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Abstract—Many tasks in current mobile networks are
automated through Self-Organizing Networks (SON) func-
tions. The actual implementation consists in a network with
several SON functions deployed and operating indepen-
dently. A Policy Based SON Manager (PBSM) has been
introduced to configure these functions in a manner that
makes the overall network fulfill the operator objectives.
Given the large number of possible configurations (for each
SON function instance in the network), we propose to em-
power the PBSM with learning capability. This Cognitive
PBSM (C-PBSM) learns the most appropriate mapping
between SON configurations and operator objectives based
on past experience and network feedback. The proposed
learning algorithm is a stochastic multi-armed bandit,
namely the UCB1. We evaluate the performances of the
proposed C-PBSM on an LTE-A simulator. We show that it
is able to learn the optimal SON configuration and quickly
adapts to objective changes.

I. INTRODUCTION

Because of the increase in the number of wireless
devices that are accessing mobile networks and the
emergence of services generating bigger amounts of
traffic, mobile data traffic is growing drastically [1]. To
cope with this growth, mobile networks are expected
to become more dense, with different layers of cells
and many technologies deployed. Such networks are
complex to manage, in particular with operators seeking
to maintain the quality of service of the users, while
sustaining their profits level. The 3rd Generation Part-
nership Project (3GPP) has already anticipated this issue
by introducing the Self-Organizing Networks (SON) [2]
in its 8th release. SON functions are currently deployed
independently, each replacing a specific operational task.
It is agreed that deploying simultaneously such various
functions in a network, without any kind of orchestra-
tion and coordination, will hardly lead to an optimal
operation of the network in overall [3]. Making these
functions cooperate to respond as a whole to the operator
objectives is crucial. The question is then how to design
a global SON management system that coordinates and
orchestrates the SON functions, in order to fulfill the
operator’s objective.

SON functions behave differently depending on the
configuration of the algorithm they are running (step

size, thresholds, parameter intervals ...) and the cell
context (cell location, technology ... ) where they are
deployed. The SON function configurations are hence
a leverage for the operator to control the deployed
SONs in a way that fulfills its objectives. The task of
the manager is thus to find the best configuration for
each instance of each deployed SON function, taking
into account the cell context where it is deployed as
well as the interaction with other deployed functions.
Furthermore, SON functions are usually designed by
Radio Access Network (RAN) vendors in a proprietary
manner i.e. they are seen by the operator as almost black
boxes [3]. Consequently, taking account of the increasing
complexity of networks and SON functions, this task
becomes complex. A possible solution for this problem
is through Reinforcement Learning (RL) [4]: introducing
an agent that learns the best configurations by monitoring
the network’s Key Performance Indicators (KPIs).

In this paper we study the use of RL, more precisely
the Multi-Armed Bandit (MAB) [5], to automate and im-
prove the management of SONs by learning the optimal
configuration of the deployed SON functions from the
real network. Our contribution can thus be summarized
by the following: 1) modeling the SON management
problem as an RL problem, 2) proposing the MAB as
an appropriate RL technique to solve the problem and
3) assessing the performance of the proposed approach
using an LTE-A system level simulator. The rest of
the paper is organized as follows. Section II presents
the state of the art on the management of SON and
the applications of MAB in wireless networks. Section
III describes the proposed management model using
MAB. Scenario description and performance evaluation
are presented respectively in sections IV and V. Section
VI concludes the paper.

II. STATE OF THE ART

A global SON management framework has already
been introduced in the context of the European project
Semafour [3]. In [3] and [6], the authors propose a
Policy Based SON Manager (PBSM) that translates
automatically operator objectives into SON function
configurations. The proposed translation is based on the



so called SON Function Models (SFM). The SFMs are
the mapping of the SON function configuration to the
resulting KPIs. This mapping is obtained through exten-
sive offline simulations performed once. Then, the PBSM
deduces the global system performance by comparing the
combination of the individual SFMs to the operator’s
KPI objectives. This combination does not take into
account potential interdependencies between the individ-
ual SON functions. Moreover, the SFMs are obtained
by simulation and do not reflect the network reality,
especially that the SON function’s behavior depends on
the context of the cell where it is deployed. Therefore,
we propose to introduce cognition into the PBSM, that
we henceforward call C-PBSM, through an RL algorithm
that configures the deployed SON functions by learning
the optimal configuration from the real network.

MAB is an RL problem, formulated as a sequential
decision problem, where at each iteration an agent is
confronted with a set of actions called arms, each
when pulled, generates a reward. The agent is only
aware of the reward of the arm after pulling it. The
objective is to find a strategy that permits to identify
the optimal action, while maximizing the cumulated
rewards obtained during the process. There are different
formulations of the MAB in the literature [7], such as
stochastic, adversarial, contextual, linear, etc. In our case
we consider the stochastic MAB (this choice is motivated
in the following sections). MAB has already been studied
and used in wireless access networks and showed to
be useful in many problems for example in resource
allocation problems [8], interference coordination [9] as
well as spectrum allocation [10].

III. POLICY BASED SON MANAGEMENT USING
MULTI ARMED BANDIT

A. Problem Formulation and Motivation

We consider a network section where the traffic is
stationary and unequally distributed. To make the PBSM
cognitive i.e. C-PBSM, we introduce a learning agent
on top of the SON functions as shown in figure 1. This
agent takes actions by configuring all the instances of
the SON functions in the network. The set C of possible
actions is defined as follows. Let S be the set of SON
functions deployed in the network. Let Ns be the number
of deployed instances of a SON s and Vs be the set
of possible SON function Configuration Values (SCV)
sets for SON s, ∀s ∈ S (i.e. assuming that all the
instances of the same SON function have the same set
of possible SCV sets). Then we define the action set
as: C = (Vs1)Ns1 × (Vs2)Ns2 × ...× (Vs|S|)

Ns|S| where
s1, s2, ..., s|S| ∈ S.

For each action c ∈ C, the C-PBSM receives a reward
r, evaluated based on a combination of network KPIs,
once all the individual SON functions have converged
as depicted on figure 2 (we consider that ∀c ∈ C,

Fig. 1: C-PBSM based on RL

all the SONs converge after a sufficient time). The
agent is aware of the reward of an action only after
applying it to the network for a sufficient time: at each
iteration t, the agent picks c ∈ C and then evaluates the
corresponding reward rt,c. Under the conditions of traffic
stationarity and SON convergence, the observed KPIs
converge towards the same distribution, independently
of the previous actions, ∀c ∈ C. It is then reasonable to
consider that, for the same configuration combination
c, the observations of r are i.i.d. random variables
following an unknown probability distribution. The best
action (the one that satisfies best the operator’s objective
targets) is defined as the action that has the highest
expected reward:

c∗ = argmax
c∈C

(E(rc)) (1)

The agent’s task is to sequentially explore the set of
actions C in the real network in order to find c∗.
The question is: what should be the agent’s exploration
strategy so that it reaches as fast as possible its objective
(finding c∗), while minimizing suboptimal decisions (i.e.
minimizing the iterations where the agents choses c 6=
c∗). This is also known as the exploration/exploitation
dilemma. The C-PBSM’s sequential learning process is
represented in figure 2. In the following we will present

Fig. 2: C-PBSM sequential learning process

the MAB and show that we can find good strategies that
balance exploration and exploitation.

B. Multi-Armed Bandit

We propose to use a stochastic MAB, which is an
RL framework where the rewards of each arm are
supposed to be an i.i.d sequence following an unknown
distribution, specific to each arm. Hereafter we consider



C the set of arms, νc and µc are respectively the reward’s
unknown probability distribution and the unknown aver-
age reward of arm c. The MAB learning process is the
following:
For t = 0, 1, 2, ... :

• The agent selects an arm ct ∈ C according to some
policy

• The environment outputs a vector of rewards rt =
(r1

t, r2
t, ..., rn

t) ∈ [0, 1]n

• Agent observes only rct

The MAB’s objective is to define a strategy that finds the
optimal arm, while minimizing the pseudo-regret defined
as follows:

Rn = max
c∈C

E[

n∑
t=0

rc,t −
n∑
t=0

rct,t] (2)

The expectation is taken with respect to the draw of arms
and rewards. Let µ∗ = max(µc) for all c ∈ C. Then the
pseudo-regret can be written as:

Rn = nµ∗ −E[

n∑
t=0

µct ] (3)

The UCB1 algorithm is based on the Upper Confidence
Bound (UCB) strategy, and was introduced first in [5].
The algorithm does not need any preliminary knowledge
on the rewards distributions. Each arm is associated with
an index composed of 2 terms: the first is the empirical
average of the perceived rewards and the second is
related to the upper confidence bound derived from the
Chernoff-Hoeffding bounds.

UCB1 Algorithm
α > 0 input constant parameter
for each iteration t = 0, 1, 2...

- select arm ct that maximizes µ̂t−1ct +
√

αlog(t)
2Nct

t−1

- observe reward rct
t

- evaluate µ̂tct
- Nct

t = Nct
t−1 + 1

where µ̂ct
t−1 is the empirical average

and Nct
t−1 the number of times arm

ct was pulled at iteration t− 1

The UCB1 has theoretical guarantees on the pseudo-
regret: in [5] the authors show that the UCB1 achieves an
expected regret bound of O((|C|log(t))/∆) where |C|
is the number of arms and ∆ is the difference between
the expected rewards of the best and the second best
arm. This upper bound matches with the lower bound on
the pseudo-regret that can be achieved using any other
strategy, making the UCB1 a reasonable solution for the
stochastic MAB.

IV. SCENARIO DESCRIPTION

We consider a 2 layers heterogeneous LTE-A network.
A set S of decentralized SON functions is deployed:

a) Mobility Load Balancing (MLB): Deployed
on each macro cell. Its objective is to balance the
load between macro cells by iteratively comparing the
observed cell load to predefined upper and lower load
thresholds and tuning the Cell Individual Offset (CIO)
parameter accordingly.

b) Cell Range Expansion (CRE): It optimizes the
load difference between the pico cell and the macro cell
where it is deployed, by tuning CIOs using an iterative
process similar to MLB.

c) Enhanced Inter-Cell Interference Coordination
(eICIC): Its objective is to protect pico cell edge users
(attached to a pico cell because of CRE’s offset), from
the high levels of interference caused by the closest
macro cell (due to the power difference between the
pico and the macro cells). To do so, the eICIC tunes
the number of Almost Blank Subframes (ABS) in the
macro cell frames (ABS contains only control signals
transmitted at reduced power).

These functions affect directly two KPIs: the load vari-
ance and the user throughput. A well balanced network
is in fact more robust to traffic variations and has lower
call block rates that is caused mostly by overloaded
cells. Under the effect of the CIO, traffic will offload
from one cell to another, meaning that users will not
attach necessarily to the best serving cell in term of
received power. This causes a degradation of the average
user throughput in the network. The eICIC’s objective
however is to improve the throughput of pico cell edge
users by requesting ABS from the corresponding macro
cell. While this procedure improves the throughput of
cell edge users, it affects the resources of the macro cell
which may cause a load increase, thus increasing the load
variance in the network. It is clear that these functions
influence each another when deployed simultaneously in
a network.

A. Network Model

To test the UCB1, we consider a section of a 2 layer
heterogeneous LTE network as shown in figure 3. The
traffic distribution is unbalanced and stationary (high
traffic in cells {1, 3, 4, 9, 11}). Additional traffic hot-
spots are randomly deployed in certain cells, they are
each served by a small cell. We consider the following
SON deployment: an MLB on each macro cell, an eICIC
on each macro cell where small cells are deployed and a
CRE on each small cell. Each of these functions can be
configured with SCV sets (table I). Soft configuration
means a configuration that reduces the load difference
to some extent without reaching high levels of CIO and
by aggressive we designate a configuration that seeks to
equilibrate the load as much as possible by configuring
higher levels of CIO. The total number of possible
actions is: 2Ns1 × 2Ns2 × 3Ns3 , where Ns1 , Ns2 and
Ns3 are respectively the number of eICIC, CRE and
MLB instances in the network. In our case, Ns1 = 5,



Ns2 = 10 and Ns3 = 13. There are approximatively
5 × 1010 possible actions. It is impossible to consider
such a big set of actions, especially that the regret of
MAB scales linearly with the number of actions as
stated in the previous section. In order to reduce the
complexity of the algorithm, we configure classes of
similar cells instead of individual cells [11]. We consider
2 cell classes: A class of macro cells with a layer of small
cells (C1 = {1, 3, 4, 9, 11}) and a class of single layer
macro cells (C2 = {2, 5, 6, 7, 8, 10, 12, 13}). This leaves
us with 12 actions for C1 and 3 for C2, hence a total of
36 possible SON configurations, which is a reasonable
number of actions to apply UCB1.

Fig. 3: Network Model

SON SCV sets

MLB

Off: Function is turned off

SCV1: Soft configuration

SCV2: Aggressive configuration

CRE
SCV1: Soft configuration

SCV2: Aggressive configuration

eICIC
Off: Function is turned off

SCV1: Function is turned on

TABLE I: SCV sets behavior description

B. Proposed C-PBSM based on MAB

We define the following KPIs:
• Li,c,t is the load of cell i
• Lc,t is the average load in the considered section
• T c,t is the average user throughput in the considered

section
• T ′c,t is the average pico cell edge user throughput

in the considered section
c ∈ C and t is the iteration. The variables were normal-
ized between 0 and 1. The reward function reflecting the
operator’s objective is:

rc,t = ω1(1− σc,t) + ω2T c,t + ω3T ′c,t (4)

Where the load variance is:

σc,t =

∑B
i=0 (Li,c,t − Lc,t)2

B

B is the number of cells in the considered section
and ω1, ω2 and ω3 are weights set by the operator
depending on its priorities. They are positive and add
up to 1. Furthermore, since r is a linear combination of
weights and KPIs, we consider that the agent preserves,
besides the empirical average of the perceived reward,
an empirical average of the considered KPIs, for each c.
This knowledge of these KPIs allows the algorithm to
adapt faster to the operator’s priority changes.

V. SIMULATION RESULTS

The C-PBSM is tested using an LTE-A system level
simulator based on the 3GPP specifications [12]. It
is a semi-dynamic simulator that performs correlated
snapshots with a time resolution of 1 second. We take
into account path loss and shadowing. Users arrive in
the network according to a Poisson arrival, download
a file of a fixed size, and leave the network once the
download is complete. Users can be dropped due to lack
of coverage. We consider only down-link traffic. Table
II summarizes the main simulation parameters

Parameters Settings
Bandwidth 10 MHz
PRBs per eNB 50
Carrier Frequency 2 GHz
Macro ISD 1732 m
Bandwidth 10 MHz
Macro Path Loss to UE 128.1 + 37.6× log10(d[Km])
Pico Path Loss to UE 140.1 + 37.6× log10(d[Km])
Antenna Gain macro: 14 dBi; pico: 5 dBi
Transmit Power macro: 46 dBm; pico: 30 dBm
Shadowing standard deviation macro: 8 dBm; pico 10 dBm
Traffic model FTP, file size: 14 Mbits

TABLE II: Simulation parameters

As a baseline for comparison, we consider the fol-
lowing default configuration of the SON functions: all
deployed functions are on and with parameters that are
commonly used in real networks (table III). In this
scenario, we consider 3 consecutive phases where the
operator sets a first set of priorities, then changes twice
these priorities in the second and third phase as shown in
figure 4. In the first iterations the algorithm is exploring
the possible configurations, since it is learning from
scratch with no prior information, hence generating low
rewards. After a number of iterations, the algorithm

Parameters Value
Load Low Threshold 0.6
Load High Threshold 0.8
CIO 0 dB to 16 dB with 2 dB steps
ABS 0 to 8 ABS per frame

TABLE III: Default Configuration Parameters



converged towards a configuration, generating stationary
rewards. Furthermore, that the algorithm adapts rapidly
with objective changes: in the second phase the algo-
rithm passes through a brief phase of exploration, before
converging back towards a new configuration. Same
for the last phase, the algorithm explores briefly then
converges to another configuration.
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Fig. 4: Perceived Rewards

In figure 5 we compare the average reward generated
by the configuration identified as optimal by the UCB1
with the default configuration on the one hand and the
optimal configuration identified through an exhaustive
search on the other hand. We notice that in the 3 cases the
UCB1 succeeds in identifying the optimal configuration,
whereas the default configuration is always generating
sub-optimal rewards.
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Fig. 5: Average Rewards

We can say that after a learning phase at the start,
the C-PBSM converges towards SON configurations that
maximize the perceived reward, performing better than
a static default configuration. Also the C-PBSM adapts
quickly to the operator objective changes.

VI. CONCLUSION

In this paper we have investigated the integration of
MAB for SON management. The proposed C-PBSM
configures the deployed SONs in the network based on
UCB1, so that it maximizes a reward function reflecting
the operator’s objective. The novelty in this approach
is that the system does not rely on external models to
enhance its decision. It is able to learn online through
real KPIs measurements and depicts the interaction be-
tween the different SONs, since in the learning process
the SONs are deployed simultaneously, and various
configuration combinations are tested. Simulation results

show that the algorithm converges towards the optimal
configuration within a reasonable time and adapts rapidly
to priority changes. Furthermore, the UCB1 converges to
the optimal configuration while minimizing the average
regret i.e. minimizing the iterations where the C-PBSM
is testing suboptimal configurations in the network.

The next step of our work is to evaluate the perfor-
mances of the proposed C-PBSM on a real network
where the scalability of the MAB algorithm will be
the main challenge. We will investigate more evolved
cell classification techniques to take into account the
complexity of the real network topology.
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