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Résumé
Dans cet article, nous présentons un réseaux de neurones
multimodal pour l’estimation de pose et la reconnaissance
d’action à partir d’images et de vidéos RGB. Notre méth-
ode multimodale favorise l’estimation de pose en combi-
nant des données 3D très précises et des données 2D cap-
turées dans de conditions réelles, ce que favorise aussi
l’apprentissage de caractéristiques visuelles génériques.
Nous montrons que l’optimisation multi-objectif et mul-
timodale du réseau entraîne de meilleurs résultats que
l’optimisation séparée de chaque objectif mono-modal.
Ceci nous permet de rapporter des résultats au niveau de
l’état de l’art pour l’estimation de pose (Human3.6M) et
pour la reconnaissance d’action (NTU RGB+D).

Mots clef
Reconnaissance d’action, estimation de pose, réseaux de
neurones à convolution.

Abstract
In this work, we present a unified multimodal neural net-
work for pose estimation from RGB images and action
recognition from video sequences. We show that a mul-
timodal approach benefits 3D pose estimation by mixing
high precision 3D data and “in the wild” 2D annotated im-
ages, while action recognition also benefits from better vi-
sual features. Furthermore, we demonstrate by our experi-
ments that end-to-end optimization results in better perfor-
mance for action recognition than separated learning. We
reported state-of-the-art results on 3D pose estimation and
action recognition respectively on Human3.6M and NTU
RGB+D datasets.

Keywords
Human action recognition, human pose estimation, convo-
lutional neural networks.

1 Introduction
Recognizing human actions is a very challenging task due
to the complexity of the human body and to the high
similarity between different actions. Additionally, action
recognition can benefit from the high level representation

of the human body, such as skeletal data. Several ap-
proaches have explored the low-cost depth sensors, such as
Microsoft’s Kinect and Asus’ Xtion, to compute the skele-
tons in real-time [32]. However, such methods suffer from
the low quality depth maps, resulting frequently in noisy
or erroneous skeletons. On the other hand, with the re-
cent advances in deep learning and on convolutional neural
networks, many approaches have reported good results on
buth 2D [36, 27] and 3D [22] pose estimation.

Recent approaches for human pose estimation are, in gen-
eral, using heatmap regression [28], in a way to tackle
pose estimation as a detection problem. In such cases, one
heatmap is learned for each body joint and the pixel values
in such heatmaps correspond to a score whether the joint
is present at that position or not. In order to recover the
body joint position, the non differentiable argmax function
is used. For 3D pose estimation, a similar approach can be
used, but instead of using 2D maps, a volumetric heatmap
can be learned [25]. While traditional methods for action
recognition have been based on pre-computed pose data as
their primary information [19], the state of the art has also
has also been improved by the advances in deep neural net-
works [33]. For example, Baradel et al. [3] recently show
the importance of poses to guide visual features extraction.

Despite the fact that action recognition and human pose
estimation are very related tasks, both problems are fre-
quently handled as separated tasks, such as in [9], or action
recognition is used to improve pose estimation [14], and,
to the best of our knowledge, there is not method providing
a single optimized solution for action recognition passing
through estimated poses as an intermediate stage. Deep
learning approaches have been outperforming many meth-
ods in the last yeas mainly because it allows end-to-end
optimization. This is even more relevant for multimodal
approaches, as appointed by Kokkinos [15], where similar
tasks benefit one from another. We believe that both prob-
lems have not yet been tackled together because most part
of pose estimation approaches are performing heatmap pre-
diction, and such detection based approaches use the non-
differentiable argmax function to recover body joint coor-
dinates a posteriori. We think that, with joint optimization,
action recognition could benefit from estimated poses in



a more effective way. Taking it into account, we propose
a single end-to-end trainable neural network that provides
human pose estimation in a first stage and human action
recognition as the final result.
For that matter, we propose to extend the differentiable
Soft-argmax [41] for both 2D and 3D pose estimation.
This allows us to learn pose estimation using mixed 2D
and 3D annotated data and to stack action recognition on
top of pose estimation, resulting in a multimodal approach
trainable from end-to-end. Here, we present our contri-
butions: first, we propose a new multimodal approach for
2D and 3D human pose estimation and for action recog-
nition, that can be trained with indistinguishably with im-
ages “in the wild”, images with 3D annotated posed, and
video sequences. Second, our approach for human pose
achieves state-of-the-art results on 3D. Third, our full-
model reached state-of-the-art results on action recognition
using only still RGB images, while other methods are using
images and ground truth poses.
The remaining of the paper is organized as follows. In sub-
section 2 we present a brief review of the most relevant
related work. The proposed approach is presented in sec-
tion 3. We present the experiments in section 4 and our
conclusions and perspectives for future work in section 5.

2 Related work
Since our work has a dual nature, this section is divided
into human pose estimation and actions recognition. Due
to the limited number of pages in this paper, readers can re-
fer to the surveys in [29, 12] for recent reviews respectively
on pose estimation and action recognition.

Human pose estimation. Human pose estimation from
still images is an intensively studied problem, with tra-
ditional approach from Pictorial Structures [2, 11, 26] to
more recent CNN methods [24, 16]. Exploring the con-
cepts of stacked architectures, residual connections, and
multiscale processing, Newell et al. [23] proposed the
Stacked Hourglass Network. Since then, methods are
mostly based on sequential refinement of predictions. Chu
et al. [10] proposed an attention model based on condi-
tional random field (CRF) and Yang et al. [40] replaced
the residual unit from the stacked hourglass by a Pyra-
mid Residual Module (PRM). Generative Adversarial Net-
works (GANs) have been used to improve the capacity of
learning structural information [8].
Differently from previous detection based approaches, in
which the argmax function is required as a post-processing
step, regression methods use a nonlinear function that maps
the input images directly to poses in (x, y) coordinates. For
example, Toshev and Szegedy [37] proposed a holistic so-
lution based on cascade regression and Carreira et al. [5]
proposed the Iterative Error Feedback. Despite of their ad-
vantage of directly predictions pose in a differentiable way,
regression methods in the literature give sub-optimal solu-
tions.
On 3D scenarios, pose estimation can be even more chal-

lenging. Some approaches first solve the body joints local-
ization problem, then predict the 3D poses from that [7].
Another approach was presented by Sun et al. [34], on
which the poses are converted to a bone representation,
which is less variant and consequently easier to learn.
However, such a structural transformation affect negatively
the precision on joints in the extremities, since the pre-
diction error is accumulated from one joint to another.
Pavlakos et al. [25] proposed the volumetric stacked hour-
glass architecture which the high cost of volumetric com-
putations. In our methods, we also propose an intermedi-
ate volumetric representation for 3D poses, but we require
much lower resolution than in [25], since our approach has
sub-pixel accuracy.

Action recognition. Classical methods for action recog-
nition have explored features extraction guided by body
joint locations [39]. To handle with the time dimension,
3D convolutions have been used in recent approaches [4, 6,
38], but they involve high number of parameters, since all
the filters have one additional dimension. In our case, we
propose a scheme to handle the temporal information with
standard 2D convolutions. To cope with noisy skeletons
from low-cost depth sensors, Spatio-Temporal LSTM net-
works have been widely used to implement attention mech-
anisms [17, 18].
Most previous action recognition methods explore the
skeletal information as the only information or to extract
local visual features. Since our architecture is able to pre-
dict very precise 3D poses, we do not have to cope with the
noisy skeletons from Kinect. Additionally, in our method
we can use both poses and visual features together, since
we perform both pose estimation and action recognition
from RGB frames.

3 Proposed method
The proposed multimodal approach takes as input a se-
quence of RGB images and outputs the predicted action
label, as well as per frame intermediate outputs, i.e. , vi-
sual features, per body joint probability maps, and 2D/3D
poses (see Figure 1). As follows, we detailed the multi-
modal CNN in section 3.1 and the action recognition part
in section 3.2.
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Figure 1: Overview of the proposed method. The multi-
modal CNN estimates 2D/3D poses for each input frame,
as well as visual features and joint probability maps, which
are used to extract appearance features.



3.1 Pose estimation and visual features ex-
traction

We propose to handle the problems of human pose estima-
tion and visual features extraction by using a single CNN
that address the pose estimation as a regression problem. In
such a way, the full network is differentiable, and the pose
coordinates can be used directly in the action recognition
part.

Multimodal network architecture. The network archi-
tecture is based on Inception-V4 [35] and on the Stacked
Hourglass [23] for prediction blocks (Figure 2). At the end
of each prediction block, volumetric heatmaps are gener-
ated, on which we apply a regression method to generate
2D/3D poses, which are then supervised. These heatmaps
are reinjected into the network for further refinement.
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Figure 2: Prediction block architecture. Each block is
stacked one after another in order to refine predictions. NJ

and Nd are the number of body joints and depth heatmaps.

From the entry-flow network, we define the output as the
visual features, which are used as a complementary infor-
mation for action recognition, as detailed in section 3.2.

Human pose regression. A human pose is defined as a
set of NJ points in a 2D or 3D space, that represent the
human body joints. For the 2D case, heatmaps can be used
to represent the score of a given body joint being present at
some position in the image. Differently from classical ap-
proaches that use the non differentiable argmax function to
extract body joint coordinates from heatmaps, we use the
Soft-argmax layer, which is a differentiable way to recover

the expectancy of the maximum response, given a normal-
ized heatmap. The Soft-argmax is defined by:

Ψ(x) =

(
Wx∑
c=0

Hx∑
l=0

c

Wx
Φ(x)l,c,

Wx∑
c=0

Hx∑
l=0

l

Hx
Φ(x)l,c

)T

,

(1)
where x is a heatmap with size Wx×Hx and Φ is the spa-
tial Softmax. The normalized heatmaps are called proba-
bility maps, which are used to pool visual features localized
at the body joint positions, as explained in section 3.2.
In order to extend that approach to 3D scenarios, we de-
fine the volumetric heatmaps as Nd stacked 2D heatmaps,
where Nd is the number of depth heatmaps, since it de-
fines the resolution on depth for regressing the third coordi-
nate. To recover the 3D pose, the first two coordinates, i.e. ,
(x, y), are regressed by applying the Soft-argmax on aver-
aged heatmaps on the Z axis, while the depth component
(the (z) coordinate) is regressed by applying a 1D Soft-
argmax on averaged heatmaps in the dimensions (x, y).
Note that the (x, y) and (z) components are independent,
so we can merge 2D and 3D datasets for multimodal train-
ing in a seamlessly way, since in the first case we only
backpropagate errors related to (x, y).

3.2 Human action recognition
A very important characteristic of the proposed multimodal
approach is its capability to extract both low-level visual
features and high-level pose coordinates in a fully differen-
tiable way. Thus, we can mixture both information to pre-
dict human actions. Additionally, the shared multimodal
network can be trained with pose and action data, in both
cases learning from “in the wild” 2D images or from con-
trolled 3D scenarios, which allows the network to learn
more robust features. That is possible thanks to the encap-
sulation of the pose estimation model as a time distributed
model, which means that the same architecture can be used
to handle a sequence of frames, instead of a single image.
The proposed method for action recognition can be seen
as composed by two parts: one as pose-based recognition,
which uses a sequence of body joints coordinates to predict
the action label, and the other as appearance-based recog-
nition, which relies on a sequence of visual features pooled
at the joint regions. The predictions from each part are
combined by means of one fully-connected layer that gives
the final prediction.
The network architecture for action recognition is similar
for both pose and appearance data, and is detailed in Fig-
ure 3. A first set of convolutions are applied to extract
smaller feature maps, which are then fed to a sequence
of action prediction blocks. On each prediction block, the
model outputs one probability map for each action, given
a video clip. In order to transform that probability map for
actions to action predictions, we perform the max plus min
pooling operation, followed by a Softmax, which gives a
vector of per action probability. This kind of pooling is
more sensitive to the strongest responses for each action,
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Figure 3: Network architecture for action recognition,
where T and NJ are the number of video frames and body
joints, respectively. Nf depends on the feature type, which
can be 3 for 3D poses or an arbitrary number of visual fea-
tures, and Na corresponds to the number of actions.

resulting in more robust predictions. Finally, following the
same inspiration as in the human pose estimation part, we
refine action predictions by using intermediate supervision
on predictions blocks and re-injecting action heatmaps into
the network.
As follows, we give some additional information about the
pose and appearance branches for action recognition.

Action recognition from human poses. The human
body joints encode a high level representation of the hu-
man body skeleton, which is essential to recognize some
actions. In order to exploit that information, we propose to
transform a sequence of T body joints composed of 2D or
3D points into an image-like form, where the vertical axis
encodes the time information, the horizontal axis encodes
the different body joints (NJ ), and the channels encode the
different joint coordinates, (x, y) for 2D or (x, y, z) for 3D
cases. This transformation is illustrated in Figure 4.
With the proposed approach for pose-based recognition,
actions that frequently are dependent only on a few body
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Figure 4: Overview of the action recognition method from
human poses.

joints, like trowing an object, can be easily recognized by
some patterns detected from the hands, for example.
In that way, an alternative approach with fully-connected
layers requires learning zeros on unrelated body joints,
which can be very difficult. Conveniently, 2D convolutions
with small filters enforce it automatically, resulting in an
easier learning problem. Additionally, different body joints
have different distributions, which facilitates some filters to
get specialized to respond to very specific patterns.
Another advantage of this approach is that 2D convolutions
can be used to generate action heatmaps, which are then
used in subsequent prediction blocks for refining predic-
tions, as detailed in Figure 4.

Appearance features extraction. As stated before, we
profit from our multitask framework to extract low level
visual features from the input video frames. Nevertheless,
we are interested in very specific features localized at the
human body joints, which are much more discriminant than
global visual features. These localized visual features are
called appearance features, which are extracted by multi-
plying the visual features F t ∈ RWf×Hf×Nf (that are the
output from the entry-flow network) by the joint probabil-
ity maps M t ∈ RWf×Hf×NJ in the last pose prediction
block, where Wf × Hf is the resolution of feature maps,
and Nf is the number of visual features.
In order to pool the visual features, we perform a multi-
plication between each channel from visual features F by
each probability maps M , followed by a global sum. That
process is repeated for each frame in the video clip, result-
ing in a new tensor of size RWf×Hf×NJ×Nf , which holds
the appearance features. An illustration of this process is
shown in Figure 5.
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Figure 5: The visual features are pooled by the joint proba-
bility maps to produce appearance features, which are used
to perform action recognition from a given video clip.



Similarly to the pose-based recognition, appearance fea-
tures are used as input in an action recognition network,
producing estimated action based only on visual appear-
ance information. Finally, the vector of predicted ac-
tions from pose and appearance are combined in a fully-
connected layer, resulting in the final action prediction.

4 Experiments
In this section we evaluate our method with respect to two
different tasks: human pose estimation and action recogni-
tion, which shows the effectiveness of our multimodal ap-
proach. For that matter, we use three datasets, as detailed
below.

4.1 Datasets
Here we provide some basic information about two
datasets on which we report results, i.e. , Human3.6M [13]
and NTU RGB+D [30], and a third dataset, MPII [1], that
we use for improving learned visual features.

Human3.6M. The Human3.6M [13] is a 3D pose estima-
tion dataset, composed by videos recorded with 11 subjects
(actors) performing 17 different activities and 4 cameras
placed at different positions. In total, the dataset contains
more than 3 million images, and for every recorded per-
son 32 body joints are available, from which 17 are used to
compute estimation errors in millimeters.

NTU RGB+D. The NTU [30] is a action datasets
recorded by Microsoft’s Kinect v2, usually used for 3D ac-
tion recognition. In total, 60 actions are performed by 40
actors and recorded by 3 different cameras, with 17 differ-
ent setups. This results in more than 56K high resolution
videos. To the best of our knowledge, this is the most re-
cent and most challenging dataset for 3D action recogni-
tion.

MPII Human Pose Dataset. We use the MPII Human
Pose [1] dataset as additional data for training, since it is
composed of about 25K images collected from YouTube
videos in very challenging scenarios, which is usually
called “in the wild” data. For each person in the images,
16 body joints were manually annotated in 2D pixel co-
ordinates. Thanks to our multimodal approach, 2D data
can be mixed with 3D poses in order to learn better visual
representations, which we show that provides a significant
improvement in performance.

4.2 Implementation details
We implemented the proposed networks (detailed in Fig-
ures 2 and 3) using depth-wise separable convolutions,
batch normalization and ReLu activation. We use NJ = 17
body joints and Nd = 16 heatmaps for depth prediction. In
order to merge different datasets, Human3.6M and MPII
for example, we convert the poses to a common layout with
17 joints. Since the MPII dataset has only 16 joints, we
included one “invalid joint” on this dataset, which is not
taken into account when backpropagation the loss.

For human pose estimation, the network was trained using
the elastic net loss function [42]:

Lp =
1

NJ

NJ∑
n=1

(
‖p̂n − pn‖1 + ‖p̂n − pn‖22

)
, (2)

where p̂n and pn are the estimated and the truth positions
of joint n. We optimize the pose human pose regression
using the RMSprop optimizer with initial learning rate of
0.001, which is reduced by a factor of 0.2 when scores on
validation plateaus, and batches of 24 images.
For the action recognition task, we train the network us-
ing the categorical cross entropy loss. We randomly select
video clips with size T = 16 for training. On test, we re-
port results on single-clip, which means that a single clip
is cropped from a given video, or on multi-clip, where crop
multiple clips separated by T/2, i.e. , 8 frames, one from
another. In the last case, final results are computed by the
average on all video clips. In that case, we train both pose
and appearance models simultaneously using a pre-trained
pose estimation model with weights initially frozen. In that
case, we use a classical SGD optimizer with Nesterov mo-
mentum equal to 0.98 and initial learning rate of 0.0002,
reduced by a factor of 0.2 when validation plateaus, and
batches of 2 video clips. When validation accuracy stag-
nates, we divide the final learning rate by 10 and fine tune
the full network for more 5 epochs.
To estimate the bounding box for action recognition on test,
we do a preliminary pose prediction using the full frame.
Then, we crop a bounding box around the estimated per-
son, which is used for the final pose prediction. We use
8 prediction blocks for reporting results on pose estima-
tion and 4 prediction blocks when using the multimodal
network for action recognition. For all experiments, we
use cropped RGB images of size 256 × 256, which re-
sulted in feature maps (visual features) of size 32×32. We
augment the training data by performing random rotations
from −45◦ to +45◦, scaling from 0.7 to 1.3, vertical and
horizontal translations respectively from −40 to +40 pix-
els, video subsampling by a factor from 1 to 3, and random
horizontal flipping.

4.3 Experiments on human pose estimation
Some qualitative results from out method can be seen in
Figure 6. In that case, we show the input RGB image,
with the 2D predicted pose over the image, and the cor-
responding 3D estimated pose slightly rotated. One inter-
esting point of our method is that it is able to predict 3D
poses from 2D annotated data (see the MPII bottom row),
thanks to our multimodal approach.

3D pose estimation. We evaluate the proposed approach
for 3D human pose estimation on Human3.6M by measur-
ing the mean per joint position error (MPJPE). We followed
the common evaluation protocol [34, 25, 7] by training on
five subjects (1, 5, 6, 7, 8) and evaluating on subjects 9 and
11, on one every 64 frames. After prediction, we project
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Figure 6: Pose predictions from the datasets Human3.6M (top row) and MPII (bottom row).

our estimated poses into the real world coordinate system
by using the available camera calibration. Then, the error is
computed between ground truth and estimated poses after
alignment on the root joint.
Our results with different experiments and a comparison
with the state-of-the-art are shown in Table 1. When spec-
ified multi-crop, we use five cropped regions around the
subject and the corresponding flipped images, then the fi-
nal prediction is the averaged pose. When our method is
trained with multimodal data, i.e. , using 50% from Hu-
man3.6M and 50% from MPII, our approach outperform
the state of the art by a significant margin.

4.4 Human action recognition
We evaluate our method on action recognition using the
NTU dataset, and our results compared to previous ap-
proaches are presented in Table 2. We are able to improve
the state-of-the-art, despite using estimated poses, while all
the other methods rely on ground truth skeletons. Consid-
ering only methods that are restricted to RGB images as
input, out approach improves the best result by 9.9%.
In order to show the contribution of each part of our method
on action recognition, we performed some additional ex-
periments on NTU. If we replace the Kinect skeletons by
our estimated poses, we increase the classification accuracy
by 2.9%. By fine tuning the full models, from RGB to ac-
tions, we gain more 3.3%. In the aggregation stage, when
combining pose-based prediction (71.7%) and appearance-
based predictions (83.2%), we gain 1.2% more. And by
using multiple clips from each video we also gain 1.1%.
Additionally, we show the improvement on accuracy for
each successive prediction block in and the contribution of
pose and appearance aggregation on Figure 7.

5 Conclusions
In this paper, we presented a multimodal neural network
for both 3D human pose estimation and action recognition.
The proposed approach first predict 3D poses for single im-
ages, then combine pose and visual information to predict
the action label. Thanks to the sharing of weights for dif-
ferent tasks, our approach benefits from high precision 3D
data and from “in the wild” images, resulting in very ro-
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Figure 7: Accuracy on action recognition (NTU) with re-
spect to each prediction block and to aggregated prediction,
before and after fine tuning.

bust visual features. Additionally, with multiple predic-
tion blocks for both pose and action, our predictions are
refined at each stage. And finally, by fine tuning the fully
differentiable model and by aggregating pose and appear-
ance information we increased action recognition accuracy
significantly.
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