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Abstract. In this paper model-based closed-loop algorithms are derived for
distributed control of the inverse of the safety factor profile and the plasma
pressure parameter β of the TCV tokamak. The simultaneous control of the
two plasma quantities is performed by combining two different control methods.
The control design of the plasma safety factor is based on an infinite-dimensional
setting using Lyapunov analysis for partial differential equations, while the control
of the plasma pressure parameter is designed using control techniques for single-
input and single-output systems. The performance and robustness of the proposed
controller is analyzed in simulations using the fast plasma transport simulator
RAPTOR. The control is then implemented and tested in experiments in TCV L-
mode discharges using the RAPTOR model predicted estimates for the q-profile.
The distributed control in TCV is performed using one co-current and one counter-
current Electron Cyclotron Heating actuation.
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1. Introduction

One of the main challenges in tokamak plasma control is to achieve the advanced
tokamak steady-state scenarios [1]. These scenarios are characterized by a high fusion
gain, good plasma confinement and MHD stability. Real-time simultaneous control
of several radially distributed magnetic and kinetic plasma parameters is one of the
main challenges in the control of hybrid and advanced tokamak scenarios [2]. In this
work we are focusing on developing algorithms for simultaneous closed-loop control
of the safety factor profile q (and its inverse ι) and the plasma pressure or stored
energy. Using feedback control in the real-time control system of a tokamak provides
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a better disturbance rejection and less dependency on model uncertainties than using
open-loop control only. Feedback control thus improves the performance of reference
profile tracking and the robustness of the plasma with respect to MHD instabilities.

Feedback control algorithms for the safety factor can be developed using finite or
infinite dimensional feedback control theory. The finite-dimensional control model
is obtained by spatial discretization of an infinite-dimensional Partial Differential
Equation describing the plasma state. This approach is called an early lumping
approach, in which the PDEs are approximated (lumped) first as a set of Ordinary
Differential Equations (ODEs) and the control is designed based on this set. Control
algorithms for the safety factor profile based on a Multiple Inputs Multiple Outputs
(MIMO) approach using different finite dimensional models are developed in previous
works [3–9]. There are several works already dedicated to the simultaneous control
of the safety factor profile and the pressure parameters. In [10] successful closed-
loop experiments are performed for the simultaneous control of the relative internal
poloidal flux profile Ψr together with the normalized pressure parameter, βN . In that
work the control-oriented model is obtained from experimental data using a generic
two time-scales method. Simultaneous control of the q-profile and βN using first-
principles-driven physics-based model is developed for DIII-D H-mode scenarios in
[11] and for ITER H-mode scenarios in [12, 13]. The control models used in these
works are spatially discretized.

An infinite-dimensional control system is a dynamical system whose state lies in
an infinite dimensional vector space, typically the state space of a PDE. In this control
approach, the distributed-parameter nature of the system is kept as long as possible in
the control design (late lumping approach). This control approach allows us to design
feedback control strategies for the full profile throughout the plasma radius.

Control algorithms for the safety factor profile based on infinite dimensional
control theory using Lyapunov techniques are already used in several works. Lyapunov
functions are energy-like functions that can be used to evaluate the stability of a
dynamical system and to design stabilizing controllers. In [14], a strict Lyapunov
control function for the diffusion equation of the poloidal magnetic flux gradient
is computed. In [15], a Lyapunov-based control strategy using sum-of-squares
polynomials is used to maximize the bootstrap current considering a resistivity
bounded between two extremal profiles. In [16] a proportional integral (PI) controller
is developed for H∞ stabilization of the spatial distribution of the internal poloidal
flux profile Ψr. All these algorithms were tested using only plasma simulators and
they were based on the configuration of the Tore Supra tokamak. Tore Supra has
circular cross-section and the magnetic flux equation is simplified using cylindrical
coordinates. More results using distributed and boundary infinite dimensional control
based on IDA-PBC (Interconnexion Damping Assignment- Passive Based Control)
design are presented in [17].

The control model is a coupled system of a 1D resistive diffusion equation (ι
control) and a nonlinear ordinary differential equation (β control). Enabled by the
different time scales of the kinetic and magnetic parameters, the control in this work is
synthesized by designing separate control algorithms for each controlled variable. The
safety factor profile is controlled using the poloidal magnetic flux radial gradient z as
a state variable. This parameter is closely related to the safety factor. Our q-profile
controller is based on an infinite dimensional setting using Lyapunov techniques. We
extend the control computation and the stability analysis presented in [14, 18] to a
more general case without using the cylindrical approximation. The control Lyapunov
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function presented in these works is analogous with the proportional action presented
here. Moreover, for successful tracking of the desired reference profiles in the real
TCV experiments, an integral action is added in the control design. We have also
constrained the shape of the weights in the Lyapunov function to highlight the different
spatial locations at which we want to emphasize our control action. The control of
the plasma pressure parameter is designed separately using control techniques for
Single-Input and Single-Output (SISO) systems.

The control strategy is applied to a controller test environment on TCV L-mode
discharges, described in details in [19]. The purpose of this environment is to facilitate
offline development and testing of controllers as well as experimental implementation
and evaluation on TCV. The fast plasma transport simulator RAPTOR [20, 21] and
various algorithms reconstruct the plasma equilibrium and plasma profiles by merging
the available measurements with model-based predictions. It estimates the plasma
states at many locations, that are provided to the controllers. RAPTOR can also be
used as a nonlinear plasma simulator for closed loop control when it is run off-line
outside the TCV control system [22]. This enables to test the control algorithms
performance and robustness before they are implemented on real TCV experiments.

The paper is organized as follows. In Section 2 the control models and control
problems are defined. In Section 3 the control algorithms are presented. The results
from the RAPTOR simulations are presented in Section 4 and the results from the
TCV experiments are presented in Section 5. Some concluding remarks are given in
Section 6.

2. Control model and experimental settings

2.1. Safety factor control model

One of the key parameters to analyze the plasma stability and performance is the safety
factor q. Another parameter that can be used for the control is the inverse of the safety
factor ι = 1/q, which can be considered as a more natural control variable since it is
proportional to the spatial derivative of the poloidal magnetic flux, whose evolution
is governed by a parabolic equation. The corresponding model is an approximate 1D
diffusion equation as in [23] assuming constant toroidal magnetic flux at the plasma
boundary:

∂ψ

∂t
=

η‖F
2

16π2µ0Φ2
bρ

∂

∂ρ

(
g2g3

ρ

∂ψ

∂ρ

)
−
η‖B0

2Φbρ
V ′
(
jaux(u) + jbs

)
(1)

where ρ is the normalized square-root toroidal flux, defined as: ρ =
√

Φ
Φb

(Φ being

the toroidal magnetic flux and Φb its value at the last closed magnetic surface), B0

is the magnetic field at the major plasma radius R = R0, µ0 is the permeability of
vacuum, V is the plasma volume and V ′ = ∂V

∂ρ is the spatial derivative of the plasma
volume, and η‖ is the parallel electrical neoclassical resistivity of the plasma. The
non-inductive current density jni = jaux + jbs is obtained by combining the auxiliary
sources of current density jaux(u) (heating and current drive radio-frequency (RF)
systems) and the bootstrap current density jbs. The vector u contains the actuator
inputs represented by the power delivered by the Electron-Cyclotron (EC) clusters
[PEC,1(t); PEC,2(t)] used in the RAPTOR simulations and in the TCV experiments.
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The coefficients F, g2, g3 and V ′ are defined as [24, 25]:

F = RBφ; g2 =
(∂V
∂ψ

)〈 | 5ψ |
R2

〉
; g3 =

〈
1

R2

〉
; V ′ =

∂V

∂ρ
(2)

where 〈·〉 denotes a flux surface average, R is the distance from the vertical axis and
Bφ is the toroidal magnetic field.

In this configuration, the Electron Cyclotron Current Drive System (ECCD) is
represented by co-current (with respect to the ohmic plasma current) and counter-
current deposition. The gyrotrons in TCV are grouped in clusters. The power
delivered by the first cluster (with input power PEC,1(t)) consists of one gyrotron
with counter-current drive. The second cluster (with input power PEC,2(t)) consists
of two gyrotrons that are used for co-current drive. A set of coils generating a poloidal
magnetic field are used for feedback control of the plasma vertical and horizontal
position in the poloidal plane. The position of the magnetic field is chosen such
that the EC power deposition is absorbed on the magnetic axis. The total auxiliary
current density model is computed as the sum of the current densities induced by
each ECCD antenna and the bootstrap current density: jni,mod =

∑naux

1 jaux,i + jbs,
where naux = 2 denotes the number of EC antennas used in our case. Each individual
auxiliary current drive is modeled by the scaling law presented in [22]:

jaux,i(ρ, t) =
Te
ne
jdis,i(ρ)PEC,i(t) (3)

which is the product of the weighted Gaussian distributions jdis,i(ρ) (given in [20])

with the input powers PEC,i(t) and the current-drive efficiency (T ene ). The nominal
current deposition width ωdep = 0.35 and the nominal location of the peak of the
deposition ρdep = 0 are used for both clusters. The reference values of jdis(ρ) and the
relative power density profile Qdis(ρ) for the two EC clusters are shown in Fig. 1.
The bootstrap current profile jbs and the neoclassical resistivity η‖ models are the one

Figure 1: The relative current density profile jdis,ec (1020 A
m5 keV W

) and relative power

density profile Qdis,ec (m−3) for the TCV configuration.

used in the RAPTOR code and are based on the Sauter-Angioni equations [26, 27].
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The model of the bootstrap current density can be used in a simplified version under
the assumption of a tight coupling between the electron and ion species. With this
assumption the electron and the ion densities are considered to be equal ne = ni and
∂ln(Ti)
∂Φ = ∂ln(Te)

∂Φ , where Ti is the ion temperature. The approximated model is derived
as :

jbs =
kbs

∂Ψ/∂ρ

[
L31

∂ne
∂ρ

Te +

(
L31 +RpeL32 + (1−Rpe)L34

)
∂Te
∂ρ

ne

]
(4)

where kbs,L31,L32,L34 depend on magnetic configuration of the plasma equilibrium
and Rpe = pe/p is the ratio between electrons and total pressures.
The neoclassical electrical resistivity model in RAPTOR is calculated as:

η‖ = 1/σ‖ = 1/(cneo(ρ)σSpitzer) (5)

where σ‖ is neoclassical electrical conductivity and σSpitzer ∝ T
3/2
e e is the Spitzer

conductivity. The parameter cneo is the neoclassical correction, which depends on
geometric effects as well as collisionality. These two plasma parameters are time-
varying and highly dependent on the electron and ion temperatures and densities.

The controlled state is selected to be the magnetic flux gradient z = ∂Ψ
∂ρ . The

variables of main interest for the control (q, ι and current profiles) can be easily
related to the magnetic flux gradient ι = 1

q = 1
2Φbρ

z. Differentiating (1) in space and

considering the previous change of variables, as in [28], yields:

∂z

∂t
=

∂

∂ρ

(
a1(ρ)

ρ

∂

∂ρ

(
a2(ρ)z

))
− ∂

∂ρ

(
a3(ρ)

(
jaux(u) + jbs

))
(6)

with boundary conditions:

z(0, t) = 0, ∀t ≥ 0

z(1, t) = a4(1)Ip(t), ∀t ≥ 0
(7)

and initial condition:
z(ρ, 0) = z0(ρ), ∀ρ ∈ [0, 1] (8)

where a1(ρ) =
η‖F

2

16π2µ0Φ2
b
, a2(ρ) = g2g3

ρ , a3(ρ) =
η‖B0

2Φbρ
V ′, a4(ρ) = ρ

g2g3

16π3µ0Φb
F and Ip

is the total plasma current.
For control purposes we linearize the model around a given equilibrium profile z. This
equilibrium is calculated by taking the values of the plasma parameters when the
inputs (u, Ip) are applied sufficiently long for the system to reach a steady state:

0 =
∂

∂ρ

(
a1(ρ)

ρ

∂

∂ρ

(
a2(ρ)z

))
− ∂

∂ρ

(
a3(ρ)

(
jaux(u) + jbs

))
(9)

with boundary conditions: z(0, t) = 0, z(1, t) = a4(1)Ip(t). The linearized model is
derived around the steady state by substituting, in the reference model, z = z + z̃,
u = u + ũ and Ip = Ip + Ĩp using Taylor series with first order approximation. Here

(z, u, IP ) denotes the equilibrium of the system and (z̃, ũ, Ĩp) denotes the variations
around this equilibrium. The simplified linearized model obtained from (6) is derived
as:

∂z̃

∂t
=

∂

∂ρ

(
a1(ρ)

ρ

∂

∂ρ

(
a2(ρ)z̃

))
− ∂

∂ρ

(
a3(ρ)

(
j̃aux(ũ) + j̃bs

))
(10)
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Figure 2: η|| parameter ranges with its minimum (red dashed line) and its maximum
value (blue dashed line).

with boundary conditions:

z̃(0, t) = 0,∀t ≥ 0

z̃(1, t) = a4(1)Ĩp(t), ∀t ≥ 0 (11)

and initial condition:
z̃(ρ, t0) = z̃0, ∀ρ ∈ [0, 1] (12)

For the control application, the perturbed bootstrap current j̃bs(ρ, t) = jbs − jbs
can be considered as an external disturbance to be attenuated/compensated (since
Ibs/Ip <= 10% in L-mode plasmas). When the perturbed bootstrap current is
relatively large and cannot be neglected, it should be included in the stability
analysis. Infinite dimensional feedback control strategies, where the bootstrap current
is included in the control design and stability analysis can be found in [15, 29]. The
coefficient η‖ can be considered as an uncertain parameter that varies in a given
operational range:

η‖(ρ, t) = ωη(t)η‖,min(ρ) + (1− ωη(t))η‖,max(ρ), for all t ≥ 0 (13)

where ωη(t) ∈ [0, 1] and η‖,min and η‖,max are the minimum and the maximum values
of η‖, respectively, presented in Fig. 2. The bounds of the resistivity η‖ are calculated
using the model (5), by modulating the ECCD clusters with different power intensities
in the RAPTOR simulations. From the plot in Fig. 2 we can see that the variations
of η‖ are not significant in the operation range that is considered in our experiments.
We thus assume that the η‖ profile scales linearly between the two outer bounds
(η‖,min and η‖,max). While this uncertainty is not crucial for the control of a L-mode
plasma, it may become important in other plasma operation modes in which the
plasma resistivity changes more dramatically.
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2.2. Plasma pressure and thermal energy control model

The plasma parameter β is defined as the ratio between the volume-averaged pressure
and the magnetic pressure. This parameter is of prime interest to analyze MHD
stability in tokamaks. There are several definitions of this parameter. Following [30],
the most commonly used one is:

β =
〈p〉V

B2
0/(2µ0)

=
2

3

Wth/V

B2
0/(2µ0)

(14)

where Wth is the stored thermal energy in the plasma and 〈·〉V denotes the volume-
average operation 1/V

∫
V

(·)dV . The energy stored in the plasma is presented by [28]:

Wth =
3

2

∫
V

(
neTe + niTi

)
dV (15)

where Ti is the ions temperature profile and ni is the ions density profile. Assuming
that the plasma volume does not change in time, the approximate energy balance
equation is given by:

dWth

dt
= −Wth

τth
+ Ptot(u) (16)

where τth is the global energy confinement time which can be modelled using a scaling
law [31, 32] such as τth = 0.14I0.91

p B−0.13
0 n−0.77

e P−0.75
tot , and the total power Ptot(u)

can be derived as a sum of several contributions. The main sources of electrons
heating are the auxiliary radio frequency (RF) heating sources. Other sources are
the ohmic heating power, electron-ion power loss and radiation power loss. All these
terms depend on many plasma parameters (temperature, q, etc.) as well as their radial
derivative (e.g. temperature gradients, magnetic shear, etc.).

The simplified linearized model of (16) around the steady state (W th, u, Ip) is
derived using Taylor series with first order approximation considering the model of
τth given in [31]:

dW̃th

dt
= −W̃th

τ th
+ kpP̃tot(ũ) + kIpĨp + ω

β̃ =
2

3

W̃th/V

B2
0/(2µ0)

(17)

where kIp = −∂(W th/τth)

∂Ip
+ ∂P tot

∂IP
, kp = −∂(W th/τth)

∂P tot
+1, and ω contains the variations

of τth that depend on plasma parameters other then Ptot and Ip (considered as
disturbances in the system, i.e. the variation of the ohmic power). The parameter
τ th is assumed to be bounded as τmin ≤ τ th ≤ τmax. In our simplified control model,
the total heating power is calculated as the sum of the two main sources of heating
P̃tot(ũ) = P̃EC,1(t) + P̃EC,2(t).

Although there is a coupling between the dynamics of these two states (z̃ and W̃th), the
control actions are computed separately. Variations of the other plasma parameters
are considered as disturbances that need to be handled by the robustness margin of
the controller. The ion and electron temperatures and densities are considered as
uncertainties for ι (leading to the bounds on η‖ in Fig. 2) or volume-averaged for β.
The profiles distributions and couplings, e.g between q and Te, can be considered with
more complex PDE controllers as proposed in [29] but we focus here on the control
design motivated by the experimental setup.
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3. Feedback control design

In this section we present the control algorithms that were implemented in the TCV
experimental session on feedback controllers testing in 2016/2017, in which several
different controllers were implemented [19, 33, 34]. In these TCV experiments only
the powers of the two (ECH/ECCD) antennas are used as in-domain control actuators.
The control algorithms are designed separately for ι and β, and a composite control
of two signals, uι for the control of ι and uβ for control of β, is sent to the TCV
actuators. For the control of the ι profile a proportional-integral infinite dimensional
state feedback control is applied and the control of the β parameter is tuned using
classical control methods for ODEs. An anti-windup compensator is added to the
control design to avoid the drawbacks from the actuators saturation in the system
(discussed in details in Appendix C). The complete control scheme is presented as a
block diagram in Fig. 3.

Iota controller

Beta controller

Anti-windup

Composite

control

RAPTOR/

TCV+state

reconstruction

Anti-windup

actuators

saturation

� !"#

feedforward

$ !"#

feedback

+

+

+
+

-

-

-

%&'

%&(

̃*

$+

+

*feedforward

feedforward

+̅

̅* feedforward

̅-.

Figure 3: Control scheme

3.1. Distributed control of ι

The feedback control of the ι profile is achieved with an infinite dimensional PI
controller. The auxiliary heating powers are set to obtain the desired profile of j̃ni.
The feedback control is applied using the real-time estimate of z̃, which represents
the error between the z profile and the desired reference profile z. The feed-forward
signal corresponding to this stationary profile is calculated by (9) and is set with u
and IP . In the simulation results the feedworward term z is directly obtained from
RAPTOR as steady-state (along with u and Ip), while in the TCV experiments the
feedforward term is calculated by numerically solving u and Ip from the equality (9)
with the given values of the desired target profile z.
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In Lyapunov-based control, the control law is designed such that closed-loop
stability can be guaranteed using Lyapunov stability analysis. Lyapunov functions
are energy-like functions and by examining their time derivative we can conclude
that the closed-loop system is stable or asymptotically stable [35]. The asymptotic
stability of the closed-loop system guarantees that the system converges to the desired
equilibrium. The stability analysis of the closed-loop system will be discussed in
Section 3.2. To obtain an appropriate closed-loop system description, the control law
is written in a specific form. For this purpose, the feedback-control of the z-profile is
determined such that the control parameter j̃ni,fb is calculated as:

j̃ni,fb(ũι, ρ, t) =
1

a3(ρ)

(∫ ρ

0

αp(r)z̃(r, t)dr −
∫ ρ

0

Iι(r, t)dr
)

(18)

where the proportional action is represented by weighted spatial integral of the error
on the z profile (z̃) and the integral action of the control is calculated as:

∂Iι(ρ, t)
∂t

= −αI(ρ)z̃(ρ, t)− λ(t)Iι(ρ, t) (19)

where ũι stands for the feedback control signal for the ι parameter, Iι is the integral
action of the controller, and αp(ρ) and αI(ρ) correspond to the proportional and the
integral gain of the control, respectively. The implementation of the feedback control
is discussed in Section 3.4.

The parameter λ(t) ∈ [0, λmax] (for a given λmax) in the integral action is called
a “forgetting factor” for the integrator [4, 36]. This parameter is used to cancel
high overshoots by weighting down past accumulated errors when ι is far from the
reference profile. This usually appears when the target profile is changed. This term
vanishes in finite time to avoid a steady-state error (λ(t) → 0 when t → ∞) and is
activated at the beginning of the control or at the time instants when there are sudden
(significant) changes of the reference profile. The value of this parameter is selected

as λ(t) = κe−σt
2

, where κ and σ are chosen constant parameters. The values of these
parameters are manually tuned to obtain the best performance of the controller.
The resulting closed-loop system (10), when the feedback control (18) applies, has the
dynamics: 

∂z̃

∂t
=

∂

∂ρ

(
a1(ρ)

ρ

∂

∂ρ

(
a2(ρ)z̃

))
− αp(ρ)z̃ + Iι

∂I
∂t

= −αI(ρ)z̃ − λ(t)Iι
(20)

In this TCV experimental setup Ip is feedback controlled via the inductive voltage
and its value is set to the desired reference value Ip = Ip. This leads to the following
boundary conditions:

z̃(0, t) = 0, ∀t ≥ 0

z̃(1, t) = 0, ∀t ≥ 0 (21)

The stability analysis is crucial for the feedback control design and they are used to
prove that the closed loop system converges to the desired equilibrium point. This
means that the parameters αp and αI of the controller should be chosen such that the
closed-loop system is asymptotically stable.
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3.2. Stability of the closed loop system

The stability analysis for the closed-loop system (20) is performed using Lyapunov
analysis for infinite-dimensional systems. More results on Lyapunov theory for infinite
dimensional systems can be found in [37, 38]. To compute the stability of the closed-
loop system (20), the following candidate Lyapunov function is chosen:

V = Vz + VI (22)

where

Vz =
1

2

∫ 1

0

ρ2pz(ρ)z̃2dρ (23)

and

VI =
1

2

∫ 1

0

ρ2pI(ρ)Iι2dρ (24)

The candidate Lyapunov function is chosen as a weighted L2(0, 1) norm ‡, where
pz(ρ) > 0 and pI(ρ) > 0 for ρ ∈ [0; 1] are the weighting polynomial functions, and it
is multiplied by the term ρ2 to handle the singularity at ρ = 0.

Theorem 1. Suppose that for a given positive value γ1 and a time-varying positive
number γ2(t), there exist polynomials pz, pI , kz = αppz, kI = αIpI such that pz(ρ) > 0,
pI(ρ) > 0, kz > 0 and kI > 0 for all ρ ∈ [0, 1]. If the following inequality is verified:

A(ρ) +A1(ρ, t) ≤ 0 (25)

where

A(ρ) =

c1,1(ρ) c1,2(ρ) c1,3(ρ)
0 c2,2(ρ) 0

c1,3(ρ) 0 c3,3(ρ)

 (26)

c1,1 = −
(

2pz(ρ) + ρp′z(ρ)

)
a1(ρ)

∂(a2(ρ))

∂ρ
− kz(ρ)ρ2

c2,2 = −ρpz(ρ)a1(ρ)a2(ρ)

c1,2 = −1

2

(
2pz(ρ)a2(ρ) + ρpz(ρ)

∂a2(ρ)

∂ρ
+ ρp′z(ρ)a2(ρ)

)
a1(ρ)

c1,3 =
1

2
ρ2

(
pz(ρ)− kI(ρ)

)
c3,3 = −ρ2pI(ρ)λ(t)

(27)

and

A1(ρ, t) =
1

2

γ1pz(ρ)ρ2 0 0
0 0 0
0 0 γ2(t)pI(ρ)ρ2

 (28)

then the time derivative V̇ of V defined in (22) along the solutions to (20) and (21)
verifies:

V̇ ≤ −1

2
γ1

∫ 1

0

ρ2pz(ρ)z̃2dρ− 1

2
γ2(t)

∫ 1

0

ρ2pI(ρ)I2
ι dρ ≤− γ(t)V (29)

‡ The L2 norm of ξ on a domain Ω is denoted as ‖ξ‖L2 = (
∫
Ω ξ

2dΩ)
1
2
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where
γ(t) = min

t∈[0,T ]
(γ1, γ2(t)) (30)

The proof of this theorem is given in Appendix A.
The numerical computation of the the polynomial functions pz(ρ), pI(ρ), kz(ρ)

and kI(ρ) is presented in Appendix B. Once the solution of the polynomial functions
is found, the controller gains are calculated as αp = kz/pz, αI = kI/pI .

The stability of our coupled system of linearized equations is established with
Theorem 1. The parameters γ1 and γ2(t) determine the convergence rate of our closed-
loop system. By changing these parameters we can obtain the desired values of αz(ρ)

and αI(ρ) to obtain best performance of the controller. The parameter γ2(t) = κγe
−σt2

is selected to be time-varying according to the time-varying parameter λ(t). Here κγ
is a tunning parameter and the term e−σt

2

is the same one that is used to define λ(t).
Another important property is to estimate how quickly the solutions converge to

the desired equilibrium state.

Corollary 1. Under the conditions of Theorem 1 and using the definition of γ(t),
the closed-loop system (20) with boundary condition (21) and initial conditions (12)
is globally exponentially stable. The convergence rate of the system satisfies:

V(z̃, Iι) ≤ e−
∫ t
0
γ(r)drV(z̃0, Iι,0) (31)

where γ(t) is given in (30).

Proof. Using separation of variables and integrating the inequality (29) over time give
the result.

3.3. Control of β

The control synthesis for β is developed using only the auxiliary heating sources as
the system input, given by P̃tot(ũβ). The value of the plasma current during the
experiments is considered as: Ip(t) = Ip. The closed-loop control algorithm of β
is developed using classical methods for designing Proportional−Integral-Derivative
(PID) controllers. There are many works dedicated to optimal tuning of the
parameters of PID controllers. Such methods can be found in [39, 40]. In this section
the simple rule for PID tuning presented in [41] is used. This rule is called Simple
Internal Model Control (SIMC). In our application only Proportional (P) and Integral
(I) components are applied, whereas the Derivative (D) component is not necessary
to be used when the dynamic of the system is represented by first order ODE. In the
TCV control system there can be several sources of time delays [19] (e.g. signal routing
delays and reconstruction delays). The effective delay in the TCV experiments can
be up to θ ≈ 5 ms and this is taken into consideration when the feedback control is
designed. The transfer function of the derived PI controller is chosen in cascade form
as:

c(s) =
P̃tot(s)

β̃(s)
= −Kc

τIs+ 1

τIs
(32)

or presented in time domain:

P̃tot(ũβ(t)) = −Kcβ̃(t)−
∫ 1

0

Kc

τI
β̃(σ)dσ = −Kβ,pβ̃(t)−

∫ t

0

Kβ,iβ̃(σ)dσ (33)
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where Kβ,p is the proportional gain and Kβ,i is the integral gain of the controller.
The coefficients of the controller are computed as follows:

Kc =
1

kβ

τ th
τc + θ

=
1

k′β

1

τc + θ

τI = min{τ th,
4

k′βKc
} = min{τ th, 4(τc + θ)}

(34)

where kβ = kpτ th
β
Wth

=
2kpτth

3V B2
0/(2µ0)

and k′β =
kβ
τth

. The SIMC PI-rule has one

tuning parameter τc which can be used as a trade off between performance (”tight”
control) and robustness (”smooth” control). Moreover, the value of this parameter
can be changed according to the control requirements. For a robust performance of
the tracking, this parameter should be τc ≥ θ. If this parameter is decreased the
convergence speed and the disturbance rejection are improved. For better stability,
robustness and small input usage the value of this parameter should be increased.
The optimal tuning of this parameter and the performance of the PI SIMC method is
discussed in [42].

3.4. Control implementation

As stated in the previous section, only the auxiliary powers are used as controlled
inputs in the system. This leads to limited shapes of the generated current density
profiles due to the limited degrees of freedom of the actuators. An optimization
problem should be formulated to fit the desired current density control calculated in
(18) with the achievable current density profile. The control is solved such that an
optimization problem is formulated to deal with the simultaneous control of several
parameters. The control inputs ũ = [P̃EC,1 P̃EC,2] are calculated using an optimization
algorithm that solves:

arg min
ũ

ω1fz(ũι) + ω2fβ(uβ) (35)

subject to

P̃1,min ≤ P̃EC,1 ≤ P̃1,max

P̃2,min ≤ P̃EC,2 ≤ P̃2,max

where:

fz(ũι) =

∫ 1

0

1

σ2
j

(
j̃ni,fb − j̃ni,mod(ũι)

)2

dρ

fβ(ũι) =
1

P̃ 2
tot,fb

(P̃tot,fb − P̃tot(ũβ))2

(36)

j̃ni,fb is the desired feedback control calculated in (18) and j̃ni,mod(ũι) is the current
profile that can be achieved by the available actuators in this experimental setup.
Here P̃tot,fb is the desired feedback control calculated in (34) and P̃tot(ũβ) is total
power that can be achieved by the available actuators. The parameters required to
calculate the desired profile j̃ni,mod are provided in real-time by the RAPTOR observer
in the TCV experiments. The cost function fz is normalized by multiplying with the
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inverse of the square of the variance in the errors σj , that is common technique used in
weighted least squares problems, and fβ is normalized by multiplying with the inverse

of P̃tot,fb.
The parameters ω1 and ω2 are used as scaling parameters in the optimization.

They can be used to tune the priority of the control of one of the plasma parameters.
The nominal values of these parameter are set as ω1 = ω2 = 0.5 to give equal priority
to both plasma parameters. These weighting parameters can be changed according to
the different control objectives (e.g. ω1 = 0, ω2 = 1 to yield only β control).
In (35), P̃tot(ũβ) is the desired control of the β component calculated in (33).

Remark 1. The global exponential stability of the nominal system for the evolution
of z (ũ = 0 when u = u) is proven in several previous works [14, 18, 29, 43]. In this
work, when closing the loop (20), the contribution of the feedback control (−αp(ρ)z̃+Iι)
accelerates the convergence to the desired reference. The limitations of the achievable
shapes for the auxiliary current deposit can reduce the desired convergence rate. In the
worst case, ũ = 0 is always a feasible state that results to globally exponentially stable
system.

3.5. Performance criterion

The feedback control performance is evaluated based on a weighted norm of the
error between the reference and achieved values of the plasma parameters of interest.
This performance measurement can also be used to compare the efficiency of this
controller with other controllers that are using different control strategies and that
are implemented in the same environment. The performance measures, that are used
to measure the efficiency of the feedback control, are given by Jβ(t) to measure the
performance of β feedback control and Jι(t) for the performance measurement of
ι.These functions are defined in [19] as:

Jβ(t) =
(β(t)− β(t))2

β(t)2

Jι(t) =

np∑
i=1

W (ρi)
(ι(xi, t)− ι(ρi, t))2

ι(ρi, t)2

(37)

In other words, Jι(t) is integral of weighted ι tracking error, where the spatial weighting
W (ρ) is defined in [19] and is used to highlight the part of the region of interest to
measure the performance of the feedback control. In these control scenarios more
emphasis is given to the region closer to the plasma centre. The total weighting norm
for the performance measurement of the combined control of the two parameters is
given by Jtot(t) = υβJβ(t)+υιJι(t), where the weights υβ and υι are used to highlight
the relative importance of the controlled plasma parameter of interest.

4. Simulation results

In the first phase, RAPTOR is run outside the TCV control environment as a simulator
in stand-alone situation. The aim of this simulation environment is to have extensive
tests of the feedback control performances before being applied in the real TCV
experiments. Several control scenarios are considered to examine the robustness and
performance of the controller. In these simulations the parameters of the RAPTOR
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simulator are chosen to be the same with the one of the experimental setup in TCV.
The configuration of the reference values of the current and power distributions are the
same as in the TCV experiments. In this configuration, the flat-top plasma current
is set to a constant Ip = 120 kA, while the EC clusters are used as control inputs.
One Pec1 (counter-ECCD) and one Pec2 (co-ECCD) clusters are used in the TCV
experiments. In these RAPTOR simulations, Pec1 has an allowed power range of
100− 750 kW, and Pec2 has 360− 900 kW. The RAPTOR simulator solves the non-
linear coupled transport of Te and Ψ represented by two coupled PDEs. The sawteeth
effect is not included in this model. The ne profile is prescribed in the RAPTOR
simulations, and in real experiments, it can be time-varying and provided by a profile
reconstruction code. In the current version of the RAPTOR code, the temperature of
the ions Ti is estimated using pre-set ratio fTi(ρ) = Te/Ti and ni is estimated using
the assumption ne ≈ ni.

The feedback control algorithm for the ι profile has available reconstructions
obtained in np = 11 equidistant ρ-grid points. To implement the control given by the
optimization problem (35), we apply numerical integration of (36). The simplified
model used to represent the ECCD current and power distributions permits the
optimization problem (35) to be solved as a constrained linear least square problem.
The extracted feedforward stationary values of the inputs that correspond to the
desired reference profiles (P ec1, P ec2 and Ip) are calculated solving the static equation
(9) and added to the feedback control. In RAPTOR simulations we can generate
the target profiles when the corresponding feedforward input signals are applied
sufficiently long to bring the plasma in a steady state. Using these references in
the control simulations we can achieve a perfect tracking of the target profile in a
steady state. However, this is not the case in most of the real experiments where it is
difficult to achieve a perfect tracking of the target profile due to the limited degrees
of freedom of the available actuators.

The PI feedback control of the β parameter is calculated using a fixed values
for the global energy confinement time τth = 4.4 ms and the possible effective time
delay is taken also into consideration. The optimal value of the free parameter
is fixed at τc = 0.1 after tuning, using simulation tests and choosing the best
tracking performance. The ι controller parameter profiles, αp(ρ) and αI(ρ), that
were used in these simulations are presented in Fig. 5a and Fig. 5b. The values of the
control parameters were tuned such that they satisfy the stability criterion posed by
Theorem 1. Because in these simulations we perform simultaneous control of the both
parameters, the weighting functions are selected as ω1 = ω2 = 0.5.

Fig. 4 presents the results from the closed-loop RAPTOR simulation where several
different reference points are extracted and the control is tested to track these different
points. In this simulations the control is activated at t = 0.1 s. From the simulation
results we can see that the closed-loop system successful tracks the multiple targets
for both plasma parameters. In these plots we presented the performance of the
control using different gains for the ι control, while the β controller gain was the same
for both simulations. The second control scenario (control scenario 2) has increased
control gains αp(ρ) and αI(ρ) in comparison with the first control scenario (control
scenario 1). The gains of the first control scenario 1 are given in Fig. 5a and the
gains of the control scenario 2 are given in Fig. 5b. From these plots we can see the
effect of these gains in the control performance. The features of these terms are very
similar with the one used in the control of SISO systems. Increasing the value of
the proportional gain increases the setting time and decreases the steady state error
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Figure 4: Evolution of ι, β, Paux, Ip and the error norms in a closed-loop RAPTOR
simulation.

while increasing the integral action eliminates the offset more efficiently. If these gains
are too large, they can introduce oscillations and high sensitivity to high frequency
disturbances.
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(a) ι controller parameters used in control scenario 1.
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(b) ι controller parameters used in control scenario 2.

Figure 5: Values of controller gains αp and αI used in the RAPTOR simulations.

In Fig. 6, the ι profile of the closed-loop system from another RAPTOR simu-
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lation is presented to illustrate the effect of using the parameter λ(t). In the plots
we are presenting two simulations using same parameters besides different λ(t). In
the first simulation the feedback control is activated and the forgetting factor λ(t) is
added to the integral action at t = 0.1 s. In these RAPTOR simulations the compo-
nents that define λ(t) are set to κ = 0.08 and σ = 102. This parameter was active
only during the transition period when the control was activated at 0.1 s and was set
to zero afterwards to avoid steady state error. In the second simulation only pure
integrator (λ(t) = 0) is used. In the transition intervals we can have an overshoot
in the closed-loop tracking as a result of the integral action. From the plots we can
conclude that by adding λ(t) we improve the performance of the integral action by
reducing these overshoots.

Figure 6: Response of ι with a pure integrator (red line) compared with the response
when a forgetting factor λ(t) is added to the integral action (blue dashed line) at
several discrete locations.

4.1. Controller performance with time delays

Transportation of the control signals and their transition in the control systems can
generate delays. Sometimes the effect of these delays cannot be neglected. For this
reason, the performance of the control algorithm should be tested and adapted to
these delays, which can be present when the control is applied on the real TCV control
system. The control performance is tested by adding a 5 ms time delay in the plasma
states from RAPTOR that enters in the controller, based on the possible time delays
in the control environment.

The performance of the feedback control of the slow component ι are presented
in Fig. 7. The time delays of small scales do not affect significantly the control of this
component. In the case of a larger time delay of 100 ms and higher that can affect
the performance, some extra tuning of the control parameters should be considered as
discussed in [18]. The time delays in the system have more impact on the performance
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Figure 7: Tracking evolution of ι in the presence of a time delay in the feedback loop.
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(a) β tracking with τc = 0.1.
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(b) β tracking with τc = 0.01.

Figure 8: Tracking evolution of β in a presence of a time delay of 5 ms in the feedback
loop.

of the fast varying β parameter than on ι. The results of control for β with τc = 0.1 and
τc = 0.01 are presented in Fig. 8a and Fig. 8b, respectively. The robustness is increased
and the convergence speed of the response is decreased by using an increased value of
τc = 0.1. In this case the high overshoots and oscillations are effectively attenuated
even when a time delay of 5 ms is present. In the case when τc = 0.01 is used the
speed of the convergence is improved. On the other hand, when the time delay is
introduced, there are higher overshoots and oscillations in the closed-loop tracking.
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Figure 9: Evolution of ι, β, Paux, Ip and the error norms form the RAPTOR simulation
with changed deposition location of the actuator Pec2. In control case 2 the feedback
component is switched off at t = 0.7 s and only feedforward control is used.

4.2. Change of the deposition location and width of Pec2

The control performance is tested in a scenario where the deposition location and
width of the ECCD clusters are different than the ones given by the nominal model.
For this purpose, the deposition in the second ECCD cluster (Pec2) is changed such
that the width is increased by 12.5% (ωdep = 0.40) and the location of the peak of the
deposition is ρdep = 0.05. The desired reference profile is no longer reachable using
the available inputs because of this perturbation that is introduced in the system.
The simulation results for the tracking of ι profile and β are presented in Fig. 9. In
these simulations we considered two control cases. In the first scenario the control is
activated at t = 0.1 s (control case 1) and the control is active until the end of the
simulation. While in the second scenario (control case 2) the feedback control was
activated in the time window t = 0.1 − 0.7 s. The feedback control is deactivated
after 0.7 s to compare the performance of the feedback control with the case where
only the feedforward inputs are used. From Fig. 9, it can be clearly concluded that
the feedback control improves the control performance of the ι profile by reducing the
offset. In both cases a good tracking of β is still achieved because this parameter
depends less on the deposition location and width of the ECCD clusters. Also the
results reveal that q0 is very sensitive to actuator settings.
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Figure 10: Evolution of ι, β, Paux, Ip and the error norms from RAPTOR simulation
with added NBI heating as a source of disturbance. The input power is added at the
time intervals t ∈ [0.4, 0.6]s and t ∈ [0.8, 1]s with a power of 1 MW.
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Figure 11: Profile of ι at t = 0.5s, 0.7s and 1s from the RAPTOR simulation with
added NBI heating as a source of disturbance.

4.3. Disturbance attenuation

The sensitivity of the control algorithm to disturbances and their rejection is one of
the most important features that should be tested before the controller is applied.
In a complex system like the tokamak, where the model of the system depends on
numerous parameters, there can exist many of sources of disturbances. To test the
disturbance attenuation of the controller, an additional Neutral Beam Injection (NBI)
with power and co-current drive was added to the simulations to act as a source of
external disturbances. The model for the NBI that is used in RAPTOR simulator is
simple and uses Gaussian distribution for the current density and for the heating power
density. However, the accuracy of the model for these simulations is less important,
since the main goal of this NBI is to act only as a disturbance source. The control of
the system is activated at t = 0.1 s and the disturbing source was activated during
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the time intervals t ∈ [0.4, 0.6]s and t ∈ [0.8, 1]s with a power of 1 MW. The results
form the RAPTOR simulation are presented in Fig. 10. When the NBI heating is
added the plasma parameters deviate from the target values and the feedback control
algorithm tends to bring the plasma parameters to the desired references. In the plots
we included the results from two simulations. In the first case only the feedfoward
inputs were used, while in the second case the feedback controls was added to the
feedfoward signals. From the results we can see that the feedback action successfully
manages to attenuate the disturbance that comes from the NBI source. We can also
confirm that the feedback control accelerates the convergence rate to the target state.
Resulting ι-profile for this simulation at several time instants is presented in Fig. 11.

5. TCV experiments

After the extensive tests of the control algorithm using the RAPTOR simulator, the
control algorithm is transferred and implemented in the TCV control system. The
control environment [19] permits the MATLAB software for the controller to be used
directly in the experiments.

The RAPTOR code is incorporated as an observer in the TCV control
environment, which provides the essential real-time estimates of the Te and Ψ profiles
in several ρ-grid points. The Te and Ψ profiles are reconstructed by the RAPTOR-
observer using an extended Kalman filter scheme [21, 44]. These profile estimates

are necessary to calculate the estimates of ι ∝ 1
ρ
∂Ψ
∂ρ profile and β ∝

∫ 1

0
V ′neTedρ

for our control purposes. The TCV diagnostic system lacks measurements of the
internal magnetic field in the plasma region. Thus, the estimated ι profile is calculated
using only the RAPTOR model predictions constrained by the plasma geometry and
experimental total plasma current measurement. The effect of sawteeth was not
considered in the model, which results to physically unrealistic estimate of ι profile
that is much larger than 1 in many cases. However, this drawback does not affect
the test of the performance of the presented control algorithm because the estimated
and the reference profiles were generated using the same model. More details about
the accuracy of the estimates and comparison of the profiles with off-line profile
reconstructions using LIQUE [45] and ASTRA [25] can be find in the paper dedicated
to the description of the control environment [19].

The volume-averaged density in the TCV experiments is calculated in real-time
using the code described in [46]. The electron density is controlled using robust density
controller [47] and this control is executed in parallel with the profile control in the
TCV control system. The density is chosen low (ne(ρ = 0) = 2 · 1019m5) in order to
maximize the ECCD current. See [19, 48, 49] for more details on the TCV control
system.

In the TCV experiments the plasma current Ip is controlled by the inductive
voltage from external coils, and can be adjusted in real-time. The value of this
parameter is set to the desired value and is not included in our feedback control
synthesis. In these experiments the cluster Pec1 has time varying power limits. The
range of this cluster is 100 − 750 kW, with an extra restriction that the minimal
allowed power increases to 550 kW if Pec1 < 500 kW for more than 0.47 s. The power
of cluster Pec2 is in the range of 360− 900 kW.

RAPTOR observer provides the estimate of the ι profile at 11 equidistant ρ-grid
points in the range of ρ ∈ [0 : 1] for the control purposes. For the control synthesis
a linear model was used that was extracted by applying static inputs Ip = 120 kA
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and Pec1 = Pec1 = 500 kW. The feedforward signal of the control is calculated in real
time using the lumped representation of the linearized model of (9) at several ρ-grid
points. The corresponding signals were calculated as variations around this model.
The small offset that can appear as a result of the nonlinear nature of the system is
compensated easily by the integral action of the control. In the TCV experiments the
optimization problem (35) is solved as a linear least square problem, without including
the limits of the actuators. This permits easy implementation using only matrix
multiplication and inversion, without significantly affecting the performance. The
anti-windup compensator that is implemented in the TCV control system is updated
with the real time actuator limits which are crucial for its performance. The simplicity
of the control algorithm presented in this paper allows it to be executed in a short
time and easily applicable within the TCV control system.

Figure 12: Evolution of β, Paux, Ip and the error norm in shot # 54839. Two ECCD
clusters are used as control inputs and the value of Ip is fixed.

The control strategy is tested in several TCV shots where different sets of control
parameters are used. In the shot # 54839 only control of the pressure parameter
β is considered. In these experiments the same β controller gains were used as in
the simulations. In this experiment the controller should track several targets for β.
The results from this shot are presented in Fig. 12. From the RAPTOR observer
outputs we can see that the β controller successfully tracks the different targets. In
the case where only β control is active, the total power is equally shared between the
two clusters, thus the powers delivered by the two inputs are equal until one of the
clusters saturates. Because of the variable power limitations of the first cluster Pec1,
after around 1.2 s the minimum limit of this actuator rises to 550 kW and the target
state is no longer reachable. At 1.5 s and 2 s the target states were increased and they
were successfully reached by the feedback controller.

The control of the ι profile is applied in shot # 54838. The values of the controller
parameters αp(ρ) and αI(ρ) used in this shot are presented in Fig. 15a, and λ(t) = 0
was used. Since we have only two degrees of freedom given by the power delivered by
the two actuators and several controlled points of the ι profile, the target profile should
be chosen a priori such that it can be achieved with a limited number of actuators.
From the plots shown in Fig. 13 we can see that the feedback control manages to reach
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Figure 13: Evolution of ι, Paux, Ip and the error norm in shot # 54838. Two ECCD
clusters are used as control inputs and the value of Ip is fixed.
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Figure 14: Profiles of ι, Te and ne in shot # 54838.

the desired target state after the activation of the control. In the ι profile plots we can
observe certain oscillations that are coming from the increased integral action and also
from the model uncertainties that are coming from different plasma phenomena. To
reduce these oscillations in future experiments, the controller gains should be reduced
and also techniques to filter the uncertainties can be applied. Because of the change
of the minimum allowed power for the first cluster, at around 1.2 s the power Pec1
increases to 550 kW which results in an increase of Pec2 to compensate this change.
At 1.6 s the target ι profile is changed and the feedback control aims at the new
desired profile. The resulting and the target ι profile at t = 1.6 s and t = 2.3 s and



Experimental validation of a Lyapunov-based controller 23

the temperature profile are presented in Fig. 14. From the plots we can see that not
all the desired target states were reachable. This is because the reference parameters
for the second target were generated by using high Ip = 150 kA. The feedback control
applied using only the EC clusters gives more emphasis on the desired profile states
closer to the center of the plasma. To achieve a better tracking of the points that are
closer to the plasma edge, it is necessary to include also Ip as an boundary actuator.
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(a) ι controller gains used in the TCV shot #54838.
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(b) ι controller gains used in the TCV shot #54835.

Figure 15: Values of controller gains αp and αI used in the TCV shots.

Simultaneous control of both ι and β is performed in shot # 54835. The values of
the controller parameters αp(ρ) and αI(ρ) used in this shot are presented in Fig. 15b,
and λ(t) = 0 was used. The results from this shot are presented in Fig. 16. The
resulting and the target ι profile at t = 1.6 s and t = 2.3 s and the temperature profile
are presented in Fig. 17. The control algorithm manages to achieve the desired ι profile
and β targets at the beginning of the control. When the targets for both plasma
quantities are changed at 1.6 s, these targets cannot be reached and the actuators
are in saturation. As in the case of shot # 54838, the second target at 1.6 s were
generated using Ip = 150 kA and they were not reachable using fixed Ip = 120 kA but
are nevertheless relatively well reproduced within the actuator limits.

6. Conclusions and future work

In this paper we presented feedback control algorithms for simultaneous control of the
plasma ι profile and the β pressure quantity. The control algorithms were successfully
tested using simulations and real TCV experiments.

The results show a successful simultaneous tracking of ι and β using two EC
clusters. The performance of the control using several control scenarios in presence of
different uncertainties and disturbances was tested in RAPTOR simulations prior to
the experiments. Finally, the feedback control algorithms were implemented on the
TCV control system and tested in several shots.

While our algorithm is easy to be adopted to other in-domain actuators (auxiliary
heating and current drive), it requires modifications or combination with other control
methods to be extended to include boundary actuators. A boundary control algorithm
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Figure 16: Evolution of ι, β, PEC, Ip and the error norms in shot in shot # 54835.
Two ECCD clusters are used as control inputs and the value of Ip is fixed.
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applied to PDEs, that includes the boundary input Ip controlled directly by the loop
voltage, could eventually improve the performance of the system [50, 51]. Direct
application of these infinite-dimensional boundary control methods is difficult as a
result of the complexity of the equation. However, a spatially discretized version of
the backstepping approach that includes Ip as a control input is already applied for the
control of the current profile and experimentally tested on DIII-D in L-mode [7] and
in H-mode [52]. In [52] the boundary control method is extended to include in-domain
control.

The unified framework for different control strategies if this TCV experimental
campaign permits us to compare the performance of the different controllers that
were implemented. One of the most successful control performances are done by
using Model Predictive Control (MPC). MPC algorithms for the control of the plasma
safety factor are developed in several works [19, 53, 54]. These algorithms are more
complex and require implementation of quadratic programming solver that demanded
bigger computational power. Successful testing of the MPC in this experimental
campaign [19] shows very good handling of the actuator constraints that can be
included explicitly in the MPC synthesis. A disturbance observer to estimate the
slowly varying component is used to reduce the steady state error in this controller.
This is equivalent to the objective of the integral action that is applied in our design.
The disturbance observer gives a good transition between different target states and
good tracking performance with reduced overshoots. Some of the techniques applied
in the MPC controller can be used as an insight to be adopted to this control algorithm
to improve the control performance. Qualitative comparison of the implemented MPC
with the robust control [11, 13] and the IDA-PBC [5] can be found in [55].

The main advantages of the proposed algorithm in this paper is its simplicity to
be implemented the TCV control system and the fast computational time. It can also
incorporated easily some techniques (i.e anti-windup, proportional-integral term) that
can improve the control performance. With the proposed Lyapunov approach we have
stability margin that gives us some robustness to the uncertainties that can appear
in the control design and implementation. The main drawbacks of this algorithm is
that it has several parameters that must be tuned before it can be applied in real
experiments. This requires very good simulator that reflects accurate the dynamics of
the system. Moreover, the infinite-dimensional approache demands estimation of the
plasma profiles in many grid points in order to be implemented, that is not always the
case. In future works this algorithm should also be extended to include the dynamics
and the terms that were neglected in our simplified control model, but that could
influence the performance in other plasma operation mode.
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Appendix A. Proof of Theorem 1

Proof. The time-derivative of the Lyapunov function is:

V̇ = V̇z + V̇I (A.1)

where

V̇z(t) =

∫ 1

0

ρ2pz(ρ)
∂z̃

∂t
z̃dρ

=

∫ 1

0

ρ2pz(ρ)
∂

∂ρ

(
a1(ρ)

ρ

∂

∂ρ

(
a2(ρ)z̃

))
z̃dρ

−
∫ 1

0

ρ2pz(ρ)αp(ρ)z̃2dρ+

∫ 1

0

ρ2pz(ρ)z̃Iιdρ

(A.2)

Applying integration by parts in V̇z(t) and defining kz(ρ) = αp(ρ)pz(ρ) we get:

V̇z(t) =ρpz(ρ)z̃a1(ρ)
∂

∂ρ

(
a2(ρ)z̃

)∣∣∣∣1
0

−
∫ 1

0

ρpz(ρ)a1(ρ)a2(ρ)

(
∂z̃

∂ρ

)2

dρ

−
∫ 1

0

(
2pz(ρ) + ρp′z(ρ)

)
a1(ρ)

∂a2(ρ)

∂ρ
z̃2dρ

−
∫ 1

0

(
2pz(ρ)a2(ρ) + ρpz(ρ)

∂a2(ρ)

∂ρ
+ ρp′z(ρ)a2(ρ)

)
a1(ρ)z̃

∂z̃

∂ρ
dρ

−
∫ 1

0

ρ2kz(ρ)z̃2dρ+

∫ 1

0

ρ2pz(ρ)z̃Iιdρ

(A.3)

Calculating the time derivative of V̇I =
∫ 1

0
ρ2pI(ρ)∂Iι∂t Iιdρ and defining kI(ρ) =

αI(ρ)pI(ρ), we get:

V̇I(t) = −
∫ 1

0

ρ2kI(ρ)z̃Iιdρ−
∫ 1

0

ρ2pI(ρ)λ(t)I2
ι dρ (A.4)

Combining the equations (A.3) - (A.4), V̇ can be presented as:

V̇(t) =

∫ 1

0

 z̃∂z̃
∂ρ

Iι

T c1,1(ρ) c1,2(ρ) c1,3(ρ)
0 c2,2(ρ) 0

c1,3(ρ) 0 c3,3(ρ)

 z̃∂z̃
∂ρ

Iι

 (A.5)

where c1,1, c2,2, c1,2, c1,3, c3,3 are defined in the statement of Theorem 1. Considering

(25), we get V̇ ≤ − 1
2γ1

∫ 1

0
ρ2pz(ρ)z̃2dρ − 1

2γ2(t)
∫ 1

0
ρ2pI(ρ)I2

ι dρ. This concludes the
proof of Theorem 1.

Appendix B. Computation of the Lyapunov function

The exponential stability of the system is verified by solving inequality (25) in
Theorem 1. The solution of this inequality is found by transforming the inequality in
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to an Linear Matrix Inequality (LMI) problem by representing the weights of the
Lyapunov functions, pz(ρ), pI(ρ) and the control gains kz(ρ), kI(ρ) as Legendre
polynomials. Legendre polynomials are orthogonal in the range [−1, 1], and the
polynomials pz(ρ), pI(ρ), kz(ρ) and kI(ρ) may be expanded in this interval in terms
of them as [56]. The pz(ρ) can be presented as:

pz(ρ) =

N1∑
i=0

c1,iPi(ρ)

where c1,1, ..., c1,N1 are constant that need to be found, Pi(x) is i− th order Legendre
polynomial and N1 is the order of the Legendre polynomial for pz. The same
representation is applied for pI(ρ), kz(ρ) and kI(ρ).

Sampling the interval [0, 1] and representing pz(ρ), pI(ρ), kz(ρ) and kI(ρ) as a
sum of Legendre polynomials permits us to formulate the following LMI problem:

For given parameters γ1 and γ2, find pz(ρ), pI(ρ), kz(ρ) and kI(ρ) such that:

• A(ρ) +A1(ρ) ≤ 0,∀ρ ∈ [0, 1];

• αlWp(ρ) < pz(ρ) ≤ αhWp(ρ) and αlWp(ρ) < pI(ρ) ≤ αhWp(ρ),∀ρ ∈ [0, 1];

• kz(ρ) > 0 and kI(ρ) > 0;

• η‖(ρ) = ωηη‖,min(ρ) + (1− ωη)η‖,max(ρ),∀ωη ∈ [0, 1] .

The LMI is solved to guarantee the stability of the closed-loop system for different
values of λmax ≥ λ(t) > 0. The LMI solver YALMIP [57] is used to find the unknown
constant polynomial coefficients in pz(ρ), pI(ρ), kz(ρ) and kI(ρ).
The shape of the weighting polynomials of the Lyapunov function pz(ρ) and pI(ρ)
are constrained by the lower limit curve αlWp(ρ) > 0 and the upper limit curve
αhWp(ρ) > 0, where the weigthing function Wp(ρ) is chosen such that it highlights
the area of ρ which is the most important for the control performance. In these
experiments the shape of Wp(ρ) is chosen according to the weighting function W (ρ)
defined in the performance criteria (37). The plots of the solutions of the polynomials
pz and pi in a case where these constraints are applied are presented in Fig. B1.
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Figure C1: RAPTOR simulations comparing the performance of the control of β
without (blue dash line) and with (red line) an anti-windup scheme.
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Figure C2: RAPTOR simulations comparing the performance of the control of ι with
(blue dash line) and without (red line) an anti-windup scheme.

Appendix C. Anti-windup implementation

The powers of auxiliary antennas used in the tokamaks are subject to saturation. The
saturation for the i-th actuator can be presented as:

sat(PEC,i) =


PEC,i,min if PEC,i < PEC,i,min

PEC,i if PEC,i,min ≤ PEC,i ≤ PEC,i,max

PEC,i,max if PEC,i ≥ PEC,i,max

(C.1)

Integral windup can occur in loops where the actuator saturates and the controller
has integral action. It occurs when the integral terms accumulate a significant error
as a result of saturated integrators when the desired output is not achievable. This
can lead to large overshoots and undesirable transients. To avoid windup, an extra
feedback path is provided in the controller by comparing the difference between the
output of the controller and the actuator output. Stability and anti-windup techniques
for systems with saturated actuators can be found in [58, 59].

We applied anti-windup compensation by using the conditional integration (CI)
technique that is presented in [60, 61]. In the case where the saturation levels are
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known and where digital controller is used, this method can be effectively and easily
implemented in the control. In this technique, the integral term is increased only
when certain conditions are satisfied; otherwise it is kept constant. In the case of the
auxiliary heating sources in tokamak plasma, the CI is applied such that the integral
action is suspended when the actuators powers are saturated. In our case, the CI is
calculated for each actuator separately. For the z component, the integral term Ĩι is
frozen when the actuators saturate as:

∂Ĩι
∂t

=

{
0 if ũ saturates

−αI(ρ)z̃ − λ(t)Iι otherwise
(C.2)

In the case of the controller of β, the integral term Ĩβ is frozen when the actuators
are being driven into saturation:

dĨβ
dt

=

{
0 if ũ saturates

Kβ,iβ̃ otherwise
(C.3)

The integration stops only when all the actuators are in saturation. Fig. C1 and
Fig. C2 present the plots of β and ι-profile from a closed-loop RAPTOR simulation.
In the time interval t ≤ 0.4 s, the reference values of the outputs were selected such
that the system actuators are forced to reach a saturation level. In this interval
the integrator continues to accumulate the error if no anti-windup scheme is applied.
After t = 0.4 s the target values are changed and the performance of the anti-windup
technique can be tested. In the case when the anti-windup technique is not applied,
there are delays in the controllers response to the change of the reference signal. From
these results it can be concluded that the simple CI technique successfully solves the
controller windup problem.
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