [42–44]. Estimating the
biomass from the radar data generally concerns wavelengths up to the meter (band P or L) with signal
saturation thresholds around 200 Mg/ha of AGB [45–47].

This review of recent remote sensing methods illustrates the trade-off that needs to be made
between resolution, accuracy, area covered, cost and frequency to map forest biomass. It also highlights
the fact that there is remarkably little information at the regional scale on the potential of open access
optical and radar remote sensing to model and map the aboveground biomass of degraded forests.
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Most of the approaches tend to capture the local variation of AGB following environmental variables,
i.e., climate, topography and natural forest dynamic gradients, but do not particularly capture the
distribution along anthropogenic disturbance gradients [30].

In this sense, there is a need to better understand how remotely sensed indicators perform with
AGB modelling at the regional scale in order to provide relevant information to decision makers on
the state of the resource of remnants forest.

In order to answer this need, this paper aims (i) to assess the potential of multisource, multi-indicator
and open access remote sensing in modelling and mapping aboveground biomass of degraded forests;
(ii) to quantify the spatial distribution of degraded forest biomass in comparison with the pantropical
AGB map; and (iii) to evaluate the relevance of this regional forest AGB mapping at the stand scale.

This quantification is highly informative for forested land use planning and policy makers. Many
South American governments and global NGOs are seeking more accurate and definitive information
about the scale of degradation so they can propose policies and actions to ameliorate and reduce the
level of degradation [48].

2. Materials and Methods

2.1. Study Area

The study was carried out in the municipality of Paragominas, located in the northeastern part
of the State of Para, Brazil, and covering an area of 19,342 km2 with a population size of 108,547 [49].
The municipality was founded in 1965 along the BR-010 road connecting Brasilia to Belém (Figure 1).
The colonization process led to a large conversion of lands into pasture, with cattle ranching becoming
the dominant land use. The municipality went through a succession of different economical models
that have drastically shaped the landscape [50]. The boom in the logging industry started from the
1980s, where most of the timber was transformed in the 350 sawmills located along the main road.
Deforestation and forest degradation were accentuated with the grain agribusiness boom in the 2000s
(soybean and maize cultivation) and charcoal production. In 2007, the municipality was red-listed by
the federal government as one of the most deforested Amazonian municipalities. The consequences
were an immediate loss of access to credit and market for any commodities. Many charcoal plants
and illegal sawmills were shut down. In response to this governmental ban, Paragominas became
the first “green municipality” in the country in 2008 in order to end illegal deforestation, to tend to
zero net deforestation by 2014, and to promote alternative production systems and reforestation. Land
management was also improved through the Rural Environmental Registry [51].

Figure 1. Map of Paragominas municipality in the northeastern part of the State of Para with the
location of the biomass-collected plots, the degraded forest typology and the main zoning areas
(extracted from [9]).
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2.2. In Situ AGB Collection

Aboveground biomass data were collected during the dry seasons in 2009 and 2010 by teams from
the Sustainable Amazon Network (Rede Sustentavel Amazonia—RAS) [19,52,53]. In total, 18 study
sites were randomly selected in the municipality of Paragominas. For each site, plots of 250 m by 20 m
were designed, resulting in a total of 121 plots. Each plot represents a homogeneous type of forest,
classified into four types: undisturbed forest, logged forest, logged forest and burned and secondary
forest. Aboveground biomass was estimated using Chave’s allometric equations [54] and was based
on the measurements and identification of all live trees, palms and lianas (≥10 cm DBH). The results
of this study showed significant differences in biomass for each type of forest (Table 1). We chose a
threshold of 286 Mg·ha−1 to distinguish between degraded and sustainably managed or conserved
forests. Mazzei et al. [55] showed that undisturbed forests store on average 409.8 Mg·ha−1 in the Cikel
Fazenda, located in the western part of the municipality (Figure 1). The mean AGB total lost under
reduced-impact logging operations is 94.5 Mg·ha−1, which represents around 23% of biomass lost [55].
The threshold is thus the percentage of biomass lost applied to the undisturbed primary forest biomass
identified by RAS.

The aboveground vegetation that corresponds to the largest carbon storage compartment is very
sensitive to the type of disturbance, with about a 40% of difference in ABG between mature forests and
secondary forests. We used the RAS AGB dataset in shapefile format to calibrate the Random Forest
model presented in Section 2.4.

Table 1. AGB collection data in the municipality of Paragominas (see [19]).

Forest Type Mean AGB (Mg·ha−1) Standard Deviation (Mg·ha−1) No. of Plots

Undisturbed primary forest 371.8 96.9 13
Logged primary forest 229.5 79.2 44

Logged and burnt primary forest 145.8 73.4 44
Young secondary forest 1.1 0.5 2

Intermediate secondary forest 57.6 38.3 12
Old secondary forest 92.2 58.4 5

Abandoned plantation 54.1 / 1

2.3. Remote Sensing Multisource Data: Image Acquisition, Pre-Processing and Biophysical Indicators
Variables Extraction

We used 38 indicators derived from passive (MODIS, Landsat-8) and active (ALOS-1, Sentinel-1)
remote sensing sources. These indicators are correlated with different vegetation parameters such as
photosynthesis activity and vegetation structure. All the satellite images used in this study are freely
available and span the globe.

• MODIS

To quantify forest canopy health and temporal dynamics, we used the enhanced vegetation index
(EVI) from the MODIS sensor. EVI was extracted from the ‘16-Day L3 Global 250m product (MOD13Q1 c5)’
from January 2001 to December 2014. EVI is directly related to photosynthetic activity [56]. It does not
saturate quickly for high values of chlorophyll activity and provides improved sensitivity for high
biomass areas such as tropical forests [38]. The 16-day composite was built by choosing within the
16 daily acquisitions the two pixels with the highest value of NDVI (Normalized Difference Vegetation
Index). Of these two values, the pixel with the smallest viewing angle was chosen in order to minimize
the residual angle [56]. A quality filter was then applied to the composite to remove clouds and reduce
atmospheric contamination [38]. We extracted three indicators from this dataset: the mean and the
standard deviation calculated for the whole time series based on annual average EVI and the pooled
variance which is the weighted sum of annual variance based on the number of values available for
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each pixel for each year (giving more weight to the pixels that were not under cloud coverage during
the 16 days × 14-year period).

Pooled variance =
∑14

i=1 Variance(i)× available values(i)

∑14
i=1 available values(i)− 14

(1)

These three indicators provide global information on the stability of the forest canopy
photosynthetic activity.

• Landsat 8

We used three Landsat 8 images taken during the dry season of 2014, at 30 m resolution. We
acquired the surface reflectance data with the pre-processing already performed with the algorithm
developed by the NASA Goddard Space Flight Center (GSFC). We used 5 spectral bands (blue, green,
red, near-infrared and short-wave infrared) and we derived 13 indicators using the Orfeo toolbox [57].
We used the Carnegie Landsat Analysis System-lite (Claslite) to derive the Photosynthetic Vegetation
(PV), Non Photosynthetic Vegetation (NPV) and Bare Soil indexes [39].

• ALOS-1 PALSAR

We downloaded seven images ALOS-1 PALSAR (L-band) taken in 2010 from the JAXA (Japan
Aerospace Agency, http://www.eorc.jaxa.jp/ALOS/en/index.htm) platform. These images have 25-m
spatial resolution (“ALOS-1 mosaic 25 m” product) and are dual-polarized (HH and HV). The incidence
angle varies between 35◦ (near range) to 42◦ (far range). The images were correctly geo-referenced,
so we only processed the conversion from digital raw number (DN) to gamma and sigma following
these two equations [58,59]:

gamma [dB] = 10 × log10(DN2)− 83 (2)

sigma [dB] = 10 × log10(DN2)− 83 + 10 × log10(cosθ) (3)

We tested these two indicators, expecting a strong correlation between backscatter coefficients
and aboveground biomass [47].

• Sentinel-1

We acquired one image Sentinel-1 (C-band, dual polarization VV/VH, descending pass direction)
taken in May 2015, at 10-m resolution and in Interferometric Wide (IW) swath mode. We performed
the pre-processing using the free software Sentinel Toolbox, which allows the derivation of backscatter
coefficients and processing of the range Doppler terrain corrections using the 3 arc-seconds SRTM
Digital Elevation Model. We derived 9 indicators from the grey level co-occurrence matrix (GLCM)
that are based on the statistical relationship between the values of the pixels within a 9 × 9 pixels
window [60]. These indicators are relevant to quantify forest canopy texture [61].

The source, description of the remote sensing images and the derived indicators are detailed in
the Appendix A, Table A1.

2.4. Random Forest Regression Model

We used a random forest regression tree to explore the performance of the different remote
sensing data sources and derived indicators for AGB modelling and mapping. Regression trees are
particularly efficient for remotely sensed indicators that show unknown multivariate patterns and
nonlinear relationships [62].

http://www.eorc.jaxa.jp/ALOS/en/index.htm
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2.4.1. Data Preparation

We resampled the indicators at 20-m resolution using GRASS libraries and stacked them all
together to make sure they are georeferenced in the same system. This resolution matches with the size
of the plot measurements. For each indicator, we generated an automatic process to extract the mean
and standard deviation within the extent of each plot. We then compiled all the data in a file with the
identification of each plot (row 1 to 121) and the estimated AGB followed by the mean and standard
deviation of the 38 indicators (columns). Finally, this dataset is randomly mixed to avoid any biases
related to its original structure and is split into 10 folds (Figure 2). This number of folds (k) is often
suggested in order to balance bias limitation (lower value of k) and variability (higher value of k) [63].

Figure 2. Workflow of the evaluation of the indicators performance in AGB modelling and mapping.

2.4.2. Modelling AGB with Random Forest

For each independent indicator, regression trees recurrently split the data into more homogeneous
samples and identify the most significant indicator that gives best homogeneous sets of samples [64].
Random Forest grows multiple trees (500 trees in our study) by randomization of data subsampling
in order to improve the predictive power of regression and to limit overfitting which is the most
practical difficulty for decision tree models. Random forest provides for each independent indicator an
increase in mean-squared error (Percentage of IncMSE), which quantifies how much MSE increases
when that indicator is randomly permuted. This error measures the relative importance of each
indicator, where a low IncMSE implies that the indicator does not have much weight on the model
prediction and inversely [65]. Random Forest is used as a regression and mapping tool, but also as an
investigation tool to assess the importance of each indicator in the creation of the model and on its
global error. Random Forest is used more and more to estimate carbon reservoirs and perform biomass
regression [25,66,67].

Due to the limited number of AGB plots, we used the k-fold cross validation technique to estimate
regression performance [63,68]. This technique involves reserving a particular sample of the dataset
on which the Random Forest model will be tested, while the rest of the dataset is used for training.
For each of the 10 folds, the Random Forest model is trained on 9 folds (k − 1) and the 10th fold is used
to test the model and check its effectiveness. This process goes through each of the 10 folds until each
of the kfolds has served as a test set. After the end of each loop, we record the percentage of IncMSE
calculated for each of the 76 indicators and the predicted value of AGB. The average RMSE will serve
as the performance metric for the model.

We finally invert the model using the values of the remote sensed indicators across Paragominas
municipality to predict AGB.
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2.5. Geostatistical Analysis of Random Forest Model Residuals

Geostatistical analysis is used to explore the spatial autocorrelation of the model residuals and
evaluate whether model residuals data are independent (in the case of absence of autocorrelation) [69].
The presence of spatial autocorrelation or spatial structure of the model residuals would refer to any
patterns of gradients or cluster within the data that the AGB Random Forest model would not have
adequately been able to capture. To explore this spatial structure, we estimated an omnidirectional
variogram at short distances (6 km) on Random Forest residuals, and we used the usual permutation
test to compute a bi-lateral confidence band of pure spatial randomness [70,71].

2.6. Comparison with Avitabile et al. [23] AGB Dataset

The available Avitabile et al. [23] forest pantropical biomass map that displays aboveground
biomass density in units of Mg·ha−1 at a 920-m spatial resolution was used to compare the spatial
distribution of aboveground biomass of the degraded forest with the Random Forest predicted map.
In the Amazon basin, the Avitabile AGB map provides lower RMSE and bias compared to the Baccini
and Saatchi pantropical maps [21–23]. However, at the regional scale (e.g., Paragominas municipality),
the Avitabile map can present error patterns because the quality reference data of the highly degraded
forest were lacking and could not be used to calibrate the model [23].

2.7. Comparison with Degraded Forest Typology

To conduct a field validation of the predicted aboveground biomass values, we built a degraded
forest typology based on the observation of 140 forest sites in May 2015. Each observation is associated
with a GPS point (Garmin 60CSx, Garmin, Olathe, KS, USA), a description of the forest site and
illustrative photos. We extracted the values of the predicted AGB at the location of each forest site.
We finally used one-way ANOVA with post hoc Tukey tests to evaluate differences in predicted AGB
between the different forest classes of the typology.

This typology is a result of the combination of in-situ qualitative indicators of forest degradation
and semi-quantitative observations of the forest structure. First, we noted the presence or absence
of fire and logging marks (burned trees, strains, trunks, logging trails), of pioneer species (mainly
Cecropia species), which may indicate a recent opening of the canopy, and of trees with a diameter
at breast height (DBH) greater than 80 cm. Then, we measured canopy height and the number of
vegetative strata using a laser rangefinder and estimated the forest canopy texture (roughness) and the
percentage of gaps between emergent trees. These four forest structure indicators provide relevant
information on the vertical and horizontal process of forest degradation.

In order to make the typology representative of the diversity of degraded forest types (conserved,
legally logged, illegally logged and/or burned), we made sure that the sampling covered the different
forest landscapes and main zoning that can be found in Paragominas (see Figure 1).

2.8. Computational Aspects

Except for the statistics performed with the software ArcGIS (Esri, Redlands, CA, USA), all
developments were programmed under the R environment. We used the Raster, Random Forest,
shapefile, rgdal, geoR and gstat packages [62,71–75].

3. Results

3.1. Model and Indicator Performance

The mean variance explained by the random forest model is 28%, with a root mean squared
residual error (RMSE) of 97.1 Mg·ha−1. Depending on the AGB calibrated data and the associated
remotely sensed indictors, the random forest model performs differently with an explained variance
that ranges between 24% and 30% and an RMSE that ranges between 75.7 and 101.2 Mg·ha−1 (Table 2).
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Table 2. Random Forest model performance (mean squared residuals and percentage of variance
explained for each of the 10 k-fold random forest models).

Random Forest k-fold 1 1 2 3 4 5 6 7 8 9 10 Average

Mean of squared residuals (Mg·ha−1) 97.8 95.5 100.5 91.8 99.6 100.3 93.9 75.7 97.8 101.2 97.1
Percentage of variance explained 26 24 25 30 26 22 27 30 26 25 28

1 Number of Trees: 500, No. of Indicators Tried at Each Split: 25.

Six indicators (out of the 76) contribute the most to the 10 regression models, showing the highest
and most stable IncMSE scores (Figure 3). Three are derived from MODIS: mean of annual standard
deviation EVI, mean and standard deviation of annual mean EVI and three from Landsat: mean
infra-red (MIR), mean and standard deviation of bare soils.

Figure 3. Explained indicator performance (Percentage of IncMSE) of the Random Forest model.

3.2. Geostatistical Analysis of Random Forest Model Residuals

The main spatial variability in the AGB data was captured by the Random Forest model, and no
additive spatial variability can be explained through model residual interpolation. Figure 4 shows
a flat empirical variogram contained within the confidence band which validates the absence of
spatial structure within the Random Forest model residuals. We found similar results at smaller
(0 to 1500 m) and larger (0–200,000 m) spatial scales. The distribution of the residuals shows an overall
overestimation (high frequency of positive values, Figure 4B), which is important to consider when
predicting AGB for the Paragominas municipality.

3.3. Above Ground Biomass Map

The range of AGB predicted values was large, spanning from 57 to 454 Mg·ha−1. AGB was
unequally spatially distributed over the municipality (Figure 5). The forests in the 80-km-wide central
corridor have the lowest AGB values and are highly fragmented. The forests in the far-eastern and
western part of the municipality contain the highest AGB. The percentage of degraded forest (below
the threshold of 286 Mg·ha−1, see Section 2.2) reached 87%.
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Figure 4. (A) Spatial distribution of the model residuals (blue, green, yellow and red colors for the
respective four quartiles); (B) Histogram of the model residuals; (C) Variogram of biomass model
residuals (The grey shape shows the confidence band interval expected for each distance class).

Figure 5. Random Forest predicted values of Aboveground Biomass across Paragominas municipality.
In the western part of the municipality (stripped area), Sentinel-1 data was not available.

3.4. Comparison with Avitabile Pantropical Biomass Map

Figure 6 shows that our Random Forest model is more accurate than the Avitabile AGB map
(R2 higher and RMSE lower). The two models tend to overestimate for values of AGB lower than
200 Mg·ha−1 and underestimate for values higher than 300 Mg·ha−1. Despite the fact that the Random
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Forest has a higher explained variance and lower RMSE, the Avitabile dataset has a better potential to
capture the large variability of AGB, particularly for extreme values where the dispersion follows the
identity line. Random forest data are overall less scattered than Avitabile but display a much lower
deviation between estimated and observed AGB for values from 100 to 300 Mg·ha−1 (Random Forest
R2 = 0.28, Avitabile R2 = 0.14). This result is particularly interesting in the case of degraded forests
where biomass values are contained within this window (Table 1).

Figure 6. Observed (see Section 2.2) and estimated biomass from Avitabile [23] and the Random
Forest model.

The Avitabile map is less detailed than the Random Forest biomass map. It can be explained
by the difference of spatial resolution between the two datasets and also the contribution of local
remotely sensed indicators. After aggregating the Random Forest biomass map at the resolution of
Avitabile’s (Figure 7(3)), the difference between these two datasets shows similar AGB estimation in
non-degraded areas and an overestimation of AGB values in degraded (logged) forests for Avitabile’s
dataset (differences lower than −100 Mg·ha−1). The Random Forest map captures small-scale forest
disturbances such as roads, i.e., skids trails and log-landing areas and canopy gaps (pictures 1 and 2).
It also displays lower biomass values around the areas impacted by selective logging. These finely
detailed forest disturbances are not translated into the 920-m resolution Avitabile map. In this figure,
we can see that the forest-non forest transition is much better detailed with the Random Forest map
than with Avitabile maps. The transect (Figure 7(4)) and the map show that the north forest edge
is more degraded (probably burned with agriculture encroachment) than the south edge where the
transition between the two land uses is much clearer and sharper (Transect A–B, see Figure 1 for its
location). At this local scale, Avitabile data appear to stretch the values of AGB and thus smoothen the
distribution of AGB in transition areas.
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Figure 7. Comparison of AGB estimations, Random Forest, Avitabile [23] and the difference map
(1–3 respectively) in a selected zone representing the transition between non-forest to forest area (see
Figure 1 for precise location in Paragominas). The selective logging area and the logging road were
validated during the field trip.

3.5. Comparison with Degraded Forest Typology

The less degraded forest type (type F1) presents a closed canopy above 35 m, no signs of human
impact and 4 vegetative strata defined as follows: the shrub layer below 5 m, the under canopy layer
located around 15 m, the canopy layer at 25 m and the emergent layer that goes beyond 35 m. The most
valuable tree species harvested first are the emergent trees with a large diameter (higher than 80 cm).
This selective logging can cause small degradation vertically, with an impacted and lower canopy
and also horizontal damages generated by the extraction of the tree (type F2). When the selective
logging becomes more intense (type F3), all the trees taller than 35 m and larger than 80 cm diameter
are harvested, which causes a lowering of the canopy line at 25 m and big gaps inside the forest
structure with the presence of skid tracks, broken and unrooted trees, log landing and other logging
roads. Consequently, the degraded forest is much more sensitive to drought and fires, which can lead
to severe disturbance, lowering the canopy at 15 m with only two remaining vegetative strata. This
degraded forest type (F4) is often characterized by a high density of vegetative regrowth (pioneers
species). Trees with DBH less than 80 cm are also harvested which causes an opened and destructed
canopy. Finally, the intensification of fire leads to the most degraded type (F5) with only the shrub
layer remaining and a few trees from the under canopy layer (Figure 8).
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Figure 8. Five classes of degraded forest typology based on the observation of 140 forest sites in
May 2015.

The typology of the degraded forest allows us to evaluate the relevance of the regional forest
AGB mapping at the stand scale. The boxplots of Figure 9 show a relationship between the intensity of
degradation identified in the field and the Random Forest prediction. We can assume the homogeneity
of variances in the five degraded forest types (p-value = 0.09 > 0.05). Among the five types, only
type F1 is significantly different from the other types F2, F3, F4, F5 (ANOVA test with p-value < 0.05).
Degraded type F1 presented the highest values of AGB (average of 270 Mg·ha−1). Types F2, F3, F4, F5
had statistically similar values of AGB (200 Mg·ha−1), although we found a decreasing trend in the
mean predicted AGB.

Figure 9. Boxplots of predicted values of AGB calculated for the five-class typology of degraded forest
with the range (1st and 3rd quartile), the mean (line) and the median (cross).

4. Discussion and Conclusions

In this paper, we propose a novel approach to model and map AGB of degraded forests at the
regional scale, which provides more detailed and accurate information than the pantropical dataset.
We demonstrated that the model captures all spatial variability of the AGB data and identified the
most robust remotely sensed indicators. Besides the model bias in underestimating AGB values greater
than 300 Mg·ha−1, this AGB map constitutes key spatial information for the future management of
degraded forest.

4.1. Model Performance Analysis

• Extraction and selection of suitable indicators from remote sensing and future promising
development in AGB mapping
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There is a need to rank and prioritize the most suitable indicators to characterize degraded forests
from multisource remote sensing [33,34,76,77]. Our results show that Landsat spectral unmixing bare
soil, mid infrared and MODIS EVI standard deviation from the 2001 to 2014 time series were the
most suitable indicators to model AGB and are the less data input driven. These indicators thus
have the highest potential to map AGB. Unmixing approaches did perform well in our case, which
confirms reports of other authors [15,40] within the Amazon forest landscape. The bare soil Landsat
indicator best translates the proportion of bare soil within a 30 × 30 m Landsat pixels while mid
infrared is sensitive to humidity and therefore to forest structure and functioning [33]. These results are
coherent with the degradation process happening in the Paragominas forest. The emergent and most
valuable trees are targeted first through legal and illegal selective logging which triggers a vertical
and horizontal opening of the canopy [78]. This type of degradation directly affects the internal
forest structure, which leads to forest drying and a decrease in the local forest evapotranspiration and
photosynthetic activity. Another degradation type is located along forest edges, which are always
very degraded and impacted by local drying effect, fire or slow encroachment due to agriculture
expansion (i.e., swidden agriculture) [79]. The MODIS compiled standard deviation of EVI represents
the stability over time of the annual mean EVI and thus annual photosynthetic activity. A drop in
this activity in one particular year will lead to a high standard deviation value and information on
potential degradation activity [79].

The other indicators have a much lower performance score, which indicates a lower sensitivity to
the AGB range of values. The usual vegetation indices extracted from Landsat such as NDVI or SAVI
are not sensitive enough for AGB of degraded forests. This may be related to the over saturation of the
signal in the case of a tropical forest canopy and the measured photosynthesis activity, which do not
allow differentiation between two types of degraded forests [56].

For radar data, one single data and related derived indicators (intensity coefficients and texture)
are not sensitive enough to model AGB. To further develop this modelling approach, radar needs
to be used as time series data, which would provide better information on the forest canopy status.
Further investigation is also required on the preprocessing steps (e.g., filtering noise method) and on
the derived texture indicators. To the extent of our knowledge, degraded forest structure and status
remain understudied, with a lot of technical aspects (frequency of the time series, spatial resolution,
polarizations, incident angles and frequency bands) that need to be tackled [80–82].

The integration of Sentinel-1 and Sentinel-2 time series would be an interesting way to improve
the model performance combined with daily Planet images that can map at 3-m resolution the forest
canopy. Very high resolution remote sensing offers a unique opportunity to characterize degraded
forest structure using canopy texture mapping [60,83]. These analysis provide perspective for future
space-borne LIDAR and RADAR data satellites (US GEDI mission and ESA Biomass) which will
enable us to provide data sets on forest structure dynamics and forest biomass around the pantropical
belt [84].

• Identification of proper algorithms to develop biomass estimation models and their related
uncertainty analysis

Although the model is robust because it has been trained and tested 10 times on independent
and randomly selected datasets, we identified three potential error sources. First, the limitations can
be linked to the large diversity of degraded forest types that are modelled and the limited number of
ground truth data. More in-situ AGB data would help to train the model on large portion of the data
set and better capture its underlying trend [85]. Then, a certain time gap between the collection of AGB
and the remote sensing data needs to be noted and accounted. This gap is due to remote sensing data
quality and availability and can be up to 5 years in the case of Sentinel-1 images. In the case of MODIS
time series, there is also a temporal gap as we modelled single date forest status (i.e., AGB) with
temporal indicators that are sensitive to photosynthetic activity dynamics. These temporal mismatches
could introduce some uncertainty in the model. However, in light of the minimal increases in AGB
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within burned and illegally logged forests (representing 88 out of 121 field plots) over a five-year
period, we do not consider this uncertainty to be meaningful [86]. Finally, the resampling of the
remote sensing indicators to a higher resolution (20 m resolution) may introduce bias referring to the
“ecological fallacy” problems [87]. These problems are recurrent in the aggregation/disaggregation of
remote sensing data and could be minimized by adapting the field collection protocol to the remote
sensing data.

Despite these limitations and the low variance explained, we demonstrated that all spatial
variability of the AGB data has been captured by the model through its input indicators. This gives
interesting insights into how to improve local models to characterize degraded forests using biomass
and how to quantify the influence of input indicators on the final modelling result.

• Comparison with existing AGB maps

When comparing with pantropical datasets such as the Avitabile AGB map, we noted differences
in the statistical accuracy with local AGB datasets and in the levels of details which are particularly
important for degraded forest biomass mapping. Avitabile data do not capture all the details of local
AGB distribution in small-scale degraded and complex mosaic forest due mainly to their coarse spatial
resolution. Transition zones from forest/non-forest areas are better and more precisely described using
local trained models, where logging roads, degraded forest edges and other distribution are mapped.

4.2. AGB Spatial Distribution in the Municipality

In the map produced, the spatial distribution of AGB varies depending on land-uses and landscape
organization [88]. Degraded forests are dominant in the Paragominas forest landscape. The central
corridor is a mosaic of agricultural lands (agribusiness) dominated by large-scale soybean cultivation
and pasturelands and with fragmented patches of degraded forests. Forest biomass values range
between 100 to 150 Mg·ha−1 with the lowest values within the first 200 m of forest edge which is
consistent with previous studies [79]. Forest fragmentation is even more important in smallholder
areas (see Figure 1) where population density is high. These areas were major charcoal production
hotspots (prohibited since 2008), which caused severe impacts on the forest resource. The transition
between these areas and the indigenous protected reserve is sharp within the forest AGB values (with
AGB higher than 250 Mg·ha−1 in the reserve).

4.3. Characterization of Degraded Forests

From a field point of view, degraded forests are a gradient of forest types marked by a certain
canopy height and forest structure that vary depending on the intensity of past degradation trajectories.
The five-class typology does not represent all the complexity of degraded forests but remains relevant
in terms of modelled forest biomass. Besides the fact that only type F1 was significantly different
from the four others, we found an interesting trend in the modelled biomass that requires further
investigation. Type F3 presented the highest variability, which could be linked with an over-evaluation
of the level of degradation in the field and the disproportionate size sample of this class. Type 5,
the most degraded stage, presents the lowest predicted biomass (around 150 Mg·ha). These findings
accord with those identified by the RAS team during the collection of in-situ AGB data (Table 1). This
typology based on the observation of structural parameters (canopy height, number of vegetative
strata, canopy rugosity, presence of emergent trees) constitutes a first step in the characterization of
degraded forests which could help in the calibration and validation of other forest biomass and carbon
stock assessment or the monitoring of forest degradation [76,89]. It also summarizes a one-shot time
visualization of the status of degraded forests. From this, the next priority is to monitor the dynamics
of degraded forest status over time using time series remote sensing [90].
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4.4. How Can These Data Be Useful for Forest Management at the Regional Scale?

Besides the limitations of the proposed modelling approach and the evaluated bias, we showed the
importance of regional AGB mapping in Paragominas human-modified forest landscapes, in particular
with the capacity to identify patterns of different forest status values linked with degradation and
agricultural activities at the regional scale. This agricultural frontier is characterized by fragmented
forest impacted by the accumulation of small-scale human disturbances that cannot be captured by
pantropical databases, by forest field inventories or by high detailed/low extent coverage remote
sensing sources (LIDAR).

In the context of zero deforestation commitment, this forest AGB modelling and mapping is
particularly important in order to provide to decision makers with spatially detailed information on
the status of the 50% remnant forest [91,92]. The agricultural expansion over forest areas is now severely
restricted [50]. Hence, the sustainable management of degraded forests is becoming a priority in order
to enhance forest resources at different levels of disturbance [93] as much as the urgent obligation
to prevent further degradation. The quantification of the forest status and the understanding of the
drivers of degradation are necessary in order to improve the management of forest landscape.
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Appendix A

Table A1. Remote sensing metadata and derived indicators.

Satellite
Sources Links Date Resolution ID Preprocessing Spectral Bands Indicators

MODIS http://modis.gsfc.nasa.gov/ 2001–2014
every 16 days 250 m MOD13Q1:h13v09

Georeferenced,
removed cloud
covered pixels,

atmospheric
corrections

Red (620–670 nm), Near
infrared (841–876 nm)

EVI mean, EVI standard
deviation, EVI variance

Landsat 8 http://earthexplorer.usgs.gov/
27 October 2014

16 September 2014
12 June 2014

30 m
LC8220622014300LGN00
LC8220622014259LGN00
LC8220622014163LGN00

Georeferenced and
reflectance

product

Blue (450–515 nm),
Green (525–600 nm),

Red (630–680 nm), Near
Infrared (845–885 nm),
Short Wave Infrared

(1560–1660 nm)

PV, NPV, Bare Soil
(Claslite unmixing indicators)

B, G, R, NIR, SWIR
NDVI, RVI, RI, SAVI, NDWI,
MSAVI, GEMI, WDVI, NDTI,
TSAVI, NDPI, IPVI, TNDVI

(Orfeo Toolbox derived indicators)

ALOS-1
PALSAR http://global.jaxa.jp/

26 May 2010
18 July 2010
23 July 2010
28 July 2010

7 August 2010
9 September 2010

25 m N00W050

Georeferenced and
calibrated:

(1) gamma [dB]
(2) sigma [dB]

L-band (1.27 GHz),
dual-polarisation

(HH, HV)
Gamma [dB], Sigma [dB]

Sentinel-1 https://scihub.esa.int/ 4 May 2015 10 m L1 (Ground Range
Detected)

Calibration and
georeferenced

(Sentinel-Toolbox
Software)

C-band
dual-polarisation

(VV, VH)

Sigma [dB]
Grey Level Co-occurence matrix

(9 × 9 pixels): Contrast,
Dissimilarity, Energy, Entropy,
Correlation, Mean, Variance,

Homogeneity, Maximum
(Sentinel Toolbox derived indicators)

http://modis.gsfc.nasa.gov/
http://earthexplorer.usgs.gov/
http://global.jaxa.jp/
https://scihub.esa.int/
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