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Optimal Settings of Residential Oil Burners

Abstract

Residential oil burners are capable of almost complete burning of the fuel oil, without
visible smoke, when they are operated to deliver approximately 12% CO2 in the flue gases.
The positions of the air damper and of the combustion nozzle are adjusted at start-up and
during operation in order to maximize the combustion efficiency. In practice, one factor at
a time is varied, starting with the air damper. However, this method fails to detect the
interaction between air excess and nozzle position and results in non-optimal settings.
Optimal designed experiments allow obtaining local regression models and statistical
analysis indicates if experiment augmentation is required. The air damper and combustion
nozzle settings are changed in the direction of local gradient until a second order model,
that contains the optimal point in its experimental region, is obtained. By using this
approach, the gain in combustion efficiency may be 5% higher than by using the classical
approach.

1. Introduction

1.1. Oil burner

An oil burner combines oil and air under controlled conditions for combustion; the
resulted energy is then delivered to the heating system of the building. Operated with
excess air as low as 20%, the oil burners are capable of almost complete burning of the fuel
oil, without visible smoke. We try: 1) to maximize the burning efficiency and 2) to limit
the pollutant concentration in the flue gases by controlling: 1) the smoke opacity, 2) the
flue gases temperature and 3) the CO2 percentage. Small flue gases opacity is desired but it
indicates that air excess may be too high; although low polluting, this operating condition
is not energetically efficient. The temperature of the flue gases should be as low as possible
but higher than the acid dew point (160°C). The CO2 percentage in the flue gases is a
function of air excess. The combustion efficiency depends on the combination of these
three parameters.

Siegart [1] gives a simplified relation of the combustion efficiency:
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where :
η  combustion efficiency [%];
Tf flue gases temperature [C];
Ta combustion air temperature [C];
CO2 CO2 concentration in flue gases [%];
f coefficient depending on air excess ( 56.0≅f for air excess of 20%).

The optimal settings of the oil burner, which consist in the positions of the air damper and
of the combustion nozzle (Fig. 1), are when the combustion efficiency is maximal and the
flue gases concentration in CO2 is less than 12%. Preliminary adjustments of the air
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damper, based on the flame color and flue gases opacity, result in a near-optimal operating
point. Then, the optimal settings are achieved by measuring the combustion efficiency and
the concentration of CO2 in the flue gases.

The residential oil burner studied (Fig. 1) presents an on-off combustion control system
that starts and stops the fuel burner to satisfy the heat demand. The burner remains on until
the controlled temperature of the outlet water reaches 85°C; at this temperature, the burner
shuts off. The burner again ignites at 75°C. Although this combustion control system
maintains the operating conditions in a limited domain, there is a systematic bias due to the
variation of the outlet water temperature (Fig. 2a).

Our purpose is to elucidate the behavior of the burner near the optimal operating point
by fitting an approximating function or model. The information needed is to be obtained by
using as few experiments as possible.

1.2. Operating point optimization

Optimization consists in finding the set of operating conditions for the process variables
that results in best performance. Generally, even rigorously formulated models have some
unknown parameters, so experiments are used to acquire the data necessary for parameter
estimation. In the case of oil burners, two settings are required: the positions of the air
damper and of the combustion nozzle.

In practice, the one-factor-at-a-time procedure is used: first, the air damper position is
changed and then the nozzle position. But the results obtained are misleading for two
reasons: 1) the process parameters change in time with the increase of the outlet water
temperature (Fig. 2a), and 2) the optimum point is not correctly localized due to the
interaction between input variables. In Fig. 2b, for the nozzle position 0.8, the maximum
combustion efficiency found by modifying the air damper position is 86.6%; then, by
modifying the combustion nozzle position, the maximum efficiency found is 87.5%. The
settings are not optimal. Optimal designed experiments and response surfaces overcome
these two problems.

Based on experiments, we may construct the response surfaces of combustion efficiency
and CO2 concentration and use them to maximize the combustion efficiency. Response
surface methodology is the most widely employed and successful optimization technique,
developed in the early 1950s and initially applied in the chemical and process industries
[2]. However, research on optimal experimental design, which allows us to obtain the
measurements necessary to construct the response surfaces, was started in 1970s. The main
idea of this approach is to design experiments intended to estimate the parameters and the
adequacy of a given model [3]. Optimal experimental design makes optimization
techniques applicable to real engineering systems.

2. Response surface and the design of experiments

The experiments for finding the optimal operating point are sequential and follow the
formal description of steepest ascent and second order designs [4]. In the first stage, the
experimenter decides on the input variables; in the case presented here, there are two: the
positions of the air damper and of the nozzle. Then, based on experiments, local models are
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constructed. Following experiments are performed sequentially in the direction of steepest
ascent. When the operating point is near the optimum, second order models are fitted; they
may indicate a maximum in or near the experimental region.

In general, an experimental trial gives the measured values of responses, or output
variables, y, and of m factors, or input variables, u. In order to estimate a local model with
n parameters, at least N = n trials are necessary at distinct points in the experimental
domain. However, if the input-output relationship is blurred by errors, more trials will be
required (N > n) and regression will be used to fit the model; larger the degree of freedom,

nNv −= , better the estimation. Statistical analysis can provide an estimation of both the
variance of readings and of the residual sum of squares attributes to lack of fit.

2.1. Experimental design domain and scaled variables

Local models are obtained by varying the input variables, u, in a given domain; the
variation range is a trade off between model accuracy and experiment efficiency. It is
convenient to scale and center the variables to lie between –1 and +1. If the variation range
is independent for each of the m factors, the experimental domain, in terms of the scaled
variables, is an m-dimensional cube; for m = 2, the domain is a square. We consider
hereafter that the input variables are scaled and centered.

2.2. Multiple regression models

For a system with p inputs and one output, when we make m experiments, we obtain
],...,,[ 21 myyy=y  values of the output of interest that correspond to 1211 ],...,,[ puuu=u ,

2212 ],...,,[ puuu=u , …, mpm uuu ],...,,[ 21=u values of inputs. The general least square (or
linear regression) problem is to find out the unknown parameters β  of the linear model
[5]:

)(...)()( 2211 uuu nn fffy βββ +++= , (1)

where f1, … , fn are known functions of u. By transforming the input variables, we may
note )(11 ux f= , … , )(ux nn f= .  Writing equation (1) for m data pairs {(ui; yi), i=1, … ,
m} by using matrix notation, we obtain:

yX =β , (2)

where
















=

)(...)(
.........

)(...)(

1

111

mnm

n

ff

ff

uu

uu
X , 
















=

nβ

β
β ...

1

 et 















=

my

y
...

1

y  are respectively the information

matrix of dimension nm × , parameters (regression coefficients) vector of dimension 1×n
and the output vector of dimension 1×m . In order that equations (1) and (2) account for
random noise and modeling error, an error vector e of dimensions [ ]1×m  is added:

yeX =+β . (3)
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The least square problem is to find β=b  that minimizes the sum of squared error,
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where bXy =ˆ  is the estimated output. If the model is linear in parameters and XXT  is
nonsingular, b is unique and given by:

yXXX TTb 1)( −= . (5)

2.3. Confidence intervals on the parameter estimates

Equation (5) gives the values of the regression coefficients (or estimated parameters), b.
While the true value β  is fixed, the estimated value, b, varies randomly from estimation to
estimation. In order to find the confidence intervals on b we need the value of the error
variance 2σ ; we may find an estimation, s2, of the variance, 2σ , by using the residual

yye ˆ−= [6]:
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Then, the variance of the estimated parameter bi is:
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The )%1(100 α−  confidence limits for iβ  may be estimated by using the t distribution
for nNv −=  degrees of freedom:

ivii tb ββ α var,±= . (8)

2.4. D-optimal design of experiments

Let us consider that we opted for a given model on a given domain. An optimal
designed experiment minimizes the variance of parameter estimates for the chosen model
on the given domain. Under the assumption of independent errors of constant variance 2σ ,

0)( =eE  and Iee 2)( σ=TE  (Gauss-Markov conditions), the covariance matrix of the least
squares estimates is:
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12 )(var −= XXTb σ . (9)

If interest is in the comparison of experimental designs, the value of 2σ  is not relevant
since it is the same for all proposed designs for a specific experiment. The variance of bj is
proportional to the jth diagonal element of 1)( −XXT . The determinant XXXX TT /1)( 1 =−

is called the generalized variance. Designs that maximize the value of the determinant of
the Fischer's information matrix, XXT , are called D-optimal (D for determinant).
Maximizing the determinant XXT  is equivalent to minimizing the determinant of the
parameter covariance matrix [3].

The optimal design of experiments is based on the General Equivalence Theorem,
which can be viewed as an application of the result that the derivatives are zero at an
extremity of a function. The function (the local model chosen) depends on the
measurements through the information matrix, X. This theorem provides methods for
asserting and checking the optimum location of the experimental points but it states
nothing regarding their number. Practically, the number of experiments may be increased
until the confidence multidimensional interval on the estimated parameters becomes
acceptably small [3]. Hereafter, we give a method for testing if the augmentation of
experiments is necessary.

The optimum design is found by searching over the design region. For simple problems,
an analytical solution is sometimes possible [7]. In more complex situations, a sequential
algorithm seeks the maximal increase of XXT . The search over the continuous
experimental domain is replaced by a search over a list of candidate points. This list, which
is a coarse grid in the experimental region, frequently includes the points of the D-
optimum continuous design. The problem is then to choose from the available grid the m
experimental points which maximize XXT .

The product of the algorithm for optimum experiment design is a list of input
combinations. The set of inputs must be sampled in such a way as to avoid systematic bias.
Randomizing the sampling in the input multidimensional space results in avoiding the
confounding of input effects with those due to omitted variables, which are nevertheless
important.

The optimum design experiment is not self-evident (Fig. 3). The classical approach is to
vary one factor at a time (while keeping the other unchanged). This design does not
minimize the parameter estimation error and does not allow finding the interaction between
variables. To illustrate these two aspects, let us consider two designs (Table 1 and Fig. 3)
for a linear model with interaction:

21322110 xxbxbxbby +++= . (10)

Each measurement is affected by the same error, σ . Considering the theorem of variance
applied in the case that all the variances are equal,

n
x

x
σ

σ =  , (11)
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and solving the system of equations, we find for the classical design:
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and for the optimum design:
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The classical design does not reveal the interaction term, b3. The optimal design gives the
necessary data to obtain the model and a smaller parameter estimation error. The
determinant XXT  based on the information matrix, X, which is formed by the values of
the variables of the model for every experiment (with rows corresponding to experiments
and columns to variables in the model), gives us synthetically the same information (Fig.
3).

2.5. The analysis of experiments and design augmentation

The results of an experiment may be not sufficient for more reasons:
1. the model is inadequate;
2. the model does not give reproducible predictions.

In these cases, a solution is the augmentation of the number of experiments (Fig. 4). An
adequate model should predict the results of new experiments and not change significantly
its response surface when the number of experiments is increased (Fig. 5 and Fig. 6).

Inadequacies of the model are revealed during the course statistical analysis. The F value,
obtained by the analysis of variance, and the R2 statistics give a measure of the model
adequacy. If the model is inadequate, it means that the range of the experimental domain is
too large. Excessive changes in the response suggest that the domain range should be
reduced while failure to observe an effect suggests that a larger domain range would be
necessary. Ideally, the ellipsoidal contour levels should be circles or circle sectors (Fig. 7).

4. EXPERIMENTAL RESULTS AND DISCUSSION

We applied response surface methodology to optimize the operating settings of the oil
burner described in section 1. Using a D-optimum design augmented from 8 to 13 trials
(Fig. 4), we obtained the response surfaces for combustion efficiency and for CO2
concentration in flue gases. The positions of both the combustion nozzle and of the air
damper may be continuously varied on a domain marked from 0 to 10. A first experiment
was achieved around the operating point of coordinates [2.5  2.5] in the experimental



8

domain of [-1/2 1/2] and [-1 1] for the positions of the air damper and of the combustion
nozzle, respectively (Table 2 and Fig. 7 a).

When the response surface is evaluated considering the confidence intervals on the
parameter estimates, two domain surfaces result, for the upper and lower limits of the
confidence interval (Fig. 5). A cross-section through these surfaces is depicted in Fig. 6.
The facts that the contour levels do not change significantly and that the confidence
interval does not decrease when the experiment is augmented indicate that eleven
experiments would suffice.

 The confidence interval indicates the precision to be used in the positioning of the
optimum (Fig. 8). We notice that the combustion efficiency may be estimated with a
precision of ±1% and the CO2 concentration with ±0.5%. These values should be
considered when the contour lines of Fig. 7 are interpreted; two contour lines that differ
with 1% in efficiency may not be distinct.

The gradient of the local quadratic model of the combustion efficiency,
]52.1 67.0[)(grad −−=η , gives the direction for changing the operating point (Fig. 7a). The

difference between the elements of the gradient vector indicates that the unitary variation
for the second input variable should be reduced. A second trial is achieved in the point [3.0
2.75] by defining the input variables in the domain [-1/4 1/4] and [-1 1]  for air damper and
combustion nozzle, respectively. The resulted response surface is shown in Fig. 7b.

The model obtained based on the second experiment (Fig. 7b) indicates the optimum,
which in the same time satisfies the imposed condition (CO2 concentration less than 12%).
By changing the position of the combustion nozzle to 2.75 and of the air damper to 2.75,
the measured combustion efficiency becomes 90% and the CO2 concentration 11.7%. This
is the optimal operating point attainable by varying the input variables and represents a
gain of 2.5% as compared with the classical approach that consists in varying one variable
at a time (Fig. 2b). Nevertheless, by changing the operating conditions (such as clearing up
the boiler or using another type of fuel), the optimal point might change. In this case, the
procedure for optimal settings should be applied again.

5. CONCLUSION

The experimental finding of optimal settings by using the response surfaces is very
suitable to residential oil burners. The combustion efficiency depends on the positions of
the nozzle and of the air damper upon a smooth function. This type of dependence makes
the second order models appropriate; however, the slight curvature of the function,
corroborated with the confidence intervals on the parameter estimates, introduces
uncertainty in the exact optimum location. Practically, the optimal operating point may be
situated anywhere in the region delimitated by the contour line corresponding to the
maximum efficiency minus 1%. For the same experimental effort, the gain in combustion
efficiency may be 5% higher than the value obtained by using the classical approach that
consists in varying one input at a time.
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1. Combustion nozzle position
2. Retention head
3. Electrods
4. Combustion nozzle
5. Fuel pipe

6. Motor
7. Pump
8. Fan
9. Air damper
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Fig. 1 Oil burner (adapted from [1]).
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Fig. 6 Comparison of confidence intervals between models obtained by using 13
experiments (bold lines) and a) 8 experiments, b) 11 experiments and c) 12
experiments. The figures are cross-sections of the response surface for the damper
position on zero.
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Table 1 Two designs of experiments.

Classical design Optimal design
x1 x2 y x1 x2 y
-1
+1
0
0

0
0
-1
+1

v1 σ±
v2 σ±
v3 σ±
v4 σ±

-1
+1
-1
+1

-1
-1
+1
+1

w1 σ±
w2 σ±
w3 σ±
w4 σ±

Table 2 Experimental results obtained by varying the air damper and the
combustion nozzle positions around the point [2.5 2.5] with ½ and 1 division
respectively.

Inputs Outputs
     Unscaled Scaled
Nozzle     Damper    Nozzle      Damper       Efficiency         CO2
 div.            div.              -                -                 %                    %
2.0 1.5 -1 -1  92.8 13.4
2.0 2.5 -1   0  90.5 12.8
3.0 1.5  1 -1  90.8 12.7
3.0 3.5  1   1  88.3 11
3.0 2.5  1   0  89.4 12.1
2.5 1.5  0 -1  90.7 13
2.5 2.5  0  0  89.6 12.2
2.0 3.5 -1  1  89.2 12.1
2.5 3.5  0  1  87.7 11.3


