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Abstract

We propose a new approach for moving frame construction that allows to make finite difference scheme invariant.
This approach takes into account the order of accuracy and guarantees numerical properties of invariant schemes
that overcome those of classical schemes. Benefits obtained with this process are illustrated with the Burgers
equation.
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Résumé

Une construction nouvelle des schémas invariants utilisant les repères mobiles. On propose une
procédure nouvelle de construction des repères mobiles permettant de rendre invariant les schémas de discrétisation
en différences finies. Elle prend en compte l’ordre de consistance et garantit aux schémas invariants de meilleures
performances que celles des schémas classiques. On illustre les performances de cette approche sur l’exemple de
l’équation de Burgers.
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Version française abrégée

Les méthodes numériques construites afin de préserver certaines propriétés liées à la structure géométrique
des équations s’appelle les intégrateurs géométriques. Elles permettent de traduire naturellement le com-
portement qualitatif des solutions ainsi que de réduire les instabilités numériques. En particulier, les
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schémas invariants permettent de conserver le groupe de symétrie des équations et de réduire les erreurs
numériques. Une méthode de construction de tels schémas a été développée par M. Fels et P. J. Olver.
Elle est basée sur le concept de repère mobile. Dans cette procédure, la qualité des solutions numériques
d’un schéma invariant est entièrement conditionnée par le choix du repère mobile associé au groupe de
symétrie. Ce choix est déterminé par le procédé de normalisation d’É. Cartan qui permet de ramener la
détermination du répère mobile associé à un groupe continue au choix d’une section transverse de l’orbite
d’un élément. Ce procédé possède l’avantage d’exhiber une famille importante de schémas invariant mais
ne garantit pas au schéma obtenu des qualités numériques meilleures que le schéma d’origine. Nous pro-
posons une méthode de construction nouvelle des schémas invariants utilisant les repères mobiles. Cette
méthode peut être décrite sous la forme algorithmique suivante : (i) On considère un schéma discrétisant
une EDP et le groupe de symétrie dépendant de paramètres réels de l’EDP, (ii) on transforme le schéma
afin d’obtenir un schéma paramétrisé, (iii) on suppose une forme algébrique des paramètres en fonction de
coefficients réels, (iv) on calcule les conditions d’équivariance afin que les paramètres de transformation
deviennent des repères mobiles, (v) enfin, on calcule les conditions sur les coefficients réels pour que le
schéma transformé soit d’un ordre de précision fixé. Ainsi on obtient un schéma invariant dont l’ordre de
consistance est déterminé. On illustre les performances de cette approche á travers la construction d’un
schéma invariant pour l’équation de Burgers.

1. Introduction

As a direct legacy of E. Galois 1 and thanks to the works of S. Lie 2 , Lie group methods provide po-
werfull tools for differential equations analysis [3][6]. From the symmetry group of equations, precious
informations of the behaviour of the solutions can be deduced, as the conservation laws of the system or
the existence of selfsimilar solutions. The applications are various problems in mechanics, mathematical
physics, and in fluid dynamics [1][2][4]. On the numerical side, Lie group integrators are known to be
successful in the reliable reproduction of qualitative behaviours in a solution and also in reducing nume-
rical instabilities. A recent approach to construct invariant numerical schemes using moving frames, as
developed by M. Fels and P. J. Olver, allows to preserve symmetry of equations and reduce numerical
errors. The method has been studied and validated for many classes of differential systems and for par-
tial differential equations (PDE) by P. Kim [5]. The numerical properties of such invariant schemes are
completely dependent on the choice of the moving frame. This one is determined by geometric arguments
following the Cartan ’s method of normalization.This process has the great advantage to propose a large
familly of invariantized schemes, but it also suffers dramatically due to the possibility of computing ave-
raged invariant schemes whose properties can be worser than initial classical schemes. In this paper, the
authors propose an alternate way of constructing invariant numerical schemes that guarantees the order
of accuracy.

2. Principle of construction

2.1. Definitions

In this subsection some definitions needed for the construction of invariant numerical schemes are briefly
recalled. For more details, we refer the reader to the works of P. Kim [5], P. J. Olver [7]. Consider a PDE

1 Evariste Galois, french mathematician, 1811-1832
2 Sophus Lie, norwegian mathematician, 1842-1899
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F (z) = 0 over a manifold M . A symmetry of F (z) = 0 is a group of transformations G that preserves the
set of whole solutions of the equation :

F (z) = 0⇒ F (g · z) = 0 ∀g ∈ G (1)

A numerical application N that stays unchanged under any element of G is said to be G-invariant :

N(z) = N(g · z) ∀g ∈ G (2)

For the present purpose, numerical schemes are considered as numerical applications that verify some
consistency conditions with the continuous PDE [5]. A numerical scheme is therefore G-invariant if its
transformation coincides with itself. Let’s now look at particular elements ρ(z) of the group G that
depends on the variable z and that verify the equivariance relation :

ρ(g · z) = ρ(z)g−1 ∀g ∈ G (3)

Such transformations are called moving frames associated to the group G. The fundamental theorem of
construction of invariant numerical schemes using moving frames simply states that if a numerical scheme
is transformed by a moving frame associated to the group G, then the scheme becomes G-invariant [5].
The new approach proposed in this paper allows to fix the order of accuracy of the invariant scheme. It can
be summarize as follows : start with a classical numerical scheme associated to a PDE whose symmetry
group noted G has d finite dimensional 1-parameter subgroups, then (i) express the G-transformed scheme
in function of the symmetrization parameters εk, for k = 1, ..., d, (ii) for each εk, k = 1, ..., d, suppose
an algebraic form involving the stencil points of the original scheme and some real constant coefficients
α1

k, ..., ασ
k , where σ is the number of stencil points. (iii) Compute the value of the real constant coefficients

such that : a) each εk, k = 1, ..., d, verifies the equivariance property (equ. 3), and b) the parametrized
scheme is at less as accurate than the original scheme. One finally obtains an invariant scheme with a
chosen order of accuracy.
Let’s compute by this process an invariant explicit numerical scheme for the Burgers’ equation. Numerical
results are illustrated in the next section.

2.2. Symmetry of the Burgers equation

Consider the Burgers equation for the dependent variable u in a spatial domain Ω for time t ≥ 0 :

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(4)

associated with the initial condition u(x, 0) = u0(x), and the condition u|∂Ω = g(t) on the boundary
∂Ω of the domain. The parameter ν is the viscosity. The symmetry group of (4) is composed by the
one-parameter transformations [6] : spatial translation : (x, t, u) 7−→ (x + ε1, t, u) ; time translation :
(x, t, u) 7−→ (x, t + ε2, u) ; projection : (x, t, u) 7−→ ( x

1−ε3t ,
t

1−ε3t , (1− ε3t)u + ε3x) ; scale transformation :
(x, t, u) 7−→ (xeε4 , te2ε4 , ue−ε4) ; galilean boost : (x, t, u) 7−→ (x + ε5t, t, u + ε5).
For scheme invariance considerations, the interest is focused on all symmetries except the scale transfor-
mation. Indeed, most of numerical schemes are invariant under the space translation, the time translation
and the scale transformation. The projection and the galilean boost are most often broken. Consider the
transformation (x, t, u) 7−→ (x̄, t̄, ū) depending on parameters ε1, ε2, ε3 and ε5 :

x̄ =
(x + ε1) + ε5(t + ε2)

1− ε3(t + ε2)
, t̄ =

t + ε2

1− ε3(t + ε2)
, ū = u(1− ε3(t + ε2)) + (x + ε1)ε3 + ε5, (5)
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Let’s make invariant under this transformation the method defined by the classical explicit Forward in
Time and Centered in Space scheme (FTCS scheme) :

un+1
j − un

j

∆t
+ un

j

(un
j+1 − un

j−1

2∆x

)− ν
un

j+1 − 2un
j + un

j−1

∆x2
= 0 (6)

This scheme is computed on a regular and orthogonal mesh such that ∆t = tn+1−tn and ∆x = xj+1−xj .
The discretisation stencil is composed by the discrete points z = (zn+1

j , zn
j , zn

j±1), where zn
j = (xj , t

n, un
j ).

For the transformation acting only on the independent variables (the time and the space translations),
the same argument as in [5] is used. In order to express the numerical scheme in term of the time step
∆t and the spatial step ∆x, choose for moving frames :

ε1 = −xj , ε2 = −tn, (7)

So that we now consider the action of the group G over the stencil points z :

zn
j 7→ z̄n

j =
(
0, 0, un

j + ε5

)
(8)

zn+1
j 7→ z̄n+1

j =
( ε5∆t

1− ε3∆t
,

∆t

1− ε3∆t
, un+1

j (1− ε3∆t) + ε5

)
(9)

zn
j±1 7→ z̄n

j±1 =
(
∆x, 0, un

j±1 + ε3∆x + ε5

)
(10)

In order to make ε3 and ε5 the moving frames and then to make ρ a moving frame associated to the
transformation (8) of G, and to compute the equivariance relation (3), let’s choose for their expression
a combination of discrete variables which are dimensionally relevant (as [ε3] = [time]−1). ε3 must not
have any term in un+1 to keep the explicit form of the numerical scheme. The symmetrization parameter
must be at most of degree one to preserve the order of the convective term. Finally the construction of a
moving frame from the appplication ε3 requires that there are no terms depending on ∆x and ∆t alone.
Similar arguments for ε5 (of dimension [length]× [time]−1) can be built. Suppose then the algebraic form :

ε3 =
aun

j+1 + bun
j + cun

j−1

∆x
, ε5 = dun

j+1 + eun
j + fun

j−1, (11)

where a, b, c and d, e, f are constant real coefficients. Then write down the expression of any transformed
stencil points z̄ = g · z for g ∈ G by ρ taking into account the expression of ε3 and ε5 given in (11).
Substitute then the expression of z̄ following the action (8) of G, the equivariance condition (3) gives the
restriction over the coefficients :

c− a = 1, a + b + c = 0, d− f = 0, d + e + f = −1, (12)

The invariant FTCS (IFTCS) scheme is then :

un+1
j − un

j

∆t
+ un

j

(un
j+1 − un

j−1

2∆x

)− ν
un

j+1 − 2un
j + un

j−1

∆x2
+ F = 0 (13)

with the constant coefficients (a, b, c, d, e, f) verifying (12) in :

F =−2(
aun

j+1 + bun
j + cun

j−1

∆x
)(un+1

j − un
j ) + ∆t(

aun
j+1 + bun

j + cun
j−1

∆x
)2un+1

j

+(dun
j+1 + eun

j + fun
j−1)(

un
j+1 − un

j−1

2∆x
+ (

aun
j+1 + bun

j + cun
j−1

∆x
)) (14)

The order of accuracy of the IFTCS scheme is obtained by Taylor expansion. The added term is consistent
with :
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F = (a + c)
∆x

2
∂2u

∂x2

(− u− 2∆t
∂u

∂t

)

+∆t
(
2
∂u

∂x

∂u

∂t
+ (u + ∆t

∂u

∂t
)(−∂u

∂x
+ (a + c)

∆x

2
∂2u

∂x2
)2

)
+ O(∆t, ∆x2) (15)

The condition for the transformed scheme to be of the same order of accuracy as the original classical
FTCS scheme is then a + c = 0. Therefore ε3 has an unique expression ε3 = −(un

j+1 − un
j−1)(2h)−1. The

expression of ε5 is given by (11). The coefficients d, e, f verify the equivariance condition (12).

3. Numercial results

3.1. Pseudo-shock test

Consider the Burgers equation (4) on a bounded domain Ω. The initial and the boundary conditions
are given by the following exact solution :

uexact(x, t) =
− sinh( x

2ν )
cosh( x

2ν ) + exp(− t
4ν )

, Ω =]− 1, 1[, t ≥ 0, (16)

When the viscosity is very small ν → 0, a shock appears. Figure (1) illustrates the behaviour of the nu-
merical solution associated to the implicit Crank-Nicolson scheme (CN scheme) and the explicit invariant
FTCS scheme (IFTCS scheme), in comparison to the analytical solution (16). The sizes of the grid are
set to ∆x = ∆t = 5.10−2. The viscosity ν is fixed at 75.10−5 (it corresponds to an instability region for
the classical FTCS scheme : its solution is completely blown up).
The solution of the CN scheme presents non physical oscillations around high gradient zone. In opposition,
the numerical solution of the IFTCS scheme stays close to the analytical solution. Wriggles are avoided
but a slight dissipation appears.

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

−1 −0.5  0  0.5  1

U

X

Crank−Nicolson
Invariant

Exact

Fig. 1. Burgers equation. Exact solution, implicit Crank-Nicolson scheme, and explicit invariant scheme. Over the spatial
domain Ω =]− 1; 1[ at time t = 2. Mesh parameters are set to ∆x = ∆t = 5.10−2, and the viscosity is ν = 75.10−5.

3.2. Galilean invariance.

As the set of whole solutions of Burgers equation is invariant under galilean tansformation. The authors
test how the numerical solution depends on the referential frame from which it is observed. It is done
by the application of a galilean boost λ to the original referential frame Ω =] − 2; 2[. Figure (2) shows
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the numerical behaviour of (a) : the classical FTCS scheme, and (b) : the IFTCS scheme. Space size step
is set to ∆x = 2.10−2. Time step size is computed in order to keep the CFL number constant to 1/2.
Viscosity is fixed at ν = 5.10−3. We observe that the solution of the FTCS becomes rapidly degraded as
λ grows. The solution blows up when λ ≥ 1. It is no more the case when the scheme inherits the property
of invariance. The solution remains unaffected irrespective of the value of λ.
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(a) FTCS scheme (b) Invariant FTCS scheme

Fig. 2. Burgers equation. Behaviour of numerical solution of (a) : the FTCS scheme, (b) : the IFTCS scheme, for different
galilean boost λ. Space step size ∆x is 2.10−2. Viscosity ν is 5.10−3. CLF is conserved at 1/2. Time t = 2.

4. Conclusion

The authors propose a new approach for construction of invariant numerical schemes using moving
frames. This approach is quite different from those proposed by Kim [5], in the sense that the proposed
approach is based on numerical rather than geometrical considerations. The advantage of the present
method is that it assures good numerical properties in addition to the preservation of the symmetry
group of the continuous equation. The application of this method to the explicit FTCS scheme for the
Burgers equation yields a stable solution with good accuracy. Invariance has also allowed to respect the
principle of galilean independance which is broken by the classical scheme.
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______________________________________________________________________________

REPORT (12 jun 2009)

The note deals with an interesting subject, but it is written in terrible english.
There are errors of grammar, of style, and confusions between words and phrases
that pile up in each sentence.
It is not possible to avoid misunderstanding the sentences in these condition.
The authors should thoroughly rewrite their paper.

_____________________________________________________________________________

This article has been corrected following the report instructions
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_______________________________________________________________________________

REPORT (2 sep 2009)

In the paper, a new approach to construct invariant numerical schemes for Burgurs
equations is presented. The authors adopt the moving frame method and suggest a
different criterion to create moving frames. There are two major points that I
suggest for improvement of the paper.

1. Main difference between the authors’ work and that of P. Kim lies in choice
of moving frames. Their approach seems to put more emphasis on a numerical
aspect, rather than geometrical one. However, the strategy for choice of moving
frame adopted in the paper is not clearly described. I believe it should be
explained in a general context first and then applied to specific equations.
This is necessary, especially when considering the paper’s title.

2. The background information necessary to understand the authors’ work is not
properly presented in the paper. For examples, many researchers in applied
mathematics are not familiar with the concept of symmetries in differential
equations, let alone the moving frame. The authors excessively omit the
details, simply referring to some references. This makes most readers, even
in the numerical analysis community, difficult to understand their work.

I suggest that the paper may be accepted after proper modifications are made for
the points raised above.

______________________________________________________________________________

1. As the expert has noted, the presented new algorithm to construct moving frames (and
then to compute invariant schemes with a choosen order of accuracy) has been described
in the particular case of the Burgers equation. The way it has been written lets underlied
the general process, but after this second correction, the general case has been described
in an algorithmic way at the end of subsection 2.1. :
It can be summarize as follows : start with a classical numerical scheme associated to a PDE whose sym-
metry group noted G has d finite dimensional 1-parameter subgroups, then (i) express the G-transformed
scheme in function of the symmetrization parameters εk, for k = 1, ..., d, (ii) for each εk, k = 1, ..., d,
suppose an algebraic form involving the stencil points of the original scheme and some real constant co-
efficients α1

k, ..., ασ
k , where σ is the number of stencil points. (iii) Compute the value of the real constant

coefficients such that : a) each εk, k = 1, ..., d, verifies the equivariance property (equ. 3), and b) the
parametrized scheme is at less as accurate than the original scheme. One finally obtains an invariant
scheme with a chosen order of accuracy.
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2. The constrain of six pages needed for a submission to the ”Comptes Rendus de l’Académie
des Sciences” implies some necessarily references to the scientific background to understand
the purpose. An explicit recall of all notions can really not be possible. The introduction of
the main concepts of modern differential geometry (and their formalism) used here would
have taken probably more than six pages (specially when the basic features do not belong to
the common background of researchers in applied mathematics or computational mechanics,
as underlined by the expert). In the present case, only short motivations of the geometric
approach and some classical references on the subject can be cited in introduction of the
paper :
As a direct legacy of Évariste Galois (french mathematician, 1811-1832) and thanks to the works of

Sophus Lie (norwegian mathematician, 1842-1899), Lie group methods provide powerfull tools for dif-
ferential equations analysis [3][6]. From the symmetry group of equations, precious informations of the
behaviour of the solutions can be deduced, as the conservation laws of the system or the existence of self-
similar solutions. The applications are various problems in mechanics, mathematical physics, and in fluid
dynamics [1][2][4]. On the numerical side, Lie group integrators are known to be successful in the reliable
reproduction of qualitative behaviours in a solution and also in reducing numerical instabilities.

The modifications brought and the corrections added to the paper have taken into
account the report of the expert.
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