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Inference for Archimax copulas

S. Chatelain∗†, A.-L. Fougères∗, and J. G. Nešlehová†

May 30, 2018

Abstract

Archimax copula models can account for any type of asymptotic de-
pendence between extremes and at the same time capture joint risks
at medium levels. An Archimax copula Cψ,` is characterized by two
functional parameters, the stable tail dependence function `, and the
Archimedean generator ψ which acts as a distortion of the extreme-value
dependence model. This article develops semiparametric inference for
Archimax copulas: a nonparametric estimator of ` and a moment-based
estimator of ψ assuming the latter belongs to a parametric family. Con-
ditions under which ψ and ` are identifiable are derived. The asymptotic
behavior of the estimators is then established under broad regularity con-
ditions; performance in small samples is assessed through a comprehensive
simulation study. The Archimax copula model with the Clayton generator
is then used to analyze monthly rainfall maxima at three stations in French
Brittany. The model is seen to fit the data very well, both in the lower and
in the upper tail. The nonparametric estimator of ` reveals asymmetric
extremal dependence between the stations, which reflects heavy precipita-
tion patterns in the area. Technical proofs, simulation results and R code
are provided in the Appendix.

MSC 2010 subject classifications: Primary 62H12, 62G05, 62G20, 62G32;
secondary 60G70.
Keywords: copulas, multivariate extremes, subasymptotic modeling, empirical
processes.

1 Introduction

In various applications in environmental sciences, finance, insurance or risk
management, joint extremal behavior between random variables is of partic-
ular interest. For example, this plays a central role in assessing risks of natural
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disasters and in determining the dimensions of structures such as dams or dikes.
Misspecification of the dependence between the variables can lead to substan-
tial underestimation of risk. To fix ideas, consider monthly maxima of daily
precipitation for the months from September to February between 1976 and
2016 at three stations in French Brittany, Belle-̂Ile-en-Mer, Groix, and Lori-
ent. Based on these trivariate observations, provided by Météo France, the goal
might be to assess the risk of medium and high precipitation at these three
stations simultaneously in order to devise protective measures against floods in
the region.

To answer questions such as the above, the so-called copula approach to mul-
tivariate data modeling has gained substantial popularity in recent years [30].
It is rooted in the decomposition of [45] which states that the joint distribution
function of any multivariate random vector X = (X1, . . . , Xd) with continuous
margins F1, . . . , Fd can be written, for any x ∈ Rd, as

Pr(X1 ≤ x1, . . . , Xd ≤ xd) = C{F1(x1), . . . , Fd(xd)} (1.1)

in terms of a unique copula C, that is, a distribution function on [0, 1]d with
standard uniform margins. This decomposition allows for separate modelling of
the marginals F1, . . . , Fd and the dependence structure C.

In the context of extremes, C in (1.1) is typically chosen to be extreme-value.
Following [27], this means that C = C` for some stable tail dependence function
(stdf) `, that is, for any u = (u1, . . . , ud) ∈ [0, 1]d,

C(u) = C`(u) = exp[−`{− log(u1), . . . ,− log(ud)}].

The use of extreme-value copulas is motivated by the fact that the latter are the
only possible limits of normalized component-wise maxima on the uniform scale.
However, while this asymptotic result is a very strong theoretical argument for
using these models, it is seldom a realistic assumption in finite samples. For
example, for the above precipitation data, the hypothesis that the underlying
copula is extreme-value is clearly rejected by the test of [32] (p-val. ≈ 5 ×
10−5). While extreme-value dependence seems reasonable for seasonal maxima
(p-val. ≈ 0.43), working with the latter greatly reduces the sample size from
n = 240 to n = 40. To estimate extremal dependence from monthly maxima
directly, one could resort to the procedures in [13, 16]. However, the latter
approaches cannot assess joint risk in medium regimes, which can also be a
cause for damaging events. Thus unified, smooth, and flexible yet parsimonious
models that can capture risk at both medium and extreme regimes are needed,
and only few such are available. Only recently, [39] proposed such a model for
univariate non-zero precipitation amounts.

In the multivariate case when asymptotic dependence is present, the only
dependence model available so far that is fully flexible in the extreme regime
and can account for medium risks at the same time are the so-called Archimax
copulas, proposed by [9] in the bivariate case and extended to higher dimensions
in [11, 37]. The latter are of the form

Cψ,`(u) = ψ[`{ψ−1(u1), . . . , ψ−1(ud)}] (1.2)
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at any u ∈ [0, 1]d, where ` is an arbitrary d-variate stdf and ψ : [0,∞)→ [0, 1] an
Archimedean generator, specified in detail in Section 2. At this stage, ψ may be
thought of as a distortion function that contorts the extreme-value dependence
model. Indeed, if ψ(x) = exp(−x), Cψ,` becomes the extreme-value copula C`.
Moreover, as we recall in Section 2, Cψ,` is in the domain of attraction of C`
under suitable conditions on ψ [9, 11].

Given that no inference is available, Archimax copulas have been rarely
used in practice. The only viable option at present is to use a fully parametric
Archimax model, where ψ and ` belong to parametric classes of Archimedean
generators and stdfs, respectively. In the bivariate and trivariate case, this has
been employed in [2, 3]. However, especially in higher dimensions, parametric
models for ` are typically either too restrictive or too cumbersome.

This paper is the first to consider the statistical problem of fitting Archimax
copulas to data in full generality. This amounts to estimating both ` and ψ. To
accomplish this, we propose a semiparametric approach, in which ` is estimated
nonparametrically and ψ is assumed to belong to a parametric family Ψ =
{ψθ, θ ∈ Θ}. Proceeding this way ensures the identifiability of ` and θ under mild
conditions on Ψ. In addition, given that ψ is a distortion function of the limiting
extreme-value dependence, a parametric model for it is likely to be sufficiently
rich to adequately capture dependence at medium and extreme levels. The
estimators of ` developed here extend the ideas of [8, 41] and converge weakly
to a centered Gaussian process under regularity conditions on ` and ψ. As we
show, the Archimax copula model where Ψ is the Clayton family fits the above
mentioned monthly precipitation maxima very well, and reveals some particular
aspects of the data that are climatologically sound. We also demonstrate that
when the Clayton-Archimax model is appropriate, the nonparametric estimators
of ` proposed here are considerably more precise and efficient than those in
[13, 16], as well as the estimators based on seasonal blocks in [23].

The paper is organized as follows. Basic facts about Archimax copulas are
recalled in Section 2, where the identifiability of ψ and ` is proved under mild
conditions on the family Ψ. Section 3 introduces nonparametric estimators of
` under the assumption that ψ is known. Under the latter assumption and
regularity conditions, the asymptotic behavior of these estimators is derived in
Section 4, and their finite-sample performance is investigated via simulations in
Section 5. The estimation of the Archimedean generator ψ is then treated in
Section 6 using a moment-based procedure. Section 7 is presents an application
to precipitation data. Detailed proofs are reported in the Appendix; the latter
also contains additional simulations.

In what follows, vectors in Rd are denoted by boldface letters, viz. x =
(x1, . . . , xd). Binary operations such as x + y or a · x, xa are understood as
component-wise operations. In particular, for any function f : R → R and
x ∈ Rd, f(x) denotes the vector (f(x1), . . . , f(xd)). Furthermore, ‖ · ‖ stands
for the `1-norm, viz. ‖x‖ = x1 + · · ·+xd. For any x, y ∈ R, let x∧y = min{x, y}
and x ∨ y = max{x, y}. Finally, Rd+ is the positive orthant [0,∞)d and for any
x ∈ R, x+ denotes the positive part of x.
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2 Multivariate Archimax copulas

This section gathers properties of Achimax copulas that are needed for subse-
quent developments. In Section 2.1, the existence, stochastic representation,
and extremal behaivor is recalled, while Section 2.2 discusses the identifiability
of ψ and `.

2.1 Existence and stochastic representation of Archimax
copulas

The class of Archimax copulas generalizes both the Archimedean and extreme-
value copula families. On the one hand, when ` is the stdf pertaining to indepen-
dence, i.e., `(x) = x1 + · · ·+ xd for all x ∈ Rd+, Cψ,` becomes the Archimedean
copula Cψ with generator ψ given, for all u ∈ [0, 1]d by

Cψ(u1, . . . , ud) = ψ {φ(u1) + . . .+ φ(ud)} ,

where φ : [0, 1] → [0,∞) denotes the pseudo-inverse of ψ, given by φ(u) =
ψ−1(u) for u ∈ (0, 1] and φ(0) = xψ ≡ inf{x ≥ 0 : ψ(x) = 0}.

On the other hand, when ψ(x) = exp(−x) for any x ≥ 0, Cψ,` becomes the
extreme-value copula C` with stdf `.

For any generator ψ of a d-variate Archimedean copula and any d-variate
stdf `, Cψ,` given by (1.2) defines a copula, as proved by [11]. Recall from
[35, 36, 38] that ψ is a generator of a d-variate Archimedean copula iff ψ(0) = 1,
ψ(x)→ 0 as x→∞ and if ψ is d-monotone on (0,∞), i.e., ψ has d−2 derivatives
satisfying (−1)kψ(k) ≥ 0 on (0,∞) for 1 ≤ k ≤ d − 2 and that (−1)d−2ψ(d−2)

is non-increasing and convex on (0,∞). As proved in [43], ` : Rd+ → R+ is a
d-variate stdf iff

(a) ` is homogeneous of degree 1, i.e., for all k > 0 and x1, . . . , xd ∈ [0,∞),
`(kx1, . . . , kxd) = k `(x1, . . . , xd);

(b) `(e1) = · · · = `(ed) = 1 where for j = 1, . . . , d, ej denotes a d-dimensional
vector whose components are all 0 except the jth which is equal to 1;

(c) ` is fully d-max decreasing, i.e., for any k ∈ N, x1, . . . , xd, h1, . . . , hd ∈
[0,∞) and J ⊆ {1, . . . , d} with |J | = k,∑

ι1,...,ιk∈{0,1}

(−1)ι1+···+ιk`(x1 + ι1h111∈J , . . . , xd + ιdhd1d∈J) ≤ 0.

Due to the homogeneity property (a), any stdf ` can be expressed, at any x = Rd+
as `(x) = ‖x‖A(x/‖x‖) where A is the so-called Pickands dependence function
[41] defined on the unit simplex

∆d = {w ∈ [0, 1]d : w1 + . . .+ wd = 1}. (2.1)
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Thus an Archimax copula Cψ,` can also be expressed, for any u ∈ [0, 1]d, as

Cψ,`(u) = Cψ,A(u) = ψ

[
‖φ(u)‖A

{
φ(u)

‖φ(u)‖

}]
. (2.2)

Archimax copulas also admit a stochastic representation. Per Theorem 3.3
of [11], Cψ,` is the survival copula of a random vector

(X1, . . . , Xd) = R× (S1, . . . , Sd) , (2.3)

where R is a positive random variable independent of S. The distribution func-
tion of R is the inverse Williamson d-transform of ψ and the survival function of
S is given, for any s ∈ Rd+, by Pr(S1 > s1, . . . , Sd > sd) = [max{0, 1− `(s)}]d−1

.
In this representation, R can again be interpreted as a distortion variable; when
its law is Erlang with parameter d, Cψ,` = C`.

Finally, as announced in the introduction, Archimax copulas have a given
extreme-value attractor. Recall that a function f : R+ → R+ is regularly
varying with index α ∈ R iff for all x > 0, f(xt)/f(t)→ xα as t→∞, in notation
f ∈ Rα. When 1 − ψ(1/·) ∈ R−α for α ∈ (0, 1], it is shown in Proposition 6.1
in [11] that Cψ,` is in the maximum domain of attraction of the extreme-value
copula C`α , that is, for any u ∈ [0, 1]d, limn→∞ Cnψ,`(u

1/n) = C`α(u), where for

any x ∈ Rd+, `α(x) = `α(x1/α).

2.2 Identifiability concerns

In this section, we establish conditions under which ` and θ are identifiable
when ψ ∈ Ψ = {ψθ, θ ∈ Θ}. To accomplish this, we first consider two arbitrary
d-variate Archimax copulas C1 = Cψ1,`1 and C2 = Cψ2,`2 whose generators
ψk, k ∈ {1, 2} are not necessarily from a parametric class. The lemmas below
investigate the question whether C1 = C2 implies that the generators and stdfs
are equal. All proofs are reported in Section A of the Appendix.

Lemma 2.1. Suppose that C1 = C2 and ψ1 = ψ2 = ψ. Then `1 = `2.

Lemma 2.2. Suppose that C1 = C2 and `1 = `2 = ` is a d-variate stdf such
that ` 6= `M , where for each x ∈ Rd+, `M (x) = max(x1, . . . , xd). Suppose also
that ψ1 and ψ2 are 2-monotone Archimedean generators. Then there exists a
constant c > 0 such that, for all x ≥ 0, ψ1(x) = ψ2(cx).

Next, note the following lemma. Its first part is an extension of Theo-
rem 4.5.1 in [40] and has been shown in [25] in the case when ψ is completely
monotone. In the following, for any β ∈ (0, 1], ψβ is defined by ψβ(t) = ψ(tβ)

for all t ≥ 0, and `β denotes `β(x
1/β
1 , . . . , x

1/β
d ) for all x ∈ Rd+.

Lemma 2.3. (i) Let ψ be a d-monotone Archimedean generator, and let
0 < β ≤ 1. Then ψβ is a d-monotone Archimedean generator.

(ii) Let ` be a d-variate stdf and 0 < β ≤ 1. Then `β is a d-variate stdf.

5



Now suppose that ψ is a d-monotone Archimedean generator and ` an arbi-
trary d-variate stdf. By Lemma 2.3, ψβ is a d-monotone Archimedean generator
and `β is a d-variate stdf for some β ∈ (0, 1]. It is then easily seen that the
Archimax copulas Cψβ ,` and Cψ,`β are identical. One thus cannot expect ` to
be unique and ψ to be unique up to scaling. However, the following lemma
shows that under a mild regularity condition on ψ, power transformations of ψ
and ` are the only possible sources of non-identifiability.

Lemma 2.4. Suppose that `1 6= `M and `2 6= `M are arbitrary d-variate stdfs
and ψ1, ψ2 are d-monotone Archimedean generators with the property that for
k ∈ {1, 2}, 1 − ψk(1/·) ∈ R−1/mk , with mk ≥ 1. Assuming, without loss of

generality, that m1 ≤ m2, Cψ1,`1 = Cψ2,`2 holds iff for all x ∈ Rd+,

`1(x1, . . . , xd) = `
m1/m2

2 (x
m2/m1

1 , . . . , x
m2/m1

d )

and there exists c > 0 such that, for all t ≥ 0, ψ1(ctm1/m2) = ψ2(t).

Lemma 2.4 allows us to formulate the following main result of this section
that delineates the conditions under which an Archimax copula model is identi-
fiable assuming that the Archimedean generator belongs to a parametric family.
Its proof is a direct consequence of Lemma 2.4.

Proposition 2.1. Consider the class of d-variate Archimax copulas CΨ whose
stdfs are arbitrary with ` 6= `M and whose Archimedean generators belong to a
parametric family Ψ = {ψθ, θ ∈ Θ}. Assume also that the following conditions
hold:

(i) For all θ ∈ Θ, 1− ψθ(1/·) ∈ R−1/mθ , with mθ ≥ 1;

(ii) For all θ ∈ Θ, c > 0 and β > 0, ψθ(ct
β) ∈ Ψ implies that c = 1 and β = 1.

Then for arbitrary Cψθ,`, Cψθ∗ ,`∗ ∈ CΨ, Cψθ,` = Cψθ∗ ,`∗ holds if and only if
` = `∗ and θ = θ∗.

Assumption (i) in Proposition 2.1 is Condition 4.1, which is anyway required
for the nonparametric estimation of ` and discussed in detail in Section 4. As
shown in [10], (i) holds for all Archimedean families in Tables 1 and 2 therein,
that include Table 4.1 in [40]. Assumption (ii) is satisfied by most commonly
used one-parameter families of Archimedean generators including the Frank,
Clayton, and Ali-Mikhail-Haq models. The only exceptions we could find are
Families 4.2.2, 4.2.4 (Gumbel), 4.2.12, and 4.2.18 in [40], and the outer power
family φ1,β from Theorem 4.5.1 therein. The nonidentifiability is not a concern
for these models however, because the parameter θ is then absorbed by the
stable tail dependence function using Lemma 2.4 so that the generator ψ of the
resulting Archimax model is a fixed function.
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3 Estimation of the stdf

In this section, we introduce two nonparametric estimators of the stdf ` of an
Archimax copula Cψ,` under the assumption that the Archimedean generator ψ
is known. Recall that under this assumption, ` is unique, as explained in Sec-
tion 2. Recall also that ` can be uniquely reconstructed from the corresponding
Pickands dependence function A, and hence it suffices to estimate the latter.
To see how to proceed, consider a random vector U distributed as an Archi-
max copula Cψ,A defined in (2.2). Introduce, for any w in the unit simplex ∆d

defined in (2.1),

ξ(w) = min
1≤j≤d

{
φ(Uj)

wj

}
with the convention when wj = 0 for some j = 1, . . . , d. Then

Pr {ξ(w) > x} = Cψ,A {ψ(xw)} = ψ {xA (w)} .

Note in passing that when ψ(x) = exp(−x), that is, when Cψ,A is extreme-
value, ξ(w) is exponential with rate A(w). This leads to the Pickands and the
Capéraà–Fougères–Genest (CFG) type estimators of A [8, 19, 22, 41, 49].

Now let Z denote a random variable with survival function ψ, i.e., for all
x ≥ 0, Pr(Z > x) = ψ(x). Then for any w ∈ ∆d, ξ(w) has the same distribution
as Z/A(w). One gets in particular that

E{ξ(w)} =
E(Z)

A(w)
, E[log{ξ(w)}] = E(logZ) + log{A(w)}. (3.1)

When ψ is known, so are E(Z) and E(logZ). Provided the latter are finite,
(3.1) leads to the Pickands and CFG-type estimators of A, as explained next.

Let X1,X2, . . . ,Xn be a random sample from a d-variate distribution H
with unknown continuous margins F1, . . . , Fd and an Archimax copula Cψ,A
with known ψ and unknown A. Because the margins are unknown, a sample of
Cψ,A is not available, but as in [19, 23] one can base inference on the pseudo-
observations given, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d} by

Ûij =
nFnj(Xij)

n+ 1
, (3.2)

where Fnj is the empirical distribution function of X1j , . . . , Xnj , for any j ∈
{1, . . . , d}. Now define for every w ∈ ∆d, and i ∈ {1, . . . , n},

ξ̂i(w) = min
1≤j≤d

φ(Ûij)

wj
,

again with the convention that φ(Ûij)/wj = ∞ when wj = 0. However, note

that for any w ∈ ∆d, wj > 0 for at least one j, so that ξ̂i(w) is finite for every
i = 1, . . . , n. Then, provided that E(Z) exists, the Pickands-type estimator AP

n

is defined, for any w ∈ ∆d, by

AP
n(w) =

nE(Z)∑n
i=1 ξ̂i(w)

. (3.3)
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Similarly, if E(logZ) exists, the CFG-type estimator ACFG
n is defined through

logACFG
n (w) = E logZ − 1

n

n∑
i=1

log ξ̂i(w) . (3.4)

When ψ(x) = exp(−x), one has that E(Z) = 1 and E(logZ) = −γ, where γ
is the Euler–Mascheroni constant, and AP

n and ACFG
n reduce to the rank based

Pickands and CFG estimators investigated in [19, 23].
Note that in general, neither AP

n or ACFG
n is a genuine Pickands dependence

function. In order to enforce the endpoint constraints A(ej) = 1 for j = 1, . . . , d,
introduce

µ̂ =
1

n

n∑
i=1

φ

(
i

n+ 1

)
, ν̂ =

1

n

n∑
i=1

log φ

(
i

n+ 1

)
.

The endpoint-corrected Pickands and CFG-type estimators now arise by replac-
ing E(Z) by µ̂ in (3.3) and E(logZ) by ν̂ in (3.4), respectively, viz.

AP
n,c(w) =

nµ̂∑n
i=1 ξ̂i(w)

, logACFG
n,c (w) = ν̂ − 1

n

n∑
i=1

log ξ̂i(w) . (3.5)

These corrected versions avoid the generally cumbersome computation of E(Z)
or E(logZ). In addition, the following holds, owing to the fact that µ̂ =
1/n

∑n
i=1 φ(Ûij) and ν̂ = 1/n

∑n
i=1 log φ(Ûij) a.s. for all j ∈ {1, . . . , d}.

Proposition 3.1. For j = 1, . . . , d, it holds that AP
n,c(ej) = 1 and ACFG

n,c (ej) =

1 a.s. Moreover, one also has a.s. that AP
n,c(w) ≥ max1≤j≤d wj and ACFG

n,c (w) ≥
max1≤j≤d wj for all w ∈ ∆d.

Note that when d = 2 and ψ(x) = exp(−x), AP
n,c is the corrected rank-based

Pickands estimator from [19] with end-point correction as in [24].

4 Asymptotic behavior

In this section, we investigate the asymptotic behavior of the Pickands and CFG-
type estimators defined in the previous section, under the assumption that ψ is
known. We first detail the required conditions on ψ and ` in Section 4.1, and
study, in Section 4.2, the limiting behavior of the processes

AP
n =
√
n
(
AP
n −A

)
and ACFG

n =
√
n
(
ACFG
n −A

)
. (4.1)

The main ingredients of the proof are then made explicit in Section 4.3.

4.1 Conditions

Conditions on ψ are stated, followed by conditions on `.
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Condition 4.1. For d ≥ 2, ψ is a d-monotone Archimedean generator and
1− ψ(1/x) ∈ R−1/m for some m ≥ 1.

Condition 4.1, which is equivalent to φ(1− 1/x) ∈ R−m, is very general and
satisfied by virtually all d-monotone Archimedean generators [10, 33]. This is
because it holds whenever 1/R with R as in (2.3) is in the domain of attraction of
the Fréchet (Φα), Gumbel (Λ) or Weibull (Ψα) distributions for some α > 0, in
notation 1/R ∈ M(Φα), 1/R ∈ M(Λ) or 1/R ∈ M(Ψα). Moreover, Condition
4.1 with m = 1 further holds as soon as E(1/R1+ε) < ∞ for some ε > 0, see
Proposition 2 in [4].

Condition 4.2. For d ≥ 2, ψ is a d-monotone Archimedean generator that
satisfies either

(a) ψ ∈ R−s for s > 0;

(b) ψ ∈M(Λ);

(c) ψ−1(0) <∞ and ψ{ψ−1(0)− 1/x} ∈ R−α−d+1 for α > 0.

Most Archimedean generators indeed satisfy Condition 4.2. As shown in
[33], Condition 4.2 (a) holds whenever R in (2.3) is such that R ∈ M(Φs) and
is further equivalent to φ(1/x) ∈ R1/s. Furthermore, Condition 4.2 (b) holds
whenever R ∈ M(Λ) and this happens if and only if φ(1/x) is Π-varying as
defined, e.g., in [42, Section 0.4.3]. Finally, Condition 4.2 (c) is equivalent to
R ∈M(Ψα) and further to {ψ−1(0)− φ(1/x)} ∈ R−1/(α+d−1).

Condition 4.3. For d ≥ 2, ` is a d-variate stdf that is twice continuously
differentiable and for which there exists M > 0 such that for any i 6= j ∈
{1, . . . , d} and any x ∈ (0,∞)d,

− ∂2

∂xi∂xj
`(x1, . . . , xd) ≡ −῭

ij(x1, . . . , xd) ≤M
(

1

xi
∧ 1

xj

)
.

Condition 4.3 extends Condition (5.2) in [44] to the case of d > 2. The
following example demonstrates that it is satisfied by the logistic stdf.

Example 4.1. The logistic stdf is given for any x ∈ Rd+ and θ ≥ 1 by `θ(x1, . . . , xd) =(
xθ1 + . . .+ xθd

) 1
θ . It is easily seen that for any x ∈ Rd+

−῭
ij(x) = (θ − 1)xθ−1

i xθ−1
j

(
xθ1 + . . .+ xθd

) 1
θ−2 ≤ (θ − 1)

(
1

xi
∧ 1

xj

)
.

The following Lemma, proved in Section 10.1 of the Appendix, explains that
under Conditions 4.1 and 4.2, the Pickands and CFG-type estimators are indeed
well-defined and have the same limiting behavior as their end-point corrected
versions.

Lemma 4.1. (i) Suppose that ψ is differentiable on (0,∞) and satisfies ei-
ther Condition 4.2 (a) with s > 1, (b) or (c). Then E(Z) < ∞ and
µ̂→ E(Z) as n→∞.

(ii) Suppose that ψ is differentiable on (0,∞) and satisfies Conditions 4.1 and
4.2. Then E(logZ) <∞ and ν̂ → E(logZ) as n→∞.

9



4.2 Main results

First note that the interior of the unit simplex satisfies

∆̊d = {w ∈ [0, 1]d : w1 + . . .+ wd = 1, w(1) > 0},

where w(1) = min(w1, . . . , wd). To simplify notation, write, for any x ∈ Rd+,

ψ(x) = (ψ(x1), . . . , ψ(xd)). Furthermore, for any compact subset K of ∆̊d, let
C(K) denote the space of continuous functions on K equipped with the sup-
norm. For a d-variate copula C, let α be a C−Brownian bridge, i.e., a tight,
centered Gaussian process with covariance function given, for all u,v ∈ [0, 1]d

by Cov{α(u), α(v)} = C(u ∧ v)− C(u)C(v). For any j ∈ {1, . . . , d} and u ∈
[0, 1]d, let also Ċj(u) = (∂/∂uj)C(u); if the latter derivative does not exist, set

Ċj(u) = lim suph→0{C(u+hej)−C(u)}. Finally, let C be the process defined,
for any u ∈ [0, 1]d, by

C(u) = α(u)−
d∑
j=1

Ċj(u)α(u(j))

with u(j) = (1, . . . , 1, uj , 1, . . . , 1). Theorems 4.1 and 4.2 below respectively
specify the limiting behavior of the processes ACFG

n and AP
n defined in (4.1).

These convergence results require an alpha-mixing sequence of random variables
Xi with a time-invariant Archimax copula. This allows to forgo independence
for a form of asymptotic independence in time.

Definition 4.1. For −∞ ≤ a < b ≤ ∞, let Fba be the σ-field generated by the
Xi with i ∈ {a, a+ 1, . . . , b}. For k ≥ 1, define

α[X](k) = sup
{
|Pr(A ∩B)− Pr(A) Pr(B)| : A ∈ F i−∞, B ∈ F∞i+k, i ∈ Z

}
as the alpha-mixing coefficient of (Xi)i∈Z. The series is called alpha-mixing (or
strongly mixing) if α[X](k)→ 0 as k →∞.

Theorem 4.1. Suppose that X1,X2, . . . is a stationary, alpha-mixing sequence
with α[X](k) = O(ak), as k → ∞, for some a ∈ (0, 1). Suppose that the
marginals of the stationary distribution are continuous and the corresponding
copula C = Cψ,` = Cψ,A is Archimax with generator ψ that is q-monotone for
some q ≥ 3 and such that ψ′′ exists and is continuous on (0,∞). Further assume
that Conditions 4.1 and 4.3 hold, and that either Condition 4.2 (a) is satisfied
or Condition 4.2 (b) is satisfied with the additional requirement that − log(ψ)
is concave on (0, xψ). Then for any compact set K ⊂ ∆̊d, ACFG

n  ACFG as

n→∞ in C(K), where for any w ∈ ∆̊d,

ACFG(w) = A(w)

∫ 1

0

C[ψ{−w log(u)}] du

u log u
.
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Theorem 4.2. Under the hypotheses of Theorem 4.1 and the additional as-
sumption that s > 2 in case Condition 4.2 (a) holds, one has that, for any
compact set K ⊂ ∆̊d, AP

n  AP as n→∞ in C(K), where for any w ∈ ∆̊d,

AP(w) =
−A2(w)

E(Z)

∫ 1

0

C[ψ{−w log(u)}]du
u
.

First observe that the conditions of Theorem 4.2 are stronger than those of
Theorem 4.1; this is further investigated in Section 9.2 of the Appendix. Also
note that the generator given, for all x ≥ 0, by ψ(x) = exp(−x) is completely
monotone and satisfies Conditions 4.1 and 4.2 (b) and is such that − log(ψ)
is linear. Hence, Theorems 4.1 and 4.2 remain valid in the special case when
C is extreme-value. Finally, note that because of Lemma 4.1, the asymptotic
behavior for the endpoint corrected versions of the CFG and Pickands-type
estimators is the same, as stated below.

Corollary 4.1. Theorems 4.1 and 4.2 also hold when ACFG
n and AP

n are respec-
tively replaced by the processes ACFG

n,c =
√
n(ACFG

n,c −A) and AP
n,c =

√
n(AP

n,c−A).

4.3 Outline of the proofs of Theorems 4.1 and 4.2

To establish weak convergence of ACFG
n and AP

n , the weak convergence of the
empirical copula process with respect to weighted metrics established in [6] is
used.

The result of [6] requires smoothness assumptions that are recalled as Con-
ditions 9.1 and 9.2 in Section 9 of the Appendix. We start by verifying that
the latter indeed hold for Archimax copulas under suitable assumptions on the
generator and the stdf, and this is nontrivial. Proposition 4.1 below follows from
Propositions 1 and 2 that are stated and proved in Section 9.2 of the Appendix.

Proposition 4.1. Under the hypotheses of Theorem 4.1, Conditions 9.1 and
9.2 are satisfied.

Remark 4.1. Proposition 4.1 also shows that Condition (4.1) in [44] holds for
an Archimedean copula Cψ if ψ is q-monotone for some q ≥ 3, ψ′′ exists and
is continuous on (0,∞), Condition 4.1 holds, and either Condition 4.2 (a) is
satisfied or Condition 4.2 (b) is satisfied with the additional requirement that
− log(ψ) is concave.

Following [19], we introduce the processes defined, for any w ∈ ∆d, by

BCFG
n (w) =

√
n
{

logACFG
n (w)− logA(w)

}
BP
n(w) =

√
n
{

1/AP
n(w)− 1/A(w)

}
.

The following Lemma establishes that these processes are functionals of the
empirical copula process defined by Ĉn(u) =

√
n{Ĉn(u) − C(u)} for any u ∈

[0, 1]d, where Ĉn(u) = 1/n
∑n
i=1

∏d
j=1 1(Ûij ≤ uj) denotes the empirical copula,

in terms of the pseudo-observations Ûij specified in (3.2).
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Lemma 4.2. Fix an arbitrary w ∈ ∆d. Then, provided E(logZ) exists,

BCFG
n (w) = −

∫ 1

0

Ĉn[ψ{−w log(u)}] du

u log u
.

Furthermore, provided E(Z) exists,

BP
n(w) =

1

E(Z)

∫ 1

0

Ĉn[ψ{−w log(u)}]du
u
.

The proof is relegated to Section 10.1 of the Appendix. Recall that the
required existence of the expectations E(logZ) and E(Z) is treated in Lemma
4.1 and is satisfied under the hypotheses of Theorems 4.1 and 4.2, respectively.
Weak convergence of BCFG

n and BP
n is established next. The proof is provided

in Sections 10.3 and 10.4 of the Appendix.

Proposition 4.2. Let K be any compact subset of ∆̊d.

(a) Under the hypotheses of Theorem 4.1, BCFG
n  BCFG as n→∞ in C(K),

where for any w ∈ ∆̊d,

BCFG(w) =

∫ 1

0

C[ψ{−w log(u)}] du

u log u
.

(b) Under the hypotheses of Theorem 4.2, BP
n  BP as n→∞ in C(K), where

for any w ∈ ∆̊d,

BP(w) =
1

E(Z)

∫ 1

0

C[ψ{−w log(u)}]du
u
.

The validity of Theorem 4.1 now follows directly from Proposition 4.2 (a) and
Theorem 3.9.4. of [46], since the map η : C(K)→ C(K) defined by η(f) = exp(f)
is Hadamard differentiable. Similarly, Theorem 4.2 is a direct consequence of
Proposition 4.2 (b) and Slutsky’s Lemma, as for any w ∈ ∆d,

AP
n(w) =

−A2BP
n(w)

1 + n−1/2A(w)BP
n(w)

.

Remark 4.2. Theorems 4.1 and 4.2 can in fact be shown to hold for any com-

pact K subset of
•
∆d = {w ∈ [0, 1]d : w1 + . . . + wd = 1, w(d) < 1}, where

w(d) = max(w1, . . . , wd). Such sets allow for several components wj of w to be
equal to zero. In that case, Proposition 4.2 can be proved as follows. Let K be

any compact subset of
•
∆d. For any w ∈ K, let w? = {wj : wj > 0, j = 1, . . . , d}.

Thus w? is a d?-dimensional vector, with d? ≤ d, and

BCFG
n (w) = −

∫ ∞
0

Ĉ?n{ψ(w?x)}dx
x
, BP

n(w) =
1

E(Z)

∫ ∞
0

Ĉ?n{ψ(w?x)}dx ,
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where Ĉ?n =
√
n(Ĉ?n − C?). Note that C? = Cψ,`? has the same Archimedean

generator ψ as C, and the marginal stdf `? defined as the original ` with zero
arguments corresponding to the zeros of w. It is then possible to find a K ∈
N such that K ⊂ B1/K = {w ∈ [0, 1]d : w1 + . . . + wd = 1, w?(1) ≥ 1/K},
where w?(1) = min{wj : wj > 0}. The rest of the proof is identical to that of
Proposition 4.2. Extending the weak convergence to the entire unit simplex ∆d

would require a different approach, and it remains to be seen whether such an
extension is possible at all.

5 Simulation Study

We investigate the performance of the endpoint-corrected estimators defined
in (3.5) through simulations using R package simsalapar [26]. The design is
as follows: (i) dimension d ∈ {2, 4, 10}; (ii) sample size n ∈ {200, 500, 1000};
(iii) Archimedean generator from the Clayton, Gumbel, Frank and Joe families
[40]; (iv) Pickands dependence functions from the following families: Logistic
(LG), scaled negative extremal Dirichlet (NSD) of [4], and the discrete spectral
measure (DSM) of [15].

The parameters of the Archimedean generator and the Pickands depen-
dence function were chosen as to cover various scenarios in terms of association,
lower/upper tail dependence, and asymmetry. We also intentionally challenge
Conditions 4.1–4.3 to explore the robustness of the convergence results. For
the sake of brevity, we present the main conclusions of this simulation study
and provide representative illustrations; the complete results are available in
Section 11 of the Appendix. To evaluate the performance of the estimators, the
integrated squared error (ISE) and integrated relative absolute error (IRAE)
defined below were used.

ISE(An) =
1

|∆d|

∫
∆d

{An(w)−A(w)}2 dw , (5.1)

IRAE(An) =
1

|∆d|

∫
∆d

|An(w)−A(w)|
A(w)

dw .

ISE and IRAE were computed using Monte-Carlo integration with 10000 uni-
formly distributed samples on ∆d. For each scenario, 1000 Monte-Carlo repli-
cates were deemed sufficient to capture the behavior of ISE and IRAE.

5.1 Comparisons between the Pickands and the CFG-type
estimators

We first compared the Pickands and the CFG-type estimators in various sce-
narios; the results are reported in Tables D1–D6 in the Appendix. Figure 1 is
representative of the overall pattern, namely that the CFG-type estimator per-
forms better on average both in terms of ISE and IRAE. This is in accordance
with the findings of [19], who reported that the CFG estimator is generally more
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Figure 1: Boxplots of IRAE(An,c) (left) and ISE(An,c) (right) for the Pickands
(green) and CFG (orange) type estimators for n = 200, d = 4, various
Archimedean generators with τ(ψ) = 1/5 and the NSD Pickands dependence
function with parameters α = (1, 2, 3, 4), ρ = 0.59.
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Figure 2: Boxplots of IRAE for the Pickands (green) and CFG (orange) es-
timators for n = 200, d = 4, and the Clayton generator ψ with θ = 1/s for
various values of s (left), the Joe generator for various values of θ = m (middle)
and Frank for various values of τ(ψ) = 1− (4/θ){1−D1(θ)} (right), where D1

denotes the Debye function. The Pickands dependence function is NSD with
parameters α = (1, 2, 3, 4), ρ = 0.59.

efficient than the Pickands estimator in the bivariate case. Also apparent from
Figure 1 is that IRAE is more revealing than ISE, which is why we concentrate
on the former henceforth.

Given that the behavior of ψ at 0 and ∞ played a key role in the conditions
of Theorems 4.1 and 4.2, we next investigate the impact of the index of regular
variation of ψ and 1−ψ(1/·). Figure 2 shows the performance of the estimators
for the NSD Pickands dependence function with parameters α = (1, 2, 3, 4),
ρ = 0.59. In the left panel, the generator is Clayton with parameter θ; the
latter satisfies Condition 4.2 (a) with s = 1/θ. This plot reveals that decreasing
s has a detrimental effect on AP

n,c while ACFG
n,c is hardly affected. When s ≤ 2,

conditions of Theorem 4.2 are no longer met; it is therefore not surprising that
the behavior of AP

n,c deteriorates quickly as s→ 0. The middle panel of Figure
2 explores the effect of m when the generator is Joe, which satisfies Condition
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4.1 with θ = m. One can again see that AP
n,c performs worse than ACFG

n,c ,
but this time, increasing m has a negative effect on both estimators. Finally,
the right panel of Figure 2 shows the effect of dependence of the Archimedean
copula Cψ with generator ψ measured by τ(ψ), Kendall’s tau of the bivariate
Archimedean copula with generator ψ, for the Frank generator. In this case,
m = 1, and increasing τ(ψ) negatively affects both estimators, although ACFG

n,c

is less sensitive.

5.2 The effect of the sample size, dimension, and depen-
dence

Given that the CFG-type estimator performed consistently better than AP
n,c,

we concentrate on the former hereafter and explore the effect of sample size,
dimension and dependence. We choose the Pickands dependence function A to
be either LG with parameter % = 1/2 (all dimensions) or NSD with parameters
α = (1, 2), ρ = 0.59 (for d = 2), α = (1, 2, 3, 4), ρ = 0.59 (for d = 4) and
α = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4), ρ = 0.69 (for d = 10). These parameters are
chosen so that the average of pairwise Kendall’s taus (also called the coefficient
of agreement [31]) of the corresponding d-variate extreme-value copula CA is
1/2. The Archimedean generator is chosen to be Gumbel with θ = 5/3, which
corresponds to Kendall’s tau of 2/5 of the corresponding bivariate Archimedean
copula Cψ. The left panel in Figure 3 shows the IRAE for various sample sizes
when d = 4. It is clear that the performance of the estimator improves with
sample size, but also that it depends on the Pickands dependence function;
the CFG-type estimator performs worse when A is LG. Other dimensions and
Archimedean generators led to the same conclusions. It is worth noting that
the asymmetric Pickands dependence function NSD does not lead to better or
worse results overall.

The right panel of Figure 3 shows the effect of dimension. Unsurprisingly,
the performance of the CFG-type estimator deteriorates with d. The choice of
A has an effect; the latter is most pronounced when d = 4, although this may be
merely due to the choice of parameters. Again, the same pattern was observed
for other sample sizes and Archimedean generators. We also tried the DSM
Pickands dependence function, which does not satisfy Condition 4.3, because it
is not differentiable everywhere. The performance of the CFG-type estimator
remained essentially unaffected by this choice of A; viz. Tables D7–D9 in the
Appendix. This is comforting, because Condition 4.3 is virtually impossible to
verify from data.

Our next aim was to study the effect of dependence. We restricted ourselves
to the LG Pickands dependence function; in that case, Cψ,A is exchangeable
and measuring dependence can be reduced to the bivariate setting. The first
study we conducted focused on Kendall’s tau. For a bivariate Archimax copula
Cψ,A, let τψ,A denote its Kendall’s tau τ(Cψ,A); let also τ(A) = τ(CA) and
τ(ψ) = τ(Cψ) denote Kendall’s tau of the corresponding bivariate extreme-
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n,c when n = 200, d = 10 and the Pickands

dependence function is LG for all panels. The Archimedean generators are
Frank (left), Joe (middle) and Clayton (right). In the right panel, ηL(A) =
1/{2A(1/2)} = 2−1/ρ is the lower tail dependence index of [34].

value and Archimedean copula, respectively. From [8],

τψ,A = τ(ψ) + τ(A)− τ(ψ)τ(A) . (5.2)

The left panel in Figure 4 shows the IRAE of the CFG-type estimator for various
values of τψ,A and τ(A) when n = 200 and d = 10. The observed trend is that
for a fixed τψ,A, an increase in τ(A), which implies a decrease in τ(ψ), results
in lower IRAE. There is also a performance gain as τψ,A increases. Conclusions
for other Archimedean generators, dimensions and sample sizes are the same;
viz. Tables D10–D12 in the Appendix.

The second study focused on the effect of upper tail dependence as measured
by the upper tail dependence coefficient λU of [29]. For a bivariate Archimax
copula Cψ,A whose generator ψ satisfies Condition 4.1,

λU (Cψ,A) = 2− {2A(1/2)}
1
m .

In the middle panel of Figure 4 the Pickands dependence function is again LG
with parameter %, so that A(1/2) = 21/%−1, and the Archimedean generator is
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Joe with parameter θ = m. Consequently, various values of λU (Cψ,A) can be
obtained by varying % and θ. There is a noticeable decrease in IRAE when the
contribution of A to λU (Cψ,A) increases, and a slight increase in error for a fixed
θ when λU (Cψ,A) increases. The same pattern was observed for other choices
of n and d; viz. Table D13 in the Appendix.

The last study focused on the effect of lower tail dependence as measured
by the lower tail dependence coefficient λL of [29]. For a bivariate Archimax
copula Cψ,A whose generator ψ satisfies Condition 4.2 (a),

λL(Cψ,A) = {2A(1/2)}−s .

Again, we considered the LG Pickands dependence function. As the Archi-
medean generator we choose the Clayton generator, which is such that s =
1/θ. The right panel of Figure 4 shows that the effects of lower and upper tail
dependence are similar: an increase in the contribution of A to λL leads to
lower IRAE. There is also a slight decrease in performance when θ is fixed and
λL(Cψ,A) increases. The same pattern was observed for other choices of n and
d; viz. Table D14 in the Appendix.

6 Estimation of the distortion function

Sections 3 to 5 focused on the nonparametric estimation of the stdf under the
assumption that the distortion parameter ψ is known. Before these estimators
can be used however, ψ needs to be estimated without the knowledge of `. To
do so, assume that ψ ∈ Ψ = {ψθ, θ ∈ Θ}. Recall that under the assumptions
of Proposition 2.1, θ and ` are then identifiable. In this section, we propose a
simple moment-based procedure for the most common scenario where Θ ⊆ R.

First consider an arbitrary bivariate copula C and a pair (U1, U2) ∼ C. The
distribution function KC of the random variable WC = C(U1, U2) is called the
Kendall distribution [40]. If C = Cψ,A is Archimax, it is known from (13) in
[9] that for any w ∈ [0, 1], KCψ,A(w) = KCψ (w) + φ(w)/φ′(w)τ(A), where τ(A)
is Kendall’s tau of CA. From this it is easily seen that for any k ∈ N, the k-th
moment of WCψ,A satisfies

mk = E(W k
Cψ,A

) =
τ(A)

k + 1
+ {1− τ(A)}E(W k

Cψ
) . (6.1)

Equations (6.1) for k = 1 and k = 2 then lead to the following identity:

1− 2 E(WCψ )

1− 3 E(W 2
Cψ

)
=

1− 2m1

1− 3m2
. (6.2)

The left-hand side depends only on the Archimedean generator and is thus a
function of θ, say f . Assuming that ψ is twice differentiable, Theorem 4.3.4 in
[40] and partial integration yield that for any θ ∈ Θ,

f(θ) =
1− 2 E(WCψθ

)

1− 3 E(W 2
Cψθ

)
=

∫ xψθ
0

x{ψ(1)
θ (x)}2dx

3
∫ xψθ

0
xψθ(x){ψ(1)

θ (x)}2dx
. (6.3)
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The following example provides explicit expressions for f for three families of
generators; in each case, f is strictly monotone in θ.

Example 6.1. For the Clayton generator given, for any x ≥ 0, by ψθ(x) =

(1 + θx)
−1/θ
+ where θ ≥ −1 and by exp(−x) when θ = 0, E(W k

ψθ
) = (θ +

1)/{(k + 1)(θ + k + 1)} for any integer k ≥ 1. Consequently,

f(θ) =
θ + 3

2(θ + 2)
.

Next, consider the Genest–Ghoudi family [17] whose generator is given, for
any x ∈ [0, 1], by ψθ(x) = (1 − xθ)1/θ for θ ∈ (0, 1]. Here, E(W k

ψθ
) = (1 −

θ)/(k + 1− θ), for any integer k ≥ 1. Hence, for any θ ∈ (0, 1],

f(θ) =
3− θ
4− 2θ

.

Finally, for the bivariate Frank family with parameter θ ∈ R, the generator
is given, for any x ≥ 0, by ψθ(x) = −(1/θ) ln{1 + e−x(e−θ − 1)}. For j ∈ N,

let Dj(θ) = (j/θj)
∫ θ

0
(tj)/(et − 1)dt denote the Debye function [1, Chapter 27].

Here, (6.3) yields after some algebra that for any θ ∈ R,

f(θ) =
4θ − 4θD1(θ)

3{2θ − θD2(θ) + 4D1(θ)− 4}
.

If f is one-to-one, as was the case in Example 6.1, (6.2) can be used to
construct an estimator of θ. Following [5], define Iij = 1(Xi ≤ Xj , Yi ≤ Yj) for
all i, j ∈ {1, . . . , n} and set

m̂1 =
1

n(n− 1)

∑
i6=j

Iij , m̂2 =
1

n(n− 1)(n− 2)

∑
i 6=j 6=k

IijIkj .

As m̂1 and m̂2 are U -statistics with square integrable kernels, the results of [5]
imply that

√
n{(m̂1, m̂2)− (E(WC),E(W 2

C))} N (0,Σ) as n→∞; the entries
of Σ are given in Proposition 2 therein.

Next, provided f has an inverse f←, define h : R2 → R by

h(m1,m2) = f←
(

1− 2m1

1− 3m2

)
and set θ̂ = h(m̂1, m̂2). Assuming h has continuous partial derivatives that are

non-zero at (m1,m2) and using the delta method, one gets that
√
n(θ̂ − θ)  

N (0, Jh(m1,m2)ΣJh(m1,m2)T ), where Jh is the 2 × 1 Jacobian matrix of h.
Consistent plug-in estimators of the entries of Σ are provided in [5]. For small
n, the calculations of [5] can also be used to compute and estimate the finite
sample variance-covariance matrix of (m̂1, m̂2).
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Example 6.2. For the Clayton family, θ̂ = Sn/Rn, where

Sn = 8m̂1 − 9m̂2 − 1, Rn = 1− 4m̂1 + 3m̂2. (6.4)

Letting S = 8m1 − 9m2 − 1 and R = 1− 4m1 + 3m2,

√
n(θ̂ − θ) =

√
n {h(m̂1, m̂2)− h(m1,m2)} N (0, σ2)

with the asymptotic variance

σ2 =
1

R4

{
R2(64Σ11 + 81Σ22 − 144Σ12)

+ S2(16Σ11 + 9Σ22 − 24Σ12)− 2RS(32Σ11 − 27Σ22 + 50Σ12)
}
. (6.5)

Note that the numerator Sn in (6.4) is the quantity on which the test for bivariate
extreme-value dependence of [21] is based. These authors showed that when C is
extreme-value, 8E(WC)− 9E(W 2

C)− 1 = 0. When θ = 0, the Clayton generator
simplifies to ψ(t) = e−t and Cψ,A = CA is extreme-value.

For the Genest-Ghoudi family, θ̂ = −Sn/Rn, where Sn and Rn are as in

(6.4). Hence
√
n(θ̂ − θ) N (0, σ2), where σ2 is given by (6.5).

For the bivariate Frank family, the function f is one-to-one but its inverse is
not explicit. Therefore, both the estimator and the asymptotic variance are not
explicit either. An estimate of θ can be obtained numerically and its asymptotic
variance can be studied via resampling.

In the multivariate case, a generalization of (6.1) does not seem possible.

We thus propose to use θ̂ = [2/{d(d − 1)}]
∑
j<k θ̂jk, where θ̂jk is the above

moment-based estimator of θ based on the bivariate sample (X1j , X1k), . . . ,
(Xnj , Xnk). A heuristic approach for checking whether averaging the pairwise
estimates is reasonable is presented in the following section.

7 Data application

In this section, the practical usefulness of the proposed estimation procedure for
Archimax copula models is illustrated in the context of flood monitoring. The
data is a trivariate sample of daily precipitation amounts in French Brittany
from 1976 to 2016 provided by Météo France. To avoid seasonality, the series is
restricted to September to February, during which most extreme events occur.
The position of the three stations Belle-̂Ile, Groix, and Lorient is shown in the
left panel of Figure 5.

To remove time dependence, and since our primary focus is on extreme
precipitation, we considered monthly maxima at each station, totalling 240 ob-
servations. Blocking the data by months also eliminates ties; in particular, it
avoids the large number of zeros in the sample of daily maxima. This series
shows no departures from stationarity; the Ljung and Box-Pierce tests do not
reject the hypothesis of temporal independence except at Groix, where there is
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slight evidence of dependence at lags 1 and 2. As the asymptotic results hold
for alpha-mixing sequences, time dependence is allowed.

The pairs of the normalized component-wise ranks of monthly maxima are
displayed in the right panel of Figure 5. These plots show strong correlation be-
tween Lorient and Groix, which is not surprising given their geographical prox-
imity. Also apparent is asymmetry between Belle-̂Ile on the one hand and both
Lorient and Groix on the other, in the sense that large precipitation amounts at
Groix correspond to large precipitation amounts at Belle-̂Ile, but not necessarily
vice versa, and similarly for Lorient.

Because the data at hand are monthly maxima, one might first think of
fitting an extreme-value copula model. However the test of [32] clearly rejects
the hypothesis of extreme-value dependence (p-val. ≈ 5 × 10−5). This may
be explained by the presence of lower-tail dependence, which manifests itself
by the clumping of points in the bottom-left corner of the rankplots in the
right panel of Figure 5. The empirical estimates of the tail probabilities plotted
against q in the bottom row of Figure 6 also indicate that all pairwise lower
tail dependence coefficients are likely greater than 0. This phenomenon is not
present in multivariate extreme-value distributions, whose all pairwise lower
tail dependence coefficients are equal to 0. Archimax copula models advocated
in this paper may on the other hand capture lower-tail as well as extremal
dependence. The Clayton-Archimax model may be particularly well suited. The
latter assumes continuous marginals and an Archimax copula of the form Cψθ,A,
where A is an arbitrary Pickands dependence function and ψθ is the Clayton
generator given for all t ≥ 0 by ψθ(t) = (1 + θt)−1/θ, where θ ∈ [−1/(d− 1),∞)
is an unknown parameter. Because ψθ for any θ > 0 satisfies Condition 4.2
(a) with s = 1/θ, the lower tail dependence coefficient equals {2A(1/2)}−1/θ.
Furthermore, Condition 4.1 holds with m = 1, so that Cψθ,A is in the domain
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Figure 5: Satellite map of French Brittany, showing the sites Belle-̂Ile, Groix,
and Lorient (left). Rankplots of monthly maximum precipitation for the months
of September to February, from 1976 to 2016 (right).
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θ̂ 90% C.I. τ(Cψ̂,Â) τn

Belle-̂Ile & Groix 1.58 (0.77, 2.39) 0.54 0.56

Belle-̂Ile & Lorient 1.08 (0.49, 1.67) 0.51 0.52
Groix & Lorient 1.27 (0.54, 1.99) 0.64 0.67

Table 1: Pairwise estimates θ̂ along with 90% asymptotic confidence intervals
in the Clayton-Archimax model, model-based estimates τ(Cψ̂,Â) of pairwise
Kendall’s tau in the Clayton-Archimax model, and empirical estimates τn of
pairwise Kendall’s tau.

of attraction of the extreme-value copula CA. The Clayton-Archimax model
is fitted to the data in Section 7.1; comparisons with other estimators of the
limiting A are considered in Section 7.2.

7.1 Fitting the Clayton-Archimax model

We begin by estimating the Clayton distortion using the moment-based method
presented in Section 6. The pairwise estimates of θ are given in Table 1, along
with 90% confidence intervals. Because these intervals overlap, there is no evi-
dence against a trivariate Clayton-Archimax model with a common value of θ.
The latter is estimated by the average of the pairwise estimates to be θ̂ = 1.31.

The next step consists of estimating A. We use the CFG-type estimator
ACFG
n,c given in (3.5) with ψ replaced by ψθ̂. The Pickands-type estimator is not

well suited here, because for the estimated value of θ, s ≈ 0.76 < 2, so that the
requirements of Theorem 4.2 are likely violated. On the other hand, assuming
that Condition 4.3 holds, the hypotheses of Theorem 4.1 are fulfilled. How-
ever, the latter theorem is only the first step in the assessment of the limiting
behaviour of ACFG

n,c because the Archimedean generator is estimated parametri-

cally rather than treated as known. To establish the limiting behavior of ACFGn

under this more general setup seems very complex however. Instead, we run
a pilot simulation which is detailed in Section 7.2 and the results of which are
shown in Figure 8. The boxplots AXC(1) and AXC(2) summarize the IRAE
when ψ is known and estimated parametrically, respectively. Unsurprisingly,
parameter uncertainty increases the variability of the estimator; this is also
confirmed by our preliminary calculations which show that the limiting process
of ACFGn will have an additional term involving the asymptotic distribution of θ̂.
Nonetheless, we conjecture that ACFGn converges to a centered Gaussian process
as n→∞.

A contour plot of ACFG
n,c is shown in the left panel of Figure 7. The con-

tour levels of ACFG
n,c show a clear global asymmetry, but axial symmetry with

respect to Belle-̂Ile. This pattern corroborates what was seen on the rankplots
in Figure 5. This asymmetry may be explained by the fact that Belle-̂Ile is
located far off shore. This can lead to strong localized rainfall which does not
affect the stations at Groix and Lorient. Although Groix is also an island, it
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lies much closer to the coast, and is hence not affected by the localized rainfall
phenomenon. Furthermore, it can also be seen from pressure maps and radar
images that heavy rainfall at Groix and Lorient is mainly due to large-scale
weather systems that affect Belle-̂Ile as well.

Finally, we check the fit of the Clayton-Archimax model. Because ACFG
n,c is

nonparametric, no existing formal goodness-of-fit test for copula models can be
used. However, the contours of the fitted trivariate Clayton-Archimax copula
seem fairly close to the empirical copula, as evidenced by the bottom panel of
Figure 6. We also compared various sample dependence measures to their model
estimates. To assess the fit in the tails, we consider each pair of stations j 6= k,
say. Following [12], we plot the empirical estimates of

χU (q) = 2− log Pr{Fj(Xj) < q, Fk(Xk) < q}
log(q)

χL(q) = 2− log Pr{Fj(Xj) > 1− q, Fk(Xk) > 1− q}
log(q)

against q together with the model-based estimates of the lower and upper tail
dependence coefficients λL and λU for that pair, respectively. To compute the
latter, we use that in a bivariate Clayton-Archimax model,

λL = lim
q→1

χL(q) = {2A(1/2)}−1/θ, λU = lim
q→1

χU (q) = 2− 2A(1/2).

The top two panels of Figure 6 show that the model-based estimates approxi-
mate the empirical probabilities quite nicely when q → 1, which indicates a good
fit in the tails. The contour plots of the empirical copula and the fitted Clayton-
Archimax model displayed in the bottom panel of the same Figure match nicely
as well. Finally, we compared empirical estimates of pairwise Kendall’s tau with
model-based estimates. To compute the latter, we used (5.2) with τψ = θ/(θ+2)

and τ(A) =
∫ 1

0
[{t(1− t)}/A(t)]dA′(t), and approximated the integral in the ex-

pression for τ(A) with finite differences. Table 1 shows that the empirical and
model-based estimates are very close. Overall, the fit of the Clayton-Archimax
model seems adequate, and allows to model the dependence in this trivariate
precipitation dataset, not only in extremes, but also in a medium size regime.

7.2 Comparison with other estimators of A

If the objective is to specifically assess the joint risk of extreme precipitation,
then the estimation of the Pickands dependence function A of the extreme-
value attractor of the distribution of the monthly maxima at the three stations
is of interest. Because the Clayton-Archimax copula Cψ,A is in the domain of
attraction of CA, the estimator ACFG

n,c calculated in the preceding section is also
an estimate of the limiting Pickands dependence function. As such, it can be
compared to other nonparametric estimators considered in the literature.

The first idea would be to block the data by seasons and consider the maxima
over the period from September to February. This reduces the sample size to
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Figure 6: Empirical estimates of χU (q) (top) and χL(q) (middle) plotted against
q (Quantile) along with 95% confidence bands (black). The red lines indicate
the model-based estimates of λU (top) and λL (middle). Contour plots (bottom)
of the empirical copula (black dashed) and the fitted Clayton-Archimax copula
(red). The plots correspond to Belle-̂Ile & Groix (left), Belle-̂Ile & Lorient
(middle), and Groix & Lorient (right).

n = 40, but the hypothesis of extreme-value dependence is no longer rejected by
the test of [32] (p-val. ≈ 0.43). Consequently, the multivariate rank-based CFG
estimator of [23] can be used. Another option would be to use nonparametric
estimators of A that only assume that the underlying copula is in the domain
of attraction of CA. We consider the FHM and EKS estimators of [16] and
[13], respectively. More precisely, the FHM estimator is denoted as L̊agg in [16,
Section 5.1], built from equation (15) therein, and its tuning parameters are
κn = 239, a = 0.8, r = 0.8, kρ = 237. The bias-corrected EKS estimator is
denoted ¯̀

n,k,k1 and its parameters were set to the default choices from the R
package tailDepFun.
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Figure 7: AXC: CFG-type estimator ACFG
n,c based on monthly maxima and the

Clayton-Archimax model. CFG: Rank-based CFG estimator of [22] based on
seasonal maxima. FHM and EKS: Estimators of [16] and [13] based on monthly
maxima.

The three competing estimators CFG, FHM, and EKS are displayed in Fig-
ure 7 along with ACFG

n,c from Section 7.1. The contours of the CFG estimator
are rougher, which is not surprising given that it is based on 40 observations.
Although we expect this estimator to be more variable because it is based on a
smaller sample, it is comforting that it shows a similar pattern as ACFG

n,c ; this
further confirms that the Clayton-Archimax model is adequate for the data at
hand. The contours of the FHM and EKS estimators are much more irregular
which makes the plots difficult to interpret.

To compare these estimators further, we run a pilot simulation study mim-
icking the data. We generated N = 1000 samples of size n = 240 from a trivari-
ate Clayton-Archimax copula with θ = 1.31 and the scaled negative extremal
Dirichlet Pickands dependence function parameters α = (1, 2, 3) and ρ = 0.9
whose shape roughly resembles ACFG

n,c (see the left panel of Figure 8). For each
sample, we estimated A by: (i) the CFG-type estimator from (3.5) assuming
that ψ is known; (ii) the CFG-type estimator from (3.5) with θ estimated by

the moment estimator θ̂ from Section 7.1; (iii) the CFG estimator of [22] based
on block maxima with 40 blocks; (iv) the FHM estimator of [16]; (v) the EKS
estimator of [13]. The boxplots of the IRAE are shown in Figure 8. Even if
ψ is estimated by ψθ̂, A

CFG
n,c is clearly superior to the CFG, FHM and EKS

estimators particularly in terms of bias.
To sum up, this application on precipitation data demonstrates the feasi-

bility of the proposed inference techniques but more importantly illustrates the
potential of Archimax copulas to model joint risk in subasymptotic settings.
Since the max domain of attraction of Archimax copulas is known, one can
check the performance of the latter model by comparing it to models using
the max-stable assumption. In this particular data application, the Archimax
model accurately captures the bulk and both tails of medium to high precipi-
tation observations. Performance at extreme levels is no doubt also due to the
fact that the studied weather stations are located in a relatively small area. To
model extremes over larger spatial scales however, more flexible models than
those studied herein are required in order to capture asymptotic independence,
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as noted e.g. by [28] and [47].
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Figure 8: Left: Negative scaled extremal Dirichlet (NSD) Pickands dependence
function A with parameters α = (1, 2, 3) and ρ = 0.9. Right: Boxplots of
IRAE(Ân) based on N = 1000 samples of size n = 240 from a 3-variate Clayton-
Archimax copula Cψθ,A with θ = 1.31 and the scaled negative extremal Dirichlet
A with parameters α = (1, 2, 3) and ρ = 0.9. AXC(1): the CFG-type estimator
from (3.5) assuming that ψ is known; AXC(2): the CFG-type estimator from

(3.5) with θ estimated by the moment estimator θ̂ from Section 7.1; CFG:
the CFG estimator of [22] based on block maxima with 40 blocks; FHM: the
estimator of [16]; EKS: the estimator of [13].
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8 Proofs from Section 2

Proof of Lemma 2.1. For all u ∈ [0, 1]d, `1{ψ−1(u)} = `2{ψ−1(u)} , and since
ψ−1 is one-to-one, `1(x) = `2(x) for all x ∈ Rd+.

Proof of Lemma 2.2. If `(x) = `M (x) = max{x1, . . . , xd} for all x ∈ Rd+, then
regardless of ψ1 and ψ2, we have that C1 = C2 = CM , the copula corresponding
to the Fréchet-Hoeffding upper bound which describes comonotonic variables.
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Now suppose that ` 6= `M . Then it is clear that Ck 6= CM for both k ∈ {1, 2}.
Indeed, fix k ∈ {1, 2}. Note that `(x) > `M (x) for some x ∈ Rd+. By the
homogeneity of `, there also exists an x ∈ Rd+ such that 0 < ψk{`(x)} <
ψk{`M (x)}. Therefore, Ck(u) = ψk ◦ `{ψ−1

k (u)} < ψk ◦ `M{ψ−1
k (u)} = CM (u)

for u = ψk(x). Consequently, there exists at least one pair i, j ∈ {1, . . . , d},
i < j, such that the bivariate margin of Ck, given, for all ui, uj ∈ [0, 1], by

C
(ij)
k (ui, uj) := Ck(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1)

is not the Fréchet-Hoeffding upper bound copula. Next note that for all ui, uj ∈
[0, 1],

C
(ij)
1 (ui, uj) = ψ1 ◦ `(ij)

{
ψ−1

1 (ui), ψ
−1
1 (uj)

}
= ψ2 ◦ `(ij)

{
ψ−1

2 (ui), ψ
−1
2 (uj)

}
= C

(ij)
2 (ui, uj) ,

where `(ij) denotes the bivariate margin of `, given, for all xi, xj ∈ R+, by

`(ij)(xi, xj) := `(0, . . . , 0, xi, 0, . . . , 0, xj , 0, . . . , 0).

Therefore, C
(ij)
k , k ∈ {1, 2} are bivariate Archimax. According to Equation (13)

of [9], they have the following Kendall’s function for w ∈ [0, 1],

Kk(w) = τ`(ij)w + (1− τ`(ij))Kψk(w) ,

where τ`(ij) is the Kendall’s tau of the extreme-value copula C`(ij) and Kψk(w)
is the Kendall’s function of the bivariate Archimedean copula Cψk . Since `(ij) 6=
`M , we know that τ`(ij) < 1 and thus that Kψ1

(w) = Kψ2
(w). From [20] and

[18], it follows that Cψ1
= Cψ2

. By the identifiability of Archimedean copulas,
this yields the equality of ψ1 and ψ2 up to scaling (see for example Chapter 4
of [40]).

Proof of Lemma 2.3. Proof of part (i). Clearly, ψβ is a continuous and decreas-
ing function such that ψβ(0) = 1 and ψβ(x) → 0 as x → ∞. Let `β be the

logistic stdf given, for all x ∈ Rd+ by `β(x1, . . . , xd) = (x
1/β
1 + · · ·+ x

1/β
d )β . The

Archimax copula Cψ,`β , is a bona-fide copula by Theorem 2.1 in [11]. However,
it is easily seen that Cψ,`β = Cψβ , where Cψβ is the d-variate Archimedean
copula with generator ψβ . By Theorem 2.2 in [36], ψβ must be d-monotone.

Proof of part (ii). Let ψβ be the generator of the Gumbel copula given, for

all x ≥ 0, by ψβ(x) = e−x
β

. Then ψβ is a completely monotone Archimedean
generator and 1 − ψβ(1/x) ∈ R−β . By Proposition 6.1 in [11], the d-variate
Archimax copula Cψβ ,` is in the maximum domain of attraction of the extreme-
value copula with stdf `β . Consequently, `β is a d-variate stdf, as claimed.

Proof of Lemma 2.4. Proposition 6.1 in [11] implies that, for all k ∈ {1, 2}, that
Cψk,`k is in the maximum domain of attraction of the extreme-value copula

with stdf given, for all x ∈ Rd+, by `
1/mk
k (xmk). Because Cψ1,`1 = Cψ2,`2
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by assumption, this implies that for all x ∈ Rd+, it holds that `
1/m1

1 (xm1) =

`
1/m2

2 (xm2). Hence, for all x ∈ Rd+,

`1(x1, . . . , xd) = `
m1/m2

2

(
x
m2/m1

1 , . . . , x
m2/m1

d

)
.

Thus, for all u ∈ [0, 1]d,

Cψ1,`1(u) = ψ1 ◦ `m1/m2

2

[{
ψ−1

1 (u1)
}m2/m1

, . . . ,
{
ψ−1

1 (ud)
}m2/m1

]
.

Now set ψ?1(t) = ψ1

(
tm1/m2

)
for t ∈ R+ and note that ψ?1 is a d-monotone

Archimedean generator by Lemma 2.3. Therefore, Cψ1,`1 = Cψ?1 ,`2 = Cψ2,`2 .
Given that `2 6= `M by assumption, the rest of the claim follows from Lemma 2.2.

9 Smoothness of the Archimax family

Let first recall the following conditions considered in [44] and [6], featuring the
set Vd,i =

{
u ∈ [0, 1]d : ui ∈ (0, 1)

}
.

Condition 9.1. For each j ∈ 1, . . . , d, the partial derivative Ċj given for all

u ∈ [0, 1]d by Ċj(u) = (∂/∂uj)C(u) exists and is continuous on the set Vd,j.

Condition 9.2. For every i, j ∈ 1, . . . , d, the second-order partial derivative C̈ij
given for all u ∈ [0, 1]d by C̈ij(u) = (∂2/∂ui∂uj)C(u) exists and is continuous
on the set Vd,j ∩ Vd,i, and there exists a constant K > 0 such that for all
u ∈ Vd,j ∩ Vd,i

|C̈ij(u)| ≤ K min

{
1

ui(1− ui)
,

1

uj(1− uj)

}
. (9.1)

Let C be a d-dimensional Archimax copula Cψ,` . With the notation φ(u) =
{φ(u1), . . . , φ(ud)}, the partial derivatives of C can be computed for each i, j ∈
{1, . . . , d}, i 6= j, as

Ċi(u) = ψ′ [`{φ(u)}] ˙̀
i{φ(u)}φ′(ui) , (9.2)

C̈ij(u) =
(
ψ′′ [`{φ(u)}] ˙̀

i{φ(u)} ˙̀
j{φ(u)}+ ψ′ [`{φ(u)}] ῭

ij{φ(u)}
)

(9.3)

× φ′(ui)φ′(uj) ,

C̈ii(u) =
(
ψ′′ [`{φ(u)}] [ ˙̀

i{φ(u)}]2 + ψ′ [`{φ(u)}] ῭
ii{φ(u)}

)
(9.4)

× {φ′(ui)}2 + ψ′ [`{φ(u)}] ˙̀
i{φ(u)}φ′′(ui)

27



9.1 Auxiliary results

Lemma 9.1. Let ` be a d−variate stdf whose first order partial derivatives exist
on Rd+. Then, for any i ∈ {1, . . . , d} and x ∈ Rd+, one has 0 ≤ ˙̀

i(x) ≤ 1 .

Proof. Both inequalities can be derived from the properties (a)–(c) in Sec-
tion 2.1. Fix i ∈ {1, . . . , d} and x ∈ Rd+. Since ` is fully d-max decreasing, it is
increasing in each argument. This yields the first inequality. To show the second
inequality, note that properties (a) and (b) imply `(0, . . . , 0, xi, 0, . . . , 0) = xi,
and hence ˙̀

i(0, . . . , 0, xi, 0, . . . , 0) = 1. From property (c), it also follows that
˙̀
i is non-increasing in the j-th argument for all j 6= i. Therefore ˙̀

i(x) ≤
˙̀
i(0, . . . , 0, xi, 0, . . . , 0) = 1.

Lemma 9.2. Let ψ be a d-monotone Archimedean generator for some d ≥ 2
such that ψ′ exists and is continuous on (0,∞) when d = 2. Assume that
Conditions 4.1 and 4.2 hold and let xψ = inf{x ∈ [0,∞) : ψ(x) = 0}. Then
the function given for any x ∈ (0, xψ) by f(x) = ψ(x){1− ψ(x)}/{−xψ′(x)} is
continuous on (0, xψ) and has finite limits at 0 and xψ.

Proof. Given that the continuity of f is immediate, it suffices to show that its
limits at 0 and xψ are finite. Because Condition 4.1 holds,

lim
x→0

f(x) = lim
x→∞

ψ(1/x){1− ψ(1/x)}
(1/x) {−ψ′(1/x)}

= m ,

where the last equality follows from Equation (12) in [33]. Turning to the limit
of f at xψ, three cases have to be distinguished.

Assume first that Condition 4.2 (a) holds. In this case, xψ =∞ and Equation
(7) in [33] implies limx→∞ f(x) = 1/s. Next, assume that Condition 4.2 (b)
holds. Because the function given for all x ∈ (0, xψ) by ψ(x)/{−ψ′(x)} is an
auxiliary function by the calculations in the proof of Theorem 1 (c) on p. 213
in [33], limx→xψ f(x) = 0 by Lemma 3.10.1 [7]. Finally, assuming Condition 4.2
(c), xψ <∞ and

lim
x→xψ

f(x) = lim
x→∞

{1− ψ(xψ − 1/x)}ψ(xψ − 1/x)

−ψ′(xψ − 1/x)(xψ − 1/x)

= lim
x→∞

xψ(xψ − 1/x)

−ψ′(xψ − 1/x)

(1/x){1− ψ(xψ − 1/x)}
xψ − 1/x

= 0 ,

since the first ratio in the last expression tends to 1/(α + d − 1) thanks to
Condition 4.2 (c) and [33, p. 211].

Lemma 9.3. Let ψ be a d-monotone Archimedean generator for some d ≥ 3
such that ψ′′ exists and is continuous on (0,∞). Assume that Conditions 4.1
and 4.2 hold and let xψ = inf{x ∈ [0,∞) : ψ(x) = 0}. Then the function given
for any x ∈ (0, xψ) by f(x) = ψ(x){1− ψ(x)}ψ′′(x)/{ψ′(x)}2 is continuous on
(0, xψ) and has finite limits at 0 and xψ.
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Proof. As in the proof of Lemma 9.2, the continuity of f is immediate and hence
it suffices to show that its limits at 0 and xψ are finite. From Condition 4.1 and
Equation (12) in [33],

lim
x→0

f(x) = lim
x→∞

ψ(1/x){1− ψ(1/x)}(1/x)2ψ′′(1/x)

{−(1/x)ψ′(1/x)}2
= m− 1 ,

Turning to the limit of f at xψ, three cases have to be distinguished.
Assume first that Condition 4.2 (a) holds. In this case, xψ =∞ and Equation

(7) in [33] implies limx→∞ f(x) = (s+ 1)/s.
Next, assume that Condition 4.2 (b) holds. By the calculations in the proof

of Theorem 1 (c) on p. 213 in [33], the functions given for all x ∈ (0, xψ) by
a∗1(x) = ψ(x)/{−ψ′(x)} and a∗2(x) = −ψ′(x)/ψ′′(x) are auxiliary functions that
are asymptotically equivalent to the auxiliary function a of ψ. Consequently,
a∗1(x)/a∗2(x)→ 1 as x→ xψ so that limx→xψ f(x) = 1.

Finally, assuming Condition 4.2 (c), xψ <∞ and

lim
x→xψ

f(x) = lim
x→∞

ψ(xψ − 1/x)

−(1/x)ψ′(xψ − 1/x)

(1/x)2ψ′′(xψ − 1/x)

−(1/x)ψ′(xψ − 1/x)
{1− ψ(xψ − 1/x)}

=
α+ d− 2

α+ d− 1
,

where the last equality follows from the calculations on p. 211 in the proof of
Theorem 1 (b) in [33].

9.2 Verification of the smoothness conditions

Proposition 1. Let C = Cψ,` be a d-variate Archimax copula such that ψ′ exists
and is continuous on (0,∞) when d = 2, and the first order partial derivatives
of ` exist and are continuous on Rd+. Then Condition 9.1 holds.

Proof. Fix j ∈ {1, . . . , d}, u ∈ Vd,j , set x = φ(u) and using (9.2) write

Ċj{ψ(x)} =
ψ′{`(x)} ˙̀

j(x)

ψ′(xj)
.

Because ψ′ > 0 on (0, ψ−1(0)), and `(x) ≥ xj > 0 on Vd,j , the assumptions

imply that Ċj is continuous on (0, 1]d ∩ Vd,j . If ui → 0 for at least one i 6= j,
xi → ψ−1(0) and `(x) → `(x1, . . . , xi−1, ψ

−1(0), xi+1, . . . , xd) ≥ ψ−1(0). By
Lemma 1 in [48], ψ′(x) → 0 as x → ψ−1(0) and if ψ−1(0) < ∞, ψ′(x) = 0 for
x ≥ ψ−1(0). Consequently, as xi → ψ−1(0), Ċj{ψ(x)} → 0.

Proposition 2. Let C = Cψ,` be a d-variate Archimax copula such that ψ is
k-monotone for some k ≥ 3 and ψ′′ exists and is continuous on (0,∞). If
Conditions 4.1, 4.2 (a) and 4.3 hold, or if − log(ψ) is concave and Conditions
4.1, 4.2 (b) and 4.3 hold, then Condition 9.2 is satisfied.
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Proof. For any u ∈ [0, 1]d, set x = φ(u) and for any i, j ∈ {1, . . . , d}, introduce
the following terms:

Tij,1(x) =
ψ′′{`(x)}

ψ′(xi)ψ′(xj)
, Tij,2(x) =

−Mψ′{`(x)}
(xi ∨ xj)ψ′(xi)ψ′(xj)

,

Tii,3(x) =
ψ′{`(x)}ψ′′(xi)
{ψ′(xi)}3

.

By the d-monotonicity of ψ, observe first that for k ∈ {1, 2, 3}, Tij,k ≥ 0. Now
let xψ = inf{x ∈ [0,∞) : ψ(x) = 0}. From (9.3), (9.4), Lemma 9.1, and
Condition 4.3 it follows that for any x ∈ (0, xψ)d,

|C̈ij{ψ(x)}| ≤ Tij,1(x) + Tij,2(x), |C̈ii{ψ(x)}| ≤ Tii,1(x) + Tii,2(x) + Tii,3(x).

Next, note that for any i 6= j, C̈ij and C̈ii are continuous on (0, 1]d ∩Vd,i ∩Vd,j .
The d-monotonicity of ψ and Lemma 1 in [48] implies that for k ∈ {1, 2},
ψ(k)(x) → 0 as x → xψ and if xψ < ∞, ψ(k)(x) = 0 for x ≥ xψ. Consequently,
for each k ∈ {1, 2}, Tij,k(x)→ 0 as xr → xψ for at least one r 6∈ {i, j} and that
for each k ∈ {1, 2, 3}, Tii,k(x) → 0 as xr → xψ for at least one r 6= i. This in

turn implies that C̈ij{ψ(x)} → 0 and C̈ii{ψ(x)} → 0 as xr → xψ for at least

one r in {1, . . . , d}\{i, j} and {1, . . . , d}\{i}, respectively. Hence for i 6= j, C̈ij
and C̈ii are continuous on Vd,i ∩ Vd,j .

Now introduce the functions given, for any z1, z2 ∈ (0, xψ), by

T̃1(z1, z2) =
ψ′′{z1 ∨ z2}
ψ′(z1)ψ′(z2)

, T̃2(z1, z2) =
−Mψ′{z1 ∨ z2}

(z1 ∨ z2)ψ′(z1)ψ′(z2)
,

T̃3(z1) =
ψ′{z1}ψ′′(z1)

{ψ′(z1)}3
.

Note first that for k ∈ {1, 2, 3}, T̃k ≥ 0 on its domain. Because (−1)qψ(q)

is nonincreasing on [0,∞) for q ∈ {1, 2} and `(x) ≥ x1 ∨ · · · ∨ xd for any
x ∈ Rd+, one has that for any i 6= j and any x ∈ {φ(u),u ∈ Vd,i ∩ Vd,j} and
x ∈ {φ(u),u ∈ Vd,i},

|C̈ij{ψ(x)}| ≤ T̃1(xi, xj) + T̃2(xi, xj)

and |C̈ii{ψ(x)}| ≤ T̃1(xi, xi) + T̃2(xi, xi) + T̃3(xi),

respectively. Note that for k ∈ {1, 2}, the term T̃k is symmetric. To show the
inequality (9.1) it thus suffices to prove that for k ∈ {1, 2}, the function given
for all z1, z2 ∈ (0, xψ) by ψ(z1){1−ψ(z1)}T̃k(z1, z2) is bounded on (0, xψ)2, and

further that the function given for all z1 ∈ (0, xψ) by ψ(z1){1− ψ(z1)}T̃3(z1) is
bounded on (0, xψ). First observe that because −ψ′ is nonincreasing,

ψ(z1){1− ψ(z1)}T̃2(z1, z2) ≤ Mψ(z1){1− ψ(z1)}
−z1ψ′(z1)

,

ψ(z1){1− ψ(z1)}T̃3(z1) ≤ ψ′′(z1)ψ(z1){1− ψ(z1)}
{ψ′(z1)}2

.
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The function on the right-hand side in the first and second inequality is bounded
on (0, xψ) by Lemma 9.2 and Lemma 9.3, respectively.

It remains to consider the function T̃1. For all z1, z2 ∈ (0, xψ), denote

h(z1, z2) = ψ(z1){1−ψ(z1)}T̃1(z1, z2). First note that because −ψ′ is decreasing
on (0, xψ),

h(z1, z2) ≤ ψ(z1){1− ψ(z1)}
−z1ψ′(z1)

(z1 ∨ z2)ψ′′(z1 ∨ z2)

−ψ′(z1 ∨ z2)
= f(z1)g(z1 ∨ z2) , (9.5)

in terms of f(x) = ψ(x){1 − ψ(x)}/{−xψ′(x)} and g(x) = xψ′′(x)/{−ψ′(x)}.
Now f is bounded on (0, xψ) by Lemma 9.2. Furthermore, g is continuous and
because Condition 4.1 holds, it satisfies

lim
x→0

g(x) = lim
x→∞

(1/x)2ψ′′(1/x)

(1/x) {−ψ′(1/x)}
= 1− 1/m ,

where the last equality follows from Equation (12) in [33]. Therefore, h is
bounded on (0, κ]2 for any κ < xψ. To conclude that h is bounded on the entire
set (0, xψ)2, two cases have to be distinguished. First, assume that Condition 4.2
(a) holds. In this case, xψ =∞ and Equation (7) in [33] implies limx→∞ g(x) =
s+ 1 and hence the upper bound in (9.5) is bounded on (0, xψ)2. Next, assume
that Condition 4.2 (b) holds, and that − log(ψ) is concave. In this case, the
upper bound in (9.5) is too crude because g(x)→∞ as x→ xψ. Instead observe
that, because ψ is decreasing,

h(z1, z2) =
ψ(z1 ∨ z2)ψ′′(z1 ∨ z2)

{ψ′(z1 ∨ z2)}2
ψ(z1)

ψ(z1 ∨ z2)

ψ′(z1 ∨ z2)

ψ′(z1 ∧ z2)
(9.6)

≤ ψ(z1 ∨ z2)ψ′′(z1 ∨ z2)

{ψ′(z1 ∨ z2)}2
a∗1(z1 ∧ z2)

a∗1(z1 ∨ z2)
,

where for any x ∈ (0, xψ), a∗1(x) = ψ(x)/{−ψ′(x)}. From the proof of Lemma 9.3,
ψ(x)ψ′′(x)/{ψ′(x)}2 → 1 as x→ xψ. Furthermore, because − log(ψ) is concave,
a∗1 is increasing and hence the upper bound in (9.6) is bounded on (0, xψ)2\(0, κ]2

for any κ ∈ (0, xψ). Put together, h is bounded on (0, xψ)2.

10 Proofs from Section 4

10.1 Proofs of Lemmas 4.1 and 4.2

Proof of Lemma 4.1. For part (i), note that Condition 4.2 (a) with s > 1 is
equivalent to Z ∈M(Φs) with s > 1. Similarly, Condition 4.2 (b) is equivalent
to Z ∈ M(Λ), and Condition 4.2 (c) implies that Z is bounded from above.
In either case, E(Z) < ∞, see, e.g., Chapter 3 in [14]. Before showing that
µ̂ → E(Z) as n → ∞, note that for any positive random variable with finite
expectation and a differentiable survival function F̄ , integrating by parts and a
change of variable yields∫ ∞

0

F̄ (t)dt =

∫ 1

0

(
F̄
)−1

(s)ds (10.1)
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given that limt→∞ tF̄ (t) = limt→0 tF̄ (t) = 0. Eq. (10.1) then gives∫ 1

0

φ(s)ds =

∫ ∞
0

ψ(t)dt = E(Z) <∞,

and hence µ̂→ E(Z) as n→∞, as claimed.
To show part (ii), write

E(logZ) = E{log(Z ∨ 1)}+ E{log(Z ∧ 1)} = E{log(Z ∨ 1)} −E{log(1/Z ∨ 1)} .

When Condition 4.2 holds, Z is in the domain of attraction of either the Fréchet,
the Gumbel or the Weibull distributions. In either case, E{log(Z ∨ 1)} < ∞;
see Corollary 3.3.32 and Examples 3.3.33 and 3.3.34 in [14]. Furthermore, given
that 1 − ψ(1/x) is the survival function of 1/Z, Condition 4.1 implies that
1/Z ∈ M(Φ1/m) and hence E{log(1/Z ∨ 1)} < ∞ again using Example 3.3.33
in [14]. As in part (i), ν̂ → E(logZ) as n→∞ then follows directly from

E(logZ) =

∫ ∞
0

ψ{exp(t)}dt =

∫ 1

0

log{φ(s)}ds <∞,

which holds by Eq. (10.1) given that ψ(et) is the survival function of logZ.

Proof of Lemma 4.2. Using the fact that
log(t) =

∫∞
0
{1(x ≤ t)− 1(x ≤ 1)}x−1dx, for w ∈ ∆d, write

BCFG
n (w) = −

√
n

{
−E logZ +

1

n

n∑
i=1

log ξ̂i(w) + E logZ − E log ξ(w)

}

= −
√
n

(
1

n

n∑
i=1

∫ ∞
0

[
1{x ≤ ξ̂i(w)} − 1{x ≤ 1}

] dx
x

− E
∫ ∞

0

[1{x ≤ ξ(w)} − 1{x ≤ 1}] dx
x

)

= −
√
n

(∫ ∞
0

[
1

n

n∑
i=1

1{x ≤ ξ̂i(w)} − 1{x ≤ 1}

]
dx

x

−
∫ ∞

0

[P{x ≤ ξ(w)} − 1{x ≤ 1}] dx
x

)

= −
√
n

∫ ∞
0

[
1

n

n∑
i=1

1{Ûi1 ≤ ψ(w1x), . . . , Ûid ≤ ψ(wdx)}

− P {Ui1 ≤ ψ(w1x), . . . , Uid ≤ ψ(wdx)}

]
dx

x

= −
∫ ∞

0

√
n
[
Ĉn{ψ(wx)} − C{ψ(wx)}

] dx
x

=

∫ 1

0

Ĉn[ψ{−w log(u)}] du

u log u
.
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Similarly, for the Pickands-type estimator, for w ∈ ∆d,

BP
n(w) =

√
n

{∑n
i=1 ξ̂i(w)

nE(Z)
− A(w)

E(Z)

}

=

√
n

E(Z)

∫ ∞
0

[
1

n

n∑
i=1

1{ξ̂i(w) ≥ x}dx− E{ξ(w)}

]
dx

=

√
n

E(Z)

∫ ∞
0

[
1

n

n∑
i=1

1{ξ̂i(w) ≥ x} − P{ξ(w) > x}

]
dx

=
1

E(Z)

∫ ∞
0

√
n
[
Ĉn{ψ(wx)} − C{ψ(wx)}

]
dx

=
1

E(Z)

∫ 1

0

Ĉn[ψ{−w log(u)}]du
u
.

10.2 Auxiliary results

In the following, lemmas that are used in the proof of Proposition 4.2 are stated
and proved.

Lemma 10.1. Suppose that Condition 4.1 holds. Then for any K ∈ N and
c < 1/K1/m, there exists NK ∈ N so that for all n ≥ NK ,

ψ
{
Kφ

(
1− c

n

)}
>

n

n+ 1
.

Proof. First note that because φ(1− 1/x) ∈ R−m,

lim
n→∞

φ(1− c/n)

φ{1− 1/(n+ 1)}
= cm.

Consequently, because φ{1− 1/(n+ 1)} → 0 as n→∞,

lim
n→∞

1− ψ{Kφ(1− c/n)}
1− ψ[φ{1− 1/(n+ 1)}]

= lim
n→∞

1− ψ[Kφ{1− 1/(n+ 1)}φ(1− c/n)/φ{1− 1/(n+ 1)}]
1− ψ[φ{1− 1/(n+ 1)}]

= cK1/m

Because cK1/m < 1 by assumption, the result follows.

Lemma 10.2. (i) If Condition 4.2 holds, then for any ω ∈ (0, 1/2) and a ∈
(0, xψ),

∫ xψ
a
{ψ(x)}ω/x dx is finite.

(ii) If Condition 4.2 (a) holds with s > 2, then for any ω ∈ (1/s, 1/2) and any
a > 0,

∫∞
a
{ψ(x)}ωdx is finite.
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(iii) If Condition 2 (b) or (c) holds, then for any ω ∈ (0, 1/2) and any a ∈
(0, xψ),

∫ xψ
a
{ψ(x)}ωdx is finite.

Proof. (i) If Condition 4.2 (a) holds, xψ = ∞ and the integrand has index
of regular variation −sω − 1 < −1; the integral is thus finite by Karamata’s
Theorem [14, Theorem A3.6]. If Condition 4.2 (b) holds and xψ = ∞, then
ψ is rapidly varying and the result follows from Theorem A3.12 (a) in [14]. If
Condition 4.2 (b) holds and xψ <∞ or Condition (c) is satisfied, then xψ <∞
and the integrand is bounded on [a, xψ].
(ii) Given that the integrand is regularly varying with index −sω < −1, the
result follows from Karamata’s Theorem, as in (i).
(iii) In this case, the result follows from Theorem A3.12 (a) in [14] if Condition
4.2 (b) holds and xψ =∞, and from fact that xψ <∞ otherwise.

Lemma 10.3. (i) If Condition 4.2 holds, then for any c ∈ (0, 1),

lim
n→∞

√
n

∫ xψ

φ(c/n)

ψ(x)

x
dx = 0 .

(ii) If either Condition 4.2 (a) with s > 2, (b) or (c) holds, then for any c ∈
(0, 1),

lim
n→∞

√
n

∫ xψ

φ(c/n)

ψ(x)dx = 0 .

Proof. (i) If Condition 4.2 (a) holds, xψ = ∞. By Karamata’s Theorem the
integral is a regularly varying function of φ(c/n) with index −s. For some
slowly varying function L,

√
n

∫ ∞
φ(c/n)

ψ(x)

x
dx =

√
n {φ(c/n)}−s L {φ(c/n)} .

Due to the regular variation of φ at zero, there exists a slowly varying function
L∗ such that

√
n {φ(c/n)}−s L {φ(c/n)} =

√
n
{

(n/c)1/sL∗(n/c)
}−s

L {φ(c/n)} (10.2)

=
c√
n
L†(n),

where L†(n) = L∗(n/c)−sL{φ(c/n)} is a slowly varying function of n Resnick
[42, Proposition 0.8 (iv)]. Consequently, the right-hand side of (10.2) converges
to zero as n→∞.

If Condition 4.2 (b) holds and xψ = ∞, Theorem A3.12 (b) in [14] implies
that

lim
n→∞

n

c

∫ ∞
φ(c/n)

ψ(x)

x
dx = 0 ,

from which the result follows at once. Finally, if Condition 4.2 (b) holds and
xψ <∞ or if Condition 4.2 (c) is satisfied, xψ <∞ and ψ(x) = 0 for all x ≥ xψ.
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Because ψ is decreasing,

√
n

∫ xψ

φ(c/n)

ψ(x)

x
dx ≤

√
n

∫ xψ

φ(c/n)

ψ {φ(c/n)}
x

dx =
log xψ − log{φ(c/n)}√

n/c
.

Clearly, the last expression converges to zero as n→∞.

(ii) If Condition 4.2 (a) holds with s > 2, xψ =∞ and one can argue as in the
proof of (i) using Karamata’s Theorem that

√
n

∫ ∞
bn

ψ(x)dx = n1/2+1/s−1L††(n),

where L†† is slowly varying. Since 1/2 + 1/s − 1 < 0, the right-hand side
converges to 0 as n → ∞. If Condition 4.2 (b) holds and xψ = ∞, Theorem
A3.12 (b) in [14] and the fact that φ(1/x) is slowly varying [7, Theorem 2.4.7]
imply that

lim
n→∞

√
n

∫ ∞
φ(c/n)

ψ(x)dx = lim
n→∞

cφ(c/n)√
n

∫∞
φ(c/n)

ψ(t)dt

(c/n)φ(c/n)
= 0 .

If Condition 4.2 (b) holds and xψ < ∞ or Condition 4.2 (c) is satisfied, then
xψ <∞. Consequently,

√
n

∫ xψ

φ(c/n)

ψ(x)dx ≤
√
n(c/n){xψ − φ(c/n)} ;

the last expression clearly converges to zero as n→∞.

Remark 10.1. It emerges from the proofs of Lemma 10.2 and 10.3 that these
results remain valid if instead of Condition 4.2 (b) or (c), ψ satisfies the weaker
condition that either xψ < ∞, or that xψ = ∞ and ψ is rapidly varying as
defined, e.g., on p. 83 in [7].

10.3 Proof of Proposition 4.2 (a)

Let K be a compact subset of ∆̊d. For an arbitrary w ∈ ∆d, set w(1) =
mini=1,...,d wi and w(d) = maxi=1,...,d wi. Define, for any k ∈ N, the set B1/k =
{w ∈ ∆d : w(1) ≥ 1/k }. Since K is compact, there exists an integer K > 1 such

that K ⊂ B1/K ⊂ ∆̊d. Next, pick an arbitrary c ∈ (0, 1/K1/m) with m from
Condition 4.1, and define

an = φ
(

1− c

n

)
, bn = φ

( c
n

)
. (10.3)

By Lemma 10.1 and because c < 1, there exists NK ∈ N so that for any n ≥ NK ,

c <
n

n+ 1
and ψ

{
Kφ

(
1− c

n

)}
>

n

n+ 1
. (10.4)
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Next, for any i ≥ 1 and j ∈ {1, . . . , d}, let Uij = Fj(Xij) and set U i =
(Ui1, . . . , Uid). Let αn be the empirical process pertaining to the (unobservable)
sequence U1, . . . ,Un, that is, for any u ∈ [0, 1]d,

αn(u) =
√
n {Cn(u)− C(u)} , Cn(u) =

1

n

n∑
i=1

d∏
j=1

1(Uij ≤ uj) .

Furthermore, let C̄n be the process defined at any u ∈ [0, 1]d as follows:

C̄n(u) = αn(u)−
d∑
j=1

Ċj(u)αn(u(j)) .

Before proceeding, recall that for any x ∈ Rd+, ψ(x) = (ψ(x1), . . . , ψ(xd)) and
note the following lemma.

Lemma 10.4. As n → ∞, supw∈B1/K

∫ xψ/w(d)

0
|C̄n{ψ(wx)} − Ĉn{ψ(wx)}|dxx

converges in probability to 0.

Proof of Lemma 10.4. Using triangle inequality and an, bn as in (10.3), write,
for any w ∈ B1/K ,∫ xψ/w(d)

0

|C̄n{ψ(wx)}−Ĉn{ψ(wx)}|dx
x
≤ I1(w)+I2(w)+I3(w)+I4(w)+I5(w) ,

where

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣Ĉn{ψ(wx)} − C̄n{ψ(wx)}
∣∣∣ dx
x
,

I2(w) =

∫ an/w(1)

0

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx
x
,

I3(w) =

∫ xψ/w(d)

bn/w(d)

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx
x
, I4(w) =

∫ an/w(1)

0

∣∣C̄n{ψ(wx)}
∣∣ dx
x
,

I5(w) =

∫ xψ/w(d)

bn/w(d)

∣∣C̄n{ψ(wx)}
∣∣ dx
x
.

In the sequel, we show that for any p ∈ {1, . . . , 5}, supw∈B1/K
Ip(w) → 0 in

probability as n→∞.

Treatment of I1. Fix an arbitrary w ∈ B1/K and introduce, for any ω ∈ (0, 1/2),

the weight function gω as in [6]. The latter is given at any u ∈ [0, 1]d by

gω(u) = min

[
d∧
i=1

uj ,

d∧
i=1

{
1− min

j=1,...,d
(u1, . . . , uj−1, uj+1, . . . , ud)

}]ω
. (10.5)
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Because an/w(1) < x < bn/w(d) implies that, for all j ∈ {1, . . . , d}, c/n <
ψ(wjx) < 1− c/n, one has

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣∣∣ Ĉn{ψ(wx)}
gω{ψ(wx)}

− C̄n{ψ(wx)}
gω{ψ(wx)}

∣∣∣∣∣ gω{ψ(wx)}
x

dx

≤ Sn
∫ xψ/w(d)

0

gω{ψ(wx)}
x

dx,

where

Sn = sup
u∈[c/n,1−c/n]d

∣∣∣∣∣ Ĉn(u)

gω(u)
− C̄n(u)

gω(u)

∣∣∣∣∣ . (10.6)

By Equation (2.1) in Theorem 2.2 in [6], Sn converges to 0 in probability as
n → ∞. The conditions of the latter Theorem are indeed fulfilled because
of Proposition 4.1. To conclude that supw∈B1/K

I1(w) → 0 in probability as

n→∞, it thus suffices to show that
∫ xψ/w(d)

0
gω{ψ(wx)}

x dx is finite. To this end,
note that because ψ is decreasing,

gω{ψ(wx)} ≤ [min{ψ(xw1), . . . , ψ(xwd)}]ω = {ψ(w(d)x)}ω (10.7)

and that, since wj ≤ 1 for all j ∈ {1, . . . , d},

gω{ψ(wx)} ≤ [1−min{ψ(xw1), . . . , ψ(xwd)}]ω = {1− ψ(w(d)x)}ω . (10.8)

Choosing an arbitrary a ∈ (0, xψ), one then has∫ xψ/w(d)

0

gω{ψ(wx)}
x

dx ≤
∫ a/w(d)

0

{1− ψ(w(d)x)}ω

x
dx (10.9)

+

∫ xψ/w(d)

a/w(d)

{ψ(w(d)x)}ω

x
dx = I11 + I12 <∞,

where

I11 =

∫ ∞
1/a

{1− ψ (1/x)}ω

x
dx, I12 =

∫ xψ

a

{ψ(x)}ω

x
dx.

Indeed, under Condition 4.1, I11 is finite by Karamata’s Theorem, since the
integrand has index of regular variation −mω−1 which is strictly less than −1.
Finally, I12 is finite under Condition 4.2 by Lemma 10.2 (i).

Treatment of I2. Without loss of generality, suppose that n ≥ NK so that (10.4)
holds. Fix an arbitrary w ∈ B1/K and observe that from the definition of B1/K

one has, for any x ∈ (0, an/w(1)) and j ∈ {1, . . . , d},

wjx ≤
wj
w(1)

φ
(

1− c

n

)
≤ Kφ

(
1− c

n

)
.

This and (10.4) imply that

ψ(wjx) ≥ ψ {Kφ(1− c/n)} > n

n+ 1
.
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Consequently, for any x ∈ (0, an/w(1)), Ĉn{ψ(wx)} = 1. Using (1.2), one thus
has

I2(w) =
√
n

∫ an/w(1)

0

[1− C{ψ(wx)}]dx
x

=
√
n

∫ an/w(1)

0

1− ψ{`(wx)}
x

dx.

Because for any x > 0, `(wx) = x`(w), `(w) ≤ 1, and w(1) ≥ 1/K one further
has that

I2(w) ≤
√
n

∫ ∞
w(1)/an

1− ψ (1/x)

x
dx ≤

√
n

∫ ∞
1/(Kan)

1− ψ (1/x)

x
dx .

Next, Karamata’s Theorem implies that there exists a slowly varying function
L1 such that

√
n

∫ ∞
1/(Kan)

1− ψ (1/x)

x
dx =

√
n
{
Kφ

(
1− c

n

)} 1
m

L1

[{
Kφ

(
1− c

n

)}−1
]
.

Because φ(1 − 1/x) is regularly varying with index −m, there exists a slowly
varying function L2 such that

√
n
{
Kφ

(
1− c

n

)} 1
m

L1

[{
Kφ

(
1− c

n

)}−1
]

=
√
n
{
K(n/c)−mL2(n/c)

} 1
m L1

[{
Kφ

(
1− c

n

)}−1
]
.

Thus I2(w) ≤ n−1/2L3(n), where L3(x) = cK1/mL2(x/c)1/m

×L1[{Kφ (1− c/x)}−1]. Because L3 is slowly varying [42, Proposition 0.8 (iv)],
n−1/2L3(n)→ 0 as n→∞.

Treatment of I3. Without loss of generality, suppose that n ≥ NK so that
(10.4) holds. Fix an arbitrary w ∈ B1/K and observe that if x ≥ bn/w(d),

ψ(xw(d)) ≤ c/n < 1/(n+ 1) and consequently Ĉn{ψ(wx)} = 0. One thus has

I3(w) =
√
n

∫ xψ/w(d)

bn/w(d)

C{ψ(wx)}dx
x

≤
√
n

∫ xψ/w(d)

bn/w(d)

ψ(w(d)x)

x
dx =

√
n

∫ xψ

bn

ψ(x)

x
dx .

The last term in the above inequality is independent of w and converges to
0 as n→∞ by Lemma 10.3 (i).

Treatment of I4. Recall the second weight function g̃ω from [6] given, for all
u ∈ [0, 1]d, by g̃ω(u) = gω(u) + 1{gω(u) = 0}. Fix an arbitrary w ∈ B1/K , let

Zn = sup
u∈[0,1]d

∣∣∣∣ C̄n(u)

g̃ω(u)

∣∣∣∣ (10.10)
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and observe that

I4(w) =

∫ an/w(1)

0

∣∣∣∣ C̄n{ψ(wx)}
g̃ω{ψ(wx)}

∣∣∣∣ g̃ω{ψ(wx)}
x

dx ≤
∫ an/w(1)

0

Zn
g̃ω{ψ(wx)}

x
dx

≤ Zn
∫ Kan

0

g̃ω{ψ(wx)}
x

dx .

Given that Zn  supu∈[0,1]d |C(u)/g̃ω(u)| as n → ∞ by Theorem 2.2 in [6], it

suffices to prove that
∫Kan

0
g̃ω{ψ(wx)}

x dx converges uniformly to 0 as n → ∞.
To this end, note that gω(u) = 0 occurs either when at least one component of
u is equal to 0 or at least d− 1 components are equal to 1. Given that an → 0
as n→∞, one thus has, for sufficiently large n,∫ Kan

0

g̃ω{ψ(wx)}
x

dx =

∫ Kan

0

gω{ψ(wx)}
x

dx.

Using (10.8), the integral on the right-hand side can be bounded above by

∫ Kan/w(d)

0

gω{ψ(wx)}
x

dx ≤
∫ Kan/w(d)

0

{1− ψ(w(d)x)}ω

x
dx

=

∫ ∞
1/(Kan)

{1− ψ (1/x)}ω

x
dx .

The last expression converges to 0 as n→∞, given that it is bounded above
by I11 in (10.9), which is finite, and given that an → 0 as n→∞.

Treatment of I5. Let g̃ω be as in the preceding paragraph concerning I4. Fix
an arbitrary w ∈ B1/K and note that, using (10.7) and performing a change of
variable,

I5(w) ≤ Zn

∫ xψ/w(d)

bn/w(d)

g̃ω{ψ(wx)}
x

dx = Zn

∫ xψ/w(d)

bn/w(d)

gω{ψ(wx)}
x

dx

≤ Zn
∫ xψ

bn

{ψ(x)}ω

x
dx.

The claim follows since
∫ xψ
bn

{ψ(x)}ω
x dx→ 0 as n→∞ by Lemma 10.2 (i) given

that bn → xψ as n→∞.

Returning to the proof of Proposition 4.2 (a), fix an arbitrary w ∈ B1/K and

observe that from Lemma 4.2 and the fact that Ĉn{ψ(wx)} = C{ψ(wx)} = 0
whenever x > xψ/w(d),

BCFG
n (w) = −

∫ xψ/w(d)

0

Ĉn{ψ(wx)}dx
x
.
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Now introduce the process B̄CFG
n given, for any w ∈ ∆d, by

B̄CFG
n (w) = −

∫ xψ/w(d)

0

C̄n{ψ(wx)}dx
x
.

From Lemma 10.4, it follows that supw∈B1/K
|BCFG
n (w) − B̄CFG

n (w)| converges

to zero in probability. It thus remains to show that B̄CFG
n  BCFG in C(B1/K)

as n→∞. To do so, consider the map

Γ :
(
`∞([0, 1]d), || · ||g̃ω

)
−→

(
`∞(B1/K), || · ||∞

)
(10.11)

f −→

{
w → −

∫ xψ/w(d)

0

f{ψ(wx)}dx
x

}
,

where ||f ||g̃ω = supu∈[0,1]d |f(u)/g̃ω(u)|. Let f1, f2 be arbitrary functions in(
`∞([0, 1]d), || · ||g̃ω

)
. Then

sup
w∈B1/K

|Γ(f1)− Γ(f2)|

= sup
w∈B1/K

∣∣∣∣∣−
∫ xψ/w(d)

0

f1{ψ(wx)} − f2{ψ(wx)}
g̃ω{ψ(wx)}

g̃ω{ψ(wx)}
x

dx

∣∣∣∣∣
≤ sup

w∈B1/K

∣∣∣∣∣
∫ xψ/w(d)

0

||f1 − f2||g̃ω
g̃ω{ψ(wx)}

x
dx

∣∣∣∣∣
≤ ||f1 − f2||g̃ω (I11 + I12),

where the last inequality follows from (10.9). The map Γ is thus Lipschitz.
Theorem 2.2 in [6] and the Continuous Mapping Theorem then imply that
B̄CFG
n = Γ(C̄n)  Γ(C) = BCFG as n → ∞ weakly in `∞(B1/K). Since BCFG

has continuous paths on B1/K , the convergence takes place on C(B1/K).

10.4 Proof of Proposition 4.2 (b)

The proof of Proposition 4.2 (b) is similar to the proof of part (a) detailed in
Section 10.3. For the sake of brevity, only the differences are pointed out.

Let K be a compact subset of ∆̊d. Let B1/K and c be as in Section 10.3
and an, bn as in (10.3). Furthermore, assume without loss of generality that n
is sufficiently large so that (10.4) holds. Finally, recall the weight function gω
given in (10.5) for some arbitrary fixed ω ∈ (0, 1/2); if Condition 4.2 (a) holds,
ω ∈ (0, 1/2) must in addition be such that sω > 1. The following result is the
analogue of Lemma 10.4.

Lemma 10.5. As n → ∞, supw∈B1/K

∫ xψ/w(d)

0
|C̄n{ψ(wx)} − Ĉn{ψ(wx)}|dx

converges in probability to 0.

Proof of Lemma 10.5. Fix an arbitrary w ∈ B1/K . Then∫ xψ/w(d)

0

|C̄n{ψ(wx)}−Ĉn{ψ(wx)}|dx ≤ I1(w)+I2(w)+I3(w)+I4(w)+I5(w) ,
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where

I1(w) =

∫ bn/w(d)

an/w(1)

∣∣∣Ĉn{ψ(wx)} − C̄n{ψ(wx)}
∣∣∣ dx ,

I2(w) =

∫ an/w(1)

0

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx,

I3(w) =

∫ xψ/w(d)

bn/w(d)

∣∣∣Ĉn{ψ(wx)}
∣∣∣ dx, I4(w) =

∫ an/w(1)

0

∣∣C̄n{ψ(wx)}
∣∣ dx ,

I5(w) =

∫ xψ/w(d)

bn/w(d)

∣∣C̄n{ψ(wx)}
∣∣ dx .

To prove the claim, we show that for any p ∈ {1 . . . , 5},
supw∈B1/K

Ip(w)→ 0 in probability as n→∞.

Treatment of I1. Define Sn as in (10.6) and observe that

I1(w) ≤ Sn
∫ bn/w(d)

an/w(1)

gω{ψ(wx)}dx ≤ Sn
∫ xψ/w(d)

0

gω{ψ(wx)}dx .

For an arbitrary a ∈ (0, xψ) one further has, using (10.7) and (10.8) and the
fact that w(d) ≥ 1/d,∫ xψ/w(d)

0

gω{ψ(wx)}dx ≤ d
∫ a

0

{1− ψ(x)}ωdx+ d

∫ xψ

a

ψ(x)ωdx.

The upper bound in the preceding display is finite; this follows from Lemma 10.2
(ii)–(iii) and the fact that {1−ψ(x)}ω is bounded on [0, a]. Given that Sn con-
verges to 0 in probability as n→∞ by Theorem 2.2 in [6], supw∈B1/K

I1(w)→ 0
in probability as n→∞, as claimed.

Treatment of I2. Fix an arbitrary w ∈ B1/K . Using the same arguments as in
the paragraph concerning the treatment of I2 in the proof of Lemma 10.4, one
has that

I2(w) ≤
√
n

∫ an/w(1)

0

{1− ψ(x)}dx ≤
√
n

w(1)
φ(1− c/n) ≤ K

√
nφ(1− c/n) .

Given that
√
xφ(1−c/x) is regularly varying of index 1/2−m < 0, the expression

on the right-hand side converges to 0 as n→∞.

Treatment of I3. Fix an arbitrary w ∈ B1/K . Using the same arguments as in
the paragraph concerning the treatment of I3 in the proof of Lemma 10.4 and
the fact that w(d) ≥ 1/d, one has that I3(w) ≤ d

√
n
∫ xψ
bn

ψ(x)dx. The upper

bound converges to 0 as n→∞ by Lemma 10.3 (ii).

Treatment of I4. Fix an arbitrary w ∈ B1/K . Arguing as in the paragraph
concerning the treatment of I4 in the proof of Lemma 10.4 and using the fact

41



that w(d) ≥ 1/d one has that

I4(w) ≤ Zn
∫ Kan

0

gω{ψ(wx)}dx ≤ Znd
∫ Kan

0

{1− ψ(x)}dx

The upper bound converges in probability to 0 as n → ∞, given that Zn con-

verges in distribution by Theorem 2.2 in [6], and
∫Kan

0
{1 − ψ(x)}dx → 0 as

n→∞, given that an → 0 as n→∞.

Treatment of I5. Fix an arbitrary w ∈ B1/K . Arguing as in the paragraph
concerning the treatment of I5 in the proof of Lemma 10.4, one has that

I5(w) ≤ Znd
∫ xψ

bn

ψ(x)dx.

As in the preceding paragraph, the claim follows from the fact that∫ xψ
bn

ψ(x)dx→ 0 as n→∞ given that bn → xψ as n→∞.

Returning to the proof of Proposition 4.2 (b), introduce the process B̄P
n given,

for all w ∈ ∆d, by

B̄P
n(w) =

1

E(Z)

∫ xψ/w(d)

0

C̄n{ψ(wx)}dx.

From Lemma 4.2 one has that

BP
n(w) =

1

E(Z)

∫ xψ/x(d)

0

Ĉn{ψ(wx)}dx,

and Lemma 10.5 implies that supw∈B1/K
|BP
n(w)− B̄P

n(w)| → 0 in probability as

n→∞. As in the proof of Proposition 4.2 (b), one can establish that B̄P
n  BP

as n → ∞ in C(B1/K) using Theorem 2.2 in [6] and the Continuous Mapping
Theorem featuring the map

Γ :
(
`∞([0, 1]d), || · ||g̃ω

)
−→

(
`∞(B1/K), || · ||∞

)
f −→

{
w →

∫ xψ/w(d)

0

f{ψ(wx)}dx

}
,

which is easily shown to be Lipschitz.

11 Detailed simulation study results

This section contains the detailed results of the simulation study from Section 5
in the form of tables containing the means of errors obtained from 1000 Monte
Carlo replicates.

Tables 13, 14 and 15 compare results for logistic (LG) and discrete spectral
measure-type (DSM) Pickands dependence functions. Following the notation
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from [15], the parameter choices for the latter are provided below. We have m =
10 and w(d) the matrix of weight parameters, where d denotes de dimension.

w(2) =

[
1.00 0.93 0.87 0.80 0.73 0.67 0.60 0.53 0.47 0.40
0.00 0.07 0.13 0.20 0.27 0.33 0.40 0.47 0.53 0.60

]
,

(11.1)

w(4) =


0.67 0.00 0.33 0.33 0.00 0.33 0.33 0.00 0.00 0.00
0.33 1.00 0.33 0.00 0.00 0.33 0.00 0.00 0.33 0.00
0.00 0.00 0.33 0.67 1.00 0.00 0.33 0.67 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.67 1.00

 ,

(11.2)

w(10) =



0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00
0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.33 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.33 0.00
0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00
0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.33 0.00
0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 1.00


.

(11.3)
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n 200 500 1000

error IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000)

ψ τ(ψ) | estimator CFG P CFG P CFG P CFG P CFG P CFG P

Clayton 1/5 1.39 2.42 1.97 6.08 0.86 1.76 0.75 3.16 0.64 1.33 0.42 1.82
2/5 1.49 8.3 2.27 90.48 0.92 7.84 0.87 83.79 0.69 7.66 0.48 79.73
3/5 1.59 28.97 2.68 26.55× 102 0.98 35.08 1.02 41.92× 102 0.75 36.38 0.56 44.95× 102

4/5 2.25 620.74 5.38 1915× 106 1.24 86.32× 10 1.64 66.08× 106 0.87 48.34× 10 0.77 30.40× 105

Frank 1/5 1.38 1.84 1.9 3.43 0.84 1.16 0.72 1.33 0.64 0.87 0.41 0.77
2/5 1.36 2.23 1.89 5.08 0.84 1.5 0.71 2.27 0.62 1.06 0.38 1.14
3/5 1.31 2.9 1.75 8.73 0.82 1.86 0.68 3.56 0.61 1.39 0.37 1.9
4/5 1.41 4.35 2.05 20.9 0.81 2.78 0.68 8.01 0.59 2.14 0.35 4.65

Gumbel 1/5 1.43 1.85 2.08 3.48 0.91 1.19 0.84 1.43 0.67 0.88 0.45 0.78
2/5 1.49 2.27 2.23 5.23 0.95 1.49 0.92 2.25 0.69 1.1 0.48 1.21
3/5 1.58 3.23 2.56 11.15 0.97 2.25 0.97 5.12 0.72 1.66 0.51 2.74
4/5 1.97 7.46 4.07 69.08 1.11 5.57 1.27 36.18 0.79 4.32 0.62 20.31

Joe 1/5 1.46 1.79 2.17 3.27 0.92 1.14 0.87 1.33 0.68 0.84 0.46 0.71
2/5 1.54 2.04 2.4 4.2 0.98 1.32 1 1.74 0.72 0.94 0.51 0.91
3/5 1.71 2.41 3.1 5.78 1.05 1.56 1.17 2.44 0.77 1.12 0.59 1.31
4/5 2.37 3.38 5.81 12.03 1.28 2.21 1.7 4.99 0.91 1.56 0.83 2.53

Table 2: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c

for 2-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is LG
with parameter % = 2 so that τ(A) = 1/2, where τ(A) = τ(CA) is Kendall’s tau of the bivariate extreme-value copula CA.
There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices
so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ. There are
1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000)

ψ τ(ψ) | estimator CFG P CFG P CFG P CFG P CFG P CFG P

Clayton 1/5 1.44 2.47 2.16 6.62 0.9 1.78 0.84 3.37 0.65 1.31 0.43 1.81
2/5 1.52 7.84 2.41 83.82 0.93 7.93 0.9 83.3 0.67 7.1 0.46 63.43
3/5 1.63 34.37 2.87 47.27× 102 1 36.39 1.06 50.09× 102 0.7 33.13 0.51 35.04× 102

4/5 2.3 52.42× 10 5.49 35.15× 105 1.29 75.85× 10 1.73 18.66× 106 0.86 47.71× 10 0.76 26.10× 105

Frank 1/5 1.38 1.84 2 3.55 0.87 1.16 0.78 1.4 0.62 0.83 0.4 0.72
2/5 1.37 2.29 1.96 5.52 0.87 1.43 0.77 2.13 0.61 1.03 0.39 1.1
3/5 1.33 2.89 1.82 9.12 0.83 1.88 0.71 3.67 0.58 1.35 0.36 1.93
4/5 1.48 4.27 2.26 19.98 0.86 2.81 0.75 8.51 0.58 2.05 0.35 4.43

Gumbel 1/5 1.43 1.8 2.12 3.37 0.93 1.17 0.86 1.41 0.66 0.84 0.46 0.75
2/5 1.5 2.22 2.37 5.17 0.94 1.46 0.9 2.22 0.69 1.08 0.51 1.21
3/5 1.59 3.23 2.69 11.29 0.97 2.18 0.98 5 0.72 1.62 0.55 2.74
4/5 2.01 7.46 4.31 70.59 1.13 5.28 1.3 32.79 0.78 4.47 0.64 23.05

Joe 1/5 1.45 1.7 2.23 3.03 0.94 1.12 0.9 1.28 0.68 0.8 0.48 0.66
2/5 1.53 1.94 2.52 3.96 0.98 1.29 1.01 1.72 0.73 0.91 0.56 0.86
3/5 1.74 2.38 3.27 5.82 1.06 1.56 1.19 2.55 0.77 1.11 0.64 1.28
4/5 2.49 3.27 6.54 11.4 1.33 2.2 1.86 5.02 0.91 1.59 0.87 2.61

Table 3: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c for
2-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is NSD with
parameters α = (1, 2), ρ = 0.59, so that τ(A) = 1/2, where τ(A) = τ(CA) is Kendall’s tau of the bivariate extreme-value copula
CA. There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter
choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ.
There are 1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000)

ψ τ(ψ) | estimator CFG P CFG P CFG P CFG P CFG P CFG P

Clayton 1/5 2.89 4.66 4.23 10.44 1.79 3.29 1.6 5.29 1.29 2.4 0.82 2.82
2/5 2.91 15.47 4.22 125.2 1.84 14.31 1.71 106.94 1.3 13.99 0.87 98.9
3/5 3.07 71.13 4.95 67.03× 102 1.97 69.62 2.01 67.85× 102 1.41 74.4 1 75.85× 102

4/5 4.05 13.12× 102 8.76 36.57× 106 2.5 19.46× 102 3.3 81.52× 106 1.6 19.42× 102 1.33 54.47× 106

Frank 1/5 2.76 3.21 3.86 5.01 1.67 1.99 1.39 1.98 1.23 1.39 0.75 0.96
2/5 2.75 3.85 3.82 7.23 1.64 2.45 1.37 2.98 1.18 1.72 0.68 1.49
3/5 2.47 5.3 3.08 14.01 1.54 3.24 1.17 5.26 1.1 2.41 0.6 2.9
4/5 2.54 8.28 3.37 36.42 1.49 4.88 1.13 11.67 1.05 3.68 0.55 6.76

Gumbel 1/5 2.96 3.17 4.35 4.96 1.82 2.07 1.67 2.15 1.32 1.43 0.86 1.02
2/5 3.02 3.96 4.57 7.67 1.9 2.66 1.8 3.49 1.34 1.82 0.88 1.66
3/5 3.13 5.8 5.02 16.48 1.97 4.07 1.96 8.11 1.34 2.88 0.89 4.14
4/5 3.7 13.8 7.29 10.46× 10 2.21 9.94 2.53 50 1.45 7.84 1.06 30.24

Joe 1/5 3.08 3.13 4.7 4.81 1.86 1.99 1.74 1.96 1.37 1.37 0.93 0.94
2/5 3.23 3.56 5.31 6.28 1.99 2.28 1.96 2.6 1.43 1.61 1.04 1.3
3/5 3.51 4.34 6.61 9.27 2.17 2.82 2.39 3.93 1.52 1.98 1.18 1.96
4/5 4.52 6.02 11.26 17.85 2.65 3.88 3.61 7.54 1.78 2.77 1.63 3.86

Table 4: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c

for 4-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with
parameter % = 2 so that τ(A) = 1/2, where τ(A) = τ(CA) is the averaged Kendall’s tau across all bivariate margins of CA.
There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices
so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ. There are
1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000)

ψ τ(ψ) | estimator CFG P CFG P CFG P CFG P CFG P CFG P

Clayton 1/5 2.08 3.53 1.8 5.11 1.34 2.47 0.75 2.56 0.93 1.91 0.36 1.52
2/5 2.13 12.16 1.91 69.53 1.33 11.54 0.75 63.33 0.94 10.99 0.38 57.14
3/5 2.41 60.02 2.57 46.99× 102 1.51 56.85 0.97 45.89× 102 1.06 55.34 0.47 36.54× 102

4/5 3.55 13.92× 102 5.28 35.28× 106 1.99 12.48× 102 1.67 37.26× 106 1.28 22.95× 102 0.68 25.54× 107

Frank 1/5 2.02 2.53 1.65 2.67 1.25 1.6 0.66 1.07 0.88 1.15 0.33 0.55
2/5 1.9 3.04 1.48 3.82 1.18 2.01 0.6 1.65 0.85 1.37 0.31 0.78
3/5 1.86 4.07 1.48 6.96 1.19 2.68 0.6 2.98 0.82 1.85 0.28 1.42
4/5 2.18 6.12 2.02 16.04 1.2 4.03 0.61 6.96 0.77 2.88 0.25 3.45

Gumbel 1/5 2.08 2.5 1.81 2.6 1.34 1.66 0.76 1.14 0.93 1.16 0.36 0.56
2/5 2.13 3.09 1.93 3.95 1.36 2.07 0.8 1.78 0.96 1.48 0.39 0.91
3/5 2.31 4.48 2.29 8.34 1.42 3.1 0.87 4.03 0.98 2.27 0.41 2.16
4/5 3.09 11.23 3.96 61.4 1.7 7.8 1.21 28.63 1.12 6.09 0.53 15.69

Joe 1/5 2.17 2.45 1.97 2.51 1.37 1.6 0.81 1.06 0.96 1.11 0.39 0.51
2/5 2.28 2.75 2.25 3.11 1.46 1.85 0.92 1.39 1.01 1.27 0.43 0.67
3/5 2.66 3.43 3.09 4.83 1.6 2.17 1.11 1.94 1.09 1.54 0.51 0.98
4/5 3.82 4.88 6.06 10.06 2.1 3.02 1.79 3.78 1.36 2.16 0.76 1.92

Table 5: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c

for 4-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is NSD
with parameters α = (1, 2, 3, 4), ρ = 0.59, τ(A) = 1/2, where τ(A) = τ(CA) is the averaged Kendall’s tau across all bivariate
margins of CA. There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four
parameter choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean
copula Cψ. There are 1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000)

ψ τ(ψ) | estimator CFG P CFG P CFG P CFG P CFG P CFG P

Clayton 1/5 4.76 7.23 4.62 10.27 3.02 4.98 1.89 4.93 2.15 3.89 0.94 3
2/5 4.98 24.06 5.03 11.74× 10 3.1 22.02 2 91.01 2.28 21.08 1.07 82.74
3/5 5.22 11.19× 10 5.58 55.04× 102 3.3 10.00× 10 2.26 44.32× 102 2.38 10.69× 10 1.17 69.58× 102

4/5 6.13 85.86× 102 8.41 31.67× 108 3.75 33.04× 102 2.97 11.26× 107 2.66 59.59× 102 1.47 48.02× 107

Frank 1/5 4.46 4.72 4.12 4.56 2.86 2.94 1.69 1.78 2.14 2.03 0.93 0.84
2/5 4.12 5.56 3.45 6.31 2.76 3.76 1.55 2.86 1.94 2.56 0.77 1.34
3/5 3.85 8.08 3.02 13.16 2.44 5.03 1.25 5.24 1.8 3.47 0.67 2.48
4/5 3.51 12.54 2.63 32.74 2.19 7.81 1.01 12.47 1.57 5.55 0.51 6.21

Gumbel 1/5 4.93 4.79 5.05 4.73 3.16 3.12 2.08 2 2.18 2.14 1.01 0.94
2/5 5.12 5.86 5.5 7.01 3.24 3.89 2.19 3.1 2.21 2.69 1.04 1.5
3/5 5.32 9.01 6.03 16.06 3.27 6.07 2.24 7.32 2.27 4.48 1.08 3.97
4/5 5.9 21.96 7.85 10.24× 10 3.49 15.54 2.57 48.2 2.38 12.91 1.21 32.38

Joe 1/5 5.09 4.78 5.41 4.77 3.25 3.1 2.21 1.98 2.28 2.16 1.08 0.95
2/5 5.46 5.66 6.4 6.51 3.42 3.51 2.44 2.55 2.39 2.51 1.2 1.28
3/5 5.85 6.94 7.47 9.95 3.65 4.35 2.78 3.85 2.53 3.02 1.33 1.85
4/5 7.31 9.77 12 20.46 4.21 6.22 3.76 7.9 2.8 4.39 1.64 3.91

Table 6: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c

for 10-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is LG
with parameter % = 2 so that τ(A) = 1/2, where τ(A) = τ(CA) is the averaged Kendall’s tau across all bivariate margins of CA.
There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices
so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ. There are
1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000) IRAE(×100) ISE(×10000)

ψ τ(ψ) | estimator CFG P CFG P CFG P CFG P CFG P CFG P

Clayton 1/5 4.65 7.27 4.76 10.99 3.05 5.23 1.99 5.59 2.15 3.97 1.02 3.27
2/5 4.95 24.09 5.19 122.69 3.21 22.63 2.19 106.37 2.18 22.14 1.04 98.17
3/5 5.28 106 6.13 57.55× 102 3.43 112.67 2.52 73.89× 102 2.44 10.85× 10 1.33 60.78× 102

4/5 6.25 65.85× 102 8.88 10.76× 108 3.89 61.49× 102 3.42 42.84× 105 2.81 46.92× 102 1.74 13.06× 107

Frank 1/5 4.45 4.73 4.28 4.76 2.98 3.03 1.9 1.99 2.13 2.1 0.98 0.98
2/5 4.24 5.67 3.81 6.82 2.77 3.73 1.68 3.01 1.99 2.52 0.86 1.39
3/5 3.95 7.63 3.4 12.55 2.55 5.01 1.42 5.38 1.87 3.59 0.78 2.76
4/5 3.76 12.32 3.15 34.04 2.31 7.9 1.19 13.44 1.68 5.83 0.63 7.36

Gumbel 1/5 4.77 4.76 5.01 4.94 3.09 3.04 2.06 1.99 2.33 2.22 1.18 1.08
2/5 5.01 6.05 5.49 7.96 3.2 3.93 2.25 3.29 2.34 2.8 1.21 1.69
3/5 5.33 9.27 6.26 17.84 3.35 6.24 2.47 8.19 2.36 4.48 1.22 4.28
4/5 6.18 21.9 8.57 103.21 3.65 16.16 3.01 53.95 2.45 12.99 1.36 35.38

Joe 1/5 4.97 4.69 5.54 4.83 3.24 3 2.29 1.98 2.47 2.2 1.34 1.08
2/5 5.33 5.46 6.49 6.42 3.42 3.54 2.6 2.68 2.6 2.59 1.51 1.45
3/5 5.82 6.81 7.81 9.88 3.74 4.38 3.12 4.11 2.72 3.17 1.66 2.16
4/5 7.41 9.42 12.75 19.47 4.32 6.03 4.26 7.93 3.08 4.36 2.12 4.18

Table 7: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c for
10-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is NSD with
parameters α = (1, 1, 1, 1, 2, 2, 2, 3, 3, 4), ρ = 0.69, τ(A) = 1/2, where τ(A) = τ(CA) is the averaged Kendall’s tau across all
bivariate margins of CA. There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with
four parameter choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean
copula Cψ. There are 1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000)

ψ τ(ψ) | τ(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

Clayton 1/5 6.6 3.23 1.03 0.17 2.22 1.72 1.04 0.4 2.52 1.23 0.4 0.06 1.38 1.06 0.64 0.24 1.42 0.7 0.22 0.03 1.03 0.8 0.48 0.17
2/5 8.68 3.9 1.2 0.2 2.54 1.88 1.11 0.44 3.25 1.47 0.46 0.07 1.57 1.16 0.69 0.26 1.78 0.81 0.25 0.03 1.17 0.86 0.51 0.19
3/5 10.01 4.4 1.51 0.36 2.7 1.96 1.23 0.6 4.12 1.75 0.55 0.1 1.74 1.24 0.74 0.32 2.22 0.95 0.3 0.05 1.3 0.94 0.56 0.22
4/5 16.01 7.96 3.49 1.08 3.4 2.62 1.9 1.12 5.66 2.58 0.96 0.26 2 1.48 0.99 0.55 2.89 1.26 0.44 0.11 1.46 1.07 0.68 0.35

Frank 1/5 6.49 3.11 1 0.15 2.23 1.7 1.03 0.38 2.48 1.22 0.38 0.05 1.36 1.05 0.63 0.23 1.37 0.68 0.21 0.03 1.02 0.79 0.47 0.16
2/5 7.16 3.19 1.01 0.16 2.31 1.69 1.01 0.39 2.71 1.21 0.37 0.05 1.44 1.06 0.62 0.23 1.5 0.66 0.19 0.03 1.07 0.78 0.45 0.16
3/5 6.94 2.97 0.94 0.18 2.31 1.66 0.99 0.42 2.78 1.17 0.36 0.06 1.44 1.03 0.61 0.23 1.51 0.64 0.19 0.03 1.07 0.76 0.45 0.16
4/5 7.56 3.3 1.24 0.39 2.36 1.72 1.13 0.65 2.61 1.12 0.38 0.09 1.39 1 0.63 0.3 1.42 0.6 0.18 0.03 1.04 0.74 0.45 0.19

Gumbel 1/5 7.59 3.46 1.09 0.16 2.39 1.77 1.06 0.4 3.06 1.42 0.43 0.06 1.52 1.14 0.67 0.24 1.66 0.76 0.23 0.03 1.13 0.84 0.49 0.17
2/5 8.95 3.78 1.19 0.19 2.61 1.87 1.12 0.43 3.7 1.57 0.47 0.07 1.67 1.2 0.69 0.26 1.95 0.83 0.25 0.03 1.22 0.87 0.51 0.18
3/5 10.13 4.31 1.39 0.3 2.75 1.96 1.19 0.55 4.15 1.69 0.51 0.08 1.75 1.22 0.72 0.29 2.2 0.9 0.27 0.04 1.3 0.92 0.53 0.2
4/5 13.4 6.17 2.48 0.75 3.1 2.33 1.6 0.93 4.77 2.06 0.74 0.19 1.88 1.35 0.88 0.46 2.54 1.07 0.35 0.07 1.39 1 0.61 0.28

Joe 1/5 7.99 3.64 1.14 0.18 2.45 1.82 1.08 0.42 3.33 1.49 0.45 0.06 1.59 1.16 0.68 0.24 1.77 0.78 0.24 0.03 1.16 0.85 0.5 0.18
2/5 9.54 4.09 1.28 0.22 2.7 1.93 1.15 0.47 4.2 1.74 0.52 0.08 1.77 1.25 0.73 0.27 2.17 0.9 0.26 0.04 1.28 0.91 0.53 0.19
3/5 11.67 5.13 1.71 0.37 2.94 2.13 1.31 0.62 4.94 2.01 0.62 0.11 1.9 1.33 0.78 0.34 2.56 1.04 0.31 0.05 1.39 0.98 0.57 0.23
4/5 18.06 8.65 3.74 1.11 3.62 2.75 1.98 1.14 6.32 2.77 1.03 0.29 2.13 1.56 1.04 0.59 3.21 1.38 0.47 0.11 1.56 1.13 0.71 0.36

Table 8: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c for 2-dimensional Archimax copula

Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with four choices of parameters so that τ(A) ∈ {1/5, 2/5, 3/5, 4/5},
where τ(A) = τ(CA) is Kendall’s tau of the bivariate extreme-value copula CA. There are four choices for the Archimedean generator ψ, Clayton,
Frank, Gumbel and Joe, each with four parameter choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate
Archimedean copula Cψ. There are 1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000)

ψ τ(ψ) | τ(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

Clayton 1/5 17.84 7.55 2.05 0.26 4.33 3.49 2.22 0.9 6.95 2.89 0.77 0.09 2.71 2.17 1.37 0.54 3.47 1.48 0.4 0.05 1.9 1.56 0.99 0.39
2/5 20.5 7.71 2.08 0.3 4.65 3.56 2.23 0.96 7.63 3.11 0.84 0.11 2.8 2.24 1.41 0.6 4.01 1.59 0.42 0.05 2.01 1.58 1 0.41
3/5 25.09 8.98 2.58 0.52 5.12 3.76 2.42 1.28 9.81 3.67 1.01 0.17 3.15 2.41 1.54 0.74 5.11 1.85 0.48 0.07 2.3 1.73 1.08 0.48
4/5 37.15 14.51 5.2 1.58 5.92 4.68 3.49 2.4 14.66 5.6 1.88 0.45 3.78 2.93 2.1 1.31 6.46 2.35 0.71 0.16 2.52 1.9 1.3 0.76

Frank 1/5 17.12 7.02 1.88 0.24 4.24 3.36 2.11 0.85 6.15 2.54 0.67 0.08 2.53 2.03 1.27 0.51 3.22 1.36 0.36 0.04 1.81 1.48 0.94 0.37
2/5 18.62 7.03 1.83 0.24 4.45 3.38 2.09 0.86 6.24 2.47 0.66 0.08 2.53 1.99 1.26 0.51 3.26 1.26 0.32 0.04 1.86 1.45 0.89 0.35
3/5 16.1 5.68 1.52 0.27 4.06 3.02 1.9 0.92 6.08 2.17 0.57 0.08 2.52 1.89 1.18 0.52 3.23 1.14 0.28 0.04 1.83 1.36 0.83 0.34
4/5 15.33 5.72 1.97 0.59 3.93 3 2.15 1.46 5.74 2.02 0.6 0.13 2.43 1.8 1.19 0.67 2.9 1.02 0.27 0.05 1.73 1.28 0.82 0.4

Gumbel 1/5 20.93 8.01 2.06 0.25 4.71 3.62 2.24 0.9 8.01 3.06 0.8 0.1 2.9 2.23 1.39 0.55 4.31 1.61 0.41 0.05 2.12 1.62 1 0.39
2/5 24.64 8.63 2.21 0.32 5.04 3.74 2.3 1 9.74 3.38 0.86 0.11 3.19 2.34 1.44 0.6 4.91 1.67 0.41 0.05 2.27 1.66 1.01 0.4
3/5 27.75 9.35 2.5 0.46 5.3 3.84 2.43 1.22 11.18 3.67 0.96 0.14 3.41 2.43 1.51 0.68 5.27 1.73 0.42 0.06 2.34 1.68 1.02 0.43
4/5 33.36 12.27 4.17 1.14 5.71 4.32 3.12 2.05 13.1 4.49 1.35 0.31 3.62 2.65 1.78 1.07 5.86 1.97 0.54 0.11 2.45 1.77 1.14 0.61

Joe 1/5 23.9 8.77 2.23 0.28 5.03 3.79 2.33 0.94 8.95 3.26 0.83 0.1 3.06 2.3 1.42 0.56 4.87 1.74 0.43 0.05 2.25 1.69 1.03 0.4
2/5 29.48 10.16 2.53 0.36 5.49 4.02 2.45 1.06 11.12 3.71 0.94 0.12 3.39 2.46 1.51 0.63 6.08 2 0.48 0.06 2.49 1.79 1.08 0.43
3/5 35.24 12.21 3.31 0.63 5.85 4.32 2.74 1.42 13.39 4.5 1.16 0.19 3.66 2.67 1.67 0.79 7.1 2.31 0.56 0.08 2.66 1.9 1.15 0.5
4/5 51.43 19.1 6.54 1.74 6.81 5.25 3.87 2.54 17.54 6.34 1.96 0.48 4.15 3.13 2.18 1.34 8.69 2.97 0.85 0.18 2.91 2.15 1.43 0.8

Table 9: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and for 4-dimensional Archimax

copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with four choices of parameters so that τ(A) ∈
{1/5, 2/5, 3/5, 4/5}, where τ(A) = τ(CA) is Kendall’s tau of the corresponding bivariate extreme-value copula CA(2) . A(2) is a 2-dimensional LG
Pickands dependence function with the same parameter as A. There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and
Joe, each with four parameter choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula
Cψ. There are 1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000)

ψ τ(ψ) | τ(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

Clayton 1/5 32.88 9.78 1.97 0.2 7.1 5.74 3.73 1.6 13.8 4.34 0.87 0.08 4.59 3.82 2.47 1.04 6.53 2.03 0.4 0.04 3.11 2.6 1.68 0.71
2/5 35.12 9.92 2.03 0.23 7.36 5.7 3.7 1.72 16.11 4.59 0.89 0.09 4.94 3.93 2.5 1.08 7.1 2.09 0.42 0.04 3.21 2.62 1.71 0.74
3/5 43.17 11.68 2.48 0.38 8.1 6.22 4.1 2.19 18.48 5.05 1.01 0.12 5.22 4.07 2.63 1.28 8.9 2.38 0.47 0.05 3.65 2.81 1.8 0.83
4/5 54.62 15.64 4.19 1.08 8.87 7.01 5.21 3.93 23.39 6.41 1.52 0.31 5.91 4.57 3.21 2.1 10.7 2.76 0.6 0.11 3.99 3.01 2.03 1.23

Frank 1/5 31.49 9.01 1.82 0.18 7 5.5 3.54 1.55 13.16 4.01 0.78 0.07 4.48 3.66 2.32 0.97 6.57 2.01 0.39 0.04 3.11 2.59 1.65 0.69
2/5 28.42 7.96 1.62 0.18 6.61 5.15 3.34 1.51 11.96 3.41 0.67 0.07 4.24 3.34 2.14 0.92 5.9 1.65 0.32 0.03 2.97 2.35 1.5 0.63
3/5 26.69 6.88 1.36 0.19 6.43 4.82 3.07 1.57 10.51 2.74 0.53 0.06 3.95 3 1.91 0.89 5.4 1.42 0.27 0.03 2.83 2.17 1.38 0.61
4/5 21.7 5.79 1.46 0.4 5.67 4.3 3.1 2.39 8.29 2.13 0.47 0.09 3.47 2.62 1.78 1.14 4.06 1.05 0.22 0.03 2.43 1.85 1.22 0.67

Gumbel 1/5 40.74 10.81 2.05 0.21 7.89 6.02 3.77 1.64 17.62 4.68 0.88 0.08 5.1 3.93 2.47 1.04 8.53 2.23 0.41 0.04 3.56 2.72 1.7 0.7
2/5 48.43 11.84 2.18 0.24 8.54 6.31 3.91 1.76 21.52 5.16 0.93 0.09 5.61 4.12 2.54 1.09 9.91 2.38 0.43 0.04 3.81 2.8 1.74 0.73
3/5 52.22 12.45 2.36 0.35 8.74 6.37 3.99 2.12 23.46 5.45 0.98 0.11 5.85 4.22 2.61 1.22 10.61 2.49 0.45 0.05 3.94 2.86 1.77 0.79
4/5 61.23 15.44 3.7 0.85 9.08 6.79 4.88 3.47 24.49 5.89 1.25 0.22 5.96 4.35 2.9 1.78 11.09 2.68 0.54 0.08 4.04 2.99 1.95 1.09

Joe 1/5 47.39 11.98 2.23 0.22 8.46 6.3 3.91 1.68 20.08 5.01 0.93 0.09 5.45 4.05 2.54 1.08 10.08 2.47 0.45 0.04 3.85 2.85 1.76 0.73
2/5 59.62 14.23 2.59 0.29 9.27 6.76 4.16 1.89 25.61 5.85 1.04 0.1 6.14 4.41 2.71 1.18 12.37 2.82 0.49 0.05 4.18 3.01 1.84 0.79
3/5 71.83 16.91 3.2 0.45 9.86 7.13 4.51 2.39 29.34 6.66 1.19 0.14 6.51 4.67 2.87 1.38 13.83 3.13 0.56 0.06 4.42 3.16 1.95 0.9
4/5 95.53 24.21 5.59 1.19 10.97 8.3 5.97 4.15 34.69 8.39 1.81 0.34 6.93 5.1 3.47 2.2 15.34 3.7 0.76 0.13 4.64 3.42 2.28 1.35

Table 10: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and for 10-dimensional Archimax

copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is LG with four choices of parameters so that τ(A) ∈
{1/5, 2/5, 3/5, 4/5}, where τ(A) = τ(CA) is Kendall’s tau of the corresponding bivariate extreme-value copula CA(2) . A(2) is a 2-dimensional LG
Pickands dependence function with the same parameter as A. There are four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and
Joe, each with four parameter choices so that τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula
Cψ. There are 1000 Monte Carlo replicates.



n 200 500 1000

error IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000)

d λU (ψ,A) | λU (A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5

2 5/10 9.34 4.63 2.6 1.98 3.91 1.83 1.67 1.26 2.06 1 1.22 .92
6/10 10.37 5.04 2.74 2.07 4.45 2.08 1.78 1.33 2.31 1.1 1.3 .98
7/10 11.38 5.49 1.94 2.88 2.16 1.38 5.02 2.35 .77 1.89 1.41 .88 2.6 1.22 .41 1.37 1.02 .64
8/10 13.18 6.11 2.11 3.07 2.26 1.45 5.64 2.63 .88 1.98 1.48 .93 2.95 1.37 .45 1.45 1.08 .67
9/10 17.3 8.22 2.73 .39 3.48 2.59 1.61 .63 6.65 3.11 1.03 .14 2.13 1.59 .99 .38 3.47 1.62 .53 .07 1.58 1.17 .73 .28

2 5/10 29.13 11.76 5.25 4.02 10.98 4.37 3.2 2.44 5.98 2.38 2.36 1.81
6/10 33.02 13.18 5.55 4.27 12.59 4.88 3.42 2.59 6.8 2.64 2.5 1.9
7/10 37.03 14.6 4 5.82 4.47 2.89 14.08 5.45 1.52 3.6 2.74 1.76 7.71 2.95 .8 2.65 2.01 1.29
8/10 41.83 16.44 4.47 6.08 4.66 3.03 16.22 6.12 1.7 3.83 2.9 1.88 8.68 3.31 .89 2.79 2.1 1.36
9/10 54.45 20.81 5.78 .65 6.73 5.1 3.34 1.39 19.48 7.63 2.12 .24 4.16 3.17 2.07 .86 10.12 3.88 1.05 .12 2.97 2.25 1.45 .6

10 5/10 63.58 17.87 8.88 6.64 27.19 7.63 5.74 4.32 13.72 3.82 4.06 3.07
6/10 73.1 20.78 9.42 7.14 31.54 8.71 6.16 4.58 15.62 4.31 4.28 3.24
7/10 82.19 23.37 4.53 9.89 7.51 4.78 35.6 9.87 1.9 6.55 4.87 3.11 17.26 4.84 .93 4.47 3.39 2.19
8/10 94.21 27.01 5.21 10.34 7.87 5.12 39.37 11.02 2.17 6.88 5.17 3.34 18.7 5.33 1.04 4.65 3.53 2.29
9/10 112.8 31.95 6.53 .56 10.93 8.37 5.52 2.44 44.77 12.64 2.52 .22 7.19 5.46 3.58 1.58 20.29 5.89 1.2 .11 4.85 3.7 2.44 1.08

Table 11: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and for d-dimensional Archimax

copula Cψ,A samples of size n ∈ {200, 500, 1000} for dimensions d ∈ {2, 4, 10}. The Pickands dependence function A is LG with four choices of
parameters so that λU (A) ∈ {1/5, 2/5, 3/5, 4/5}, where λU (A) = λU (CA) is the upper tail dependence coefficient of the corresponding bivariate extreme-
value copula CA(2) . A(2) is a 2-dimensional LG Pickands dependence function with the same parameter as A. The Archimedean generator ψ is Joe and
λU (ψ,A) ∈ {5/10, 6/10, 7/10, 8/10, 9/10}, where λU (ψ,A) = λU (Cψ,A) is the upper tail coefficient of the bivariate Archimax copula Cψ,A(2) . There are
1000 Monte Carlo replicates.



ψ n 200 500 1000

error IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000) IRAE(x100) ISE(x10000)

d λL(ψ,A) | ηL(A) 0.57 0.66 0.76 0.87 0.57 0.66 0.76 0.87 0.57 0.66 0.76 0.87 0.57 0.66 0.76 0.87 0.57 0.66 0.76 0.87 0.57 0.66 0.76 0.87

2 1/5 6.39 3.24 1.06 0.15 2.17 1.71 1.05 0.39 2.48 1.26 0.4 0.05 1.36 1.07 0.64 0.23 1.37 0.69 0.22 0.03 1.02 0.8 0.48 0.17
2/5 6.81 3.23 1.04 0.16 2.26 1.71 1.04 0.39 2.78 1.31 0.39 0.05 1.46 1.09 0.65 0.23 1.52 0.68 0.22 0.03 1.07 0.8 0.48 0.17
3/5 8.33 3.47 1.07 0.15 2.54 1.79 1.06 0.39 3.24 1.48 0.4 0.06 1.57 1.16 0.65 0.24 1.71 0.73 0.23 0.03 1.14 0.81 0.49 0.17
4/5 9.96 4.07 1.22 0.17 2.71 1.9 1.12 0.4 3.79 1.5 0.46 0.06 1.69 1.17 0.69 0.24 2.07 0.84 0.24 0.03 1.26 0.88 0.5 0.17

4 1/5 16.81 6.99 1.92 0.23 4.22 3.4 2.16 0.86 6.52 2.88 0.77 0.09 2.62 2.15 1.36 0.53 3.41 1.45 0.39 0.04 1.88 1.53 0.97 0.37
2/5 18.08 7.21 2 0.23 4.37 3.42 2.18 0.85 6.73 2.89 0.78 0.09 2.64 2.17 1.37 0.54 3.5 1.5 0.38 0.04 1.9 1.56 0.96 0.38
3/5 20.02 7.42 2.07 0.25 4.58 3.46 2.22 0.89 7.9 2.95 0.75 0.09 2.84 2.18 1.35 0.53 3.73 1.46 0.39 0.04 1.96 1.53 0.97 0.38
4/5 24.27 8.11 2.13 0.27 4.97 3.6 2.26 0.91 9.22 3.21 0.84 0.09 3.1 2.29 1.41 0.55 4.84 1.66 0.43 0.05 2.24 1.64 1.01 0.39

10 1/5 33.23 10.06 2 0.19 7.15 5.8 3.72 1.58 12.8 4.15 0.83 0.08 4.4 3.7 2.4 1 6.54 2.02 0.39 0.04 3.09 2.6 1.63 0.7
2/5 34.7 10.12 2 0.2 7.37 5.86 3.74 1.61 13.81 4.17 0.79 0.08 4.57 3.77 2.35 1.01 6.68 1.97 0.4 0.04 3.12 2.56 1.68 0.69
3/5 34.72 10.49 2.02 0.19 7.32 5.94 3.78 1.59 15.36 4.09 0.86 0.08 4.81 3.71 2.46 1 7.11 2.08 0.42 0.04 3.22 2.62 1.71 0.71
4/5 39.04 10.01 1.94 0.21 7.68 5.8 3.7 1.63 17.48 4.89 0.93 0.08 5.1 4.05 2.56 1.05 8.37 2.17 0.42 0.04 3.49 2.67 1.72 0.7

Table 12: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c and AP

n,c for d-dimensional Archimax
copula Cψ,A samples of size n ∈ {200, 500, 1000} for dimensions d ∈ {2, 4, 10}. The Pickands dependence function A is LG with four choices of parameters
so that ηL(A) ∈ {1/5, 2/5, 3/5, 4/5}, where ηL(A) = ηL(CA) is the index of lower tail dependence [34] of the corresponding bivariate extreme-value copula
CA(2) . A(2) is a 2-dimensional LG Pickands dependence function with the same parameter as A. The Archimedean generator ψ is Clayton and
λL(ψ,A) ∈ {5/10, 6/10, 7/10, 8/10, 9/10}, where λL(ψ,A) = λL(Cψ,A) is the lower tail coefficient of the bivariate Archimax copula Cψ,A(2) . There are
1000 Monte Carlo replicates.



error IRAE(x100) ISE(x10000)

n 200 500 1000 200 500 1000

ψ τ(ψ) | A DSM LG DSM LG DSM LG DSM LG DSM LG DSM LG

Clayton 1/5 0.99 0.9 0.61 0.55 0.42 0.4 1 0.75 0.39 0.28 0.18 0.14
2/5 1.02 0.96 0.64 0.59 0.44 0.41 1.05 0.87 0.41 0.33 0.19 0.16
3/5 1.16 1.09 0.71 0.65 0.47 0.45 1.33 1.18 0.5 0.41 0.22 0.19
4/5 1.76 1.66 0.94 0.92 0.61 0.56 2.89 2.56 0.82 0.78 0.34 0.29

Frank 1/5 0.95 0.88 0.58 0.56 0.41 0.38 0.93 0.73 0.35 0.29 0.17 0.14
2/5 0.94 0.86 0.57 0.54 0.4 0.38 0.9 0.7 0.33 0.28 0.16 0.13
3/5 0.93 0.88 0.57 0.54 0.38 0.37 0.88 0.74 0.33 0.27 0.15 0.13
4/5 1.14 1 0.62 0.56 0.39 0.37 1.22 0.94 0.38 0.29 0.15 0.13

Gumbel 1/5 1 0.91 0.61 0.57 0.41 0.39 1.04 0.78 0.38 0.31 0.17 0.15
2/5 1.03 0.92 0.63 0.59 0.42 0.41 1.07 0.82 0.41 0.32 0.18 0.16
3/5 1.12 1.01 0.67 0.63 0.45 0.43 1.23 0.99 0.44 0.37 0.19 0.17
4/5 1.56 1.38 0.84 0.8 0.52 0.5 2.21 1.77 0.66 0.59 0.26 0.23

Joe 1/5 1.02 0.92 0.64 0.57 0.41 0.41 1.09 0.81 0.41 0.31 0.17 0.16
2/5 1.12 1 0.68 0.61 0.44 0.44 1.29 0.95 0.46 0.35 0.2 0.18
3/5 1.27 1.18 0.76 0.66 0.48 0.47 1.63 1.35 0.56 0.42 0.23 0.21
4/5 1.91 1.81 1.03 0.94 0.61 0.6 3.43 2.98 0.98 0.8 0.35 0.34

Table 13: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c for

2-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is either
DSM or LG. Parameters for the DSM case are reported in Equation (11.1). The parameter in LG is set % = 2.87 so
that the averaged pairwise Kendall’s tau of both Pickands dependence functions is approximately equal to 0.65. There are
four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices so that
τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ. There are 1000
Monte Carlo replicates.



error IRAE(x100) ISE(x10000)

n 200 500 1000 200 500 1000

ψ τ(ψ) | A DSM LG DSM LG DSM LG DSM LG DSM LG DSM LG

Clayton 1/5 3.59 2.54 2.31 1.63 1.63 1.16 10.98 2.92 4.6 1.22 2.26 0.63
2/5 4.06 2.63 2.57 1.69 1.9 1.16 14.02 3.17 5.77 1.31 3.08 0.63
3/5 4.68 2.86 2.98 1.81 2.15 1.28 18.66 3.86 7.67 1.54 3.98 0.77
4/5 5.89 3.84 3.69 2.28 2.57 1.46 30.67 7.22 11.87 2.48 5.83 0.99

Frank 1/5 3.5 2.47 2.26 1.61 1.61 1.08 10.3 2.81 4.39 1.19 2.25 0.54
2/5 3.73 2.35 2.4 1.49 1.71 1.07 11.77 2.55 4.96 1.02 2.51 0.53
3/5 3.9 2.2 2.45 1.42 1.8 1 12.81 2.23 5.2 0.94 2.79 0.45
4/5 3.97 2.37 2.41 1.42 1.74 0.92 13.73 2.67 5.05 0.94 2.61 0.39

Gumbel 1/5 4.04 2.62 2.57 1.64 1.83 1.18 14.17 3.14 5.6 1.25 2.83 0.64
2/5 4.52 2.68 2.9 1.68 2.04 1.17 18.11 3.4 7.16 1.31 3.55 0.64
3/5 4.89 2.82 3.13 1.75 2.2 1.18 21.7 3.86 8.34 1.44 4.14 0.65
4/5 5.61 3.42 3.38 1.99 2.36 1.28 28.32 5.71 10.1 1.92 4.84 0.78

Joe 1/5 4.39 2.62 2.72 1.66 1.94 1.16 16.65 3.23 6.29 1.27 3.24 0.64
2/5 5.12 2.86 3.14 1.75 2.19 1.25 23.51 3.94 8.43 1.45 4.17 0.74
3/5 5.61 3.27 3.43 1.91 2.39 1.34 29.86 5.36 10.25 1.74 5.02 0.86
4/5 6.88 4.44 3.92 2.45 2.67 1.59 46.17 9.75 13.7 2.83 6.35 1.2

Table 14: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c for

4-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is either
DSM or LG. Parameters for the DSM case are reported in Equation (11.2). The parameter in LG is set % = 2.17 so
that the averaged pairwise Kendall’s tau of both Pickands dependence functions is approximately equal to 0.54. There are
four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices so that
τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ. There are 1000
Monte Carlo replicates.



error IRAE(x100) ISE(x10000)

n 200 500 1000 200 500 1000

ψ τ(ψ) | A DSM LG DSM LG DSM LG DSM LG DSM LG DSM LG

Clayton 1/5 4.97 6.29 2.95 3.94 1.98 2.8 15.32 13.61 5.53 5.5 2.52 2.79
2/5 5.95 6.21 3.72 4.19 2.55 2.87 22.12 13.15 8.87 6.12 4.23 3
3/5 6.98 6.73 4.57 4.39 3.24 3.06 30.76 16.11 13.55 6.84 6.92 3.36
4/5 8.71 7.74 5.47 4.66 3.92 3.45 51.59 23.07 19.81 8.14 10.37 4.37

Frank 1/5 4.84 5.93 2.92 3.75 1.96 2.64 14.75 12.45 5.4 4.98 2.52 2.46
2/5 5.32 5.65 3.27 3.66 2.25 2.58 17.93 10.99 6.84 4.68 3.28 2.35
3/5 5.38 5.15 3.35 3.33 2.42 2.34 18.69 9.37 7.3 3.89 3.81 1.94
4/5 5.27 4.5 3.31 2.91 2.36 2.01 18.6 7.57 7.18 2.97 3.63 1.47

Gumbel 1/5 6.15 6.4 3.99 4.15 2.8 3 23.97 14.72 10.39 6 5.09 3.15
2/5 7.22 6.61 4.61 4.1 3.37 3.05 34.41 16.19 13.98 6.08 7.32 3.32
3/5 7.92 6.91 4.89 4.11 3.65 3.11 43.01 17.88 15.75 6.17 8.64 3.51
4/5 8.84 7.55 5.28 4.33 3.89 3.13 55.56 21.93 18.64 6.99 9.77 3.58

Joe 1/5 6.91 6.84 4.51 4.49 3.23 3.11 30.72 17 13.43 7.17 6.75 3.5
2/5 8.18 7.33 5.29 4.71 3.9 3.26 45.88 19.59 18.81 8.04 9.84 3.86
3/5 9.12 7.74 5.74 4.96 4.24 3.37 58.16 22.54 22.55 8.99 11.89 4.13
4/5 10.85 8.88 6.45 5.44 4.6 3.6 84.1 31.69 28.98 11.25 14.08 4.64

Table 15: Average Integrated relative absolute error (IRAEx100) and Integrated squared error (ISEx10000) of ACFG
n,c for

10-dimensional Archimax copula Cψ,A samples of size n ∈ {200, 500, 1000}. The Pickands dependence function A is either
DSM or LG. Parameters for the DSM case are reported in Equation (11.3). The parameter in LG is set % = 1.56 so
that the averaged pairwise Kendall’s tau of both Pickands dependence functions is approximately equal to 0.36. There are
four choices for the Archimedean generator ψ, Clayton, Frank, Gumbel and Joe, each with four parameter choices so that
τ(ψ) ∈ {1/5, 2/5, 3/5, 4/5}, where τ(ψ) = τ(Cψ) is Kendall’s tau of the bivariate Archimedean copula Cψ. There are 1000
Monte Carlo replicates.
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[37] R. Mesiar and V. Jágr. d-dimensional dependence functions and Archimax
copulas. Fuzzy Sets and Systems, 228:78–87, 2013.

[38] P. M. Morillas. A characterization of absolutely monotonic (∆) functions
of a fixed order. Publ. Inst. Math. (Beograd) (N.S.), 78(92):93–105, 2005.

[39] P. Naveau, R. Huser, P. Ribereau, and A. Hannart. Modeling jointly
low, moderate, and heavy rainfall intensities without a threshold selection.
Water Resour. Res., 52:1–17, 2016.

[40] R. B. Nelsen. An Introduction to Copulas. Springer Series in Statistics.
Springer, New York, second edition, 2006. ISBN 978-0387-28659-4; 0-387-
28659-4.

60

https://doi.org/10.1016/j.spasta.2017.06.004
https://doi.org/10.1016/j.spasta.2017.06.004
http://dx.doi.org/10.1201/b13150
http://dx.doi.org/10.1201/b13150
https://doi.org/10.1002/cjs.10110
http://dx.doi.org/10.1239/aap/1300198519
http://dx.doi.org/10.1093/biomet/83.1.169
http://dx.doi.org/10.1093/biomet/83.1.169
https://doi.org/10.1214/07-AOS556
https://doi.org/10.1214/07-AOS556


[41] J. Pickands, III. Multivariate extreme value distributions. In Proceedings
of the 43rd session of the International Statistical Institute, Vol. 2 (Buenos
Aires, 1981), volume 49, pages 859–878, 894–902, 1981.

[42] S. I. Resnick. Extreme values, regular variation, and point processes,
volume 4 of Applied Probability. A Series of the Applied Probability
Trust. Springer-Verlag, New York, 1987. ISBN 0-387-96481-9.
doi: 10.1007/978-0-387-75953-1. URL http://dx.doi.org/10.1007/

978-0-387-75953-1.

[43] P. Ressel. Homogeneous distributions—and a spectral representation of
classical mean values and stable tail dependence functions. J. Multivariate
Anal., 117:246–256, 2013.

[44] J. Segers. Asymptotics of empirical copula processes under non-restrictive
smoothness assumptions. Bernoulli, 18(3):764–782, 2012. ISSN 1350-7265.
doi: 10.3150/11-BEJ387. URL http://dx.doi.org/10.3150/11-BEJ387.
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