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ABSTRACT

The purpose of this paper is to derive new asymptotic proper-
ties of the robust adaptive normalized matched filter (ANMF).
More precisely, the ANMF built with Tyler estimator (TyE-
ANMF) is analyzed under the framework of complex ellipti-
cally symmetric (CES) distributions. We show that the dis-
tribution of TyE-ANMF can be accurately approximated by
the well-known distribution of the ANMF built with the sam-
ple covariance matrix (SCM-ANMF) under the Gaussian as-
sumption. To that end, the asymptotic properties of the dif-
ference between both ANMF detectors are derived. By com-
parison with the state of the art, the asymptotic properties of
the TyE-ANMF are shown to be better approximated by the
SCM-ANMF rather than using the NMF (test built with the
true CM). Some Monte-Carlo simulations support that claim
and demonstrate the interest of this theoretical result.

Index Terms— Adaptive Normalized Match Filter, Com-
plex Elliptically Symmetric distributions, Sample Covariance
Matrix, Tyler estimator, robust estimation

1. INTRODUCTION

Detection theory has received a considerable attention in sta-
tistical signal processing. In particular, some detection prob-
lems that have been studied for radar processing can be found
in [1–6]. In practice, the noise parameters are unknown and
have to be estimated. These parameters include the noise co-
variance matrix (CM) which is an important quantity since the
performance of the main adaptive detectors strongly relies on
its estimation accuracy. For instance, this is the case for the
adaptive normalized matched filter (ANMF) [1]. In recent
years there has been an increasing interest for deriving new
CM estimators. Under the Gaussian assumption, the clas-
sical covariance estimator is the well-known sample covari-
ance matrix (SCM) that is known to be distributed according
to a Wishart distribution [7]. Since the SCM is a maximum
likelihood estimator (MLE), it has nice asymptotic properties.
However, it also suffers from major drawbacks. For instance,
when the distribution of the training data is non-Gaussian, or
when the data are corrupted by some outliers, the performance
of the SCM generally degrades significantly.

Robust estimation theory offers an alternative to the SCM
thanks to so-called M -estimators, that have been studied in
the seminal works of Huber [8] and Maronna [9] in the real
case. This has been recently extended to the complex case,
which is sometimes more useful for signal processing appli-
cations, in [10]. Many recent works related to robust esti-
mation have been conducted within the framework of com-
plex elliptically symmetric (CES) distributions that encom-
pass a large number of well-known distributions [11]. These
M -estimators, especially Tyler estimator, also referred to as
fixed-point (FP) estimator and denoted as M̂FP [12,13], pro-
vide very good results when they are used in place of the true
noise covariance matrix in many radar detectors. Unfortu-
nately, the statistical analysis of the resulting adaptive detec-
tors is difficult, mainly because of the non explicit form of
these estimators. The asymptotic distribution of the ANMF
built with M -estimators has been derived in [14]. The objec-
tive of this work is to better characterize the asymptotic dis-
tribution of the ANMF test built with Tyler estimator (TyE-
SCM). To that end, we caracterize the asymptotic variance
of the difference between the SCM-ANMF (ANMF based on
the SCM) and the TyE-ANMF. Since the SCM-ANMF has
well-known properties in the Gaussian context, an important
consequence of the proposed result is to theoretically justify
the use of the TyE-ANMF. More specifically, we will show
that the TyE-ANMF has the same statistical properties as the
SCM-ANMF, with the advantage of being more robust to the
presence of outliers.

This paper is organized as follows. Section II introduces
some background about CES and Wishart distributions, Tyler
estimator and the ANMF. Section III presents the main contri-
bution of the paper with discussions. Section IV shows Monte
Carlo simulations validating the theoretical analysis. Finally,
some conclusions are drawn in Section V.

Notations. Vectors (resp. matrices) are denoted by bold-
faced lowercase letters (resp. uppercase letters). T and H are
the transpose and Hermitian operators. N and CN denote the
real and complex normal distributions. ∼ means ”distributed
as”, d→ denotes convergence in distribution and⊗ denotes the
Kronecker product. vec is the operator which transforms a
matrix m × n into a vector of length mn, concatenating its



n columns into a single column. Moreover, I is the identity
matrix, 0 the vector (or matrix) of zeros with appropriate di-
mension and K is the commutation matrix which transforms
vec(A) into vec(AT ).

2. BACKGROUND

2.1. CES Distributions

Let z be an m-dimensional complex circular random vector.
This vector has a CES distribution if its probability density
function (p.d.f.) can be written as

hz(z) = |M|−1gz

(
(z− µ)HM−1(z− µ)

)
(1)

where hz : [0,∞) → [0,∞) is any function such that (1) de-
fines a PDF, µ is the statistical mean and M is a scatter matrix.
The matrix M reflects the structure of the covariance matrix of
z, i.e., the covariance matrix is equal to M up to a scale factor.
This CES distribution will be denoted by CESm(µ,M, gz).
Note that the Gaussian distribution is a particular case of CES
distributions for which gx(x) ∝ e−x

2

, that will be denoted
x ∼ CNm(µ,M). In this paper, we will assume that µ = 0.
Without loss of generality, the scatter matrix will be equal to
the covariance matrix when the latter exists. However, when
the data distribution has a none finite second-order moment,
then we will simply consider the scatter matrix estimator.

2.2. Tyler estimator

Let (z1,...,zN ) be an N -sample of m-dimensional complex
independent vectors with zk ∼ CESm(µ,M, gz). An M -
estimator, denoted by M̂, is defined by the solution of the
following M -estimating equation

M =
1

N

N∑
k=1

ϕ(zHk M−1zk)zkzHk (2)

where ϕ is any real-valued weight function on [0,∞) that
does not need to be related to the PDF of the underlying CES
distribution. Thus M -estimators constitute a wide class of
scatter matrix estimators. Existence and uniqueness of the
solution of (2) as well as the convergence of the correspond-
ing recursive algorithm have already been shown, provided
the function ϕ satisfies a set of general assumptions [11]. In
particular, the resulting estimators are consistent estimators of
the CM (up to a scale factor) [11].

For the particular function ϕ(s) = m/s, Tyler estimator
M̂FP is the solution (up to a scale factor) of the following
equation

M̂FP =
m

N

N∑
k=1

zkzHk
zHk M̂

−1
FP zk

. (3)

Moreover, for all M -estimators M̂ verifying (2), one has

√
Nvec(M̂−M)

d→ CN(0,Σ,Ω) (4)

where Σ and Ω are defined by

Σ = ν1MT ⊗M + ν2vec(M)vec(M)H ,

Ω = ν1(MT ⊗M)K + ν2vec(M)vec(M)T
(5)

and where ν1 an ν2 are real scalars depending on the un-
derlying CES distribution and the function ϕ (see [10, 11]).
Note that the previous result is also valid for Tyler’s esti-
mator for any CES distribution with ν1 = (m + 1)/m and
ν2 = −(m+ 1)/m2 (see [13] for details).

2.3. Wishart distribution

The complex Wishart distribution CW (N,M) is the distri-
bution of

∑N
k=1 xkxHk , when xk are complex circular i.i.d.

Gaussian vectors with zero mean and covariance matrix M.
Let

M̂SCM =
1

N

N∑
k=1

xkxHk (6)

be the related SCM which will be also referred to as a Wishart
matrix. Its asymptotic distribution is given by

√
Nvec(M̂SCM −M)

d→ CN(0,MT ⊗M, (MT ⊗M)K).
(7)

Note that the previous result can be seen as a particular case
of the result obtained for the M -estimators in (5) with ν1 = 1
and ν2 = 0 [15]. This shows that the M -estimators and Tyler
estimator behave asymptotically as the SCM, the difference
coming from the values of the quantities ν1 and ν2.

2.4. ANMF test

Consider the problem of detecting a known complex signal
vector p from the received data z = αp + c, where c is the
unobserved complex noise (clutter) random vector and α ∈ C
is a complex amplitude modeled as an unknown determin-
istic parameter or random parameter , depending on the ap-
plication. In this paper, we assume that α is a complex un-
known parameter accounting for both channel propagation ef-
fects and target backscattering and p is the transmitted known
radar pulse vector. The problem of detecting the signal p can
then be expressed as a the following binary hypothesis test{

H0 : z = c zk = ck, k = 1, ..., N

H1 : z = αp + c zk = ck, k = 1, ..., N

where the ck ∼ CESm(µ,M, gc) are N signal-free indepen-
dent measurements, traditionally called the secondary data,



used to estimate the background covariance matrix M. As-
suming that the noise follows a CES distribution with covari-
ance matrix M, we investigate the properties of the following
ANMF detector [1]

H(M̂) =
|pHM̂

−1
z|2

(pHM̂
−1

p)(zHM̂
−1

z)

H0

≶
H1

λ. (8)

Assuming that the SCM is used, the resulting PDF ofH(M̂SCM )
is given by fH(M̂SCM )(u) = K(1−u)a−22F1(a, a; b;u)1[0,u](u)

where K = (a−1)(m−1)
N+1 , a = N − m + 2, b = N + 2 and

2F1(·) is the hypergeometric function [16]. The theoretical
relationship between the detection threshold and the Proba-
bility of False Alarm (PFA) Pfa = P (H(M̂) > λ|H0) =
(1− λ)m−1 is defined as [17]

Pfa = (1− λ)a−12F1(a, a− 1; b− 1;λ). (9)

Note that the distribution of H(M̂) depends on the distribu-
tion of the vector z. For any estimator M̂ satisfying equation
(2), one has the following result, conditionally to z, derived
in [14]

√
N(H(M̂)−H(M))z

d→ N(0,ΣH) (10)

where ΣH is defined by

ΣH = 2ν1H(M)(H(M)− 1)2. (11)

Note that for Tyler estimator one has ν1 = (m+ 1)/m.

3. MAIN CONTRIBUTION

This section is devoted to the main contribution of this pa-
per. Let (z1,...,zN ) be an N -sample of m-dimensional com-
plex independent vectors with zk ∼ CESm(0,M, gz), k =
1, ..., N . These samples admit the following representation
zk =

√
τkxk/‖xk‖, where xk ∼ CNm(0,M) and τk is an

independant random variable whose p.d.f. is linked to the
density generator gz [11]. Note that Tyler estimator is distri-
bution free, so it is identical when built either from the CES
samples zk, or their Gaussian kernels xk (unavailable in prac-
tice). Consider the SCM M̂SCM built with (x1,...,xN ) and the
FP estimator M̂FP built with (z1,...,zN ). The following the-
orem shows that TyE-ANMF converges quickly towards the
regime of the SCM-ANMF in a Gaussian context, even if the
samples are CES distributed.

Theorem 3.1 Let us consider the ANMF test defined by (8).
Thus, conditionally to the distributions of z, the asymptotic
distribution of H(M̂FP )−H(M̂SCM ) is

√
N(H(M̂FP )−H(M̂SCM ))

d→ N(0,ΣH) (12)

where ΣT is defined by

ΣT =
2

m
H(M)(H(M)− 1)2. (13)

Before turning into the sketch of the proof, some comments
are appropriate.

Remark 3.1 • The asymptotic variance in (13) is smaller
than the ones of (11) when ν1 is greater than one1.
This result theoretically justifies that the behavior
of H(M̂FP ) is closer to H(M̂SCM ) than to H(M)
(ΣT < ΣH ). An important consequence is a better de-
tection performance prediction when using H(M̂SCM )
instead of H(M).

• The asymptotic variance in (13) tends to 0 when the
size m increases: for high dimensional observations,
this approximation is more accurate since ΣT � ΣH .
Interestingly, this is in agreement with recent results ob-
tained in [18] using large random matrix theory.

Proof 3.1 We provide here the main lines of the proof while
the detailed one will be given in a forthcoming paper.

Let us first rewrite the right hand side of equation (12) as
√
N(H(M̂FP )−H(M̂SCM ))

=
√
N(H(M̂FP )−H(M)−H(M̂SCM ) +H(M)))

=
[
1,−1

] [ √N(H(M̂FP )−H(M))√
N(H(M̂SCM )−H(M))

]
(14)

Therefore

Σ
(N)
H = NE[(H(M̂FP )−H(M̂SCM ))

(H(M̂FP )−H(M̂SCM ))H ]

= Σ
(N)
H1 − 2Σ

(N)
H2 + Σ

(N)
H3 (15)

with

Σ
(N)
H1 = NE[(H(M̂FP )−H(M))(H(M̂FP )−H(M))H ]

Σ
(N)
H2 = NE[(H(M̂FP )−H(M))(H(M̂SCM )−H(M))H ]

Σ
(N)
H3 = NE[(H(M̂SCM )−H(M))(H(M̂SCM )−H(M))H ]

As shown in [10], a first approximation of H(M̂) yields

H(M̂) ' H(M) +H ′(M)vec(M̂−M) (16)

which leads to Σ
(N)
H2 ' H ′(M)Σ

(N)
M H ′(M)H where Σ

(N)
M =

E[vec(M̂FP −M)vec(M̂SCM −M)H ].
Let us now show that

Σ
(N)
M → ΣM = (MT ⊗M)− 1

m
vec(M)vec(M)H . (17)

Let us introduce the notations ∆ = M−1/2M̂M−1/2 − I and
δ = vec(∆) where M̂ denotes an estimator of M. Using these
notations, Σ

(N)
M can be rewritten as

Σ
(N)
M = (MT/2 ⊗M1/2)NE[δFP δ

H
SCM ](MT/2 ⊗M1/2)H .

1which is the case for all the considered CM estimators.



The next step is to derive the expression of NE[δFP δ
H
SCM ]

when N → +∞. After few manipulations, one can show that

NE[δFP δ
H
SCM ]→ m+ 1

m

[
mA− vec(I)vec(I)T

]
where A = E

[
vec
(xxH

xHx

)
vec
(

xxH
)H]

,with x ∼ CN(0,M).
Finally, a computation of A leads to (17).
Using H ′(M)vec(M) = 0 (see [10]), one has

Σ
(N)
H2 → ΣH2 = H ′(M)(MT ⊗M)H ′(M)H

Using the following expression of H’(M) derived in [14]

H ′(M) = − H(M)

[
vec(pzH)

(pHM−1z)
+
vecH(zpH)

(zHM−1p)

− vecH(ppH)

(pHM−1p)
− vec(zzH)

(zHM−1z)

]
(MT ⊗M)−1,

then, one obtains the following final result

ΣH = 2

(
m+ 1

m
− 2 + 1

)
H(M)(H(M)− 1)2

=
2

m
H(M)(H(M)− 1)2.

This concludes the proof.

4. SIMULATION RESULTS

This section considers the ANMF built with the FP and SCM
estimators. The results are obtained for complex Gaussian-
distributed2 zero-mean data with covariance matrix M whose
elements are defined by Mi,j = ρ|i−j|, i = 1, ...,m.
The correlation coefficient ρ is set to 0.5. The opera-
tor A is defined as the empirical mean of the quantities
A(i) = var(H(M̂(i))) computed using I Monte Carlo runs.

Figure 1 illustrates the theoretical result of Theorem 3.1.
The empirical variance of the difference between the TyE-
ANMF and the SCM-ANMF is compared to the theoretical
result. One can see that the error decreases very fast as the
number N of samples increases. Furthermore, simulations
show that the approximation is also valid for small N .

Figure 2 displays the empirical variances of the TyE-
ANMF and of the difference between TyE-ANMF and SCM-
ANMF (Theorem 3.1). It also displays the theoretical result
that has been derived in (13) (blue horizontal line). First,
one can note that the variances of the TyE-ANMF largely
exceed the variance of the difference, which supports the
idea of approximating the properties of TyE-ANMF with the
well-known ones of the SCM-ANMF in a Gaussian context.
Second, one can observe that the empirical results tend to the
theoretical asymptotic values, which is in agreement with our
statement.

2Note that a change in the underlying distribution will not affect the re-
sults since Tyler estimator is distribution-free over the class of CES.
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Fig. 1. Difference between the empirical variance of the dif-
ference of two ANMF tests (varN = var(

√
N(H(M̂FP ) −

H(M̂SCM )))) and the theoretical result (Eq. (13)) versus the
number N of observations for m = 20 and m = 100.
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Fig. 2. Empirical variance of the TyE-ANMF, the SCM-
ANMF (obtained from (10)) and of the difference between
them and the theoretical result (equation (13)) for m = 20.

5. CONCLUSION

This paper analyzed the asymptotic distribution of the ANMF
built with Tyler estimator (TyE-ANMF) when the observed
data have a CES distribution. We have shown that the TyE-
ANMF behaves as the SCM-ANMF in a Gaussian context,
even if the samples have a CES distribution. This is important
in practice since it allows one to use the TyE-ANMF for de-
tection purposes and to theoretically adjust parameters (e.g.,
the detection threshold) thanks to the SCM-ANMF properties.
Here, the SCM plays only a theoretical role since for CES-
distributed data, it is neither robust nor accurate. In general,
this result supports the idea of approximating the properties of
the Tyler estimator by the ones of Wishart distributions. Since
the Wishart distribution is well-known, this allows us to bet-
ter understand the behavior of Tyler estimator in the context
of CES-distributed data.
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