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M. LERASLE
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Abstract. We consider the problem of non-parametric density estimation of a random
environment from the observation of a single trajectory of a random walk in this environ-
ment. We first construct a density estimator using the beta-moments. We then show that
the Goldenshluger-Lepski method can be used to select the beta-moment. We prove non-
asymptotic bounds for the supremum norm of these estimators for both the recurrent and
the transient to the right case. A simulation study supports our theoretical findings.

1. Introduction

A random walk in random environment (RWRE) provides a simple model to describe
various problems, for example the propagation of heat, diffusion of matter through a phys-
ical medium, or DNA-unzipping experiments. In many situations of practical interest, the
medium in which the system evolve is very irregular. In these cases, it is natural to model
these irregularities as a random environment. The definition of an RWRE involves two in-
gredients: (i) the environment, which is an i.i.d. sample of some unknown disribution ν
and (ii) the random-walk whose transition probabilities are dermined by the environment.
This paper considers the problem of recovering the density f of the distribution ν of the
environment of a RWRE on Z based on the observation of a single trajectory of the RWRE.

Since their introduction by Chernov Chernov [1967], RWRE have been widely studied in
the probability literature; see for example Zeitouni [2012] for a recent overview of probabilistic
results on RWRE in Z and more generally in Zd. On the other hand, statistical inference for
RWRE has emerged only recently with the appearance of RWRE in several statistical models
such as DNA-unzipping experiments or DNA- polymerase phenomenon Alemany et al. [2012],
Baldazzi et al. [2007, 2006], Huguet et al., Koch et al. [2002]. In these applications, the main
task is usually to recover the environment itself and, when it is the case, an estimator of ν
can be considered as a preliminary step in the construction of a an empirical Bayes estimator.
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eric.moulines@polytechnique.edu.
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2 DENSITY ESTIMATION FOR RWRE

More precisely, the problem of recovering ν was originally considered in Adelman and En-
riquez [2004] who introduced an estimator of the moments of the distribution. The article
Adelman and Enriquez [2004] considered random walks in general state spaces but the estima-
tors they deduced had poor statistical performance. More recently, Falconnet et al. [2014b,a],
Comets et al. [2014], Comets et al. [2016] considered the random walk on Z and studied the
parametric estimation of ν. More precisely, they proved consistency and asymptotic normal-
ity of the maximum likelihood estimator in the ballistic and sub-ballistic regimes as well as
its efficiency in the ballistic regime (see Section 2 for details regarding these notions). Some
of these consistency results have been extended to i.i.d. environments in recurrent regimes
in Comets et al. [2016] for a slightly different estimator and also to Markovian environments
in Andreoletti et al. [2015].

It is shown in Comets et al. [2014] and Diel and Lerasle [2018] that the beta-moments of
the distribution ν can be estimated consistently from a single trajectory of the RWRE. In
Diel and Lerasle [2018], these estimators of moments are used to construct an estimator of
the cumulative distribution function (c.d.f.) of the random environment. In this paper, we
use these moment estimators to construct estimators of the probability density.

Recovering the probability density of a distribution from its moment is a classical problem
in statistics called moment reconstruction Akhiezer [1965]. Density estimators of a distribu-
tion based on its beta-moments (also referred to as beta-kernel estimators) have already been
studied in the classical i.i.d. direct observation setting, where a sample (Z1, . . . , Zn) of the
unknown distribution is available for the inference (see for example Chen [1999], Bouezmarni
and Rolin [2003], Mnatsakanov [2008] and the references therein). In the direct observation
setting, Chen, Song Xi [1999] proposed to estimate the density f at a point x ∈ [0, 1] by a
single appropriately chosen β-moment

f̂h(x) =
1

n

n∑
i=1

B
x
h
+1, 1−x

h
+1(Zi) ,

where h is the smoothing bandwidth and for any (a, b) in R∗+ ×R∗+, Ba,b is the beta function

(1) Ba,b(u) =
Γ(a+ b)

Γ(a)Γ(b)
ua−1(1− u)b−1106u61 .

Chen [1999] introduced this estimator for a density function on [0, 1] in order to remove
the boundary bias of the standard kernel estimator. He proved that this estimator is free
of boundary bias. This beta-kernel density estimator has later been shown to be minimax
under classical regularity assumptions on the density f by Bertin and Klutchnikoff [2010].
Bertin and Klutchnikoff [2010].

Our contribution is threefold. First, we propose a non-parametric density estimator for the
random environment of a RWRE. To our best knowledge, this is the first density estimator of
the distribution of the environment. Our proposed methodolgy follows the same steps than
the classical density estimation problem but our construction is not a ”kernel” estimator,
contrary to the ”direct-observation” case. The unknown density f of ν is first approximated
at every point x ∈ (0, 1) by a sequence of properly chosen beta kernels following Chen [1999],
Mnatsakanov [2008]. The β-moments are estimated using the methods outlined in Diel and
Lerasle [2018]. The proposed density estimator is a function of bandwidth parameter. We
propose and analyze a method to choose automatically this bandwidth parameter, based on
the Goldenshluger-Lepski algorithm Goldenshluger, A. and Lepski, O. [2008]. This extra
step of selection is crucial here to optimize our bound without any prior knowledge of the
regime of the walk or the regularity of the unknown density (see Section 4 for details).
The Goldenshluger-Lepski method was also used in Bertin and Klutchnikoff [2014] to build
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adaptive estimators in the i.i.d. setting based on the minimax estimators of Bertin and
Klutchnikoff [2010].

Our second contribution is a derivation of the first non-parametric risk bounds for any
density estimator of f based on the observation of a single trajectory of a RWRE. These are
exploiting the results recently developed in Diel and Lerasle [2018] for the stochastic part of
the risk. We are of course also using some of the results on the beta-kernel estimator presented
in Bouezmarni and Rolin [2003], Mnatsakanov [2008], Bertin and Klutchnikoff [2010]. Our
rates do not match minimax rates of density estimation in i.i.d. setting. Nevertheless, our
results outperform those obtained in Comets et al. [2016] in the recurrent regime where only
consistency results for very particular densities were derived. Furthermore, our estimator
does not require a prior knowledge on the regime of the walk contrary to that of Comets
et al. [2016] - the results in this work presuppose that RWRE is recurrent, which is not
required here.

We finally investigate the numerical behaviour of our estimator in a Monte Carlo exper-
iment. It is interesting to notice that our estimator behaves reasonably in ballistic regimes
even if the chain has a linear drift. This emphasizes the difference between population and
individual parameters estimation problems. It is clear that recovering the environment itself
is impossible in the ballistic regime, yet estimating the law of the random environment is
still possible. Related results have already been reported in a parametric setting for example
in Falconnet et al. [2014b] but it comes perhaps as a surprise that the same behaviour is
observed in the non-parametric setting. Both theoretical results and this first simulations
consider the case where the chain is observed until it reaches a fixed site n. Depending on the
regime, the number of observed steps of the random walk can therefore be very different, it
is typically O(n) in the ballistic regime and eO(

√
n) in the recurrent regime. Our simulations

also illustrate how the quality of estimation deteriorates when going from nearly recurrent
regime to nearly ballistic regime.

The paper is organised as follows. In Section 2, we summarize some basic results on
RWRE on Z and on the likelihood of the observations before defining our basic estimator.
In Section 3, we introduce our estimator. In Section 4, we state our main results : convergence
rates for the basic estimators and for the Goldenshluger-Lepski estimator derived from these.
Section 5 presents Monte Carlo experiment supporting our theoretical claims. Proofs of the
main results are gathered in Section 6.

2. Random walks in random environment (RWRE)

Denote by E = (0, 1)Z the set of environments endowed with E = B ((0, 1))Z, the σ-field
generated by the cylinders. Denote by (Xt)t∈Z+

the canonical process of the space ZZ+

endowed with the σ-field generated by the cylinders. For ω ∈ E, we define the random walk
in the environment ω as the time-homogeneous Markov chain with transition probabilities
given, for all x, y ∈ Z by

pω(x, y) =


ωx if y = x+ 1

1− ωx if y = x− 1

0 otherwise

In all the sequel, it is assumed that the Markov chain is started from 0. That is to say, given
the environment ω, the random walk currently at point x ∈ Z, will make a one-unit step to
the right with probability ωx or to the left with probability 1− ωx. The probability measure
Pω that determines the distribution of the random walk in a given environment ω is called
the quenched distribution.
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Here the environment is determined by the sequence of random variables ω = (ωy)y∈Z.
In this paper, we assume that the random probabilities (ωx)x∈Z are i.i.d. with common
distribution ν. The environment ω is thus distributed according to Pν = ν⊗Z.

By averaging the quenched probability with respect to the environment distribution we

obtain the annealed distribution Pν on
(
2Z
)⊗Z+ defined by:

Pν(·) =

∫
E

Pω(·)Pν(dω).

Expectation with respect to the annealed probability measure Pν will be denoted Eν . Note
that the random walk (Xt)t∈Z+

is a Markov chain only conditionally on the fixed environment

(i.e. with respect to to the quenched distribution Pω) but the Markov property fails under
the annealed probability measure Pν . This is because the past history canot be neglected, as
it provides information on the environment. The random walk in i.i.d. random environment
on Z is the random sequence (Xt)t∈Z+

considered under annealed distribution Pν .

The asymptotic behaviour of the walk (Xt)t∈Z+ depends on the distribution of the ratio

(2) ρ0 =
1− ω0

ω0
.

More precisely, if Eν [| log ρ0|] is finite, Solomon Solomon [1975] proved the following classifi-
cation:

(i) if Eν [log ρ0] 6= 0, then (Xt)t∈Z+ is transient (Pν-a.s.); moreover if Eν [log ρ0] < 0,
then limt→+∞Xt = +∞, Pν-a.s., the process (Xt)t∈Z+ is transient to the right.

(ii) if Eν [log ρ0] = 0, then (Xt)t∈Z+ is recurrent; moreover, lim supt→+∞Xt = +∞ and
lim inft→+∞Xt = −∞, Pν-a.s.

In the transient case, the random walk escapes to infinity, and it is reasonable to ask at
what speed. For the simple RWRE, the asymptotic velocity was obtained by Solomon [1975],
Kesten et al. [1975].

The transient case may further be divided into two sub-cases, called ballistic and sub-
ballistic which correspond to a linear and sub-linear speed for the random walk. Denote by
Tn the first hitting time of n ∈ Z+,

(3) Tn = inf {t ∈ Z+, Xt = n} .
Assuming that that the RWRE is transient Eν [log ρ0] < 0, we can distinguish

(1) If Eν [ρ0] < 1, then Pν-a.s.,

Tn/n→
1 + Eν [ρ0]

1− Eν [ρ0]

and the RWRE is called ballistic.
(2) If Eν [ρ0] ≥ 1, then Pν-a.s., Tn/n→∞ and the RWRE is called sub-ballistic.

The fluctuations of Tn may be characterized more precisely. Suppose that the distribution of
log ρ0 is non arithmetic (that is the group generated by the support of log ρ0 is dense in R)
and that there exists κ ∈ (0,∞) such that

Eν [ρκ0 ] = 1 and Eν
[
ρκ0 log+(ρ0)

]
<∞(4)

where log+(x) = log(x ∨ 1). A simple convexity argument shows that if κ exists then it is
unique. The value of κ determines the asymptotic behaviour of (Xt)t∈Z+ . Then, it follows
from Kesten et al. [1975] that

(1) if κ < 1, Tn/n
1/κ and Xt/t

κ converge in Pν-distribution to some non trivial distribu-
tion,

(2) if κ = 1, Tn/n log n and (log t/t)Xt converge in Pν-probability to a non zero constant,
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(3) if κ > 1, Tn/n and Xt/t converge in Pν-probability to a non zero constant.

In the first two cases, the random walk is sub-ballistic and in the last case, (Xt)t∈Z+ is ballistic
as Tn and Xt grow linearly.

When the RWRE is recurrent, the fluctuations of (Xt)t∈Z+ have been evaluated by Sinai

Sinăı [1982]: suppose that Eν [log ρ0] = 0, Eν
[
log2 ρ0

]
> 0 and that the support of ρ0 is

included in (0, 1), then Xt/(log t)2 converges in Pν-distribution to a non trivial limit (see
also Zeitouni [2012] for some extensions under relaxed versions of this assumption).

Our results hold under the assumptions of Diel and Lerasle [2018], that is those of Kesten
et al. [1975], in the transient case, and a slightly weaker version of those of Sinăı [1982] in
the recurrent case. Consider the following assumptions:

H1. Eν [log ρ0] = 0, Eν
[
log2 ρ0

]
> 0 and there exists a > 0, such that Eν [ρa0]+Eν

[
ρ−a0

]
<∞.

H2. Eν [log ρ0] < 0, the distribution of log ρ0 is non arithmetic and there exists κ ∈ (0,∞)
such that Eν [ρκ0 ] = 1 and Eν

[
ρκ0 log+(ρ0)

]
<∞.

Under H1, (Xt)t∈Z+ is recurrent. Under H2, (Xt)t∈Z+ is transient to the right. In both
cases, the hitting time Tn is almost surely finite for any n ∈ Z+. We assume that the
RWRE is observed until the first time it hits the state n. The observations are thus given by
X0, . . . , XTn .

Following Comets et al. [2014], for any t0 > 0 and y ∈ Z, define by L(t0, y) and R(t0, y)
the number of steps to the left and to the right until time t0 and from site y:

L(t0, y) =
∑

06t6t0−1
1{Xt=y,Xt+1=y−1},

R(t0, y) =
∑

06t6t0−1
1{Xt=y,Xt+1=y+1} .

The likelihood Lν (X0, . . . , XTn) of the observations (where Tn is defined in (3)) can be
expressed as follows Comets et al. [2014]∫ ∏

y∈Z
ωR(Tn,y)
y (1− ωy)L(Tn,y)

Pν(dω) =
∏
y∈Z

∫ 1

0
aR(Tn,y)(1− a)L(Tn,y)ν(da) .

Now, since Tn is the hitting time of the state n, for any y ≥ n, L(Tn, y) = 0, and

L(Tn, y + 1) =

{
R(Tn, y), for all y < 0

R(Tn, y)− 1, for all y ∈ [0, n− 1]
.

Hence the likelihood may be rewritten as

Lν (X0, . . . , XTn) =
∏

y6n−1

∫ 1

0
aL(Tn,y+1)+1{y>0}(1− a)L(Tn,y)ν(da) .

The collection (L(Tn, y))y6n is therefore a sufficient statistic that will be the building block
of our estimation method. An important result of Kesten et al. [1975], central in the analysis
of the parametric case derived in Comets et al. [2014] is that, under the annealed distribution
Pν , the process

(Zny )06y6n = (L(Tn, n− y))06y6n

has the same distribution as (Zy)06y6n where (Zy)y∈N is a branching process with immigration
in random environment (BPIRE) defined by

(5) Z0 = 0 and ∀y ∈ N∗, Zy =

Zy−1∑
i=0

ξy,i,
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where (ξy,i)(y,i)∈Z∗+×Z+
is a family of geometrically distributed independent random variables,

i.e. for all (y, i) ∈ Z∗+ × Z+ and for all k ∈ Z+,

Pω (ξy,i = k) = ωy(1− ωy)k .

Under the annealed law Pν , (Zx)x∈Z+ is an homogeneous Markov chain starting at 0 with
transition kernel [Comets et al., 2014, Proposition 4.3]

Kν(i, j) =

(
i+ j

i

)∫ 1

0
ai+1(1− a)jν(da) .(6)

3. Estimator construction

All along the paper, we assume that ν is absolutely continuous and has density f with
respect to the Lebesgue measure.

Let β > 0, L > 0 and m = sup {` ∈ Z+ : ` < β}. The set Σ(β, L) is the set of m times

differentiable functions g : [0, 1] 7→ R+ satisfying for all (x, x′) ∈ [0, 1]2

(7)
∣∣∣g(m)(x)− g(m)(x′)

∣∣∣ 6 L ∣∣x− x′∣∣β−m .

The following section provides the construction of basic density estimators.
As suggested by (6), the moments of ν provide the natural information available for our

estimation problem. Recovering a density function from its moments is a classical instance
of the Hausdorff moment problem; see Akhiezer [1965].

For any j ∈ Z+, let µj [ν] denote the j-th moment of the random environment distribution

µj [ν] =

∫ 1

0
tjν(dt) =

∫ 1

0
tjf(t)dt .

The moment problem is said to have unique solution if for two distributions ν and ν ′ over
(0, 1), the equations µj [ν] = µj [ν

′] for any j > 1 imply that ν = ν ′. If the distribution
ν satisfies this property, it is said to be moment determinate. It is shown that a sufficient
condition for ν to be moment determinate is that the distribution ν on (0, 1) has a continuous
density; see Mnatsakanov and Ruymgaart [2003], Mnatsakanov [2008].

When ν is moment determinates, the operator mapping the c.d.f. of ν into (µj [ν])j∈Z+
is

therefore invertible. Given M ∈ Z+, it has been shown in Mnatsakanov [2008] that its inverse
can be approximated by

(8) νM ([0, x]) =

bMxc∑
k=0

M∑
j=k

(
M

j

)(
j

k

)
(−1)j−kµj [ν] .

It is shown in Mnatsakanov [2008] that limM→∞ νM ([0, x]) = ν([0, x]) at every point x ∈
(0, 1) where the c.d.f. is continuous. If ν has a density f , we consider then the following
approximation, defined for any x ∈ [0, 1] by

(9) fM (x) = (M + 1)
(
νM
([

0, x+M−1
])
− νM ([0, x])

)
.

[Mnatsakanov, 2008, Theorem 1] ensures that, when f is continuous, fM converges uniformly
to f . More precisely, we establish in lemma 5 that if f ∈ Σ(β, L) with β ∈ (0, 2] then for any
x ∈ [0, 1] ∣∣f(x)− fM (x)

∣∣ 6 Cβ,LM−β/2 .
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In the following, we do not use the expression (8) to construct our estimator. For any (a, b)
in R∗+ × R∗+, benote by ma,b the following beta-moments

(10) ma,b = Eν
[
ωa0(1− ω0)

b
]

=

∫ 1

0
ua(1− u)bf(u)du

where Ba,b is the beta-kernel defined in (1). Using these notations, the approximation fM of
the density may be written [Mnatsakanov, 2008, Eq (12)]

fM (x) =

∫ 1

0
BbMxc+1,M−bMxc+1(u)f(u)du = (M + 1)

(
M

bMxc

)
mbMxc,M−bMxc .(11)

When a and b are integers, the moments ma,b can be consistently estimated as shown in Diel
and Lerasle [2018]. Using the convention 0/0 = 0, denote for all (i, j) ∈ Z+

φa,b(i, j) =

(
i+j−(a+b)

i−a
)(

i+j
i

) 1{i>a,j>b} and Na
n =

n∑
k=1

1{Znk−1>a} ,(12)

m̂a,b
n =

1

Na
n

n∑
k=1

φa,b(Znk−1, Z
n
k ) ,(13)

where (Znk ) is defined in (5). Therefore, an estimator of f(x) might be obtained by plugging
an estimator of the beta moment in (11).

(14) ∀x ∈ [0, 1] , f̂Mn (x) = (M + 1)

(
M

bMxc

)
m̂bMxc,M−bMxc
n .

Statistical properties of these estimators are provided in Theorem 1.

4. Main results

Let us first derive convergence rates of the basic estimators f̂Mn for fixed values of the
regularization parameter M .

Theorem 1. Assume that the distribution ν of the random environment has a density f ∈
Σ(β, L) for some β ∈ (0, 2] and L > 1.

(i) Assume H1. For any M > 1, there exists a constant Cν such that

(15) Eν
[∥∥∥f − f̂Mn ∥∥∥∞] 6 Cν

(
LM−β/2 +M

log n√
n

)
,

(ii) Assume H2. For any M > 1

(16) Eν
[∥∥∥f − f̂Mn ∥∥∥∞] 6 Cν

(
LM−β/2 +M1+κ

√
log n

n

)
where κ is defined in H2.

Theorem 1 provides the first rates of convergence for non-parametric density estimation
of the random environment of a random walk. An important feature is that these rates are
achieved by the same estimator in the recurrent and transient regimes. On the other hand,
the value Mn optimizing these rates highly depends on both the regime of the walk and the
regularity β of f that are both unknown in practice.

Corollary 2. (i) Assume H1. Then, taking Mn = b(
√
n/ log(n))

2/(β+2)c,

Eν
[∥∥∥f − f̂Mn

n

∥∥∥
∞

]
6 Cν

(
log(n)√

n

)β/(β+2)

.



8 DENSITY ESTIMATION FOR RWRE

(ii) Assume H2. Then, taking Mn = (bn/ log(n))
1

β+2(1+κ) c,,

Eν
[∥∥∥f − f̂Mn

n

∥∥∥
∞

]
6 Cν

(
log(n)

n

) β
2(β+2(1+κ))

.

We will next propose a method to construct an estimator which is adaptive to the regime
(recurrence / transience) and the regularity of the density of the random environment. To
that purpose, we follow the Goldenshluger-Lepski strategy Goldenshluger, A. and Lepski,

O. [2008] to obtain a data-driven choice of the beta-moment order M̂n. In the proof of
Theorem 1, we build confidence regions for f . More precisely, it follows from Eq. (20) and
Lemmas 5, 6 that there exists an event Ω0 with probability larger than 1 − n−2, such that
for all M ∈ {1, . . . , n− 1},

(17)
∥∥∥f − f̂Mn ∥∥∥∞ 6 31LM−β/2 +

M + 1

NM
n

√
3n log n .

Define, for any M ∈ {1, . . . , n− 1},

B(M) = 31LM−β/2 Vn(M) =
M + 1

NM
n

√
3n log n ,

Cn(M) = sup
M ′∈{1,...,n−1}

{∥∥∥f̂Mn − f̂M∨M ′n

∥∥∥
∞
− 2Vn(M ′)

}
.

Goldenshluger-Lepski’s choice of M is defined by

(18) M̂n ∈ argmin
M∈{1,...,n−1}

{Cn(M) + 2Vn(M)} .

The estimator satisfies the following lemma, whose proof is given for completeness.

Lemma 3. On the event Ω0, for any M ∈ {1, . . . , n− 1}∥∥∥f − f̂M̂n
n

∥∥∥
∞
6 5B(M) + 5Vn(M) .

Proof. Denote d(f, g) = ‖f − g‖∞. By repeated applications of the triangular inequality, one
obtains, for any M ∈ {1, . . . , n− 1}, on Ω0,

d(f, f̂M̂n
n ) 6 d(f, f̂Mn ) + d(f̂Mn , f̂M∨M̂n

n ) + d(f̂M∨M̂n
n , f̂M̂n

n )

6 B(M) + Vn(M) + Cn(M) + 2Vn(M̂n) + Cn(M̂n) + 2Vn(M)

6 B(M) + Vn(M) + Cn(M) + 2Vn(M) + Cn(M) + 2Vn(M)

6 B(M) + 5Vn(M) + 2Cn(M) .

Now, for any M ∈ {1, . . . , n − 1}, B being non increasing and Vn being non decreasing, on
Ω0

Cn(M) 6 0 ∨ sup
M ′>M

{
d(f, f̂Mn ) + d(f, f̂M

′
n )− 2Vn(M ′)

}
6 0 ∨ sup

M ′>M

{
B(M) +B(M ′) + Vn(M)− Vn(M ′)

}
6 2B(M) .

�

Using Lemma 3 together with (17) yields the following Theorem:

Theorem 4. Let β ∈ (0, 2] and L > 1. Assume that f ∈ Σ(β, L) holds.

(i) Assume H1. Then, there exists a constant Cν such that

Pν

(∥∥∥f − f̂M̂n
n

∥∥∥
∞
6 Cν

(
log(n)√

n

)β/(β+2)
)
> 1− Cν

log n√
n
.
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(ii) Assume H2. Then, there exists a constant Cν such that

Eν
[∥∥∥f − f̂M̂n

n

∥∥∥
∞

]
6 Cν

(
log(n)

n

) β
2(β+2(1+κ))

,

The estimator f̂M̂n
n achieves simultaneously the optimal rates of Theorem 1 in every regime.

It is in this sense adaptive to the regime and the regularity of f .
The result holds in expectation in transient regimes and only with large probability in the

recurrent regime. The reason is that the term NM
n cannot be handled in the same way in

transient regimes where the Markov chain (Zk) admits a unique invariant probability and in
recurrent regimes where it does not.

The rates do not match those one could reach if the environment ω is observed Bertin
and Klutchnikoff [2010]. When the chain is recurrent, it visits typically more than n times
almost all sites [Diel and Lerasle, 2018, Lemma 10]. Therefore, one can probably estimate the
environment itself and plug these estimators in any standard density estimator. This might
improve the rates in the recurrent regime but it would certainly provide a poor estimator in
transient regimes. The problem of recovering the distribution of the environment is in general
harder if one observes only one trajectory of the walk than if the environment is observed
directly. It is not clear whether a single estimator can recover minimax rates of the i.i.d.
setting in the recurrent regime and our rates in transient regimes.

5. Simulation Study

In this section, we illustrate our theoretical results. We consider RWRE in different regimes
(recurrent, transient ballistic and sub-ballistic). We also investigate the impact of the reg-
ularity of the density of the environment The number of steps of the random walk that are
observed depend on the regime. It follows from our discussion in Section 2, that if the RWRE
is transient to the right (Eν [log ρ0] < 0 where ρ0 is defined in (2)) then either

(1) Tn/n→ (1 + Eν [ρ0])/(1− Eν [ρ0]) Pν-a.s. in the ballistic regime Eν [ρ0] < 1, in which
case the number of time steps grow linearly with n

(2) Tn/n → ∞ converges Pν-a.s. in the sub-ballistic regime Eν [ρ0] ≥ 1, showing that
the number of time steps grow superlinearly with n. In the sub-ballistic case, the
fluctuations of Tn are controlled by the parameter κ defined in (4).

We then compare the performance of our estimator in three sub-ballistic regime but with
different κ. In both parts, we consider our estimation procedure for different values of the
parameter M .

5.1. Influence of the regularity. In this section, we consider 3 different distributions for
the environment.

• The first example is the Beta distribution B(3, 3) whose density B3,3 is defined in (1).
• The second example is the distribution with density

x 7→ 4

(
1− |2x− 0.6|

0.15

)
1[0.225,0.325](x) +

14

3

(
1− |2x− 1.2|

0.3

)
1[0.45,0.75](x) .

• The last example is the distribution with density

x 7→ 0.6B3,3(2x)1[0,0.5](x) + 1.4B3,3(2x− 1)1(0.5,1](x) .

These densities are plotted in black in Figure 1. In the first example, the chain is recurrent,
in the second and the third, it is sub-ballistic with a value of κ respectively equal to 0.17 and
0.57.
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Figure 1. True density (solid black line) and in each point x ∈ (0, 1) the

median of the estimator f̂Mn (x) (dashed-dotted blue line), its interquartile
range (greyed area) and its lower and upper hinges (dotted blue line) of the

estimator f̂M100 for the three considered environment (one environment per
column) and for M ∈ {25, 50, 75}.

For each distribution of the environment, 100 trajectories of the RWRE have been simu-
lated until the chain reaches 100.

In each case, our (piecewise constant) estimator f̂Mn , defined in (14), built for M ∈
{25, 50, 75} is compared with the actual density f . More precisely, figure 1 shows for each
considered environment and for M in {25, 50, 75} a graphic representation of the true density

(solid black line) and in each point x ∈ (0, 1) the median of the estimator f̂Mn (x) (dashed-
dotted blue line), its interquartile range (greyed area) and its lower and upper hinges (dotted
blue line).

According to our theoretical bounds, the estimator f̂Mn performs better when the true
density is regular as in Examples 1 and 3 than in the non regular Example 2. The estimator

f̂Mn , based on a polynomial approximation, cannot properly approximate the two triangles
shaped density of Example 2. More precisely, the regularization parameterM should probably
be much larger for the bias of the estimator to be small.
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5.2. Influence of the regime. We now consider trajectories from RWRE that all are tran-
sient to right and sub-ballistic. The environment is drawn from the distribution with density

(19) x 7→ 0.8B3,3(0.5 + 2(x− c1)) + 1.2B3,3(0.5 + 2(x− c2))

and for three set of the parameters c1 and c2 such that the parameter κ associated to the sub-
ballistic RWRE takes values near the extreme values of this regime. In the following table, the
chosen sets of parameters are provided with the corresponding (numerically approximated)
values of κ.

κ 0.04 0.35 1
c1 0.27 0.3 0.38
c2 0.67 0.7 0.7

For each set of parameters for the environment distribution, 100 trajectories until the
RWRE reaches 100 for the first time have been generated.

Figure 2 illustrates the variability of the estimator f̂M100. For the densities defined in 19
with κ in {0.04, 0.35, 1}, we plot the true density of the environment as well as the interquar-

tile range and lower and upper hinges of f̂M100 computed over the 100 trajectories and for
M ∈ {25, 50, 75}.

As expected from our theoretical results, the variability of the estimator deteriorates with
κ. When κ = 0.04 or κ = 0.35, the estimator shows better bias and worse variability when
M grows. The situation in the nearly ballistic case (κ = 1) is different : the walk reaches
faster n = 100 and the trajectory is thus shorter, one single trajectory reaching n = 100 does
not seem sufficient to obtain a reliable estimator of f .

6. Proof

6.1. Proof of Theorem 1. By the triangular inequality∥∥∥f − f̂Mn ∥∥∥∞ 6 ∥∥fM − f∥∥∞ +
∥∥∥fM − f̂Mn ∥∥∥∞ .(20)

The first term in the right-hand side is deterministic and called the bias, the second is
stochastic and called the variance. Lemma 5 provides an upper bound for the bias. Random
bounds on the variance, valid in any regime, are provided in Lemma 6. Lemma 7 uses these
random bounds to derive deterministic bounds on the variance that, once plugged in (20)
together with the result of Lemma 5 allow to conclude the proof of (16) and (15). The choice
of Mn optimizing the bounds is then immediate.

Lemma 5. Let β ∈ (0, 2] and L > 1. Assume thatf ∈ Σ(β, L). Then

(21)
∥∥f − fM∥∥∞ 6 31LM−β/2 .

Proof. Let x ∈ [0, 1] and let B(M,x) be a beta distributed random variable with parameters
bMxc+ 1 and M − bMxc+ 1 on a probability space (Ω,A,P). By definition,

fM (x)− f(x) =

∫ 1

0
f(u)BbMxc+1,M−bMxc+1(u)du− f(x) = E

[
f(B(M,x))− f(x)

]
.

Consider first the case 0 < β 6 1. Since f is (β, L)-Hölder, by Jensen’s inequality,∣∣fM (x)− f(x)
∣∣ 6 E

[∣∣f(B(M,x))− f(x)
∣∣] 6 LE [∣∣B(M,x) − x

∣∣β] 6 LE [∣∣B(M,x) − x
∣∣]β .

For any η > 0, it holds

(22) E
[∣∣B(M,x) − x

∣∣] 6 η + E
[∣∣B(M,x) − x

∣∣1{|B(M,x)−x|>η}
]
.
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Figure 2. True density (in black) and boxplot (median, first and third

quartiles as well as lower and upper hinge) of the estimator f̂M100 for three
different values of parameter M (25, 50 and 75) and κ (0.04, 0.35 and 1)

By Cauchy-Schwarz and Markov inequalities,

E
[∣∣B(M,x) − x

∣∣1{|B(M,x)−x|>η}
]
6

√
E
[(
B(M,x) − x

)2]P (∣∣B(M,x) − x
∣∣ > η}

)
6

√(
Var

(
B(M,x)

)
+
(
E
[
B(M,x)

]
− x
)2) Var

(
B(M,x)

)
η2

.(23)

One has

E
[
B(M,x)

]
=
bMxc+ 1

M + 2
and Var

(
B(M,x)

)
=

(bMxc+ 1)(M − bMxc+ 1)

(M + 2)2(M + 3)
.

Therefore,

(24)
∣∣E [B(M,x)

]
− x
∣∣ 6 2

M + 2
and Var

(
B(M,x)

)
6

1

4M
.
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Plugging (24) in (23) yields:

E
[∣∣B(M,x) − x

∣∣1{|B(M,x)−x|>η}
]
6

√(
1

4M
+

4

M2

)
1

4Mη2
6

1

η

√
17

4M
.

Plugging this bound in (22) and optimizing in η > 0 yields∣∣fM (x)− f(x)
∣∣ 6 17β/4LM−β/2 .

Consider then the case 1 < β 6 2. Since f is differentiable, by the mean-value theorem,
there exists a random variable B̃(M,x) such that∣∣∣B̃(M,x) − x

∣∣∣ 6 ∣∣B(M,x) − x
∣∣ and f(B(M,x))− f(x) = f ′(B̃(M,x))(B(M,x) − x) .

Therefore∣∣fM (x)− f(x)
∣∣ =

∣∣∣E [f ′(x)(B(M,x) − x) +
(
f ′(B̃(M,x))− f ′(x)

)
(B(M,x) − x)

]∣∣∣
6
∣∣f ′(x)

∣∣ ∣∣E [B(M,x)

]
− x
∣∣+ E

[∣∣∣f ′(B̃(M,x))− f ′(x)
∣∣∣ ∣∣B(M,x) − x

∣∣] .
Using that f is (β, L)-Hölder and (24), one gets∣∣fM (x)− f(x)

∣∣ 6 ∥∥f ′∥∥∞ 2

M
+ LE

[∣∣B(M,x) − x
∣∣β] .

Furthermore,

E
[∣∣B(M,x) − x

∣∣β] 6 E
[∣∣B(M,x) − E

[
B(M,x)

]
+ E

[
B(M,x)

]
− x
∣∣β]

6 2β−1
(
E
[∣∣B(M,x) − E

[
B(M,x)

]∣∣β]+
∣∣E [B(M,x)

]
− x
∣∣β) .

By (24),

E
[∣∣B(M,x) − x

∣∣β] 6 2β−1
(
Var

(
B(M,x)

)β/2
+
∣∣E [B(M,x)

]
− x
∣∣β)

6 2β−1

(
2β/2

Mβ/2
+

2β

Mβ

)
6

4β

Mβ/2
.

By [Tsybakov, 2009, Theorem 1.1],∥∥f ′∥∥∞ 6 3√
4−
√

13

L+ β + 1

β + 1
6 7.2L .

It thus finally holds: ∣∣fM (x)− f(x)
∣∣ 6 31LM−β/2 .

As this result holds for all x ∈ [0, 1], the proof is complete. �

Let us now turn to the random part of the risk. We start with a random upper bound.

Lemma 6. Assuming H2 or H1 , then, for any z > 0,

Pν

(∥∥∥fM − f̂Mn ∥∥∥∞ >
M + 1

NM
n

√
n(z + logM)

2

)
6 2e−z .

Proof. By definition, one has

fM (x)− f̂Mn (x) = (M + 1)

(
M

bMxc

)(
mbMxc,M−bMxc − m̂bMxc,M−bMxc

n

)
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By [Diel and Lerasle, 2018, Theorem 4], for any z > 0,

Pν

(∣∣∣mbMxc,M−bMxc − m̂bMxc,M−bMxc
n

∣∣∣ > n

N
bMxc
n

(
M

bMxc

)−1√ z

2n

)
6 2e−z .

It remains to remark that N
bMxc
n > NM

n and to apply a union bound to conclude the proof.
�

The following lemma provides deterministic rates of convergence that derive from Lemma 6.

Lemma 7. Under H2, X is transient and

Eν
[∥∥∥fM − f̂Mn ∥∥∥∞] 6 CνM1+κ

√
log n

n
.

Under H1, X is recurrent and

Eν
[∥∥∥fM − f̂Mn ∥∥∥∞] 6 CνM log n√

n
.

Proof. Fix some M > 1. If the chain is transient, by [Diel and Lerasle, 2018, Lemmas 8 and
9], there exists a constant Cν such that, for any z > 0,

Pν

(
NM
n

n
>

1

Cν

(
1

Mκ
− Cν

√
z√
n

))
> 1− 2e−z .

Therefore,

(25) Pν

(
NM
n

n
>

1

CνMκ

)
> 1− 2e−n/C

2
νM

2κ
.

Combining (25) with Lemma 6 yields, for any z ∈
(
0, n/4C2

νM
2κ
]
,

(26) Pν

(∥∥∥fM − f̂Mn ∥∥∥∞ > CνM
(1+κ)

√
z + logM

n

)
6 4e−z .

By (12) and (13), both fM and f̂Mn are uniformly upper-bounded by M+1. One can therefore

integrate (26) to get, for any M 6 n1/2κ,

Eν
[∥∥∥fM − f̂Mn ∥∥∥∞] 6 CνM1+κ

√
logM

n
.

As the bound also holds obviously for M > n1/2κ the proof of the transient case is complete.
Assume now that the chain is recurrent, then [Diel and Lerasle, 2018, Lemma 10] states

that there exists Cν such that,

(27) Pν
(
Nn
n 6

n

2

)
6 Cν

log n√
n
.

Combining (27) with that of Lemma 6 implies that, for any M ∈ {1, . . . , n},

Pν

(∥∥∥fM − f̂Mn ∥∥∥∞ > (M + 1)

√
2(z + logM)

n

)
6 2e−z + Cν

log n√
n
.

Choosing z = log n and noticing that
∥∥fM∥∥∞ ∨ ∥∥∥f̂Mn ∥∥∥∞ 6M + 1 concludes the proof. �
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Conclusion of the proof of Theorem 1. Plugging the conclusions of Lemmas 5 and 7 in (20)
yields, if X is transient,

Eν
[∥∥∥f − f̂Mn ∥∥∥∞] 6 31LM−β/2 + CνM

1+κ

√
log n

n
.

If X is recurrent,

Eν
[∥∥∥f − f̂Mn ∥∥∥∞] 6 31LM−β/2 + CνM

log n√
n
.

The proof of Theorem 1 is complete.

6.2. Proof of Theorem 4.

6.2.1. Conclusion of the proof. As B(M) and V (M) are non-negative and respectively non-
increasing and non-decreasing, Lemma 3 applies and one has therefore, on Ω,∥∥∥f − f̂M̂n

n

∥∥∥
∞
6 5 inf

M∈{1,...,n−1}

{
31LM−β/2 +

M + 1

NM
n

√
3n log(n+ 1)

}
.

Let Mmax 6 (n/3Cν log n)1/2κ. A union bound in (25) gives that, if X is transient,

Pν

(
∀M ∈ {1, . . . ,Mmax},

NM
n

n
>

1

CνMκ

)
> 1−

Mmax∑
M=1

e−n/CνM
2κ
> 1−Mmaxe

−3 logn .

Therefore, on an event with probability larger than 1− (Mmax + 1)e−3 logn−n−2 > 1− 2n−2,

∥∥∥f − f̂M̂n
n

∥∥∥
∞
6 inf

M∈{1,...,Mmax}

{
31LM−β/2 + CνM

κ+1

√
log n

n

}

6 Cν,α

(
log n

n

)β/(4+4κ+2β)

.

The proof is concluded in the transient case since
∥∥∥f̂M̂n

n

∥∥∥
∞
6 n+ 1.

Since NM
n > Nn

n for any M ∈ {1, . . . , n − 1}, in the recurrent case, one has therefore, by
(27), on an event with probability larger than 1− Cν log n/

√
n,∥∥∥f − f̂M̂n

n

∥∥∥
∞
6 inf

M∈{1,...,n−1}

{
31LM−β/2 + CνM

log n√
n

}
6 Cν

(
(log n)2

n

)β/(2β+4)

.
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