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Dynamic behaviour of a system may be described by models with different forms: thermal (RC) networks, state-space
representations, transfer functions, and ARX models. These models, which describe the same process, are used in the design,
simulation, optimal predictive control, parameter identification, fault detection and diagnosis, and so on. Since more forms are
available, it is interesting to know which one is the most suitable by estimating the sensitivity of the model to transform into a
physical model, which is represented by a thermal network. A procedure for the study of error by Monte Carlo simulation and of
factor prioritization is exemplified on a simple, but representative, thermal model of a building.The analysis of the propagation of
errors and of the influence of the errors on the parameter estimation shows that the transformation from state-space representation
to transfer function is more robust than the other way around.Therefore, if only onemodel is chosen, the state-space representation
is preferable.

1. Introduction

Dynamic models for thermal behaviour of buildings are
of interest for model predictive control (MPC) and mea-
surement of performance. These applications use differ-
ent representations (thermal networks, state-space models,
autoregressive models, etc.) for the same physical system.
However, the study of error propagation in the models due
to the model transformations needs more clarifications.

According to the literature of the last few years, MPC is a
widespread strategy with promising energy saving potential
[1–3]. The algorithm minimizes the energy consumption
while optimizing the thermal comfort by incorporating
weather forecast, occupancy schedule, and other factors.
Since MPC is a model-based strategy, it means that the
performances rely on the model accuracy; therefore the
model must be capable of catching the building dynamics.
The information on the model of the building may be used
to tackle down the influence on the energy consumption of
inputs such as weather and occupancy. This allows distin-
guishing the intrinsic part of themodel from its disturbances.

Therefore, it is interesting to keep the physical meaning
in the model for two reasons: (1) calibration of model on
actual data by using the parameter identification based on
in situ measurements and (2) physical interpretation of the
parameters of the building such as time constants and envelop
thermal conductance. This strategy is attractive because
nowadays we are not able to measure the energy efficiency of
a building. Indeed actualmethods present discrepancies from
50% to 200% between the estimated consumption and the
real one [4–6]. In the conception phase, simulations are used
to determine if a new or a refurbished building matches the
performance specifications. If it is not the case, the building
parameters are optimized until the requirements are met.
Nevertheless these detailed simulations use conventional data
such as weather records, occupancy schedules, and set-point
temperatures, which can be far from the reality as pointed out
by the magnitude of the gaps between the simulation results
and the measurements. This problem in the conception
phase cannot be fixed since it is not possible to have in
situ measurement when the building is not even built. The
same methodology is used to quantify the energy efficiency
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Figure 1: Transformation flow chart.

gained by retrofitting. It follows naturally the reassessment
on the relevance of the predicted gains and how the return of
investment can be certified. A solution could be to measure
the energy consumption in a reference situation, before and
after refurbishment anddetermine the savings [7]. During the
baseline period, the model is calibrated on measurements.
Thereafter, in the reporting period, the difference between
the consumption measured by sensors and that estimated
by the model represents the energy savings due to the
refurbishment.

The deadlock in these applications is the experimental
identification of the model. Two model structures are widely
used for control analysis and synthesis: state-space and
transfer function.When thefirst is established from a thermal
circuit, the relations between the physical parameters (i.e.,
thermal resistances,!, and capacities,") are explicit contrary
to the transfer function, where the coefficients have to follow
some transformations to find the values of the physical
parameters. Figure 1 summarises the feasible transformations
and the process to follow. Both state-space representations
and transfer functions are suitable for control strategy and
fault detection and diagnosis. The question is which one
is better since their parameters are identified by using
different methods. Therefore we are interested in studying
the propagation of error through the transformations from
a form of the model to another.

According to Figure 1, we consider threemodel types. For
ease of notation, we refer to the thermal network by RC,
the continuous state-space by SS, and the ARX model by
ARX. For instance, if a thermal network is put in state-space
representation, it is a RC to SS transformation.

2. Error Propagation by
Monte Carlo Simulation

The transformations in Figure 1 can be represented by a func-
tion of the form # = $(X), which relates % input parameters,
X, from an initial representation, to the output parameter,#, of a new representation. In practice, the input parameter
vector X is often estimated from noisy measurements and
consequently is uncertain.

How are the uncertainties of an estimated parameter
propagated from one representation to another? Is it better
to identify the parameters of a state-space model and then
to have the possibility of converting it in a transfer function
or to do the procedure the other way around? Which
transformation is the most robust to uncertainties?The error
propagation between model transformations is quantified by
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Figure 2:Thermal network for the heat balance method.

Monte Carlo simulations where the vector, X, is randomly
chosen such that

X ∼ N (p∗in, (p∗in) , (1)

where N(*,+2) is a normal distribution with mean * and
standard deviation +, p∗in is the true input parameters vector,
and ( represents the percentage of p∗in introduced as variance.

Then, given X, the output parameter # is obtained. This
process is repeated, times, for, sufficiently large such that
the input parameter space is well explored and the output
parameter distribution is well defined.

The transformations between different model represen-
tations are first presented, starting from a dynamic thermal
network in which the parameters have a physical meaning.

2.1. Transformation between Thermal Network and State-
Space Model. To illustrate the methodology presented in this
section [8], the second-order thermal network in Figure 2 is
considered. The heat transfers through the envelope and the
ventilation are modelled by the following heat transfer rates:

(i) -1: infiltration and windows conduction (W)

(ii) -2: outside-air convection (W)

(iii) -3: wall conduction (W)

(iv) -4: wall conduction and inside-air convection (W).

The thermal capacities "" and "# represent, respectively,
the energy accumulated in the envelope and the energy
accumulated in the medium and the indoor air.

A temperature source and two heat rate sources are
considered as inputs:

(i) .$: outdoor temperature (∘C)
(ii) 0̇$: solar radiation on the outside-wall surfaces (W)

(iii) 0̇& + 0̇': heat flow from the HVAC system and
internal gains (W).
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For the thermal network in Figure 2, the temperature differ-
ences over each resistance can be written in a matrix form:

e = −A! + b

[[[[[[
51525354
]]]]]] = [[[[[[

0 1 01 0 0−1 0 10 1 −1
]]]]]]
[[[
9($9#9"]]] + [[[[[[

.$.$00
]]]]]] , (2)

where e is the vector of temperature drops over the thermal
resistances, ! is the vector of temperature in the nodes, and b
is the vector of temperature sources on the branches.

The heat transfer rates in the branches can be expressed
in matrix form:

q = Ge

[[[[[[
-1-2-3-4
]]]]]] = [[[[[[[[[[

!−1V 0 0 00 !−1*$ 0 00 0 (!"2 )−1 00 0 0 (!"2 + !*+)−1
]]]]]]]]]]
[[[[[[
51525354
]]]]]] , (3)

where q is the vector of heat rates in the branches andG is the
diagonal matrix of thermal conductivities.

The heat balance in each temperature node gives

C!̇ = K! + Kbb + f (4)

where K = −ATGA, Kb = ATG, C is the diagonal matrix
of thermal capacities, and f is the vector of heat rate sources
connected to the temperature nodes.

The matrix C partitions the set of equations (4) into
nodes with thermal capacities !̇s and nodes without thermal
capacities !̇0:[0 00 Cc

][!̇0!̇s] = [K11 K12

K21 K22
][!0!s] + [Kb1

Kb2
] b

+ [I11 00 I22
][f0

fc
] . (5)

The heat balance equation can be transformed in state-space
model by eliminating the nodes without thermal capacity and
therefore separating differential and algebraic equations.

The state-space model of the thermal network is then
given by !̇s = As!s + Bsu, (6)

where
As = C−1c (−K21K−111K12 + K22) is the state matrix (7)

Bs= C−1c [−K21K−111Kb1 + Kb2 −K21K−111 I22] is the input matrix
(8)

u = [.$ .$ 0 0 0̇$ 0̇& + 0̇' 0], . (9)

The input matrix (8) can be reduced by taking only the
columns corresponding to nonzero elements in the input
vector (9) and by adding the first and the second column
which correspond to the same input, .$, which gives

As

= (− 2!*+ + 2!V + !""#!V (2!*+ + !") 2"# (2!*+ + !")2"" (2!*+ + !") − 4 (!*+ + !*$ + !")"" (2!*+ + !") (2!*$ + !"))
Bs = ( 1"#!V

0 1"#2"" (2!*$ + !") 2!*$"" (2!*$ + !") 0 ) .
(10)

This transformation maps six physical parameters into eight
state-space parameters, which means that two parameters
are dependent on the others, such as H22 = −H21 − I21 andH11 = −I11 − H12, where H+- and I+- represent, respectively, the
parameter of the state matrix As and input matrix Bs in rowJ and column K. Reciprocally, two parameters which do not
act directly on the solution have to be removed to balance
the system. Here, H12 and I21 are not used, which gives the
following expressions:!*$ = − I22H22H21!*+ = −(I11 + H11) I22 + (H22 + 2H21) I13(H22 + H21) I11 + H11H22 + H11H21!V = I13I11!" = 2I22 (I11 + H11) + 2H21I13I11 (H22 + H21) + H11H22 + H11H21"" = −I11 + H11H21I13"# = 1I13 .

(11)

Finally, the state-space model (10) is discretized with the
forward Euler method to conserve the explicit relations
between the physical parameters

Ad = I + AsL(
Bd = BsL(, (12)

where L( is the sampling time; L( = 60 s is considered for the
rest of the paper.

2.2. Transformation between State-Space Model and ARX
Model. The purpose of this section is to find a relationship
between parameters of the state-space model and parameters
of the discrete transfer function. Although there is a well-
known formula to pass from state-space to transfer function,
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reciprocally, the latter is not unique since the input-output
relationship is invariant to similarity transformation [9].
The state-space model (12) can be transformed in a new
representation !̇c = Ac!c + Bcu (13)

if a new state vector is chosen according to the following
relation: !c = T−1!d, (14)

where T is an invertible matrix and !d is the state vector of
the discretized state-space.

The new representation is linked to the original state-
space model by

Ac = T−1AdT (15)

Bc = T−1Bd (16)

Oc = OdT, (17)

whereO is the observability matrix computed by

Os = [Cs CsAs CsA2
s ⋅ ⋅ ⋅ CsA.−1s ], (18)

with N, the number of states.
One of the easiest ways to get an input-output represen-

tation is to describe it as a linear difference equation in which
the next output depends on previous observations (outputs
and inputs) [10]. Since observed data are always collected by
sampling, only the discrete form is considered. The system
can be represented by a discrete transfer function, where the
numerator and the denominator are polynomial in -−1, the
shift operator; this type of model is called autoregressive with
exogenous inputs (ARX).

A multi-input multioutput (MIMO) system can be
described by a difference equation [11]:

y (%) + "1y (% − 1) + "2y (% − 2) + ⋅ ⋅ ⋅ + "ny (% − N)= #1u (% − 1) + #2u (% − 2) + ⋅ ⋅ ⋅ + #nu (% − N) , (19)

where u ∈ R/ is the input, y ∈ R0 is the output, y(%) is the
output at time instant %, y(% − N) is the output delayed of N
samples, "i ∈ R0×0 , and #i ∈ R0×/.

By using the properties of the shift operator -−1y(%) =
y(% − 1), (19) is rewritten:(I + "1-−1 + "2-−2 + ⋅ ⋅ ⋅ + "n-−.) y (%)= (#1-−1 + #2-−2 + ⋅ ⋅ ⋅ + #n-−.) u (%) . (20)

By defining" (-) = I + "1-−1 + "2-−2 + ⋅ ⋅ ⋅ + "n-−.# (-) = #1-−1 + #2-−2 + ⋅ ⋅ ⋅ + #n-−. (21)

the difference equation (20) is transformed in ARX model
with

ARX (-) = y (%)
u (%) = "−1 (-)# (-) . (22)

One solution to convert a state-space model in ARX model
and vice versa could be to get the transfer function from
the continuous state-space and then discretize it or discretize
the state-space before the transformation, which gives the
structure to impose in the ARX model. Relations between
both transfer functions can be found afterwards.

This technique presents some limitations. First the trans-
fer function must be found to know the ARX’s structure;
the number of ARX parameters might not be equal to the
number of the state-space ones. This is the case for system
(10) where the state-space model has eight parameters and
the ARXmodel has seven parameters. An internal relation in
the state-space model has to be found to balance the system
before solving it; this method is not elegant and not unique as
mentioned before. In order to keep the physical meaning of
the state-space, the ARX model must be transformed in the
same system of coordinates as the state-space model. This is
possible if the state-spacemodel is transformed in observabil-
ity canonical form, where the ARXmodel coefficients appear
explicitly.The observability canonical form has the following
structure:

Ac = [[[[[[[[[[[

0 I 0 ⋅ ⋅ ⋅ 00 0 I d
...... ... d d 00 0 ⋅ ⋅ ⋅ 0 I−"n −"n−1 . . . −"2 −"1

]]]]]]]]]]]
∈ R(0.)×(0.)

Bc = [$1 $2 ⋅ ⋅ ⋅ $n], ∈ R(0.)×/
(23)

with $i ∈ R0×/ given by

[[[[[[[
$1$2...$n

]]]]]]] = [[[[[[[[[[
I"1 I"2 "1 I... d d−"n−1 −"n−2 . . . "1 I

]]]]]]]]]]

−1 [[[[[[[
#1#2...#n

]]]]]]] . (24)

The canonical state-space (23) can be projected in the physical
state-space coordinates by using similarity transformation.
The observability matrices of the physical state-space and
the canonical state-space model are linked by relation (17).
Furthermore the observability matrix of the canonical state-
space is the identity matrix; therefore the similarity matrix
reduces to

T = O−1s . (25)

By using the knowledge of the physical state-space, a trans-
formation which projects a realization in a given coordinates
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system and then keeps the physical meaning can be found.
Moreover the transformation works for MIMO systems and
stays straightforward even if the order of the model increases
because only matrix operations are involved. In the next
section the error propagation through model conversion is
studied in order to test the robustness of the method.

2.3. Simulation for Error Propagation. The input parameters
pin are normally distributed using (1) with ( = 0.1 for the
transformations from RC to ARX and ( = 0.01 in the other
way.The following results are given for, = 106 simulations.

Three criteria are used to characterize the parameter
transformations: the expected value of the output parameter
distribution P(Qout) which gives the location of the highest
occurrence; the absolute mean error (MAE) between the
true output parameter values Q∗out; and the simulated output
parameters Qout such that

MAE = 1, 2∑+=1 SSSSSQout! − Q∗outSSSSS . (26)

The Kolmogorov-Smirnov test [12] is used to know if the
output parameters are normally distributed. To determine if
it is the case, the test finds the maximum distance T between
two curves: T = max3 |U (V) − W (V)| , (27)

where T is the absolute difference betweenU(V), the empirical
cumulative distribution function calculated from V and W(V),
and the cumulative distribution function (CDF) of the hypo-
thetical distribution. T is then compared to the critical levelT4, the probability of rejecting the hypothesis when it is true
(X = 0.05 gives T4 = 1.36/√, = 1.365−3). T4 < T indicates
the rejection of the hypothesis at significance level X and T4 >T indicates a failure to reject the hypothesis at significance
level X, which means that the data belong to the hypothetical
distribution. The Kolmogorov-Smirnov test is illustrated in
Figure 3 to check if the parameter H11 is normally distributed.
The red line is the empirical cumulative distribution function
of the data and the black dotted lines represent the critical
level boundaries. If U(V) crosses a critical level boundary, it
means that the test fails to reject the null hypothesis; that
is, the data set is not normally distributed. , = 104 has
been used to widen the critical level boundaries only for the
illustration.

The simulation results for the six transformations are
given in Figure 4 and Table 1 for the RC to SS transformation,
in Figure 5 and Table 2 for the SS to ARX transformation, in
Figure 6 and Table 3 for the RC to ARX transformation, in
Figure 7 and Table 4 for the ARX to SS transformation, in
Figure 8 and Table 5 for the SS to RC transformation, and
in Figure 9 and Table 6 for the ARX to RC transformation.
If histograms are not centred on V-axis scale, it means that
outliers are present but are not visible because of the low
occurrence.

The three transformations fromRC toARXhave expected
values very close to the true parameter values Q∗out and all the
absolute mean errors are approximately around 10% of Q∗out,

10−40

0.2

0.4

0.6

0.8

1

CD
F

−8 −7 −6 −5 −4−9

Parameter value

F(x)
S(x) +/− da

Figure 3: Kolmogorov-Smirnov test for parameter H11 (RC to SS
transformation, X = 0.05,, = 104).
which corresponds to the variance introduced to the input
parameters pin.Themajority of the distributions are a little bit
skewed but close to the normal distribution. The parameterN22 in the RC toARX transformation (Figure 6, Table 3) is the
worst case with a mean absolute error superior to 22%, which
is still a satisfactory result. Indeed, by looking at the analytical
expression, N22 depends on fives parameters with 10%of their
values as variances. Furthermore, it is more difficult to obtain
accurate results with very small values like N22 = 3.57 ⋅ 10−10.

In the other way, from ARX to RC, the transformations
are more sensitive to parameter deviations; this is why the
variance of (1) has been scaled with ( = 0.01 instead of( = 0.1 as previously. The histograms of !*$, !*+, and!" in Figure 8 are zoomed to see most of the distribution.
Otherwise, outliers far from the true parameter values give an
improper graphical scale. The same situation occurs for !*$,!*+, !", and "" in Figure 9.

From ARX to SS, the parameters H11 and H12 are not
present in the results (Figure 7 and Table 4) because they
are not a function of the ARX parameters; they are known
directly from the similarity matrix T. In this transformation,
all the parameters are normally distributed but the mean
absolute errors of H21, H22, and I21 are far greater than their
respective true values. These transformations depend on
the poles T1 and T2 which are several orders of magnitude
higher than the output parameters; consequently uncertain-
ties introduced in the input parameters have strong impacts
on the output parameters.

The transformations from SS to RC involve only opera-
tions with values relatively small and with different orders
of magnitude which explains the skewed forms of !*$, !*+,
and !" (Figure 8) and the presence of outliers. Moreover, !*+
and !" have complicated transformations involving six input
parameters.

The problem gets even worse when both transformations
are combined in theARX toRC transformation.The expected
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Figure 4: Histograms, RC to SS transformation.

Table 1: RC to SS transformation characteristics.Q∗out P (Qout) MAE dH11 −5.025−4 −5.045−4 5.665−5 4.275−2H12 3.465−5 3.485−5 3.985−6 4.295−2H21 7.095−7 7.135−7 8.165−8 4.305−2H22 −1.435−6 −1.445−6 1.655−7 4.325−2I11 4.675−4 4.715−4 5.445−5 4.345−2I13 1.225−5 1.215−5 9.935−7 4.075−2I21 7.175−7 7.235−7 8.305−8 4.335−2I22 2.875−9 2.805−9 4.045−10 3.925−2
values of !*$, !*+, !", and "" are far from their respective
true values and the normal distribution shapes of !*$ and ""
are completely lost and therefore cannot be shown properly
by histograms. Only two parameters out of six are robust
against uncertainties and some ! and " parameters have
negative values which has no physical meaning.These results
show that the transformation from ARX to RC is not suitable

even if only 1% of the parameter values are introduced as
variance.

In this section, the most sensitive relations to parameter
deviations have been located. Sometimes, functions relating
input and output parameters are complicated and it is hard to
identify which parameters aremost responsible for the output
variance.
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Figure 5: Histograms, SS to ARX transformation.

Table 2: SS to TF transformation characteristics.Q∗out P (Qout) MAE dN11 2.805−2 2.805−2 2.245−3 6.755−4N12 −2.805−2 −2.805−2 2.245−3 6.695−4N22 3.575−10 3.495−10 4.045−11 1.445−2N31 7.325−4 7.255−4 5.84−5 5.225−4N32 −7.325−4 −7.255−4 5.84−5 5.195−4T1 −1.97 −1.97 2.405−3 5.345−4T2 9.705−1 9.705−1 2.395−3 5.335−4
3. Factor Prioritization

As in Section 2, the transformations are represented by a
function of the form # = $(X), which relates % uncer-
tain input parameters, X, to the output parameter #. This
section introduces a variance-based method which ranks
the input parameters, X, according to their contribution to
the output parameter variance [13]. This information allows
fixing parameters with negligible influence and, on the other

hand, focusing on the most sensitive parameters to reduce
the output variance. Indeed, constraints can be added to
these parameters in the identification process, to increase the
robustness of the transformations.

The variance of the output Z(#) is decomposable in 25
summands Z (#) = ∑+ Z+ +∑+ ∑->+Z+- + Z12,...,6, (28)
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Figure 6: Histograms, RC to ARX transformation.

Table 3: RC to ARX transformation characteristics.Q∗out P (Qout) MAE dN11 2.805−2 2.725−2 3.275−3 4.355−2N12 −2.805−2 −2.725−2 3.275−3 4.355−2N22 3.575−10 3.645−10 7.875−11 6.385−2N31 7.325−4 7.255−4 5.96−5 4.095−2N32 −7.325−4 −7.255−4 5.96−5 4.095−2T1 −1.97 −1.97 3.405−3 4.285−2T2 9.705−1 9.705−1 3.395−3 4.285−2
whereZ+ = ZX! (PX∼! (# | X+))Z+- = ZX!X# (PX∼!# (# | X+,X-)) − ZX! (PX∼! (# | X+))− ZX# (PX∼# (# | X-)) , (29)

where X+ is the Jth input and X∼+ denotes the vector of all
inputs but X+, PX∼!(# | X+) is the expectation of # taken over
all possible values of X∼+ while keeping X+ fixed, and ZX!(⋅) is
the variance over all possible values of X+.

Dividing both sides of (28) by Z(#) yields∑+ W+ +∑+ ∑->+ W+- + W12,...,6 = 1, (30)
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Figure 7: Histograms, ARX to SS transformation.

Table 4: ARX to SS transformation characteristics.Q∗out P (Qout) MAE dH21 7.095−7 −7.505−3 1.375−1 6.095−4H22 −1.435−6 2.505−5 2.625−4 8.195−4I11 4.675−4 4.685−4 3.735−6 1.115−3I13 1.225−5 1.225−5 9.745−8 4.075−4I21 7.175−7 −5.005−4 4.355−3 1.185−3I22 2.875−9 2.875−9 2.295−11 8.705−4
where W are the sensitivity indices which express the share
of variance of # that is due to a given input (W+) or input
combination (W+-).

The number of sensitivity indices of amodel with % inputs
grows as 25 since all the input interactions are taken into
account. A solution to overcome this cumbersome approach

is to only compute the % first-order (W+) and % total sensitivity
indices (W,+). These two indices are sufficient to describe
synthetically the sensitivity pattern of the model.

W+ = ZX! (PX∼! (# | X+))Z (#) (31)
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Table 5: SS to RC transformation characteristics.Q∗out P (Qout) MAE d!*$ 4.005−3 3.995−3 7.785−5 8.025−3!*+ 8.005−3 9.155−3 8.155−3 1.425−2!V 2.615−2 2.615−2 2.905−4 3.375−3!" 6.895−1 6.335−1 1.225−1 8.965−2"" 4.0056 4.0456 6.3555 1.095−3"# 8.2054 8.1954 6.5552 4.215−3
W,+ = PX∼! (ZX! (# | X∼+))Z (#) , (32)

whereZX!(PX∼!(# | X+)) is the expected reduction in variance
that would be obtained if X+ could be fixed and PX∼!(ZX!(# |
X∼+)) is the expected variance that would be left if all factors
butX+ could be fixed. W,+ represents W+ plus all the interactions
linked to X+.

The indices W+ and W,+ can be computed efficiently by the
following sampling procedure [14]:

(a) Generate two independent sample matrices A and
B ∈ R2×5, with % being the number of inputs and ,
being the number of simulations. Each sample matrix
is defined in the %-dimensional unit hypercube.

(b) Generate % further matrices A+B ∈ R2×5, for J =1, 2, . . . , %, such that all columns are fromA except theJth column which is from B.This resampling strategy
is called radial design.
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Table 6: ARX to RC transformation characteristics.Q∗out P (Qout) MAE d!*$ 4.005−3 [−15−6 0] 4.005−3 4.845−1!*+ 8.005−3 6.855−1 7.125−1 3.245−1!V 2.615−2 2.615−2 2.995−4 2.925−3!" 6.895−1 −6.755−1 1.41 4.005−1"" 4.0056 [0 300] 4.0056 4.665−1"# 8.2054 8.2054 6.5452 4.225−3
(c) Compute,(%+2)model evaluation, one for each row

of thematricesA,B, andA+B, which gives, respectively,$(A), $(B), and $(A+B)
(d) Compute the first (31) and total (32) sensitivity indices

usingZX! (PX∼! (# | X+))= 1, 2∑-=1$ (B)- ($ (A+B)- − $ (A)-)

PX∼! (ZX! (# | X∼+)) = 12, 2∑-=1($ (A)- − $ (A+B)-)2 .
(33)

The factor prioritization is now applied to the transforma-
tions presented in Section 2 to have a better explanation of
the results in Section 2.3.

3.1. Factor Prioritization Applied to Model Transformation.
All the sensitivity indices were estimated with , = 214
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Table 7: First-order and total sensitivity indices, RC to SS transformation.!*$ !*+ !V !" "" "# SumH11 0 0.017 0.224 0.005 0 0.509 0.756
0 0.038 0.444 0.019 0 0.751 1.251H12 0 0.137 0 0.042 0 0.558 0.737
0 0.365 0 0.180 0 0.780 1.324H21 0 0.137 0 0.042 0.558 0 0.737
0 0.365 0 0.180 0.780 0 1.324H22 0.046 0.042 0 0.160 0.678 0 0.820

0.110 0.111 0 0.160 0.839 0 1.220I11 0 0 0.337 0 0 0.337 0.674
0 0 0.667 0 0 0.666 1.334I13 0 0 0 0 0 0.997 0.997
0 0 0 0 0 1.001 1.001I21 0.137 0 0 0.042 0.558 0 0.737

0.365 0 0 0.180 0.780 0 1.324I22 0.045 0 0 0.033 0.845 0 0.922
0.091 0 0 0.067 0.921 0 1.080

Table 8: First-order and total sensitivity indices, SS to ARX transformation.H11 H12 H21 H22 I11 I13 I21 I22 SumN11 0 0 0 0 1.000 0 0 0 1.000
0 0 0 0 1.000 0 0 0 1.000N12 0 0.218 0 0.217 0.231 0 0.219 0 0.885
0 0.276 0 0.275 0.290 0 0.276 0 1.117N22 0 0.441 0 0 0 0 0 0.440 0.881
0 0.560 0 0 0 0 0 0.560 1.120N31 0 0 0 0 0 0.999 0 0 0.999
0 0 0 0 0 1.000 0 0 1.000N32 0 0 0 0.426 0 0.459 0 0 0.885
0 0 0 0.543 0 0.573 0 0 1.116T1 0.501 0 0 0.501 0 0 0 0 1.002

0.500 0 0 0.500 0 0 0 0 1.000T2 0.228 0.216 0.215 0.229 0 0 0 0 0.888
0.286 0.272 0.272 0.286 0 0 0 0 1.115

simulations to converge to a sufficient accuracy of three
decimals. If the model transformation # = $(X) is additive,
the sums of the first order and total indices must be equal
to one. If the first index is inferior to one, it means there
are interactions between inputs and therefore total sensitivity
indices are superior to one. The gap between the actual sum
and one is an indicator of the input’s interactions. In the
following tables, parameters on the left column (outputs) are
function of the parameters in the header (inputs); each output
has two lines; the first one represents the first-order indices
and the bold one the total-order indices.

The factor prioritization results for the six transforma-
tions are given in Table 7 for the RC to SS transformation,

in Table 8 for the SS to ARX transformation, in Table 9 for
the RC to ARX transformation, in Table 11 for the ARX to SS
transformation, in Table 10 for the SS to RC transformation,
and in Table 12 for the ARX to RC transformation.

It has been highlighted in Section 2.3 that the transforma-
tion from ARX to RC is highly sensitive to parameter devia-
tions but, thanks to the factor prioritization, the influence of
each parameter on the output variance is known.

It has been shown in Section 2.3 that the transformation
from ARX to SS is very sensitive: good results are obtained
only for !V and "# because they depend, respectively, on two
and three parameters (Table 12). The parameters !*$ and ""
present the worst results; by looking at Table 12, they are the
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Table 9: First-order and total sensitivity indices, RC to ARX transformation.!*$ !*+ !V !" "" "# SumN11 0 0 0.352 0 0 0.340 0.693
0 0 0.667 0 0 0.684 1.351N12 0.015 0.017 0.091 0.017 0.152 0.144 0.436

0.082 0.092 0.392 0.107 0.527 0.495 1.696N22 0.009 0.056 0 0.064 0.182 0.164 0.475
0.035 0.394 0 0.248 0.526 0.545 1.748N31 0 0 0 0 0 1.000 1.000
0 0 0 0 0 1.001 1.001N32 0.018 0.022 0 0.027 0.281 0.274 0.622

0.075 0.103 0 0.101 0.613 0.586 1.478T1 0.015 0.044 0.171 0.031 0.175 0.373 0.809
0.028 0.082 0.319 0.072 0.208 0.555 1.264T2 0.015 0.017 0.091 0.017 0.152 0.144 0.436
0.082 0.092 0.393 0.107 0.527 0.495 1.696

Table 10: First-order and total sensitivity indices, SS to RC transformation.H11 H12 H21 H22 I11 I13 I21 I22 Sum!*$ 0 0 0.184 0.180 0 0 0 0.362 0.726
0 0 0.405 0.408 0 0 0 0.496 1.309!*+ 0.126 0 0.019 0.100 0.130 0.243 0 0.108 0.726

0.276 0 0.091 0.177 0.277 0.335 0 0.146 1.302!V
0 0 0 0 0.644 0.182 0 0 0.826
0 0 0 0 0.819 0.354 0 0 1.174!" 0.036 0 0.047 0.254 0.037 0.070 0 0.267 0.709

0.090 0 0.226 0.441 0.090 0.106 0 0.363 1.315"" 0.018 0 0.287 0 0.020 0.275 0 0 0.560
0.076 0 0.662 0 0.075 0.635 0 0 1.449"# 0 0 0 0 0 1.005 0 0 1.005
0 0 0 0 0 1.004 0 0 1.004

Table 11: First-order and total sensitivity indices, ARX to SS transformation.N11 N12 N22 N31 N32 T1 T2 SumH21 0 0 0 0 0 0.484 0.516 1.000
0 0 0 0 0 0.484 0.516 1.000H22 0 0 0 0 0 0.997 0 0.997
0 0 0 0 0 1.000 0 1.000I11 1.000 0 0 0 0 0 0 1.000

1.000 0 0 0 0 0 0 1.000I13 0 0 0 1.002 0 0 0 1.002
0 0 0 1.001 0 0 0 1.001I21 0.621 0.287 0 0 0 0.072 0 0.979

0.641 0.287 0 0 0 0.091 0 1.019I22 0 0 0.999 0 0 0 0 0.999
0 0 0.999 0 0 0 0 0.999
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Table 12: First-order and total sensitivity indices, ARX to RC transformation.N11 N12 N22 N31 N32 T1 T2 Sum!*$ 0 0 0.836 0 0 0.061 0.063 0.960
0 0 0.870 0 0 0.082 0.087 1.040!*+ 0.716 0 0 0.095 0 0 0 0.811

0.902 0 0 0.286 0 0 0 1.189!V
0.646 0 0 0.180 0 0 0 0.826
0.819 0 0 0.355 0 0 0 1.173!" 0.715 0 0.002 0.094 0 0 0 0.811
0.901 0 0.002 0.286 0 0 0 1.188"" 0.180 0 0 0.577 0 0.014 0.012 0.783
0.380 0 0 0.788 0 0.029 0.034 1.231"# 0 0 0 1.003 0 0 0 1.003
0 0 0 1.003 0 0 0 1.003

only input parameters which are function of the poles T1
and T2. Even if the impact of T1 and T2 is very small, the
difference of orders of magnitude between the parameters
is unfavourable. The parameters !*+ and !" are function
of two and three input parameters, respectively (Table 12);
however almost 90% of the output variance is due to the
ARX parameter N11. If a priori information is available for
these parameters, boundaries on the ARX parameters can be
determined such that the physical meaning is not violated.
Another example is the parameter N22 in the RC to ARX
transformation with an absolute mean error equal to 22%
of its value. Both thermal capacities in this transformation,"# and "", account for approximately 30% of the output
variance; constraints can be added in the identification of the
state-space to limit their variations and therefore make the
transformation into ARX model more robust.

4. Conclusion

The possibility of switching from a thermal network to
state-space representation and to an autoregressive model
is appealing since both advantages can be cumulated. The
transfer function is practical and not cumbersome whereas
the state-space brings physical information which is related
to the thermal network. Both forms of the model can be
used for control strategy and diagnosis, but which one
is more robust to error transmission? To respond to this
question, this study is composed of two steps. First, Monte
Carlo simulations are used to determine the transformations
characteristics and, then, sensitivity analysis is used to rank
parameter influences on the output variance. It appears that
the transformation from ARX model to RC parameter is
less robust to uncertainties. We conclude that identifying the
parameters on the state-space representation is a better choice
since in this way the results indicate that the transformations
are more robust against parameter deviations.
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