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Abstract. Nowadays, railway operation is characterized by increasingly
high speed and large transport capacity. Safety is the core issue in railway
operation, and as witnessed by accident/incident statistics, railway level
crossing (LX) safety is one of the most critical points in railways. In the
present paper, the causal reasoning analysis of LX accidents is carried
out based on Bayesian risk model. The causal reasoning analysis aims
to investigate various influential factors which may cause LX accidents,
and quantify the contribution of these factors so as to identify the crucial
factors which contribute most to the accidents at LXs. A detailed statis-
tical analysis is firstly carried out based on the accident/incident data.
Then, a Bayesian risk model is established according to the causal rela-
tionships and statistical results. Based on the Bayesian risk model, the
prediction of LX accident can be made through forward inference. More-
over, accident cause identification and influential factor evaluation can
be performed through reverse inference. The main outputs of our study
allow for providing improvement measures to reduce risk and lessen con-
sequences related to LX accidents.

Keywords: Bayesian network modeling; Level crossing safety; Train-car colli-
sion; Risk assessment; Statistical analysis;

1 Introduction

Railway Level crossings (LXs) are potentially hazardous locations where trains,
road vehicles and pedestrians move in close proximity to one another. LX safety
remains one of the most critical issues for railways despite an ever-increasing
focus on improving design and application practices [1, 2]. Accidents at European
LXs account for about one-third of the entire railway accidents and result in
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more than 300 deaths every year in Europe [2]. In France, the railway network
shows more than 18,000 LXs for 30,000 km of railway lines, which are crossed
daily by 16 million vehicles on average, and around 13,000 LXs show heavy road
and railway traffic [3]. Despite numerous measures already taken to improve the
LX safety, SNCF Réseau (the French national railway infrastructure manager)
counted 100 collisions at LXs leading to 25 deaths in 2014. This number was
half the total number of collisions per year at LXs a decade ago, but still too
large [4]. In order to significantly reduce the accidents and lessen their related
consequences at LXs, an effective risk assessment means is needed urgently.

Many available studies dealing with LX safety have tended to take a qual-
itative approach to understand the potential factors causing accidents at LXs.
These works employ surveys [5], interviews [6], focus group methods [7] or driv-
ing simulators [8], rather than collecting real field data. For example, Lenné et
al. [9] examined the effect of installing active controls, flashing lights and traffic
signals on vehicle driver behavior. This study was achieved through adopting the
driving simulation. Tey et al. [10] conducted an experiment to measure vehicle
driver response to LXs equipped with stop signs (passive), flashing lights and half
barriers with flashing lights (active), respectively. In this study, both a field sur-
vey and a driving simulator have been utilized. Although those aforementioned
approaches are beneficial to explore the potential factors causing accidents, they
still show some limits. For instance, they do not allow for quantifying the con-
tribution degree of these factors. In addition, the reaction of vehicle drivers in
simulation scenarios could differ from that in reality, due to the different levels
of feeling of danger. Therefore, quantitative approaches based on real field data
are indispensable if we want to understand the impacting factors thoroughly and
enable the identification of practical design and improvement recommendations
to prevent accidents at LXs.

Nowadays, risk analysis approaches are required to deal with increasingly
complex systems with a large number of configuration parameters. Therefore,
such approaches should satisfy the following requirements:

– Strong modeling ability;
– Easy to specify a risk scenario or a system;
– High computational efficiency.

In the domain of risk assessment, various approaches are adopted for the
modeling and analyzing process. Due to the combination of qualitative and quan-
titative analysis, the Fault Tree Analysis (FTA) developed by H.A. Watson at
Bell Laboratories [11] has been widely used for risk analysis in various contexts.
FTA is a deductive and top-down method which aims at analyzing the effects
of initiating faults and events on a complex system and offering the designer an
intuitive high-level abstraction of the system. Compared with the Failure Mode
and Effects Analysis (FMEA), which is an inductive and bottom-up analysis
method aimed at analyzing the effects of single component or function failures
on equipment or subsystems, FTA is more useful in showing how resistant a sys-
tem is to single or multiple initiating faults. However, one obvious disadvantage
of FTA is that it is not clear on failure mechanism, since the causal relationship
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between events is not a simple YES or NO (1 or 0). Therefore, FTA is prone to
missing the possible initiating faults. In addition, traditional static fault trees
cannot handle the sequential interaction and functional dependencies between
components. Consequently, it is necessary to employ dynamic methodologies to
overcome these weaknesses. Markov Chains (MCs) and their extensions have
been mainly used for modeling complex dynamic system behavior and depend-
ability analysis of dynamic systems. Two-state Markov switching multinomial
logit models are introduced by [12] to explain unpredictable, unidentified or un-
observable risk factors in road safety. Although MCs can elaborate the statistical
state transition of different variables, they cannot formalize causal relationships
between the various events.

Afterward, risk analysis based on formal modeling expanded. In order to
compare the effectiveness of two main Automatic Protection Systems (APSs)
at LXs: two-half-barrier APS and four-half-barrier APS, Generalized Stochastic
Petri Nets (GSPNs) were used in [13] to analyze the aleatory fluctuations of var-
ious parameters involved in the dynamics within the LX area. Over the last few
years, Bayesian network (BN), a method of reasoning using probabilities, has
been an increasingly popular method used for risk analysis of safety-critical sys-
tems or large and complex dynamic systems [14]. In order to obtain proper and
effective risk control, risk planning should be performed based on risk causal-
ity, which can provide more information for decision making. In this context, a
model using BNs with causality constraints (BNCC) for risk analysis was pro-
posed in [15]. In [16], Bouillaut et al. discussed the development of a decision
tool realized by hierarchical Dynamic BNs (DBNs), which is dedicated to the
maintenance of metro lines in Paris. This modeling work has comprehensively
described the rail degradation process, the different diagnosis actors (devices
and staff) and the maintenance actions decision. In [17], Langseth and Porti-
nal introduced the applicability of BNs for reliability analysis and offered an
instance of BNs application for preventive maintenance. The advantages behind
BNs were discussed in this article: a) BNs constitute a modeling framework,
which is particularly easy to use for interaction with domain experts; b) the
sound mathematical formulation has been utilized in BNs to generate efficient
learning methods; and c) BNs are equipped with an efficient calculation scheme
which often makes BNs preferable to traditional tools like Fault Trees (FTs). To
sum up, the BN technique offers interesting features: the flexibility of modeling,
strong modeling power, high computational efficiency and, most importantly,
the outstanding advantages involving causality analysis based on both forward
inference and reverse inference [18] and the conjunction of domain expertise.

Therefore, based on the above investigation of risk analysis, an approach of
Causal Reasoning Analysis based on Bayesian risk model (CRAB) is presented
in this paper to deal with the risk assessment at LXs. Namely, a thorough sta-
tistical analysis based on the accident/incident data pertaining to French LXs
is firstly performed, and the statistical results are used as the import sources of
BN risk model. Then, the BN risk model is developed according to the causal
relationships between the accidents and various influential parameters consid-
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ered. Through the BN risk model, one can quantify the risk level impacted by
various potential factors and identify the factors which contribute most to the
accidents at LXs, as well as their combined impact on LX safety.

2 Preliminary Introduction of Bayesian Belief Networks

In railways, potential hazards including equipment failures, human errors and
some non-deterministic factors, such as environment aspects, may lead to acci-
dents. In fact, causalities between accidents and these impacting factors exist, as
shown in Figure 1. Identifying such causality relationships is a crucial issue in the
process of reasoning. In particular, a functional intelligent identification model
should have the ability of making reasoning based on the causal knowledge.

Causes
Hazards

Consequences
Accidents

Causality

Forward inference

Reverse inference

Fig. 1. Reasoning between hazards and accidents.

The Bayesian belief network (BN) employed to model causality is a graphical
model that can be characterized by its structure and a set of parameters [19].
BN = (P,G), where P represents the parameters of prior probabilities that
quantify the arcs, while G defines the model structure. G = (V,A), which is a
Directed Acyclic Graph (DAG), is comprised by a finite set of nodes (V ) linked
by directed arcs (A). The nodes represent random variables (Vi) and directed arcs
(Ai) between pairs of nodes represent dependencies between the variables [19].

In our study, the BN works based on the theory of probability for discrete
distributions. Assume that there is a set of mutually exclusive events: B1, B2,
. . . ,Bn and a given event A, such that, P (A) can be expressed as follows:

P (A) =

n∑
i=1

P (Bi)P (A|Bi) (1)

According to Bayes’ formula:

P (Bi|A) =
P (Bi)P (A|Bi)∑n

j=1 P (Bj)P (A|Bj)
(2)
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Eq. (2) can be converted into:

P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
(3)

where P (Bi) is the prior probability, P (Bi|A) is the posterior probability.
For any set of random variables in a BN, the joint distribution can be com-

puted through conditional probabilities using the chain rule as shown in Eq. (4):

P (X1 = x1, . . . , Xn = xn) =

n∏
v=1

P (Xv = xv|Xv+1 = xv+1, . . . , Xn = xn) (4)

Due to the conditional independence, Xv only relates to its parent node
Pa(Xv) and is independent of the other nodes. Hence, Eq. (4) can be rewritten
as follows:

P (X1 = x1, . . . , Xn = xn) =

n∏
v=1

P (Xv = xv|Pa(Xv)) (5)

For more details about BN, the reader can refer to the tutorial book on
Bayesian networks edited by [20].

3 Methodology

As mentioned before, the present study aims to perform risk assessment at
French LXs. The CRAB approach is illustrated to assist our risk assessment
based on the accident/incident data collected by SNCF Réseau. Namely, it is
applied to assessing the risk level with regard to various impacting factors taken
into account and evaluating the contribution degree of these factors. Thus, we
pave the way towards identifying the important factors which contribute most
to the overall risk.

There are 4 LX types in France [21]:

– SAL4: Automated LXs with four half barriers and flashing lights;
– SAL2: Automated LXs with two half barriers and flashing lights;
– SAL0: Automated LXs with flashing lights but without barriers;
– Crossbuck LXs, without automatic signaling.

As shown in Table 1, SAL2 (more than 10,000) is the most widely used type of
LX in France. Moreover, more than 4,000 accidents at SAL2 LXs contributed
most to the total number of accidents at LXs from 1974 to 2014. Since the mo-
torized vehicle is the main transport mode causing LX accidents in France [22],
considering the train/motorized vehicle (train-MV) collisions, SAL2 LXs also
have the most part of LX accidents according to the accident/incident statistics
as shown in Fig. 2. Moreover, according to the SNCF statistics, these accidents
can be considered as the most representative for LX accidents in general. For all
these reasons, our analysis will focus on train-MV accidents occurring at SAL2
LXs.
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Table 1. Accidents at different types of LXs in France from 1974 to 2014

Type of LX Number # Accident

SAL4 > 600 > 600
SAL2 > 10, 000 > 4, 200
SAL0 > 60 > 50
Crossbuck LX > 3, 500 > 700

0

50

100

150

200

250

1978 1983 1988 1993 1998 2003 2008 2013

All  the LXs

SAL2

SAL4

Crossbuck LX

SAL0

Fig. 2. The number of train-MV collisions at different types of LX from 1978 to 2013

3.1 Data Collection

SNCF Réseau has recorded the detailed elements of each LX accident, including
various attributes of LX accidents/incidents, surrounding characteristics of LXs
and accident causes, and provides two accident/incident databases to support
our study. The first database (D1) records the accident/incident data that cover
SAL2 LXs in mainland France from 1990 to 2013.

From D1, the subdataset (SD1) including the data ranging in the decade
from 2004 to 2013 is selected, which provides reliable and sufficient information
about both LX accidents and static railway, roadway and LX characteristics.
Namely, the selected LX inventory presents the LX identification number, the
railway line involved, the LX kilometer point, the LX accident timestamp, the
average daily railway traffic, the average daily road traffic, the rail speed limit,
the LX length and width, the profile and alignment of the entered road and
geographic region involved. There are 8,332 public SAL2 LXs included in SD1.
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According to the statistics of SNCF Réseau, the majority of train-MV ac-
cidents at LXs are caused by motorist violations. Due to the lack of accident
causes in SD1, causal relationship analysis cannot be performed with regard to
the static factors and motorist behavior. Therefore, we seek another database
which records detailed accident causes. Fortunately, the second database (D2)
contains the information about SAL2 LX accidents from 2010 to 2013, the LX
identification number, the railway line involved and detailed accident causes (in-
cluding static factors and inappropriate motorist behavior). Thus, using the LX
ID and the railway line ID, data merging of these two databases is carried out
to create a new database (ND) containing the LX accident information, static
railway, roadway and LX characteristics and accident causes related to static
factors and motorist behavior. This combined database ND covers LX accidents
during a period of 4 years from 2010 to 2013, which forms the basis of our present
study.

The detailed accident causes considered in this study are shown in Table 2.
Here, a second-level cause is given: corrected moment. The conventional formula
of the traffic moment is defined as: Traffic moment = Road traffic frequency ×
Railway traffic frequency [22]. However, based on the previous analysis of SNCF
Réseau, we adopt a variant called “corrected moment” instead (CM for short).
CM = V a×T b, where b = 1−a and the best value of a in terms of fitting is com-
puted to be a = 0.354 according to the statistical analysis performed by SNCF
Réseau [23], since railway traffic has a more marked impact on LX accidents
than road traffic. Therefore, (V 0.354 × T 0.646) is considered as an integrated pa-
rameter that reflects the combined exposure frequency of both railway and road
traffic.

3.2 Bayesian Risk Model Establishment

Variable Definition Based on the combined database ND, the statistical re-
sults are organized as input sources which will be imported to the BN risk model.
Data discretization is applied on continuous variables. Namely, the continuous
variables, i.e., “Average Daily Road Traffic”, “Average Daily Railway Traffic”,
“Railway Speed Limit”, “Width”, “Length” and “Corrected Moment”, are di-
vided into 3 groups and each group has the similar number of samples. As for
the “Region Risk” factors corresponding to 21 regions in mainland France, they
are divided into 3 groups as well, ranked according to the risk level in descending
order, and each group contains 7 region risk factors. As for the finite discrete vari-
ables, i.e., “Alignment”, “Profile”, “Stall on LX”, “Zigzag Violation”, “Blocked
on LX” and “Stop on LX”, we allocate an individual state to each value of the
variable. The consequence severity of SAL2 accidents [24] is defined according
to the number of fatalities and injuries in an SAL2 accident. The definition of
consequence severity pertaining to an SAL2 accident is shown in Table 3. Five
levels of consequence severity are set according to the number of fatalities, severe
injuries and minor injuries caused by the accident, respectively. The consequence
severity increases progressively from level 1 to 5. Thus, a summary of states of
each node in the BN risk model is offered in Table 4.
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Table 2. Accident causes

Primary
causes

Second-level
causes

Third-level
causes

Explanation

Static Factors

Corrected Moment
(CM)

Average Daily
Railway Traffic
(T)

CM = V 0.354 × T 0.646;

Average Daily
Road Traffic (V)

Railway Speed
Limit

The maximum permission
speed of train within the LX
section;

Alignment Horizontal road alignment
shape: “straight”, “curve” or
“S”;

Profile Vertical road profile shape:
“normal” or “hump or cavity”;

Width The width of LX;
Length The length of LX that road ve-

hicles need to cross;
Region Risk Region Risk factor, highlight-

ing the general LX-accident-
prone region:
The number of SAL2 accidents
over the observation period in
the region considered/The
number of SAL2 LXs in the
region considered;

Inappropriate
Motorist Behavior

Stall on LX Blocked on LX A vehicle is blocked on the
SAL2 LX by the external en-
vironment;

Stop on LX A motorist intentionally stops
the vehicle on the SAL2 LX;

Zigzag Violation A vehicle skirts the half barri-
ers to cross the SAL2 LX;

Model Structure Artificial restrictions are adopted to build the model struc-
ture, which means the model structure is defined according to the causal rela-
tionships between accident occurrence and influential variables based on expert
proposes, instead of using general structure learning methods, since the general
structure learning methods suggest us unreasonable model structures which are
inconsistent with the causal relationships in reality and impede identification of
important accident causes. It is worth noticing that there are still some poten-
tial connections between static factors and motorist behavior. The Spearman
correlation checking is adopted to explore important connections and filter off
negligible connections between these two kinds of variables. As shown in Ta-
ble 5, the absolute values of correlation bigger than 0.05 are highlighted (Red
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Table 3. Consequence severity definition

Consequence severity Level 1 Level 2 Level 3 Level 4 Level 5

0 ≤ fatalities < 5, 0 ≤ severe in-
juries < 5, 0 ≤ minor injuries < 20;

× – – – –

0 ≤ fatalities < 5, 0 ≤ severe in-
juries < 5, 20 ≤ minor injuries;

– × – – –

0 ≤ fatalities < 5, 5 ≤ severe in-
juries, 0 ≤ minor injuries < 20;

– – × – –

0 ≤ fatalities < 5, 5 ≤ severe in-
juries, 20 ≤ minor injuries;

– – × – –

5 ≤ fatalities, 0 ≤ severe injuries
< 5, 0 ≤ minor injuries < 20;

– – – × –

5 ≤ fatalities, 0 ≤ severe injuries
< 5, 20 ≤ minor injuries;

– – – × –

5 ≤ fatalities, 5 ≤ severe injuries,
0 ≤ minor injuries < 20;

– – – – ×

5 ≤ fatalities, 5 ≤ severe injuries,
20 ≤ minor injuries;

– – – – ×

color highlights negative values and green color highlights positive values). Their
corresponding connections will be considered in our model. Conditional proba-
bility parameters are generated based on the real field accident/incident data.
The final model is developed as shown in Fig. 3, which contains 3,132 conditional
probabilities.

4 Analysis and Discussion

As shown in Fig. 3, the risk model contains two layers: 1) Layer 1 is used for
predicting accident occurrence and diagnosing influential factors; 2) Layer 2
is used for evaluating consequences related to LX accidents. The “SAL2 MV
Accident” node is the key node connecting the two layers, as well as the target
node of accident prediction. Note that the Receiver Operating Characteristic
(ROC) curve and the Area Under the ROC Curve (AUC) [25] have already been
adopted to ensure that the model performance is sound (the AUC values of key
consequence node prediction, i.e., “SAL2 MV Accident”, “Fatalities”, “Severe
injuries” and “Minor injuries”, are all bigger than 0.9 > 0.5: the standard limit);
while the detailed validation process is not presented here due to space limitation.

One can estimate the probability of a train-MV accident occurring at an
SAL2 LX through forward inference based on the BN risk model. As shown in
Fig. 4, the general probability of a train-MV accident influenced by the interac-
tion of all factors considered, is estimated as almost 0.0061. In detail, the prob-
ability of a train-MV accident caused by static factors is about 0.0011 and the
probability of a train-MV accident caused by inappropriate motorist behavior is
about 0.0049. Moreover, fatalities and severe injuries caused by the accident are,
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Table 4. States of nodes in the BN risk model

Node name Node property Node state

Corrected Moment
(CM)

Chance node
CM below 19 (0 ≤ CM < 19),
CM 19 49 (19 ≤ CM < 49),
CM 49 up (49 ≤ CM);

Average Daily Rail-
way Traffic (ADRT)

Chance node
ADRT below 9 (0 ≤ ADRT < 9),
ADRT 9 25 (9 ≤ ADRT < 25),
ADRT 25 up (25 ≤ ADRT);

Average Daily Road
Vehicle (ADRV)

Chance node
ADRV below 72 (0 ≤ ADRV < 72),
ADRV 72 403 (72 ≤ ADRV < 403),
ADRV 403 up (403 ≤ ADRV);

Railway Speed
Limit (RLS)

Chance node
RLS below 70 (0 km/h ≤ RLS < 70 km/h),
RLS 70 110 (70 km/h ≤ RLS < 110 km/h),
RLS 110 up (110 km/h ≤ RLS);

Alignment Chance node Straight, C shape, S shape;
Profile Chance node Normal, Hump cavity;

Width (W) Chance node
W below 5 (0 m ≤ W < 5 m),
W 5 6 (5 m ≤ W < 6 m),
W 6 up (6 m ≤ W);

Length (L) Chance node
L below 7 (0 m ≤ L < 7 m),
L 7 11 (7 m ≤ L < 11 m),
L 11 up (11 m ≤ L);

Region Risk (R) Chance node
R low (region with low risk level),
R medial (region with medial risk level),
R high (region with high risk level);

Stall on LX Chance node True, False;
Blocked on LX Chance node True, False;
Stop on LX Chance node True, False;
Zigzag Violation Chance node True, False;
Motorist Behavior
Accident

Chance node True, False;

Static Factor Acci-
dent

Chance node True, False;

SAL2 MV Accident Chance node True, False;
Fatalities (F) Chance node F 0 5 (0 ≤ F < 5), F 5 up (5 ≤ F);
Severe Injuries (S) Chance node S 0 5 (0 ≤ S < 5), S 5 up (5 ≤ S);
Minor Injuries (M) Chance node M 0 20 (0 ≤ M < 20), M 20 up (20 ≤ M);
Consequence Sever-
ity

Deterministic
node

Level 1, Level 2, Level 3, Level 4, Level 5;

to a large extent, fewer than 5. Minor injuries caused by the accident are most
likely to be fewer than 20. Thus, the consequence severity level are most likely
to be level 1. However, Fig. 5 shows that the probability of a train-MV accident
occurring at a SAL2 would increase to 0.0107 if all the second-level causes occur,
namely, “Corrected Moment” in the “CM 49 up” group, “Railway Speed Limit”
in the “RSL 110 up” group, “Alignment” in the “S shape” group, “Profile” in
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Table 5. Spearman correlation checking

             Static factors 
Motorist 
behavior 

Railway 
speed limit 

Length Width Corrected 
moment 

Alignment  Profile Region 
risk factor 

Blocked on LX -0.0444 0.0031 -0.0341 -0.0525 -0.1769 -0.0352 -0.0432 

Stop on LX 0.0179 -0.0668 -0.1138 -0.0402 -0.0329 -0.0307 -0.0420 

Zigzag violation 0.0347 0.0374 0.1143 0.2118 -0.0462 -0.0221 0.1238 

ADRV_below_72
ADRV_72_403
ADRV_403_up

Average_Daily_Road_Vehicle
ADRT_below _9
ADRT_9_25
ADRT_25_up

Average_Daily_Railway_Traffic

CM_below _19
CM_19_49
CM_49_up

Corrected_Moment

RSL_below_70
RSL_70_110
RSL_110_up

Railway_Speed_Limit

W_below_5
W_5_6
W_6_up

Width

Straight
C_shape
S_shape

Alignment

Hump_cavity
Normal

Profile
R_low
R_medial
R_high

Region_Risk

L_below_7
L_7_11
L_11_up

Length

False
True

SAL2_MV_Accident

F_0_5
F_5_up

Fatalities

S_0_5
S_5_up

Severe_Injuries
M_0_20
M_20_up

Minor_Injuries

True
False

Zigzag_Violation

True
False

Stall_on_LX

True
False

Stop_on_LX

True
False

Blocked_on_LX

False
True

Static_Factor_Accident

False
True

Motorist_Behavior_Accident

Level_1
Level_2
Level_3
Level_4
Level_5

Consequence_Sev...

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Layer 1

Layer 2

Fig. 3. BN risk model

the “Hump cavity” group, “Width” in the “W 6 up” group, “Length” in the
“L 11 up” group, “Region Risk” in the “R high” group, “Stall on LX” being
true and “Zigzag Violation” being true. The related consequences are likely to
be severer as well.

Subsequently, the “SAL2 MV Accident = True” state is configured as the
targeted state. In this way, one can assess the contribution degree of each influ-
ential factor to train-MV accident occurrence through reverse inference. Detailed
results are given in Fig. 6. It is worth noticing that accidents caused by inap-
propriate motorist behavior contribute 80% to the entire train-MV accidents
at SAL2 LXs, while accidents caused by static factors contribute only 17%. As
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SAL2_MV_Accident             Static_Factor_Accident      Motorist_Behavior_Accident 

       

Fatalities                               Severe_Injuries                     Minor_Injuries 

   

Consequence_Severity 

 

Fig. 4. General prediction results

SAL2_MV_Accident             Static_Factor_Accident       Motorist_Behavior_Accident 

             

Fatalities                                Severe_Injuries                    Minor_Injuries 

   

Consequence_Severity 

 

Fig. 5. Prediction results when second-level causes occur

for inappropriate motorist behavior, “Zigzag violation” is more significant than
“Stall on LX” in terms of causing train-MV accidents, due to the contribution of
58% (compared with 42% contribution of “Stall on LX”). On the other hand, in
terms of static factors, when a train-MV accident occurs at a SAL2 LX, this LX
has the probabilities of 74%, 38%, 44%, 37% and 46% respectively involved in
the most risky situations that “Corrected Moment” in the “CM 49 up” group,
“Railway Speed Limit” in the “RSL 110 up” group, “Width” in the “W 6 up”
group, “Length” in the “L 11 up” group and “Region Risk” in the “R high”
group. These results indicates that more attention needs to be paid to LXs hav-
ing the above risky static characteristics. Moreover, technical solutions need to
be implemented to prevent motorist zigzag violations, for example, transforming
SAL2 LXs into SAL4 LXs (Four-half barrier systems) or SAL2F (two-full barrier
LXs) or installing median separators between opposing lanes of road traffic in
front of SAL2 LXs.
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Consequence_Sev...

Fig. 6. Cause diagnosis when a train-MV accident occurs

5 Conclusions

The contributions of the present study are as follows: the approach of Causal
Reasoning Analysis based on Bayesian risk model (CRAB) is proved to be fruit-
ful and practical when analyzing French LX accidents. Although the conditional
probabilities of our BN risk model is tailored to SAL2 LX accidents in France,
the CRAB approach and the model structure can be applied to different contexts
pertaining to LX safety. Based on the CRAB approach, various important static
factors pertaining to LX safety, namely, the corrected moment, the rail speed
limit, the LX length and width, the profile and alignment of the entered road and
geographic region involved, and significant inappropriate motorist behavior, i.e.,
zigzag violation, blocked on LX and stopping on LX, have been analyzed metic-
ulously. Moreover, the application of CRAB to investigating LX safety allows
us to not only predict the probability of accident occurrence, but also evaluate
related consequence severity level, quantify the respective contribution degrees
of the above influential factors to the overall LX risk and identify the most risky
factors, which are rarely achieved in many existing related works. Besides, in our
study, expert knowledge is integrated with real field data to optimize the model
structure, so as to neglect inappropriate connections to facilitate highlighting
the main causes.

In summary, the outcomes of the BN risk model offer a significant perspective
on potential parameters causing LX accidents and pave the way for identifying
practical design measures and improvement recommendations to prevent acci-
dents at LXs. In future works, a thorough analysis on inappropriate motorist
behavior will be carried out due to its significant contribution to LX accident
occurrence. In addition, practical solutions will be proposed to improve LX safety
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according to the analysis results of the BN risk model and the effectiveness of
these solutions (e.g., transforming SAL2 LXs into SAL4 LXs or SAL2F or in-
stalling median separators) will be investigated.
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