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New insights into the statistical properties of
M -estimators

Gordana Draskovié, Student Member, IEEE, Frédéric Pascal, Senior Member, IEEE

Abstract—This paper proposes an original approach to bet-
ter understanding the behavior of robust scatter matrix M-
estimators. Scatter matrices are of particular interest for many
signal processing applications since the resulting performance
strongly relies on the quality of the matrix estimation. In this
context, )/ -estimators appear as very interesting candidates,
mainly due to their flexibility to the statistical model and their
robustness to outliers and/or missing data. However, the behavior
of such estimators still remains unclear and not well understood
since they are described by fixed-point equations that make their
statistical analysis very difficult. To fill this gap, the main contri-
bution of this work is to prove that these estimators distribution
is more accurately described by a Wishart distribution than by
the classical asymptotical Gaussian approximation. To that end,
we propose a new ‘“Gaussian-core” representation for Complex
Elliptically Symmetric (CES) distributions and we analyze the
proximity between M -estimators and a Gaussian-based Sample
Covariance Matrix (SCM), unobservable in practice and playing
only a theoretical role. To confirm our claims we also provide
results for a widely used function of ) -estimators, the Maha-
lanobis distance. Finally, Monte Carlo simulations for various
scenarios are presented to validate theoretical results.

Index Terms—M -estimators, Complex Elliptical Symmetric
distributions, robust estimation, Wishart distribution, Mahanalo-
bis distance.

I. INTRODUCTION

In signal processing applications, the knowledge of scatter
matrix is of crucial importance. It arises in diverse applications
such as filtering, detection, estimation or classification. In
recent years, there has been growing interest in covariance
matrix estimation in a vast amount of literature on this topic
(see e.g., [1]-[8] and references therein). Generally, in most
of signal processing methods the data can be locally mod-
elled by a multivariate zero-mean circular Gaussian stochastic
process, which is completely determined by its covariance
matrix. Complex multivariate Gaussian, also called complex
normal (CN), distribution plays a vital role in the theory of
statistical analysis [9]. Very often the multivariate observations
are approximately normally distributed. This approximation
is (asymptotically) valid even when the original data is not
multivariate normal, due to the central limit theorem. In that
case, the classical covariance matrix estimator is the sample
covariance matrix (SCM) whose behavior is perfectly known.
Indeed, it follows the Wishart distribution [10] which is the
multivariate extension of the gamma distribution. Thanks to
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its explicit form, the SCM is easy to manipulate and therefore
widely used in the signal processing community.

Nevertheless, the complex normality sometimes presents a
poor approximation of underlying physics. Noise and interfer-
ence can be spiky and impulsive i.e., have heavier tails than
the Gaussian distribution. An alternative has been proposed by
introducing elliptical distributions [11], namely the Complex
Elliptically Symmetric (CES) distributions. These distributions
present an important property which states that their higher
order moment matrices are scalars multiple of their corre-
spondent normal distribution. This presents a starting point
for the analysis that is done in this paper. These distributions
have been frequently employed for non-Gaussian modeling
(see e.g., for radar applications [12]-[16]).

Although Huber introduced robust M -estimators in [17] for
the scalar case, Maronna provided the detailed analysis of the
corresponding scatter matrix estimators in the multivariate real
case in his seminal work [18]. M-estimators correspond to a
generalization of the well-known Maximum Likelihood esti-
mators (MLE), that have been widely studied in the statistics
literature [19], [20]. In contrast to M L-estimators where the
estimating equation depends on the probability density func-
tion (PDF) of a particular CES distribution, the weight function
in the M-estimating equation can be completely independent
of the data distribution. Consequently, ) -estimators presents
a wide class of scatter matrix estimators, including the M L-
estimators, robust to the data model. In [18], it is shown that,
under some mild assumptions, the estimator is defined as the
unique solution of a fixed-point equation and that the robust
estimator converges almost surely (a.s.) to a deterministic
matrix, equal to the scatter matrix up to a scale quantity
(depending on the true statistical model). Their asymptotical
properties have been studied by Tyler in the real case [21].
This has been recently extended to the complex case, more
useful for signal processing applications, in [1], [6].

In most of the papers, three main M -estimators are studied
and used in practice: the Student’s M -estimator that is MLE
for t-distribution, the Huber’s M -estimator and the Tyler’s
M -estimator [22], also known as Fixed Point (FP) estima-
tor [2]. Student ¢-distribution is widely employed for non-
Gaussian data modeling since it offers flexibility thanks to
an additive parameter, namely the Degree of Freedom (DoF).
As a consequence, Student’s M -estimator is often used for
scatter matrix estimation. Huber’s M -estimator, especially its
complex multivariate extension, has received a lot of attention
since proven to be very robust to outliers. Tyler’s M -estimator
is not exactly an M-estimator' but it is very useful because

lespecially because it does not respect all Maronna conditions [18]



of rare property that any CES distribution with the same
scatter matrix leads to the same result (hence “distribution-
free”). Asymptotical properties of this estimator have been
analyzed in [1], [23]. Recently, it has been shown that the
behavior of Tyler’s estimator can be better approximated by a
Wishart distribution [24]. In this work, one aims at providing
more general results that can be applied to all M-estimators
and one wants to analyze the gain of this approach on the
robust Mahalanobis distance [25], [26], very useful in various
problems such as detection, clustering etc.

The contributions of this work are multiple. First, the
originality of the results comes from a new CES repre-
sentation introducing “Gaussian cores”. This representation
is a modified stochastic representation given in [1] and is
crucial to understand the proposed method. Second, in this
paper, M-estimators are, for the first time, analyzed thanks
to a comparison with a very simple estimator, the SCM.
Indeed, the direct statistical analysis of these estimators is
difficult because they are defined as the solution of an implicit
equation and have been analyzed only in classical asymptotic
regimes. Here, we propose a different approach to overcome
this difficulty. More precisely, a sort of distance between M-
estimators and the SCM is computed in order to propagate
SCM non-asymptotic properties towards M -estimators. Third,
the paper gives new insights into the correlation between M -
estimators and the corresponding SCM in the Gaussian context
which is the central part of our approach. Finally, we present
a practical interest of the results, specifically the application
to the Mahalanobis distance. Note that all the results are
provided in the complex case. For completeness purposes, a
supplemental material containing analogous results in the real
case is provided together with this article.

The rest of this paper is organized as follows. Section II
introduces the considered CES-models based on Gaussian
cores as well as the M-estimators and Mahalanobis distance.
Section III contains the main contribution of the paper with
discussions and further explanations. Moreover, closed-form
expressions are derived for some particular cases of M-
estimators and the application to the Mahalanobis distance
is presented. In Section IV, Monte Carlo simulations are
presented in order to validate the theoretical results. Finally,
some conclusions and perspectives are drawn in Section V.

Notations - Vectors (resp. matrices) are denoted by bold-
faced lowercase letters (resp. uppercase letters). 7, * # re-
spectively represent the transpose, conjugate and the Hermitian
operator. Re(.) and Im(.) denote respectively the real and
the imaginary part of a complex quantity, i.i.d. stands for
“independent and identically distributed” while ~ means “is
distributed as”. =, stands for “shares the same distribution
as”, i denotes convergence in distribution and ® denotes the
Kronecker product. 1 is indicator function and vec(-) is the
operator which transforms a matrix m X n into a vector of
length mn, concatenating its n columns into a single column.
Moreover, I, is the m x m identity matrix, O the matrix of
zeros with appropriate dimension and K is the commutation
matrix (square matrix with appropriate dimensions) which

transforms vec(A) into vec(AT), i.e. Kvec(A) = vec(AT).

II. PROBLEM FORMULATION
A. Complex distributions

Let z = Re(z) + jIm(z) be an m-dimensional complex
random vector which consists of a pair of real random vectors
Re(z) and Im(z). The distribution of z on C™ determines
the joint real 2m-variate distribution of Re(z) and Im(z) on
R?™ and conversely. To completely define the second-order
moments of Re(z) and Im(z), z is given by its covariance
matrix C = E[(z—p)(z—p)*] and pseudo-covariance matrix
P = E[(z—p)(z—p)T]. If the complex vector is circular (see
[1] for details), the pseudo-covariance vanishes, i.e. P = 0.

1) Generalized Complex Normal distribution: An m-
dimensional random vector has the generalized normal dis-
tribution z ~ CN(p, C, P) if its probability density function
(PDF) can be written as

o {4 -] vr 220

where g is the statistical mean and V =

ha(z) =

(D
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pP* C*
circular CN-distributed the pseudo-covariance will be omitted
in the notation, i.e. z ~ CN(u, C).

B. Complex Elliptically Symmetric distributions

An important class of circular distributions are the CES
distributions. An m-dimensional random vector has a CES
distribution if its probability density function (PDF) can be
written as

ha(z) = CIM| ™ g, (2 — )" M (z—p)) (2

where C' is a constant, g, : [0,00) — [0,00) is any function
(called the density generator) such that (2) defines a PDF and
M is the scatter matrix. The matrix M reflects the structure
of the covariance matrix C of z, i.e., the covariance matrix
is equal to M up to a scale factor C = ¢M?. This CES
distribution will be denoted by CES(ut, M, g5,). In this paper,
we will assume that g = 0, as it is generally the case for
many signal processing applications.

1) Stochastic Representation Theorem: A zero mean ran-
dom vector z ~ CES,,,(0, M, g,) if and only if it admits the
following stochastic representation [27]

22 \/QAu, 3)

where the non-negative real random variable @), called the
modular variate, is independent of the random vector u that
is uniformly distributed on the unit complex m-sphere and
M = AA* is a factorization of M.

2) Circular Complex Normal Distribution: Complex nor-
mal (Gaussian) distribution is a particular case of CES distri-
butions in which g,(z) = e~ * and C = 7~ ™. Thus, the PDF
of z~ CN(0,M) is given by

exp {—z"M~'z}

hz(z) = 7Tm|M|

4)

2if the random vector has a finite second-order moment (see [1] for details)



Note that for 4 = 0 the PDF (1) reduces to the PDF above
since the scatter matrix is equal to the covariance matrix C =
M (i.e., the scale factor £ is equal to 1). Regarding the previous
stochastic representation theorem, for CN-distributed vector z
the random variable ) has a scaled chi-squared distribution
Q ~ (1/2)x5m-

3) Gaussian-core representation of CES: In order to better

explain the context of this work, we will rewrite the stochastic

representation using the fact that u £ n/|n||, where n ~

CN(0,I). Hence, a random vector z ~ CES(0,M, g,) can
be represented as

z—=—An @)

with @ and A defined as in Eq. (3). If 1/Q/||n|| is independent
of n, the vector z is said to have a compound-Gaussian
distribution and it can be represented as z 2 \/7x, where
the non-negative real random variable 7, generally called the
texture, is independent of the vector x ~ CN (0, M).

4) Student t-distribution: A zero-mean random vector z
follows a complex multivariate ¢-distribution with v (0 < v <
o0) degrees of freedom if the corresponding stochastic repre-
sentation admits ) ~ mFy,, ... This distribution belongs to the
compound-Gaussian distributions where 7 ~ IG(v/2,v/2),
with IG denoting the inverse Gamma distribution. Note that
the case v — oo leads to the Gaussian distribution. The
multivariate t-distributions, besides the Gaussian distribution,
encompass also multivariate Laplace distribution (for v = 1/2)
and the multivariate Cauchy distribution (for » = 1) which
are heavy-tailed alternatives to the Gaussian distribution. The
complex multivariate ¢-distributions are thus useful for study-
ing robustness of multivariate statistics as a decrement of v
yields to distributions with an increased heaviness of the tails.
We shall write Ct, (0, M) to denote this case.

C. Wishart distribution

The complex Wishart distribution is the distribution of
K . . .
D ket xkka , when x; are m-dimensional complex circular
1.1.d. zero-mean Gaussian vectors with covariance matrix M.
Let

| K
Mscm = — E X X1
K *

be the related sample covariance matrix (SCM) which will be
also referred to as a Wishart matrix. Its asymptotic distribution
[10], is given by

\/EVCC (ﬁSCM — M) i) (CN (0, ESCM7 QSCM) (6)

where the asymptotic covariance and pseudo-covariance ma-

trices are
Ssem =MT oM 7
QSCM = (MT & M) K.

D. M -estimators

Let (z1,...,2zk) be a K-sample of m-dimensional complex
iid. vectors with z, ~ CES(0,M,g,). An M-estimator,

denoted by ﬁ, is defined by the solution of the following
M -estimating equation

K
— 1 —
M = Kkz_lw(zkHM 1zk) 21,21 (8)

where ¢ is any real-valued weight function on [0,00) that
respects Maronna’s conditions® [18]. The theoretical (popula-
tion) scatter matrix M -functional is defined as a solution of

E [gp (zHMglz) zzH] =M,

The M -functional is proportional to the true scatter matrix
parameter M as M, = o~ M, where the scalar factor ¢ > 0
can be found by solving

E[y(ot)] =m ©9)
with 1(at) = ¢(ot)ot and t = zH M1z

Theorem IL1 Let M be a complex M -estimator following
Maronna’s conditions [18]. Then

V' Kvec (ﬁ — M0> 4N (0, X, Q1)

where the asymptotic covariance and pseudo-covariance ma-
trices are
Sy =ML @M, + davec(M, )vec(M, )
Q=91 (MI ®@ M) K + davec(M, )vec(M,) ™.
(10)
The constants 91 > 0 and Yo > —11/m are given in [1], [6].

1) Tyler’s estimator: For the particular function ¢(t) =
m/t, Tyler’s estimator Mpp is the solution (up to a scale
factor) of the following equation

m K

MFP:7 E .-
K Hang=1

k=1 Zx MppZ

ZkaI.{

(11)
It should be noted that for Tyler’s estimator, 37 and €27 are

also defined as in Eq. (10) (see [23]) for o = 1 and

Y1 =m"Y(m+1)

Yo = —m 3 (m +1) (12)

2) Huber’s M-estimator: The complex extension of Hu-
ber’s M-estimator is defined by

K
—~ 1
pr— H —
Muw =5p 2 [Z’“Zk Ly M;mesﬁz}
k=1

n 1 Qi [ zkzkH 1
—p ———
KB k=1 zkHMHubZk

, (13)

o1 )
z;) M, 2k >D

where p? and 3 depend on a single parameter 0 < ¢ < 1,
according to ¢ = Fy,,(2p?) and B = Fhi2(20?) +p2%
where F,,(+) is the cumulative distribution function of a >
distribution with m degrees of freedom. Note that the Huber’s
M-estimator can be interpreted as a weighted combination
between the SCM and Tyler’s estimator.

3The weight function ¢ does not need to be related to the PDF of any
particular CES distribution, and hence M -estimators constitute a wide class
of scatter matrix estimators.



3) Student’s M-estimator: The MLE for the Student ¢-
distribution, denoted M;, is obtained as a solution of the
following equation

K

—~  m+v/2
e DR
s v/24+ 2 Mz

zsz

(14)

The motivation to analyze this estimator arises from the fact
that it presents a trade-off between the SCM and Tyler’s
estimator, but in a different way as for the Huber’s M-
estimator. Indeed, v — oo leads to the Gaussian distribution
and the resulting MLE is the SCM (¢(t) — 1) while v — 0
yields Tyler’s estimator (¢(t) — m/t). Finally, M; is widely
used both in theory (as a benchmark) and in practice which
presents strong motivation for understanding its behavior. Note
also that as others M-estimators, it is not always used as a
MLE for the ¢ distribution.

E. Mahalanobis distance

Mahalanobis distance [25], [26] is one of the most common
measures in multivariate statistics and signal processing. It is
based on the correlation between variables thanks to which
different models can be identified and analyzed. The Maha-
lanobis distance of z from p is given by A(u, M) where

A (pu, M) = (z — ) "M (2 — ). (15)
where p is population mean and M is common scatter matrix.
Since we work with zero mean vectors, we will analyze
A?2(M) = z" M1z, without loss of generality. If the data
are normal distributed, z ~ CN(0,M), and the distance is
based on the true scatter matrix M, then it follows a scaled
chi-squared distribution

A (M) ~ (1/2) X3n- (16)
Since the scatter matrix is usually unknown, the distance is
computed with its estimate. If the SCM is plugged in instead
of the true scatter matrix, the distance becomes /’-distributed*
with an asymptotic chi-squared distribution

A? (ﬁSCM) ~ KB (m, K —m+1) (17)
where /3'(a,b) denotes a Beta prime distribution with real
shape parameters a and b.

Beside testing if an observed random sample is from a
multivariate normal distribution (detecting outliers) [28], [29],
the Mahalanobis distance is also a useful way to determine
similarities between sets of known and unknown data. Thus,
it is widely used in classification problems [30], [31], feature
selection problems [32], anomaly detection in hyperspectral
images [33], [34], etc.

The object of our study is to analyze the robust Mahalanobis
distance, i.e. the distance computed with M -estimators, com-
paring it to the one based on the SCM, in order to better
understand its behavior.

“Beta prime distribution corresponds to a scaled F-distribution.

III. MAIN CONTRIBUTION

This section is devoted to the main contribution of the
paper. First, the results for the asymptotic distribution of the
difference between any M -estimator and the corresponding
SCM in a Gaussian context are derived. Then, the results for
particular M -estimators and the application to Mahalanobis
distance are presented. Finally, discussion and some expli-
cations are provided to emphasize the significance of the
theoretical results.

A. M-estimators

Basing on the previously introduced Gaussian-core model,
let us assume that K measurements are defined as follows:
o Zj = \/@/”nkHAnk ~ (CES(O,M), k=1,....K
with
- (n1,...,ng) be a K-sample of m-dimensional com-
plex i.i.d. vectors with ng ~ CN(0,I)
- @1,...,Qkx a K-sample of non-negative real i.i.d
random variables independent of the n’s
- M = AA is a factorization of M
(21,...,2x) corresponds to observed data, without more
specifications on their distribution, and are used to design an
M -estimator M.
Let us also consider some “fictive” data (non observable)
given by:
o X :Ank N(CN(O,M), /{3: 1,...,K
and consider the SCM ﬁSCM built with (x1,...,xx). Here-
after, we always consider the same model unless it is stressed
differently.

Theorem ITL1 Let M be defined by Eq. (8) and o is the so-
lution of Eq. (9). The asymptotic distribution of cIM —Mgc s
is given by

VEvec (aﬁ _ ﬁSCM) 4 CN(0,3,0) (18

where 3 and ) are defined by

Y = ooM” @M + gavec(M)vec(M)#,
Q = oy (M"®@M)K + oavec(M)vec(M)” (19)
with
am(m + 1) + c(c — 2b)
o1 = C2
a—m? a(m+1) m(c—b)

= — 2 20

2 (c—m?)? c? * c(c—m?) 20)

where a = E[%(oty)], b =
E[/(at1)ot1] +m?.

E[Y(oty)ta] and ¢ =

Remark IIL.1 Notice that the structure of the asymptotic
covariance matrix 3 is the same as in classical asymptotic
results (Egs. (7) and (10)) but the coefficients are different.
In the case of the identity matrix as covariance matrix, this
very particular structure involves only three non-null elements
dy,dy and ds at the positions (i,j) and equal to:

e dy=0140sfori=j=p+m(p—1)withp=1,...,m,



edy =01 fori=j5=p+m(qg—1) withp # q and
p,g=1,...,m,
eds=ogfori=p+m(p—1),5 =q+m(qg—1) with
pF#qand p,g=1,...,m.
Similar comment with slight modifications is valid for the
pseudo-covariance matrix.

Proof sketch: We provide only a sketch of the proof,
while the detailed proof of Theorem III.1 is given in Appendix
A. The main idea is to represent the matrix X as

S = 51(M) — 255(M) + Z5(M)

where 31 (M) and X3(M) are given by Eq. (10) and Eq.
(6), respectively and the matrix 3o(M) is the correlation
matrix between an M -estimator and the corresponding SCM
in a Gaussian context. The second important step relies on a
decomposition Xo(M):
_ _ H
32(M) = Dy (M)B(M) (D, (M)

where D (M) = E [d{vec¥;(M)}/d{vec(M}],

B>(M) = cov (vecW; (M), vecUy(M)) and
D> (M) = E [d{vec¥3(M)}/d{vec(M)}]  with
Uy (M) = op(z (07 M) 'z)zz? — M and
Uy(M) = xx — M, which is a generalization of a

result derived in [18]. Finally, using the dependence between
the practical and fictive data one can derive elements of the
matrix (M) and obtain the final result. [ |

Remark II1.2 In this paper, we consider only complex M-
estimators since they are used in signal processing applica-
tions. The results for the real case are given in the supple-
mental material. In the proof we provide only the steps that
differ from the ones obtained in the complex case. It should
be noted that the results of Theorem III.1 can also be derived
using the results for the real case and vector/matrix complex-
to-real mapping [1]. This is briefly discussed at the end of the
additional document.

B. Particular cases

1) Tyler’s estimator: Hereafter, the results derived in [24],
are presented . The first scale factor in the result can be
(roughly speaking) obtained from the Theorem III.1° while
the derivation of the second one requires a different approach.

Theorem IIL2 Let ﬁ rp be defined by Eq. (11). The asymp-
totic distribution of Mpp — Mg is given by

\/EVCC (MFP — ﬁscqw) i CN (O,EFP7QFP)

where X pp and Qpp are defined by

1 -1
Spp = —MT oM+ = 5 vec(M)vec(M)#
m m
1 -1
Qpp = —(M"oM)K+ m 5 vec(M)vec(M)7.
m m

Sby considering the function ¢(x) = m.

Remark IIL.3 In the case of Tyler’s estimator ¥(ot1) = m
which leads to a = m? b = m? and ¢ = m>. Substituting
these values in the expression of 01, one obtains the previous
result. This is in agreement with the results obtained in [24],
[35].

2) Student’s M-estimator: In this subsection, one gives the
results for the Student’s M -estimator and ¢-distributed data.
Let

e xp~CN(O,M), k=1,..,K

e 7 ~1G(v/2,v/2), k=1,.., K

o Zj = TkaNCtU(O,M), kil,...,K
where M = AAH is a factorization of M. Consider the
SCM Mg built with (x1,...,Xk) and the Student’s M-
estimator M; built with (z1,...,2zx).

Corollary III.1 Let ﬁ/\t be defined by Eq. (14). The asymp-
totic distribution of M; — Mgcon is given by (19) with
o1 =(m+v/2)" L and o9 = 2/v(m+1+v/2)(m+v/2)" L.

Proof: See Appendix B.
|
3) Huber’s M-estimator: The theoretical derivation of the
asymptotical distribution for Huber’s M -estimator is impossi-
ble, since the function (1) is not differentiable in each point.
However, we will present empirical results for this estimator
in the next section.

C. Application to Mahalanobis distance
In this subsection we provide results for the robust Ma-

halanobis distance which shows the main interest of our
contribution.

Theorem IIL3 Let M be defined by Eq. (8) and o is the
solution of (9). For the Mahalanobis distance based on oM
one has, conditionally to the distribution of z, the following
asymptotic distribution

HisM) 1z — zHEM =2
ﬁ(z (eM) 1z —z MSCZVIZ> gN(o,qb) 21

zHE M1z

where

¢ =01+ 02 (22)

with o1 and o4 given by Eq. (20) and where the notation (.),
stresses the conditional distribution, conditional to z.

Proof: See Appendix C. [ ]

Remark II1.4 The asymptotic variance of the robust Maha-
lanobis distance when centering around Wishart-based dis-
tance is smaller than the one when centering around the dis-
tance based on the true scatter matrix since o1+0oo < 1 +1s.
The results are accurate even when K is small which will be
demonstrate in the simulation section. These findings reveal
that the distribution of the robust (squared) Mahalanobis
distance is better approximated with a scaled Beta prime
distribution than with a scaled chi-squared distribution.



D. Discussion

Here are some general comments on the proposed results
as well as their great interest in practice.

1) First, to examine the values of the scale factors in Eq.
(20), we discuss the values of E[?(at1)], E[¢)(ot1)ts]
and E[¢'(oty)ot1] + m?. Since 0 < 9(ot1)) < M
and E(¢(ot1)) = m, using Bhatia-Davis inequality
[36], one has that var(¢(ot1)) < (M — m)m and
thus E(¢(ot1)?) < Mm. Since M is of same
magnitude as m and M > m, one obtains that
E(¢(ot1)?) is of same magnitude as m? (for

Tyler’s estimator E(¢(ot;)?) = m?2, for Student

M-estimator  E(¢(ot1)?) %, for
2

SCM E(y(ot1)?) = m? + m..). From this, it

follows that b is also of the same magnitude as m?

since m? = E(’(/J(O‘tl))E tg) < E(’(/J(O’tl)tg) <
VEW(ct1)2)VE(t2) < /(m2+m)\/E¥(ot1)?

It is obvious that ¢ is also of the same magnitude as
m?2. Generally, for all widely used M -estimators, one
obtains that a,b,c = m? + am, a > 0 which leads
to oy inversely proportional to m. For o5, one can not
provide precise information about its value, but it turns
out that it is eather smaller (e.g., Tyler’s estimator) or
unchanged (e.g., Student’s M-estimator) comparing to
the scale factor given in Eq. (10). This ensures the strong
“proximity” between M -estimators and SCM, justifying
the approximation of M -estimators behavior thanks to a
Wishart distribution.

2) The results derived in this paper show that all M-
estimators are asymptotically closer to the SCM than
to the true covariance matrix. By “close”, we mean
that the asymptotic variance when centering about the
Gaussian-based SCM is much smaller than the one when
centering about true scatter matrix. Also, this difference
is more obvious when the dimension m increases. This
remark is of course also obvious for Tyler’s estimator.

3) An important consequence of the previous remark is
that any M -estimators (including Tyler’s one) behavior
can be approximated by the SCM one (built with
Gaussian random vectors), namely by the Wishart
distribution. This is of great interest in practice since
all the analytical performance of functionals of robust
scatter estimators can be derived based on its equivalent
for the simplest Wishart distribution, while keeping the
inherent robustness brought by M -estimators (contrary
to the SCM). To summarize, robust estimators are
better approximated by Wishart distribution than by the
asymptotic Gaussian distribution with the true scatter
matrix as mean.

4) Another comment is that, roughly speaking, one has the
following result for any robust scatter matrix estimator
M:

VmK (M - MSCM) ——CN(0,D,Q)

where D and Q are “fixed”. Thus, one has a gain in
terms of convergence of m. This is agreement with
the results obtained in [37] for a different convergence
regime (m, K — oo with m/K tending to a positive
constant).

5) Finally, it should be pointed out that the results can be
applied to various signal processing problems. One can
note that the scaled variance of the robust Mahalanobis
distance when centering around the one based on the
SCM in a Gaussian context depends only on the scale
factors given by Eq. (20). This directly leads to the
conclusion that the distribution of the robust distance
can be better approximated with the one of the SCM-
based distance, than with the asymptotical chi-squared
distribution. These results can be extended to various
problems such as detection or classification problems (see

e.g., [35]).

IV. SIMULATIONS
A. Validation of the theoretical results

In this section we first present some simulations that validate
the theoretical results of Theorem III.1. Figure 1 presents the
empirical mean® norm of the > difference between the empirical
covariance matrix of /K (oM —Mgcas) (Eq. (18)), denoted
as ) and the theoretical results obtained in Theorem IIL.1.
The plotted results are obtained from ¢-distributed data with a
DoF v set to 2 and using the Student’s M -estimator (for which
theoretical results are explicitly given in Corollary III.1). The
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Figure 1: Euclidean norm of the difference between the empirical

covariance matrix of Eq. (18) and the theoretical result Eq. (19) with
o1 and o2 of Corollary III.1. m =5

scatter matrix M is defined by M, ; = pli=il i=1,...,m
The correlation coefficient p is set to 0, i.e. the scatter matrix
is equal to the identity matrix. One can notice that Figure 1
validates results obtained in Theorem III.1 since the quantity
tends to zero when the number K of samples tends to infinity.

Recall that following Remark III.1 when the scatter matrix
is equal to identity, the matrices X and €2 contain only three

Sobtained as the empirical mean of the quantities obtained from I Monte
Carlo runs (I = 10K)
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Figure 2: Empirical second diagonal element in the asymptotic
covariance matrices versus the dimension m for K = 1000.

¢ SCM corresponds to the empirical version of 1 in Eq. (7)

o TyE: empirical version of ¥; = m™~!(m + 1) in Eq. (12),

o Huber: empirical version of ¥; in Eq. (10) for Huber M-
estimator,

o Student: empirical version of ¢; in Eq. (10) for the Student
M -estimator,

o TyE-SCM: empirical version of 1/m of Theorem III.2,

« Huber-SCM: empirical version of o1 of Theorem III.1 computed
with Huber M -estimator,

o Student-SCM: empirical version of o1 =
Corollary III.1

(m + v/2)7" of

different non-null elements: o; + o3, 01 and 0. Here, we
will compare the empirical value of o to the empirical value
of 4 (ﬁrs/t\ scale factor of the empirical covariance matrix
of VK(oM — M)) in distinct non-Gaussian environments.
Results are similar for other coefficients and will be omitted.

Figure 2 presents results in various non-Gaussian cases. On
Figure 2(a), the results obtained for complex ¢-distributed data
(v = 2) are presented. The second diagonal element for Tyler’s
and Student’s M -estimator are plotted. The horizontal scale
presents the dimension of the data. The number of samples K
is set to 1000. One can notice that the second diagonal element
for M-estimators vanishes when m increases, as expected.

Indeed, if we look at the results from Theorem III.2 and
Corollary III.1, the first scale factor is inversely proportional
to the dimension m.

On Figure 2(b), we present the results for Tyler’s and
Huber’s M -estimators when the data are corrupted by some
outliers. The parameter ¢ for Huber’s M -estimator is set to
0.95, which means that 95% of the data are considered to be
Gaussian distributed while the remaining 5% are treated as
outliers. As it can be noted, the results are the same as on
Figure 2(a), showing the robustness of these two estimators
and validating the theoretical results. Generally speaking, these
tests show that M -estimators are better characterized by a
Wishart distribution than a Gaussian distribution centered on
the true matrix M.

B. Application to Mahalanobis distance

We now present results for the robust Mahalanobis distance.
On Figure 3(a), the results for Tyler’s M -estimator are pre-
sented when data follow a complex ¢-distribution with v = 2.
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(b) Huber’s M -estimator
Figure 3: Scaled empirical variance of the robust Mahalanobis

distance compared to the one when centering around SCM-based
distance (with the result of Theorem III.3) versus K, m = 10



The empirical variance of the robust distance and the one
of the difference between the robust distance and the distance
computed with the SCM in a Gaussian context (compared to
the theoretical result of Theorem 21 - Eq. (22)) are plotted. On
Figure 3(b) the results for Huber’s M-estimator are plotted.
95% of the data follow a Gaussian distribution, while the
outliers (remaining 5% of the data) are modelled with -
distribution (v = 2). One can notice that the value of the
robust distance is much closer to the one based on the SCM,
than to the distance computed with the true scatter matrix,
which once again justifies the statement that the behavior of
M -estimators can be approximated by a Wishart distribution.
This also implies that the distribution of robust distances can
be better approximated with a theoretical distribution of the
SCM-based distance in the Gaussian framework than with the
asymptotic distribution based on the true scatter matrix.

K =100, m =10
0.16 T T T

T T
I Enopirical distribution of A2(M,)
Asymptotical distribution x*
Theoretical distribution 8’

0.14

0 5 10 15 20 25 30 35 40

Figure 4: Histogram distribution of the robust Mahalanobis
distance based on Student’s M-estimator A2(M;) versus
asymptotic distribution (Eq. (15)) in red and versus theoretical
approximative distibution (Eq. (16)) in green where m = 10,
K =100, z ~ Ct,, with v = 2.

Figure 4 presents the empirical distribution of the robust
Mahalanobis distance built with the Student’s M -estimator and
two corresponding distributions proposed in Egs. (15) and (16)
for ¢-distributed data with v = 2 (K = 100,m = 10). We
observe that the empirical distribution matches significantly
better the scaled Beta prime than the scaled chi-squared
distribution. The essential advantage of these findings in, for
instance, outliers detection is that they support the idea to use
the robust M-estimators to estimate the scatter matrix and
to rely on the theoretical distribution of the Wishart-based
distance when computing the detection treshold.

V. CONCLUSIONS

This paper investigated the statistical properties of M-
estimators. To that end, a new “Gaussian-core” model has
been introduced for CES distributions. We have proposed a
new approach that consists in comparing M -estimators to
the well-known Gaussian-based SCM in order to derive new
properties. In other words, the approach can be summarized as

follows: explaining the behavior of an “intractable” estimator
6 by analyzing its proximity with a well-known estimator
01. It has been shown that the second order statistics of M-
estimators when centering around a Wishart distributed matrix
are much smaller than the ones when centering around the true
scatter matrix. It has also been revealed that this difference is
even more meaningful for high-dimensional data. It should
be stressed that these results provide a better approximation
of M-estimators properties than any other analyses in the
literature. In our view, these results represent an excellent
initial step toward the better understanding of the behavior
of M-estimators applied in various problems. In this work,
we have presented the application to the widely used Ma-
halanobis distance. This approach could also be applied to
the adaptive detection problems and thus, be very helpful in
the improvement of the detection performances. Moreover,
one potential application of our findings can be found in
polarimetric SAR images restoration, clustering and/or target
detection. To conclude, we are confident that the results of
this work are very promising and that can be applied to a
wide range of signal processing problems.

APPENDIX A
PROOF OF THEOREM III.1

To prove the statement let us rewrite the right hand side of
equation (19) as follows:

VK (vec(cerI - ﬁSCM)> =
VK (vec(alVI — M — Msca + M))

_ [1 _1] \/RVGC/(\CTM — M)
N ’ \/I?VCC(MSCM — M)

Therefore one has X5) = EgK) - 22&10 + EéK) with

=% - KE [vec(aﬁ — M)vec(oM — M)H}
%) = KE [vec(aﬁ ~ M)vee(Mscar — M)H}
EéK) = KF [VGC(MSCM - M)VCC(MSCM - M)H} :

One has now

2 3= 3(M) - 28,(M) + 235(M)

K—4o00 (23)

where the matrices X7 (M) and 33(M) are given by (10) and
(7), respectively.
Following the similar ideas used in [18], [22], we provide
a more general result that allows to compute a corelation
between two estimators
23— $(M) = D (M)B(M)D; | (M)

K—+4+oco

where  D;(M) = E [d{vec¥;(M)}/d{vec(M}],
B(M) = cov (vecW; (M), vecWy(M)) and
Dy(M) = E[d{vec¥o(M)}/d{vec(M)}]  with
Uy (M) = ooz (07 M)~ 'z)zz! — M and

Uy (M) = xxH — M.



Without loss of generality, we will assume that M = 1.
Indeed, one has that

(M) = (MT/Q ® M1/2> ,(I) (MT/Q ® M1/2)H

In order to determine the final result, we will derive the
expression for X5 (I). One can show that

D;Y(I) = oy I + agvec(I)vec(I)T

m(m+1) m(c?—m?—m)

where oy = — ‘, and ay = lo=m?) with ¢ =
E[ot19/(ot1)] + m?. Moreover, it is simple to show that
Dy(I)~! = —L

Then, basing on Theorem 2 from [22], one can derive more
general result

By (I) = 811 + Byvec(I)vec(I)T

where

pr = COV[\III(I)jk\IJQ(I>jk]
= E[cp(atl)tgu?ui]
Elp(oti)ts] b

 m(m+1) m(m+1)

and

Bo = cov[Wyi(I);;Wa(I)y,]
= 1 — E[p(ot1)]Eta] /m?
= p1—1

since u? ~ Beta(l m — 1), Elu3] = 1/m and Elujui] =

1/(m(m + 1)). After some mathematical mampulatlons one
obtains
35(I) = I + yavec(I)vec(I)T
with
Y1 = *01151 = -
m(b—c
Yo = —(Oqﬁg + 20&2,81 + 2magﬁ2 = ( 2) .(24)
(¢ —m?)
This leads to the final expression of 35 (M):
3o (M) = vy M7T @ M + ~avec(M)vec(M)? (25)

Combining Eq. (25) together with Eqs. (10) and (7) in
Eq. (23), one obtains the coefficients o; and o9 as follows

o = h—=2n+1
am(m + 2) + ¢(c — 2b)
and
o2 = U2 — 27
 a—-m? 7a(m+2)+2m(c—b)
 (c—m2)? c? c(c —m?2)’

Finally, one can easily prove that 2 = XK [6], which leads
to the final results and concludes the proof.

APPENDIX B
PROOF OF COROLLARY III.1

For Student’s ¢-distribution ¢ ~ mFy,, , yields

) 9 _2m2+u
o) =Gty (14 211
with

- (2) Fometh

where I'(.) is the Gamma function. Since o =
M L-estimator [1], one has

=9 (t) =

1 for every

2m +v
V+2t1

d) (O'tl)

1

Now one obtains

E[y*(t)] =FE

(2m + 1/)2 tﬂ

(v+ 2t1)2 !
2m+4v

+o0 -
(2 2t 2
= Cn / G+ VP 1+ dt
v2(1+4 2 tl) v

2m+v)? 1
2

= Cp,
Cm+2

m(m+1)(m + %)
m+1+3

and

: (2m + )y

Bl = 5 | S|

B oo 2m + v)ut 2t -

B C’”/o u2(1+%t) (Hv> i

v(2m +v) /Jm T (1 + 2“) T
0

V2 v
2m+v 1 1
= Cp—— FE |t
v Om+2 [1 }
where now t/(m+2)
F, 244 which gives

:Cm

~ Fyp 44, or equivalently (m—+2)/t ~

1 2 4 1
E[tfl]: m —+ _
m+22m+4—-2 m+1
and finally
v m
Ety'(t —_—

To compute E[)(t1)t2] let us remind that t; = 7¢5 where 7
and t are independent, 7 ~ 1G(v/2,v/2) and ta ~ (1/2)x3,,-

Thus, one can write
// 1+2Tt — 7 te e 2drdty
R2

v

where C' = (22+1)% 7)/(F(§)F( m)). The change of variable

u = ftg gives du = ,/Tdtg and hence

& v m <1 v
I:C/ e E () +1/ — e F  dudr
0 27' 0 1 +u

I =FE(t)ta] =



Then, using the equality

< 1
/ um—i—l

where I'(.; .) stands for the upper incomplete Gamma function,
one obtains

I= /0°° rTETmID (—1 —m; %) dr

where C' = C(m + 1)!(%)m+

v v\-—m-1 v
P(-mg)=(5) Ene(s)

where E,, o is the generalized exponential integral, one has

I= C’”/ T2 B (;) dr
0 T

where C" = C’(%)mJrl which leads to

o0 o0
I = C”/ 7'_%_1/ e 2 't 2dtdr
0 1

oo o0
C”/ t_m_Q/ T2 te2rtdtdr
1 0

e 2 %du = e2r (m + 1)’ (—1 —m; l)

2T

2 .
. Since

where C"" = C”(%)_%F(g) and finally
(m 4+ $)ym(m + 1)
Elp(t)ts] =

This leads to the following values for a, b, ¢
m(m+1)(m + %)

m+1+%
by - m(m+1)(m+ %)
B m+1+%
c = v_.m_ > +m2:m(m+1)(mu—|—%)'
2(m+1+3%) m+14+ %5

Substituting previous results in Eq. (20), one finally obtains
2(m+1+v/2)

= d =
o1 an g9 V(m+lj/2)

m+v/2

APPENDIX C
PROOF OF THEOREM II1.3

To prove the statement of Theorem II1.3, we will rewrite ¢
as

¢ = (&n = 20corr + bsom) /(Y MTy)? - (26)
where
o = B|(r(o5) - s )]
Georr = E[(1 (o) =5 W) (1 (Mscar) - 1 (W) |12
dscn = E{(f (MSCM)f<M))2]
with f(M) = yYM~ly. Using the Delta method one

can obtain ¢y = f/(M)Zpf/(M)H [17] where f' (M)

is the first derivative with respect to M and X =

— — H
E[(oM—M) (UM—M) is defined by Eq. (10)
(with M = oM,). Moreover, one has a more gen-
eral result ¢coprr F (M) Sof/ M)7 = where By =

— — H
E[(aM—M) (MSCM—M> } = (M aM) +
vavee (M) vec (M)
of Eq. (24). In [?] it has been shown that f'(M

with v; and 5 the complex versions

) =

H(yy") (MT @ M)il. Since (M” ® M)71 vec (M) =

vec (M) one has
o = ff(M)X (M)H

= Wyvec” (y yH) (MT @ M) " vee (yy™)

+  davec” (yy™) vec (M )vec (M~ 1)Hvec (yy™)

= Oyvecl? ( H) vec (M yy? M~ 1)

+ O Te(yy "M Te(M ™ yy ™)

= WTe(y"M lyy"My) + 9o Tr(y "M y)?

= (i +0)(y"M ty)%
It is now clear that ¢scar = (yPM~ly)? and ¢eorr
FM)Sof/ (M) = (y; 4+ v)(y¥M~1y)? which leads to

the final result.
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