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Abstract—Self-Organizing Networks (SON) func-
tions have already proven to be useful for network oper-
ations. However, a higher automation level is required
to make a network enabled with SON capabilities re-
spond as a whole to the operator’s objectives. For this
purpose, a Policy Based SON Management (PBSM)
layer has been proposed to manage the deployed SON
functions. In this paper, we propose to empower the
PBSM with cognition capability in order to manage ef-
ficiently SON enabled networks. We focus particularly
on the implementation of such a Cognitive PBSM (C-
PBSM) on a large scale network and propose a scalable
approach based on distributed Reinforcement Learning
(RL): RL agents are deployed on different clusters of
the network. These clusters should be defined in such
a way that the RL agents can learn independently. As
the interaction between these clusters may evolve in
time due for instance to traffic dynamics, we propose
a flexible implementation of this C-PBSM framework
with dynamic clustering to adapt to network’s evo-
lutions. We show how this flexible implementation is
rendered possible under Software Defined Networks
(SDN) framework. We also assess the performance of
the proposed distributed learning approach on an LTE-
A simulator.

I. INTRODUCTION

Autonomic management of mobile networks first ap-
peared with the Self-Organizing Networks (SON) concept
[1]. SON standards were first introduced in the 8th release
of 3GPP [2], including self-configuration, self-optimization
and self-healing functions. Ever since, the SON concept
gained popularity and operators showed a lot of interest
in enhancing their networks with such autonomic capabil-
ities, hence reducing their Operational Expenses (OpEx).

SON functions are already in the deployment phase in
LTE networks in many countries. However, these func-
tions are until now deployed independently. This means
that the autonomy is at individual SON functions level,
and not at the whole network’s level. Because the de-
ployed functions have different individual objectives, such
a deployment may lead to conflicts and incompatibility,
resulting in suboptimal configurations of the network. A
real self organized network is however a network where
all the deployed SON functions would cooperate in order
to respond to the operator’s needs as a whole, and not
individually, i.e. the desired autonomous entity would be
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the network as a whole. Whence the necessity of an entity
that ensures the management of SON functions: resolving
SON conflicts and managing the SON functions so that the
operator’s high level objectives (global Key Performance
Indicators (KPI) targets) are satisfied. These topics have
been addressed by several works in the framework of the
Semafour European project [3]. In this work, we are partic-
ularly interested in the management of SON functions, so
they respond efficiently to the operator’s objectives. Some
solutions have already been proposed in this context such
as the Policy Based SON Management (PBSM) concept
that was investigated in [3].

In the next section, we will present an overview of the
state of the art and state the problematic and contribution
of this paper. The following section presents the proposed
distributed RL approach and Software Defined Network
(SDN) architecture to enhance the PBSM with cognitive
capabilities. In section IV we provide a brief review of
the RL theory and describe the considered scenario, we
then evaluate in the same section the performances of the
distributed learning on an LTE-A simulator. We conclude
the paper in the last section and discuss future works.

II. STATE OF THE ART AND PAPER CONTRIBUTION
A. State of the Art
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Fig. 1: PBSM functional description

As shown in figure 1, the PBSM translates high level
operator objectives into configuration policies to be en-
forced on the deployed SON functions [4]. These functions



are usually provided by SON vendors as black boxes. The
operator has few information about the running algorithm
because of proprietary issues. SON Configuration Value
(SCV) sets represent a mean for the operator to control
and pilot the SON functions deployed in its networks (an
SCV set is a collection of threshold values, parameter
range, step size ... of the algorithm running the SON
function). Furthermore, network KPIs and the SON func-
tion behavior depend also on the network context i.e. cell
location, time of the day, cell type (macro, pico, femto...)
and should also be considered in the process as well.

In [5, 6] the authors propose an approach for PSBM
based on the so called SON Function Models (SFM).
SFM is a mapping between SCV sets and KPI outcomes
of a certain SON function. These models are considered
to be provided by the SON vendor and generated using
simulations. Nevertheless, this approach presents some
drawbacks because it relies strongly on input models such
as SFM. These models are obtained by simulation and do
not reflect the network reality, especially that the SON
function’s behavior depends on the context of the cell
where it is deployed and on the actions of other deployed
SON functions. This drawback becomes even more critical
with the increasing complexity of future networks. Also, if
the operator has trust issues with the simulations of the
SON vendor, or if the latter does not wish to provide the
SFMs to the operator, the proposed approach has no solu-
tions but to test SCVs randomly, which may lead to serious
performance degradations and delay the convergence.

B. Contributions

It is agreed that cognitive capabilities need to be in-
troduced to the PBSM [3]. A cognitive function is an
autonomous and intelligent loop that is able to learn
from past actions and observations of its environment
states dynamics in order to improve future decisions and
adapt to eventual environment changes. Artificial intel-
ligence techniques such as Reinforcement Learning (RL)
algorithm [7] can be used as a mean to enhance systems
with cognition. The advantages of the RL approach is that
there is no need for input models, the PBSM is able to
explore and learn the optimal policy starting from scratch.
Nonetheless, RL convergence time depends strongly on the
size of the set of actions and the set of environment states.
In our case, the set of action and states grows fast with
the size of the network and the number of SON functions
and their possible configurations. We hence propose to
deal with this scalability problem through a distributed
learning approach, by deploying independent RL agents
over network sectors with low interaction with each others.

On the other hand, the emerging SDN architectures
introduce new levels of abstraction and flexibility, bringing
high expectations in overcoming the limitations of current
network architectures, and simplifying the control and
management process of network elements [8]. SDN can
hence be considered as a mean to facilitate a dynamic

deployment of autonomous control agents in the network.
This is why for the PBSM, we propose to use the SDN
approach to implement a distributed RL framework, that
adapts well with the network dynamics. We henceforward
refer to the proposed cognitive PBSM as C-PBSM.

The contribution of this paper resides therefore in
proposing a distributed RL solution for the cognitive SON
management that is able to find optimal policies satisfying
the operator’s objectives. We also propose an SDN based
architecture that can be used to implement the distributed
RL agents. This approach is able to adapt to the network
dynamics and evolution as will be explained later in the
paper. The distributed learning approach was tested on a
use case where several SON functions were deployed in an
LTE-A heterogeneous network and showed to improve the
performances of the network.

III. Di1STRIBUTED LEARNING UNDER AN SDN
FRAMEWORK

A. Dynamic and Distributed Learning for SON Manage-
ment

We consider a network section where several SON func-
tions are deployed in a distributed manner i.e. each SON
function has several instances deployed on different cells.
Each function observes local measurements and KPIs, and
takes actions in line with its objectives. We consider that
the SONs are provided by several SON vendors and are
seen by the operator as black boxes. As stated previously,
the operator can steer the behavior of a SON function in
a direction or another by configuring it through the SCV
sets. Recall that the C-PBSM’s objective is to translate
the operator’s objectives, given as input to the RL agent,
into appropriate SCV sets as shown in figure 2.

Operator Objectives
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SON, SON.

RL Control Loop
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Fig. 2: C-PBSM

Each deployed SON instance (SON;) has its own control
loop (SON Control loop). The outer loop is the RL control
loop: the agent observes global KPIs and metrics from the
network and takes appropriate actions (in this case RL
actions consist of the SCV configurations of the deployed
SON instances). Through RL, the C-PBSM is able to
observe the system and learn from past experience and use



this knowledge to find the optimal policy corresponding to
the specified operator’s objective.

In [9] the authors showed that a centralized RL algo-
rithm (Q-learning) is able to learn the optimal policy,
satisfying the operator’s objectives. However, when the
network size, the number of SON functions and instances,
as well as the number of possible SCV sets for each SON
function grow, the action space that has to be explored by
the RL agent explodes, leading to a very slow convergence.
This is a well known problem in the RL framework, known
as the scalability problem. In fact most of real life problems
have huge action and state space and standard RL algo-
rithms fail to efficiently deal with such environments. Such
scalability issues can be alleviated through distributed
learning.

On the other hand, Radio Access Networks (RAN)
are complex dynamic environments. This is mainly due
to the fact that in RAN, multiple devices such as user
equipments, base stations, radio heads ... are accessing the
same medium and interfering with one another. Changing
certain configurations of a single cell, for example antenna
tilt or transmit power, will affect neighboring cells in term
of interference, coverage, traffic load, etc. Furthermore,
RAN are highly influenced by the users traffic dynamics,
which in turn depend on the human activity. Traffic varies
in 2 dimensions: time (hour of the day, period of the
year) and space (office, residential or rural areas, etc).
Furthermore, the traffic profiles may change on the long
term due to the evolution of mobile services (services
requiring higher data rates, machine type communications,
ultra reliable and low latency services, etc), modifications
of the RAN topology (the installation of new sites) and
also due to the human activity and the urban expansion
(construction of a mall or a new residential building).

Opting for a distributed learning approach in such envi-
ronments is not straight forward, and must be considered
with caution because learning agents may interact with
one another. In fact, because of the complexity of the
environment and the correlation between cells, changes
made by the RL agent to a certain cell will affect the
environment of neighboring cells that may belong to the
domain of another agent, hence interfering with each oth-
ers observations and, consequently, slowing considerably
the convergence of the learning process if not preventing
it at all. Hence, RL agents should be distributed in such
a way that each one of them is responsible of a cluster of
neighboring cells such that the different learning processes
have minimal interaction. We propose hence to run a clus-
tering process based on network metrics, before deploying
the RL agents, in order to define the clusters with minimal
interaction. This interaction can be expressed in terms of
interference level, traffic flux (expressed through handover
metrics) and the overlapping coverage area (small cells
deployed in the coverage are of macro cells for example)
between cells. The deployment process is presented in
figure 3. The clustering entity gathers the required metrics

from the network and outputs the relevant clusters to a
controller. The latter will then associate each RL agent to
a network cluster. Once deployed, each RL agent learns a
local optimal policy over a cluster of the network according
to an operator defined objective: the agent configures the
SON functions deployed in the considered cluster, and
observes the KPI outcomes and the states of the local
system as well (traffic, network configuration ...).

Clutsers

Controller

Fig. 3: Distributed RL

On the other hand, because of the traffic and network
evolutions mentioned previously (due to new mobile ser-
vices, changes in the RAN topology, urban expansion,
etc), the defined clusters should be kept monitored and
adapted to these changes. The clustering process should
hence be dynamic, meaning that new clusters can be
introduced and existing clusters can be modified on the
run. This requires a dynamic redistribution of new learning
agents or modification of the environment of the deployed
ones. Whence the need of an architecture able to provide
such levels of abstraction and flexibility. This can be
provided by the SDN framework, as will be discussed in
the following section.

B. Software Defined Networks for SON Management

As stated in the introduction, the SDN concept is based
on separating the control plane and the data plane and
logically centralizing the control process. Such a separation
permits the 2 planes to evolve separately, hence introduc-
ing new levels of flexibility and abstraction. Also, it helps
providing a global and centralized view of the network,
thus facilitating the introduction and operation of control
processes in the network [8].

Although the first notable applications of SDN archi-
tectures were oriented towards core networks and data
centers [11, 12], the SDN concept gained also popularity
in mobile networks such as OpenRadio and SoftRAN
[13, 14]. AutoSDN in its turn is an SDN controller for
RAN oriented towards autonomic-network management
[15, 16]. AutoSDN’s objective is to introduce a new ab-
straction level to self organized networks that enables
SON programmability. With AutoSDN, the SON func-
tions become software applications that the controller



compiles and executes. The parameters and metrics of
the network elements are then monitored and updated
by the controller’s southbound interface. This approach
ensures higher flexibility to the autonomic management of
RAN. In this paper however, our objective is to introduce
flexibility to higher levels of self organizations, namely the
C-PBSM.

In fact, SDN and Autonomic Network Management
(ANM) are related in the sens that they both seek to
simplify and improve the management of complex het-
erogeneous networks, hence reducing the operational cost
and delivering better quality of service to the clients [17].
Furthermore, SDN can be used as a mean to facilitate
the introduction of automation and intelligent control
loops in complex networks with multiple technologies,
layers and vendors. In this paragraph we discuss an SDN
architecture, based on the SDN for RAN in [16] that
could be adopted to deploy a dynamic and distributed
RL for SON management as represented in figure 4. The

Fig. 4: C-PBSM based on Distributed RL deployment
through SDN

learning agents are instantiations of the RL modules, each
of them encapsulates the RL code, inputs and output. The
inputs of a RL algorithm include the operator’s objective
and the set of KPIs, metrics and indicators describing
the observed environment and the reward functions. The
output is the agent’s decision, which is in this case the
SCV sets of the SON function instances monitored by the
agent. The code of the RL object can be any RL algorithm
that the agent runs and that permits it to explore and
learn the optimal policy. The RL modules are loaded and
compiled in the RL object linker, where the operator’s
objective is specified as well as the network cluster that
will be controlled by each agent. The modules are then
executed in the controller. The clusters are specified after
clustering based on network metrics and topology and

are continuously monitored and modified as stated pre-
viously. Updated clusters can hence be reintroduced on
the fly in the controller, enabling the RL process to adapt
accordingly. This applies also for the eventual objective
changes. The RL algorithms require constant observations
of the environment and the generated rewards. The KPI
and metric storage entity keeps an inventory of network
KPIs and metrics that can be accessed by the agents.
After observing their environments’ states and reward, the
agents take local decisions and forwards them to the SON
configuration manager. The SON configuration manager
then enforces the RL decisions in the concerned deployed
SON functions instances. In this architecture, the RL
modules are merely high level software applications, which
simplifies the introduction of new RL algorithms in the
system and makes their deployment more flexible and
hence adapted to the dynamics of the radio environment.
In the next section we briefly introduce the theory behind
RL and describe a scenario of SON management using C-
PBSM.

IV. C-PBSM BASED ON DISTRIBUTED
REINFORCEMENT LEARNING

A. The Reinforcement Learning Framework

RL as defined in [7] is learning how to achieve a goal by
interacting with the environment. The learning agent ob-
serves the state of the environment and based on this state,
it takes an action. The environment reacts by triggering a
state change according to a probability distribution that
depends on the enforced action and the previous state, and
generates a numerical reward. The agent observes the new
state and the reward and takes a new action following the
new observation. The aim of the agent is to maximize the
long term perceived reward. In other words the objective
is to find a mapping between states and actions in order
to maximize the following expression:

T
R; = Z’Vkrt+k+1 (1)
k=0

Where « < 1 is a discount factor and r; is the immediate
reward perceived at iteration ¢t. The long term perceived
reward R; represents the agent’s insight of the rewards in
future states starting from iteration ¢.

There is a variety of RL algorithms in the literature,
almost all of them are based on the estimation of the
value function and the action-value function. The value
functions is defined as follows:

oo
V(s) = Bx{Rels; = s} = B {D>_VFriiualse =s} (2)
k=0
It reflects how good it is for the agent, in terms of the
expected perceived rewards in the future states, to be in
a certain state s when following a policy 7. Respectively,
the action-value function, also known as the Q-function,
reflects how good it is for the agent, in terms of the



expected perceived rewards in the future states, to be in
a certain state s and choosing action a, when following a
policy

Q7 (s,a) = E {Ry|sy = s,a; = a}

o0
= EW{Z Voriirgalse = s,a0 = a}
k=0

3)

Q-learning is a well known RL algorithm that was
shown to converge to an optimal policy in single agent
setting [18]. It has the advantage of being a bootstrapping
algorithm (i.e. it updates its estimates based on other
learned estimates, which accelerates the convergence) and
it does not need to know the environment transition model
(which is the case of most real life problems). This is the
algorithm we are going to adopt for the use case study
further in the paper. It is however important to note that
in the distributed case, the theoretical convergence proofs
for single agent Q-learning do not hold. This is due to the
fact that an agent’s decision can change its environment,
but also the environment of other agents. Whence the
importance of defining clusters with minimal interactions,
as described previously. This model has however been used
successfully in many cases [10, 19, 20].

RL techniques have already showed their efficiency in
finding optimal policies for individual SON functions such
as Mobility Load Balancing (MLB) and enhanced Inter
Cell Interference Coordination (eICIC) [21, 22], but also
in SON conflict resolution [23, 24] and in different aspects
of cognitive radio [10, 19] and many other aspects of
networks. In the following we introduce the validation
scenario and show the simulation results.

B. Scenario Description

We consider a network section where several SON func-
tions instances are deployed. Let F be the set of SON
functions deployed in the network. N; is the number of
deployed instances of a SON function f and V; is the
set of possible configuration sets (SCV sets) for SON f,
Vf € F. Assuming that all instances of a certain SON
function f have the same set of possible configuration sets
Vs, we define the global action set as:

C = (Vi) x (Vp)¥2 x ox (Vyg)
f1, f27 ey f|F‘ eF.
We also consider the following reward function:

where K; are normalized KPIs and w; are weights that
are set by the operator. They are positive and add up
to one. They reflect the operator’s priority to optimize
the corresponding KPI. The optimal policy maximizes the
perceived reward in different states of the network.

The LTE-A network is represented in figure 5. We
consider the following SON functions:

Niirl where

Traffic Load

Fig. 5: Network Model

a) MLB: Deployed on each macro cell, its objective
is to balance the traffic load between the macro cells by
tunning the Cell Individual Offset (CIO) of macro cells.
Note that the User Equipment (UE) connects to the cell
from which it receives the highest power and CIO.

b) Cell Range Expansion (CRE): Deployed on each
small cell, it tunes the CIO of the small cells to balance
the load between small cells and the associated macro cell
(each small cell is deployed to serve a traffic hotspot inside
a coverage region of a macro cell).

¢) eICIC: Deployed on macro cells with small cells
in their coverage area. elCIC manages Almost Blank
Subframes (ABSF) transmissions of macro cells in order
to protect small cell edge users from macro downlink
interference (ABSF are frames where only control and
cell-specific reference signals are transmitted at reduced
power).

We consider the following SCV sets:
o MLB:

— Off: Function is turned off
— SCV1: Soft configuration
— SCV2: Aggressive configuration
« CRE:
— SCV1: Soft configuration
— SCV2: Aggressive configuration
e eICIC
— Off: Function is turned off
— SCV1: Function is turned On
For this scenario, we will consider an RL agent ¢ on each
macro cell (if the macro cell has pico cells, they will belong
to the same learning cluster as the macro). Let I bi the set
of agents. Each agent has an action space A; depending
on the SON deployed in its cluster and a state space S;
depending on the network topology:

o Action space of agent i: A; = (Vfl)N}l X (Vf2)N}2 X
e X (Vlel)Nf\F\ where N} is the number of instances
of SON function f in network cluster 3.

o State space of agent i: S; = A; x (V)™ where n
is the number of first tier neighbor cells where MLB
is deployed and V ;75 is the set of SCV sets of MLB
(we consider that only the configuration of the MLB
SON function influences the first tier neighbor cells).



o A reward function: r; = wy (1 —0;) +wat; —|—W3f; where
o; is the load variance, t; the average user throughput

=/ . .
and ¢; the average pico cell edge user throughput in

network cluster ¢

The deployment of learning agents in this scenario is
rather straightforward and adapted to the considered
topology. However when considering more complex topolo-
gies with traffic evolutions, a dynamic clustering should
be implemented, as described previously in the paper.
For this use case however, we focus on the learning task
and performance of the agents. The pseudo-code of the
distributed Q-learning algorithm for C-PBSM is presented
the following.

Distributed Q-learning Algorithm for C-PBSM

for each agent

Initialize Q;(s,a) arbitrarily

Initialize s;

for t=1,...,T

for each agent 4

- pick action a; for state s; according to e-greedy policy:

argmax{Q;(si,a;)} with probability 1 — e
a;€A;
rand(A;) with probability e
(5)
- observe new state s/
- observe perceived reward r(s;, a;)

- update @Q; function as follows:

Qi(si,@i) = Qi(si, ar) +alr+ymaz Qi(s;, a) —Qi(si, ai)]
1 (6)

Until convergence

C. Performance Evaluation

We consider a system level simulator built on the 3GPP
standards [2] to simulate the C-PBSM. The simulator
is semi-dynamic, performing correlated snapshots with a
time resolution of 1 second, taking into account path loss
and shadowing. Users arrive in the network according to
a Poisson arrival, download a file of a fixed size, and leave
the network once the download is complete. Users can be
dropped due to lack of coverage. We consider only down-
link trafficc. We run the C-PBSM for different operator
objectives and compare the output policy with a baseline
approach where the SON functions are configured with
static configurations that are usually adopted by operators
in similar networks.

The results are shown in figure 6. The graph plots the
average achieved reward of the optimal policy identified
by the C-PBSM (DQL) and the one achieved by the static
configuration, for different operator objectives. The results
show that the C-PBSM is able to adapt to different op-
erator objectives and is able to learn and enforce through
distributed learning a configuration policy that globally
performs always better than a static SON configuration.

0.95

0.9 -

mbaL
M Static Configuration

Average Percieved Reward

wl=w2 wl=w3 w2=w3 wl=w2=w3

wl w2

Operator Objectives

Fig. 6: Performance Comparison

The variations in the perceived rewards between different
objectives are due to the normalization of the KPIs con-
sidered in the reward function defined previously.

V. CONCLUSION

In this paper we have presented an approach to enhance
SON management in radio networks with cognitive capa-
bilities as well as an implementation based on an SDN
architecture. The cognitive capabilities of the PBSM can
be achieved through a distributed RL approach that scales
well with the size of the network and the big number of
possible SON configurations. We have also motivated the
need to define network clusters with minimal interactions
with each other so that the independence of the distributed
learning processes is preserved. These clusters should be
continuously updated in order to adapt to the evolutions of
the network. An architecture based on the SDN paradigm
has been proposed to enable the required flexible and
dynamic implementation and deployment of RL agents
in the network. The C-PBSM has been evaluated on an
LTE-A simulator and the results showed that the global
policy enforced by the C-PBSM performs better than a
static SON configuration, and is able to adapt to different
operator objectives.

In more complex cases, where there is more traffic and
topology diversity, as well as more SON functions and
SCV sets, the average gain of the RL is expected be even
higher than in the scenario considered in this paper. The
intuition behind this statement is that the distributed
learning obtains its gain from exploiting the differences
and diversity of network clusters, and finding the optimal
SON configuration for each one of them. This is why in
future works, we are motivated to consider more complex
network topologies, scenarios and traffic evolutions. In
such scenarios, the dynamic clustering of cells and dis-
tributing the learning agents accordingly can be better
investigated. The scalability and the computational limits
of the proposed SDN controller should be studied as well.
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