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Abstract

In the Firefighter problem, introduced by Hartnell in 1995, a fire
spreads through a graph while a player chooses which vertices to protect
in order to contain it. In this paper, we focus on the case of trees and we
consider as well the Fractional Firefighter game where the amount
of protection allocated to a vertex lies between 0 and 1. We introduce
the online version of both Firefighter and Fractional Firefighter,
in which the number of firefighters available at each turn is revealed over
time. We show that the greedy algorithm on finite trees, which maximises
at each turn the amount of vertices protected, is 1/2-competitive for both
online versions; this was previously known only in special cases of Fire-
fighter. We also show that, for Firefighter, the optimal competitive
ratio of online algorithms ranges between 1/2 and the inverse of the golden
ratio. The greedy algorithm is optimal if the number of firefighters is not
bounded and we propose an optimal online algorithm which reaches the
inverse of the golden ratio if at most 2 firefighters are available. Finally,
we show that on infinite trees with linear growth, any firefighter sequence
stronger than a non-zero periodic sequence is sufficient to contain the fire,
even when revealed online.

1 Introduction and Definitions

Since it was formally introduced by B. Hartnell in 1995 ([1], cited in [2]) the
firefighting problem - Firefighter - has raised the interest of many researchers.
While this game started as a very simple model for fire spread and containment
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1 INTRODUCTION AND DEFINITIONS 2

problems for wildfires, it can also represent any kind of threat able to spread
sequentially in a network (diseases, viruses, rumours, flood . . . ).

It is a deterministic discrete-time one-player game defined on a graph. In
the beginning, a fire breaks out on a vertex and at each step, if not blocked,
the fire spreads to all adjacent vertices. In order to contain the fire, the player
is given a number fi of firefighters at each turn i and can use them to protect
vertices which are neither burning nor already protected. The game terminates
when the fire cannot spread any further. In the case of finite graphs the aim is
to save as many vertices as possible, while in the infinite case, the player wins
if the game finishes, which means that the fire is contained.

This problem and its variants give rise to a generous literature; the reader is
referred to [2] for a broad presentation of the main research directions. A signif-
icant amount of theoretical work deals with its complexity and approximability
behaviour in various classes of graphs [3, 4, 5, 6] and recently its parametrised
complexity (e.g. [7]). It is known to be very hard, even in some restrictive
cases. In particular, the case of trees was revealed to be very rich and a lot
of research focuses on it. The problem is NP-hard on finite trees [3], even in
more restricted cases [6]. Regarding approximability results on trees, it was
first shown to be 1

2 -approximated by a greedy strategy [8], improved to 1− 1
e [5]

and very recently to a polynomial time approximation scheme [9], which closes
essentially the question of approximating firefighter problem in trees and moti-
vates considering some generalisations. On general graphs the problem is hard
to approximate within n1−ε [10]. A related research direction investigates inte-
ger linear programming models for the problem, especially on trees [9, 11, 12].
This line of research makes very natural a relaxed version where the amount of
firefighters available at each turn is any non-negative number and the amount
allocated to vertices lies between 0 and 1. A vertex with a protection less than 1
is partially protected and its unprotected part can burn partially and transmit
only its fraction of fire to the adjacent vertices. Thus, the fi may take any non-
negative value. This defines a variant game called Fractional Firefighter
which was introduced in [13].

Online optimisation [14] is a generalisation of approximation theory which
represents situations where the information arrives over the time and one needs
to make irrevocable decisions. We propose an online version of both firefighter
problems and consider first results on trees. In our model, the graph is known
and the sequence of available firefighters is revealed online. We then refer to
the usual case where (fi)i≥1 is known in advance as offline. To our knowledge,
this is the first attempt at analysing online firefighter problems. Even though
our motivation is mainly theoretical, this paradigm is particularly natural in
emergency management where one has to make quick decisions despite lack of
information. Any progress in this direction, even on simplified models, con-
tributes to understanding how lack of information impacts the quality of the
solution.

Given a tree T rooted in r, V (T ) and E(T ) will denote the vertex set and
the edge set of T , respectively. Given two vertices v and v′, v ≺ v′ denotes that
v is an ancestor of v′ (or v′ is a descendant of v) and v � v′ denotes that either
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v = v′ or v ≺ v′.
For any vertex v, let T [v] denote the sub-tree induced by v and its descen-

dants. Let Ti denote the i-th level of T rooted in r, where {r} = T0. The height
h(T ) of T , rooted in r, is the maximum length of a path from r to a leaf. If
i > h(T ), we have Ti = ∅.

If T is finite, the weight w(v) of a vertex v is the number of vertices in its
sub-tree (including v), i.e. w(v) = |V (T [v])|. When no ambiguity may occur, we
will simply write wv = w(v). For any vertex v ∈ Ti and any i ≤ j ≤ i+h(T [v]),
we denote by vj a vertex of maximum weight wvj in Tj ∩ V (T [v]). While vj
is not defined if i + h(T [v]) < j ≤ h(T ), we define w̄vj for all j ≤ h(T ) and
v ∈ V (T ) via: w̄vj = wvj if j ≤ i+h(T [v]) and 0 otherwise. We denote by B(T )
the tree obtained from T by fusing all vertices from levels 0 and 1 into a new
root vertex rB : every edge u1u2 ∈ E(T ) with u1 ∈ T1 and u2 ∈ T2 gives rise to
the edge rBu2 ∈ E(B(T )). For k ≤ h(T ), Bk(T ) will denote the kth iteration
of B applied to T : all vertices from levels 0 to k are fused into a single vertex
denoted by rBk which becomes the new root.

2 The problems and preliminary results.

2.1 Firefighter and Fractional Firefighter on trees

In this paper we only play the game on finite or infinite trees. An instance of
the Fractional Firefighter on trees is defined by a triple (T, r, (fi)), where
T = (V (T ), E(T )) is a tree, r ∈ V (T ) is the root where the fire breaks out and
(fi)i≥1 is the non-negative real firefighter sequence. Turn i = 0 is the initial state
where r is burning and all other vertices are unprotected, and i ≥ 1 corresponds
to the different rounds of the game. At each turn i ≥ 1 and for every vertex
v, the player decides which amount p(v) of protection to add to v. Throughout
the game, for every vertex v the part of v which is burning is denoted by b(v).
Let us note that if T is finite, the game will end in at most h(T ) turns where
h(T ) is the length of a longuest path form the root to the leaves.

Solutions on trees have a very specific structure: at each turn i, the amounts
of fire are non-increasing along any root to leaf path, which means that the fire
will spread only towards the leaves. Note that for any solution which allocates
a positive amount of protection at turn i to a vertex v ∈ Tk, k > i, allocating
the same amount of protection to v’s father instead strictly improves the per-
formance. So we may consider only algorithms that play in Ti at turn i. For
an optimal offline algorithm, this property was emphasised in [8]. So, for any
vertex v ∈ Ti, the amounts of fire b(v) and protection p(v) on v will not change
after turn i.

A solution p is characterised by the values p(v), v ∈ V (T ). For any solution
p, while p(v) represents the amount of protection received directly, vertex v also
receives protection through its ancestors, the amount of which is denoted by
Pp(v) =

∑
v′≺v p(v

′) (used in section 3). For any vertex v, we have the equality
p(v) + Pp(v) + b(v) = 1.
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Any solution p for Firefighter or Fractional Firefighter will satisfy
the constraints: { ∑

v∈Ti
p(v) ≤ fi (i)

∀v, p(v) + Pp(v) ≤ 1 (ii)

In [12], a specific boolean linear model has been proposed for solving Fire-
fighter on a tree T involving these constraints. Solving Fractional Fire-
fighter on T corresponds to solving the relaxed version of this linear pro-
gramme.

2.2 Online version

We introduce online versions of Firefighter and Fractional Firefighter.
The graph - a tree T in this work - and the ignition vertex - the root r - are
known in advance but the firefighter sequence (fi)i≥1 is revealed over time by
a second player called adversary. At each turn i, the adversary reveals fi and
then the player chooses where to allocate this ressource.

Let us consider an online algorithm OA for one of the two problems and
let us play the game on a finite tree T until the fire stops spreading. The
value λOA achieved by the algorithm, defined as the amount of saved vertices, is
measured against the best value performed by an algorithm knowing in advance
the sequence (fi). In the present case, it is simply the optimal value of the
offline instance, referred to as the offline optimal value, denoted by βI when
considering the online Firefighter (I stands for ”Integral”) and βF for the
online Fractional Firefighter. We will call Bob such an algorithm able to
see the future and guaranteeing the value βI or βF for online Firefighter and
Fractional Firefighter.

OA is said to be γ-competitive, γ ∈]0, 1] for the online Firefighter (resp.
Fractional Firefighter) if for every instance, λOA

βI
≥ γ (resp. λOA

βF
≥ γ). γ

is also called the competitive ratio guaranteed by OA. An online algorithm will
be called optimal if it guarantees the best possible competitive ratio.

Let us first note that one can reduce the problem to the case where f1 > 0:

Proposition 1. We can reduce online (Fractional) Firefighter on trees
to instances where f1 > 0.

Proof. If fi = 0 for all i such that 1 ≤ i ≤ k, then the instance (T, r, (fi)) is
equivalent to the instance (Bk(T ), rBk , (fi+k)).

In the infinite case we do not define competitivness but only ask whether
the fire can be contained by an online algorithm. Sections 3 and 4 deal with the
finite case while section 5 deals with a class of infinite trees.

3 Competitive analysis of a Greedy algorithm

Greedy algorithms are usually very good candidates for online algorithms, some-
times the only known approach. Mainly two different greedy algorithms have
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been considered in the literature for Firefighter on a tree [2] and they are both
possible online strategies in our set-up. The degree greedy strategy prioritises
saving vertices of large degree; it has been shown in [6] that it cannot guaran-
tee any approximation ratio on trees, even for a constant firefighter sequence.
A second greedy algorithm was introduced in [8] for an integral sequence (fi),
maximising at each turn the weight of the vertices protected. We generalise it
to any firefighter sequence for both the integral and the fractional problems: at
each turn i, the algorithm Gr solves the linear programme Pi with variables
x(v), v ∈ Ti and constraints:

Pi :


max

∑
v∈Ti

x(v)w(v)∑
v∈Ti

x(v) ≤ fi (i)
∀v, x(v) + Px(v) ≤ 1 (ii)

An optimal solution of Pi is obtained by ordering vertices {v1, . . . , v|Ti|}
of level i by non-increasing weight and taking them one by one in this order
and greedily assigning to vertex vj the value x(vj) = min(fi −

∑
k<j x(vk), 1−

Px(vj)). Note that Gr is valid for both Firefighter and Fractional Fire-
fighter.

It was shown in [8] that the greedy algorithm on trees gives a 1
2 -approximation

of the restriction of Firefighter when a single firefighter is available at each
turn. They claim that this approximation ratio remains valid for a fixed number
D ∈ N of firefighters at each turn. We extend this result to any firefighter se-
quence (fi)i≥1, integral or not. Since Gr is an online algorithm, the performance
can also be seen as a competitive ratio for the online version.

Theorem 1. The greedy algorithm Gr is 1
2 -competitive for both online Fire-

fighter and Fractional Firefighter on finite trees.

Proof. Let us first consider the fractional case with an online instance (T, r, (fi))
of Fractional Firefighter on a tree.

Let x(v) and y(v) be the amounts of firefighters placed on vertex v by Gr
and Bob, respectively. We have λGr =

∑
v x(v)w(v) and βF =

∑
v y(v)w(v).

Recall that Px(v) =
∑
v′≺v x(v′) and Py(v) =

∑
v′≺v y(v′). We split y(v)

into two non-negative quantities, y(v) = g(v) + h(v), with:
g(v) = min{y(v),max{0, Px(v)− Py(v)}}
and h(v) = max{0, y(v) + min{0, Py(v)− Px(v)}}.

We now claim that ∀v′ ∈ T ,
∑
v�v′ g(v) ≤ Px(v′) and prove it by induction.

Since g(r) = 0, it holds for the root r. Assuming that the inequality holds
for a vertex v′, let v′′ be a child of v′. If Px(v′′)− Py(v′′) ≥ 0, then we directly
have:∑
v�v′′ g(v) =

∑
v≺v′′ g(v)+g(v′′) ≤

∑
v≺v′′ y(v)+(Px(v′′)−Py(v′′)) = Px(v′′).

Else g(v′′) = 0 and using
∑
v�v′ g(v) ≤ Px(v′) and Px(v′′) ≥ Px(v′), the

inequality holds for v′′; which completes the proof of the claim.
Thus:

∑
v′
∑
v�v′ g(v) ≤

∑
v′ Px(v′) =

∑
v′
∑
v≺v′ x(v) ≤

∑
v′
∑
v�v′ x(v).

Since w(v) =
∑
v�v′ 1, by inverting the sums on both sides, we obtain:
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∑
v

g(v)w(v) ≤
∑
v

x(v)w(v) = λGr (1)

Let us now consider the coefficients h(v). We claim that the coefficients h(v)
with v ∈ Ti satisfy the constraints (i) and (ii) of Pi: indeed for (i), we have
h(v) ≤ y(v) and y satisfies constraint (i). For (ii) note that h(v) + Px(v) =
max{Px(v), y(v) + min{Px(v), Py(v)}} ≤ max{Px(v), y(v) + Py(v)} ≤ 1.

Hence, ∀i,
∑
v∈Ti

h(v)w(v) ≤
∑
v∈Ti

x(v)w(v) and therefore:∑
v∈T

h(v)w(v) ≤
∑
v∈T

x(v)w(v) = λGr (2)

Finally, since g(v) + h(v) = y(v), we conclude from eqs. (1) and (2) that
βF ≤ 2λGr. Hence the Greedy algorithm is 1

2 -competitive for the online Frac-
tional Firefighter problem. Since the greedy algorithm gives an integral
solution if (fi) has integral values and since βF ≥ βI , it is also 1

2 -competitive
for the Firefighter problem. This concludes the proof of theorem 1.

Conjecture 2.3 in [11] (which is also Conjecture 3.5 in [2]) claims that there
is a constant ρ such that the optimal value of Fractional Firefighter is at
most ρ times the optimal value of Firefighter. It was supported by extensive
experimental tests [11], but finding such a constant and proving the ratio is one
of the open problems proposed in [2] (Problem 7). It was shown in [15] that
such a constant must be greater than e

e−1 . Theorem 1 can be expressed by
λGr ≤ βI ≤ βF ≤ 2λGr, which shows that ρ = 2 is such a constant:

Corollary 1. In Fractional Firefighter, the amount of vertices saved is
at most twice the maximum number of vertices saved in Firefighter.

4 Improved Competitive Algorithm for Firefighter

In this section, we investigate possible improvements for online strategies for

Firefighter on finite trees. Let ϕ = 1+
√

5
2 denote the golden ratio, satisfying

ϕ2 = ϕ+ 1 and 1
ϕ = ϕ− 1. For any integer k ≥ 2, we denote

αI,k = inf
T∈T

max
OA∈AL

min
(fi)∈NN,

∑
i fi≤k

λOA
βI

,

where T denotes the set of finite rooted trees and AL the set of online algorithms
for Firefighter on finite trees, be the best possible competitive ratio for online
Firefighter on finite trees if at most k firefighters are available. Note that
the sequence (αI,k)k is non-increasing. Then, αI = inf

k≥2
αI,k is the best possible

competitive ratio for online Firefighter on finite trees. The index I stands
for Integral and refers to the problem Firefighter.
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In what follows we give an optimal online algorithm for Firefighter on
a finite tree in the case where at most two firefighters are available. Based on
proposition 1 we may assume f1 = 1 and such an online instance is characterised
by when the second firefighter is presented.

Lemma 1. Let a and b be two vertices of maximum weights in T1. If
∑
i fi ≤ 2,

there is an optimal offline algorithm for Firefighter which places the first
firefighter on either a or b.

Proof. If the first firefighter is placed on v ∈ T1 \ {a, b} by an optimal offline
algorithm and since at most two firefighters are available, ∃u ∈ {a, b}, T [u]
burns completely. Then replacing v by u when assigning the first firefighter
would produce another optimal solution (necessarily wv = wu).

We suppose Bob has this property but note that even if wa > wb, he will
not necessarily choose a; as illustrated by the graph W1,10,20 (fig. 1): if the
firefighter sequence is (1, 0, 1, 0, . . .), then Bob’s first move needs to be on x.
Note also that, when the root is of degree at least 3, the second firefighter is not
necessarily in V (T [a]) ∪ V (T [b]).

We now consider algorithm 1 and assume that the adversary will reveal at
most two firefighters. The case where f1 = 2 is trivial since an online algorithm
can make the same decision as Bob by assigning both firefighters to two unburnt
vertices of maximum weights. So, we consider a binary firefighter sequence.

The algorithm works on an updated version T̃ of the tree: if one vertex is
protected, then the corresponding sub-tree is removed and all the burnt vertices
are fused into the new root r̃ so that the algorithm always considers vertices
of level 1 in T̃ . Before starting the online process, the algorithm computes all
weights of vertices. Weights of unburnt vertices will not change when updating
T̃ . The value of h(T̃ ), required in line 6 can be computed during the initial

calculation of weights and easily updated with T̃ . For clarity, we do not detail
all update in the algorithm. The notation w̄vj used at line 6 is defined in
section 1.

Theorem 2. Algorithm 1 is a 1
ϕ -competitive online algorithm for online Fire-

fighter with at most two available firefighters. It is optimal for this case.

Proof. If the adversary does not present any firefighter before the turn h(T ),
both algorithm 1 and Bob cannot save any vertex and by convention one con-
siders then that the competitive ratio is 1.

Let us suppose that at least one firefighter is presented at some turn k ≤
h(T ); the tree still has at least one unburnt vertex. During the (k−1) first turns,
the instance is updated into (Bk(T ), rBk , (fi+k)) with one firefighter presented
during the first turn and the root has at least one child. Proposition 1 ensures
that it is equivalent to the original instance.

If the root has only one child a = b at line 5 and algorithm 1 selects a and
saves all unburnt vertices inducing a competitive ratio of 1.
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Algorithm 1

Require: A finite tree T with root r - An online adversary.
1: (T̃ , r̃)← (T, r); Compute wv, ∀v ∈ V (T̃ )
2: {Start of the online process}
3: At each turn, after fire spreads T̃ is updated - burt vertices are fused to r̃;
4: if First Firefighter is presented and r̃ has some child then
5: Let a and b denote two children of r̃ with maximum weight wa, wb and

wa ≥ wb (a = b if r̃ has only one child);

6: if min
2≤i≤1+h(T̃ )

wa+w̄bi

wb+w̄ai
≥ 1

ϕ then

7: Place the first firefighter on a;
8: else
9: Place the first firefighter on b;

10: if Second Firefighter is presented and r̃ has some child then
11: Place the firefighter on a maximum weight child v of r̃

Else, a 6= b with wa ≥ wb (line 5). Suppose first that the adversary presents
a single firefighter during the whole process, then algorithm 1 places him on a
or b while Bob places him on a, saving wa. If wa ≥ ϕwb, then we have:

∀i, 2 ≤ i ≤ 1 + h(T ),
wa + w̄bi
wb + w̄ai

≥ wa
wb + wa

≥ ϕwb
wb + ϕwb

=
1

ϕ
(3)

Therefore, (see line 6) the unique firefighter is placed on a by the algorithm,
guaranteeing a competitive ratio of 1. Else we have wb >

1
ϕwa and even placing

the firefighter on b guarantees the ratio 1
ϕ .

Suppose now that the adversary presents two firefighters. We consider two
cases.
Case (i): If algorithm 1 places the first firefighter on a in line 7 and if the
adversary presents the second firefighter at turn i, then the algorithm will save
wa + w̄xi

for some x ∈ T1 \ {a} such that w̄xi
= maxu∈T1\{a} w̄ui

. For the same
instance Bob will save wv + w̄yi for some v ∈ {a, b} and y ∈ T1 \ {v}. If both
solutions are not of the same value (the optimal one is strictly better), then
necessarily v = b and y = a. In this case the criterion of line 6 ensures that the
related competitive ratio is 1

ϕ .

Case (ii): Suppose now algorithm 1 places the first firefighter on b in line 9, and
say the adversary presents the second firefighter at turn j. Line 5 ensures that:

∃i, 2 ≤ i ≤ 1 + h(T ),
wa + w̄bi
wb + w̄ai

<
1

ϕ
(4)

It implies in particular that wa < ϕwb since in the opposite case eq. (3) would
hold. In case (ii), algorithm 1 saves wb + w̄xj with x ∈ T1 \ {b} such that
w̄xj

= maxu∈T1\{b} w̄uj
. Meanwhile, Bob selects v ∈ {a, b} and, if it exists, yj

for some y ∈ T1 \ {v}, for a total of wv + w̄yj saved vertices. If y 6= b, then
w̄yj ≤ w̄xj

, by definition of x, and thus:
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wb + w̄xj

wa + w̄yj
≥
wb + w̄xj

wa + w̄xj

≥ wb
wa

>
1

ϕ
(5)

Finally, if y = b, then v = a and the competitive ratio to evaluate is
wb+w̄xj

wa+w̄bj
.

We claim that the following holds:

wa + w̄bi
wb + w̄ai

×
wb + w̄xj

wa + w̄bj
≥ 1

ϕ2
(6)

If i ≥ j we have w̄ai ≤ w̄aj and since a 6= b, w̄aj ≤ w̄xj . Hence:
wb+w̄xj

wb+w̄ai
≥ wb+w̄xj

wb+w̄aj
≥ 1 and therefore:

wa + w̄bi
wb + w̄ai

×
wb + w̄xj

wa + w̄bj
≥ wa + w̄bi
wa + w̄bj

≥ wa
wa + wb

.

If now i < j, we get:
wa+w̄bi

wa+w̄bj
≥ 1 and therefore:

wa + w̄bi
wb + w̄ai

×
wb + w̄xj

wa + w̄bj
≥
wb + w̄xj

wb + w̄ai
≥ wb
wa + wb

.

In both cases, since wa

wa+wb
≥ wb

wa+wb
≥ 1

1+ϕ = 1
ϕ2 we deduce eq. (6). Now,

eqs. (4) and (6) imply that in case (ii), when y = b, we also have
wb+w̄xj

wa+w̄bj
≥ 1

ϕ .

Together with eq. (5), this concludes case (ii) and shows that algorithm 1 is
1
ϕ -competitive.

Even though complexity analyses are not usually proposed for online algo-
rithms, it is worth noting that line 6 only requires the weights of vertices in
V (T [a])∪ V (T [b]) and the maximum weight per level in T [a] and T [b] and con-
sequently Algorithm 1 requires O(|V (T [a])| + |V (T [b])|) to choose the position
of the first firefighter and O(|V (T )|) in all.

We conclude this section with a hardness result justifying that the greedy
algorithm Gr is optimal while Algorithm 1 is optimal if at most two firefighters
are available.

Proposition 2. For all k ≥ 2, 1
2 ≤ αI,k ≤

1
ϕ , more precisely:

(i) αI = 1
2 , meaning that the greedy algorithm is optimal for Firefighter in

finite trees;
(ii) αI,2 = 1

ϕ meaning that Algorithm 1 is optimal if at most two firefighters are
available;
(iii) αI,4 <

1
ϕ .

Proof. Theorem 1 shows that αI ≥ 1
2 . Given integers l,m, k such that k|m− 1,

we define the graph Wk,l,m as shown in fig. 1. We will assume that m > k2.
(i) Let us consider an online algorithm for Wk,l,m. If f1 = 1, the algo-

rithm will protect either x or y. If x is selected and the firefighter sequence is
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Figure 1: The fire on graph Wk,l,m starts at vertex r. Whether the firefighter
should protect x or y on the first turn depends on the firefighter sequence.

(1, 1, 0, 0, . . .), our online algorithm protects the branch of x and one of the k
chains, while the optimal offline algorithm protects y and the star. Its perfor-

mance is then
l+ m−1

k

l+m−1 . If, however, y is protected instead during the first turn
and if the firefighter sequence is (1, 0, 1, 1, . . .), the online algorithm protects the
branch of y and one vertex of the star whilst the optimal algorithm protects

the branch of x as well as the k chains, minus for k(k+1)
2 vertices. If l = m, for

large values of m, the online algorithm which protects x is more performant and

its competitive ratio tends to
1+ 1

k

2 . Considering, for instance, Wk,k3,k3 , when
k → +∞ shows that α ≤ 1

2 . Since the greedy algorithm Gr guarantees αI ≥ 1
2

we have αI = 1
2 .

(ii) Consider the sequence of graphs W1,l,bϕlc. If the online algorithm pro-
tects x, the adversary selects the sequence (1, 0, . . .), whereas if the online al-
gorithm protects y, (1, 0, 1, 0, . . .) is selected. In both cases, the performance
tends to 1

ϕ when l→ +∞.

(iii) If at most 4 firefighters are available, the graph W4,901,1001 (fig. 1)
gives an example where 1

ϕ cannot be reached. Ideed, if f1 = 1 and the online

algorithm protects x, then the adversary will select the sequence (1, 1, 0, . . .), as
in the proof (i), for a performance of 1151

1901 . If the online algorithm protects y,
since firefighters are limited to 4, the adversary will select (1, 0, 1, 1, 1, 0, . . .), for
a performance of 1002

1645 . This second choice is slightly better, but 1002
1645 <

1
ϕ .

We have also proved that Theorem 2 holds if three firefighters are presented
(i.e., αI,3 = 1

ϕ ). However, the proof involves a much more technical case-by-case
analysis and will not be detailed here.

5 Firefighting on Trees with Linear Growth

In this section, we consider infinite trees. We say that a rooted tree (T, r) has
linear growth if the number of vertices per level increases linearly, i.e. |Ti| =
O(i).

Remark 1. The linear growth property of T remains if we choose a different
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root r′. Indeed, if d is the distance between r and r′, the set of vertices at
distance i from r′ is included in

⋃i+d
j=i−d Tj, the cardinal of which is a O(i).

Given two firefighter sequences (fi) and (f
′

i ), we say that (fi) is stronger

than (f
′

i ) if for all k,
∑k
i=1 fi ≥

∑k
i=1 f

′

i .

Lemma 2. If the fire can be contained in an instance (G, r, (f
′

i )) and if (fi) is

stronger than (f
′

i ), then the fire can also be contained in (G, r, (fi)).

Proof. Given a winning strategy in the instance (G, r, (f
′

i )), if (fi) firefighters
are available, we contain the fire by protecting the same vertices, eventually
earlier than in the initial strategy.

Theorem 3. Let (T, r, (fi)) be an online instance of Fractional Firefighter.
If T has linear growth and (fi) is stronger than some non-zero periodic sequence,
then the fire can be contained.

The proof of theorem 3 will use the following lemma:

Lemma 3. For any a > 0, limn→+∞
∏n
j=1

aj−1
aj = 0

Proof. We have ln
∏n
j=1

aj−1
aj =

∑n
j=1 ln(1− 1

aj ) and
∑n
j=1 ln(1− 1

aj ) ∼ −
∑n
j=1

1
aj .

So
∑n
j=1 ln(1− 1

aj )→ −∞ and
∏n
j=1

aj−1
aj → 0.

We can now prove theorem 3:

Proof. Since T has linear growth, let C be such that ∀i, |Ti| ≤ Ci. For all n,
let (δn|i) denote the firefighter sequence where one firefighter is available every
n turns; i.e. δni is equal to 1 if n|i and 0 otherwise. That the sequence (fi)
is stronger than a non-zero periodic sequence means that (fi) is stronger than
(δn|i), for all n greater than some m. First we will give an offline strategy
to contain the fire with one firefighter every n turns. Then, we will show that
online instances with (fi) stronger than a (δn|i) known to the player are winning.
Finally, we will describe the winning strategy when such a (δn|i) is unknown.

Given an integer n, let us first consider the instance (T, r, (δn|i)). It follows

from lemma 3 that there exists an integer N such that
∏N
j=1

Cnj−1
Cnj < 1

2Cn .

Let h(n) = 2nN . A winning strategy is obtained by protecting at turn nj the
unprotected vertex of Tnj with the highest number of descendants in level h(n).
Since |Tnj | ≤ Cnj, the remaining number of unprotected vertices in Th(n) is

reduced by at least 1
Cnj of its previous value. So the number of unprotected

vertices of Th(n) remaining after nN turns is less than |Th(n)|
∏N
i=1

Cnj−1
Cnj ≤

|Th(n)|
2Cn ≤ N . Since N firefighters remain to be placed between turns N and
h(n), the strategy is winning in at most h(n) turns.

If the player knows that (fi) is stronger than (δn|i), the above strategy can
be adapted using lemma 2.

In the general case, the player knows that (fi) is stronger than (δn|i) for
some n, but he does not know which n. The strategy proceeds as follows: we
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initially play as though under the assumption that (fi) is stronger than (δn0|i),
with n0 = 100. If the fire is not contained by turn h(n0), or later on by turn
h(nk), we choose nk+1 = h(nk)(dSh(nk)e + 1), where Sn =

∑n
i=1 fi. We now

assume that (fi) was stronger than (δh(nk)|i). It follows that after cancelling the
first h(nk) terms of (fi), the resulting sequence is stronger than (δnk+1|i). So
we can consider that the first h(nk) turns were wasted and follow the strategy
for nk+1 until turn h(nk+1). Eventually, this strategy will win when nk is large
enough.

6 Final remarks

In this paper, we introduce the online version of (Fractional) Firefighter
and propose first results for both the finite and the infinite cases. To our knowl-
edge, theorem 1 is the first non trivial competitive (but also approximation)
analysis for Fractional Firefighter and a first question would be to in-
vestigate whether a better competitive ratio can be obtained for Fractional
Firefighter in finite trees. Even though the case of trees is already challeng-
ing despite allowing many simplifications, the main open question will be to
study online (Fractional) Firefighter problem in other classes of finite
graphs.
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